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Abstract
Bronze inscriptions from early China are of-001
ten fragmentary, with missing or undeciphered002
characters limiting linguistic and historical003
analysis. Addressing this challenge requires004
models that can generalize across orthographic005
variation and diachronic script change. This pa-006
per introduces three contributions to support007
computational processing of bronze inscrip-008
tions: (i) a fully digitized and Unicode-encoded009
corpus of over 40,000 inscriptional characters;010
(ii) a glyph network linking diachronic variants011
to shared semantic anchors; and (iii) a masked012
language modeling (MLM) framework with013
variant-aware augmentation, alongside a peri-014
odization classification task. Experiments show015
that domain-adaptive pretraining and glyph-016
aware modeling substantially improve restora-017
tion accuracy. Our code is publicly available018
1.019

1 Introduction020

Bronze inscriptions from the Chinese Bronze Age021

(c. 21st–3rd century BCE) are a primary source022

for the study of early Chinese writing, language,023

and state rituals. Found on ritual vessels, weapons,024

and musical instruments, these inscriptions record025

military achievements, feudal enfeoffments, oaths,026

and ancestral rites. Their forms vary in length and027

structure, and they offer direct evidence of pre-Qin028

language and institutional systems. However, many029

inscriptions are damaged or fragmentary due to age,030

and missing characters are common.031

Traditionally, scholars restore missing characters032

by comparing graphic forms and using contextual033

inference. This process is time-consuming, expert-034

dependent, and difficult to scale. Recent work035

shows that pre-trained language models (PLMs)036

can support ancient script processing (Li, 2024),037

but most models are trained on modern Chinese038

and do not capture variant forms, phonetic substitu-039

tions, or syntactic evolution in early Chinese. This040

1https://anonymous.4open.science/r/bir-0E4B/

limits their effectiveness on bronze inscriptions, of- 041

ten leading to incorrect or implausible predictions. 042

In other domains, deep learning has demon- 043

strated considerable success in restoring historical 044

texts, including Akkadian cuneiform (Lazar et al., 045

2021) and ancient Greek inscriptions via the Ithaca 046

model (Assael et al., 2022). However, no special- 047

ized system currently exists for the completion of 048

Chinese bronze inscriptions, and general-purpose 049

models cannot be directly applied due to the script’s 050

unique orthographic and diachronic characteristics. 051

To bridge this gap, we introduce a masked language 052

modeling framework for predicting missing char- 053

acters in bronze inscriptions. 054

The contributions of this paper are threefold: 055

• It introduces the first fully digitized and 056

Unicode-encoded corpus of Chinese bronze 057

inscriptions to date, offering a structured foun- 058

dation for computational modeling and down- 059

stream evaluation. 060

• It constructs a glyph network for Chinese 061

bronze script that systematically aligns di- 062

achronic character variants with shared seman- 063

tic anchors, facilitating variant-aware repre- 064

sentation across historical periods. 065

• It develops a BERT-based masked language 066

modeling framework for character reconstruc- 067

tion and period classification, explicitly tai- 068

lored to the linguistic, orthographic, and di- 069

achronic properties of inscriptional Chinese. 070

2 Related Work 071

Corpus Compilation Bronze inscriptions have 072

been extensively cataloged and interpreted by 073

scholars throughout the past century. Foundational 074

corpora were established by Rong (1985), Wu 075

(2012), and researchers at CASS (2007), providing 076

large-scale databases for further study. On the in- 077

terpretive side, early contributions by Guo (1999) 078
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Figure 1: An example of a damaged bronze inscription
fragment (CCYZBI.02838) with annotation from us.

and Ma (1986), along with many subsequent philo-079

logical studies, have clarified the content and struc-080

ture of inscriptional texts. These efforts laid the081

groundwork for both traditional research and mod-082

ern computational approaches.083

Periodization The script style and grammar of084

bronze inscriptions change over time, making peri-085

odization a central task in the field. Chen (2004),086

Wang et al. (2017), and Du (2003) proposed widely087

adopted early-middle-late subdivisions of Western088

Zhou inscriptions based on inscription content and089

archaeological context. More recent approaches090

use finer features: Yan (2017) applies archaeologi-091

cal typology, while Deng (2015) explores dating by092

graphical components such as radicals and stroke093

patterns.094

Digitization Multiple platforms now support095

computational access to bronze inscriptions.096

ECNU’s system combines structured inscription097

catalogs with AI-based glyph recognition and098

transcription tools2. Academia Sinica maintains099

two complementary resources: a GIS-linked cor-100

pus of over 14,000 inscriptions3 and a lexical101

database with concordance-style search across or-102

acle, bronze, and bamboo texts4. However, many103

characters remain undeciphered or image-based,104

2https://jwdcdbz.ancientbooks.cn/index
3https://bronze.asdc.sinica.edu.tw
4https://inscription.asdc.sinica.edu.tw/c_

index.php

limiting downstream analysis. 105

Generalized Characters Bronze texts exhibit 106

widespread use of phonetic loans, allographs, and 107

graphic variants, which complicates token-level 108

modeling. Scholars have proposed generalized 109

character mappings to unify semantically equiv- 110

alent forms. Existing studies span Shang and Zhou 111

corpora and document systematic correspondences 112

across hundreds of variant graphs (Luo, 2013; Du, 113

2020; Qi, 2023). These mappings are crucial for 114

reducing surface-level noise while preserving lin- 115

guistic structure. 116

Restoration of Historical Texts Neural models 117

have been successfully applied to restoring frag- 118

mentary ancient texts across diverse languages. As- 119

sael et al. (2022) introduced Ithaca, a transformer 120

trained to complete Greek inscriptions, achieving 121

62% top-1 accuracy, improved to 72% with hu- 122

man collaboration. Lazar et al. (2021) framed 123

Akkadian cuneiform reconstruction as a masked 124

language modeling task, reaching 89% top-5 accu- 125

racy with limited training data. For ancient Ara- 126

bic manuscripts, Miloud et al. (2024) proposed a 127

BLSTM with modified attention, achieving 99.5% 128

accuracy on 3,745 curated samples. These results 129

show that neural restoration methods are effective 130

even under low-resource conditions, and can mean- 131

ingfully support human experts in epigraphic re- 132

construction. 133

3 Dataset 134

Domain-Adaptive Pretraining (DAPT) Follow- 135

ing the principle of pretraining (Gururangan et al., 136

2020), we adapt a general-purpose encoder to the 137

domain of early Chinese by continuing pretrain- 138

ing on 40 curated pre-Qin texts, including received 139

classics (e.g., Shangshu, Bamboo Annals) and exca- 140

vated manuscripts (e.g., Guodian slips, Mawangdui 141

silk books). These sources provide syntactic and 142

lexical coverage of the language continuum most 143

proximate to bronze inscriptions. Full source de- 144

tails are listed in the Appendix 4. 145

Task-Adaptive Pretraining (TAPT) Our task- 146

specific corpus builds on the Complete Collection 147

of Yin and Zhou Bronze Inscriptions (CCYZBI), 148

which compiles all known inscriptions published 149

before 2007. We extend this base with philological 150

updates from recent scholarship (e.g., Su (2016), 151

Zhu (2007), Li (2023)), and annotate each inscrip- 152

tion with temporal metadata. All transcriptions and 153
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Type Count Proportion

Identifiable 39,565 99.24%
Ambiguous (□) 236 0.59%
Unknown ([UNK]) 56 0.14%

Table 1: Character types in the TAPT corpus.

datings were reviewed by trained paleographers to154

ensure accuracy.155

Corpus Encoding All inscription data are nor-156

malized into machine-readable Unicode. We distin-157

guish three character types: (1) parsed characters158

with known readings; (2) ambiguous characters159

marked as□ where glyphs are indistinct or dam-160

aged; and (3) unparsed yet visually legible charac-161

ters, encoded as [UNK-xxxxx-x] for future recog-162

nition models. See Table 1 for corpus composition.163

4 Model164

4.1 Glyph Modeling165

Inscriptions from different periods often render166

the same semantic unit in distinct glyphs (Qiu,167

2013). We group such variants into realization clus-168

ters, where RealizationCluster(α) = α1, α2, α3169

denotes the observed forms of semantic anchor170

α across time. Rather than collapsing this diversity171

through hard substitution, we hope to align these172

forms to a shared latent identity during encoding,173

and allow the model to generalize across periods174

while preserving surface sensitivity.175

4.2 Glyph Net176

To operationalize glyph clustering, we compile a177

cross-period inventory of character variants from178

the Shang to Eastern Zhou periods. Drawing on179

prior studies (Luo, 2013; Du, 2020; Qi, 2023),180

we assign Unicode-compatible IDs to normalized181

forms. This glyph net supports variant-aware en-182

coding, augments training via injection strategies,183

and preserves diachronic structure. An example is184

shown in Appendix 3.185

4.3 Training Architecture186

We propose a BERT-based masked language model-187

ing (MLM) framework for missing character recon-188

struction in bronze inscriptions. BERT has shown189

strong performance across NLP tasks due to its bidi-190

rectional context modeling, but it typically requires191

large-scale training data. This poses a challenge192

for our low-resource setting.193

Figure 2: Overall framework of our masked language
modeling for bronze inscription restoration.

As shown in Figure 2, our architecture integrates 194

domain-adaptive pretraining with variant-aware 195

augmentation. We first perform domain pretrain- 196

ing on a corpus of pre-Qin literature to expose the 197

model to relevant syntactic and lexical patterns. 198

To handle glyph variation, we explore two aug- 199

mentation strategies: replace, which maps all vari- 200

ants to the normalized form, and inject, which 201

randomly replaces tokens with members of their re- 202

alization cluster. The latter encourages robustness 203

to surface variation and supports generalization 204

across unattested forms. 205

5 Experiments 206

5.1 Setup 207

We benchmark two pretrained encoders: multilin- 208

gual BERT (mBERT) 5, which is trained across 209

104 languages including Chinese, and SIKU- 210

BERT 6, a domain-specific variant trained on Clas- 211

sical Chinese corpora such as the Siku Quanshu. 212

For MLM tasks, we evaluate Top-1 and Top- 213

10 accuracy on character reconstruction and the 214

5https://huggingface.co/google-bert/
bert-base-multilingual-cased

6https://huggingface.co/SIKU-BERT/sikubert
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Model DAPT GN Top-1 / -10

mBERT – replace .4580 / .6270
– inject .4797 / .6531
+ replace .4570 / .6378
+ inject .4833 / .6580

SIKU-BERT – replace .5049 / .6871
– inject .5353 / .7290
+ replace .5111 / .7012
+ inject .5420 / .7263

Table 2: Masked character prediction accuracy (Top-1 /
Top-10). All settings include TAPT. DAPT = domain-
adaptive pretraining; GN = glyph net.

impact of DAPT and TAPT, both with and without215

GN. Following standard practice in low-resource216

modeling, we freeze the encoder during DAPT and217

fine-tune during TAPT. Details of the corpora used218

are provided in Appendix A.1.219

For periodization, we formulate diachronic clas-220

sification as a hierarchical prediction task over221

four major periods (Shang, Western Zhou, Spring222

and Autumn, Warring States) nested within two223

dynasties (Yin, Zhou). We evaluate four classi-224

fiers—Logistic Regression, Naive Bayes, Linear225

SVM, and Random Forest.226

5.2 Masked Language Modeling227

Table 2 presents masked character prediction accu-228

racy for mBERT and SIKU-BERT with DAPT and229

GN variants. TAPT consistently improves base-230

line performance. GN (inject) yields higher accu-231

racy than GN (replace), reaching .4833 (Top-1) for232

mBERT and .5420 (Top-1) for SIKU-BERT. SIKU-233

BERT uniformly outperforms mBERT, confirming234

domain-specific advantages.235

5.3 Periodization Classification236

Classification results appear in Table 3. Lin-237

ear SVM obtains highest accuracy (.7840 dy-238

nasty; .5932 period-level average). Random Forest239

closely follows; Naive Bayes and Logistic Regres-240

sion lag behind. Lower period-level scores high-241

light the difficulty of fine-grained temporal classifi-242

cation.243

6 Discussion244

Results from both tasks indicate three key factors245

influencing performance: domain adaptation, GN246

normalization, and pretraining source. DAPT con-247

Classifier Dynasty Period (avg)

Logistic Regression .7407 .5003
Naive Bayes .7222 .5371
Linear SVM .7840 .5932
Random Forest .7747 .5661

Table 3: Dynasty and period-level classification accu-
racy (mean).

sistently improves accuracy across configurations, 248

with mBERT benefiting most and substantially clos- 249

ing the gap with SIKU-BERT. This confirms that 250

exposure to inscriptional data enables models to 251

acquire lexical and syntactic patterns specific to 252

bronze texts. 253

GN normalization further enhances prediction. 254

Injecting variant forms (GN-inject) outperforms 255

strict replacement (GN-replace), demonstrating 256

that preserving surface variation improves gener- 257

alization to both attested and unattested forms. In 258

contrast, replacement reduces diversity in training 259

signals and limits the model’s ability to recover 260

historically accurate glyphs. 261

Pretraining source exerts the strongest effect. 262

SIKU-BERT, pretrained on classical Chinese, con- 263

sistently outperforms mBERT under all conditions. 264

Its alignment with the target domain’s language and 265

script structure leads to more stable and accurate 266

predictions, both before and after adaptation. 267

7 Conclusion 268

This paper presents two new resources for the study 269

and modeling of Chinese bronze inscriptions: a 270

fully digitized, Unicode-encoded corpus of pre- 271

Qin inscriptions, and a glyph network that links 272

diachronic character variants to shared semantic 273

anchors. These structured lexical tools provide a 274

foundation for variant-aware modeling and enable 275

robust generalization across script forms. 276

Built on these resources, a masked language 277

modeling framework is proposed for character re- 278

construction and period classification. By incorpo- 279

rating domain- and task-adaptive pretraining, along 280

with glyph-level augmentation, the model effec- 281

tively handles orthographic variation and data spar- 282

sity. Experimental results confirm that glyph-aware 283

strategies and domain alignment significantly en- 284

hance performance, underscoring the value of com- 285

bining historical lexical structure with modern neu- 286

ral methods in low-resource epigraphic NLP. 287

4



8 Limitations288

Despite promising gains in both reconstruction and289

periodization, several limitations remain. First, the290

current framework does not incorporate archaeo-291

logical typology or vessel metadata, which play292

a central role in traditional period determination293

(Wang et al., 2017). Features such as vessel shape,294

decorative motifs, and casting techniques constitute295

an independent chronological signal and could sig-296

nificantly improve classification when integrated297

with textual modeling.298

Second, the treatment of graphic variation relies299

on a manually curated glyph network and surface-300

level augmentation. While effective for known vari-301

ants, this strategy may fail to capture more complex302

historical substitution patterns, particularly those303

involving phonetic loans. The current model lacks304

explicit phonological supervision, limiting its abil-305

ity to resolve homophonic ambiguity—a common306

phenomenon in bronze script. Incorporating pho-307

netic embeddings or diachronic sound correspon-308

dences may offer better disambiguation in future309

work.310

Third, data scarcity remains a core constraint.311

Although the corpus released here represents the312

most complete Unicode-based resource for bronze313

inscriptions to date, it still covers only a portion of314

the known epigraphic record. Many inscriptions315

remain lost, unpublished, or undeciphered. This316

sparsity hinders generalization, especially for rare317

or stylistically irregular cases. Techniques such as318

synthetic augmentation, cross-modal training with319

image data, or semi-supervised learning on partial320

transcriptions could help mitigate this limitation.321
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zhǎnwàng人工智能與金文研究展望 366

prospects for integrating artificial intelligence and
bronze inscription research

. Chinese Social Sciences Today. https: 367
//www.cssn.cn/skgz/bwyc/202408/t20240809_ 368
5769948.shtml. 369
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A Appendix420

A.1 Pretraining Configuration421

DAPT was conducted over the full corpus of pre-422

Qin texts listed in Table 4. Training ran for one423

epoch, with the bottom six layers of the encoder424

frozen to reduce overfitting. TAPT was performed425

on the curated corpus of bronze inscriptions for426

three epochs. All training phases employed the427

AdamW optimizer with a learning rate of 5×10−5,428

weight decay of 0.01, batch size of 8, and a mask-429

ing probability of 15%. Experiments were run on430

two NVIDIA A100 GPUs.431

A.2 Glyph Net and Realization Clusters432

Figure 3 illustrates a subset of our diachronic glyph433

network. Each node corresponds to a charac-434

ter form gi attested in the corpus, and edges de-435

note either unidirectional normalization relations436

Figure 3: Excerpt from the glyph network showing
variant relationships in the Shang period.

(gi → gj , red) or reversible substitution (gi ↔ gj , 437

blue). These mappings form the structural basis for 438

glyph-aware encoding and variant injection during 439

training. 440

Bronze inscriptions frequently exhibit di- 441

achronic glyph variation. A semantic unit α may 442

appear as distinct forms over time—for example, 443

α1 (Shang), α2 (Western Zhou), and α3 (Eastern 444

Zhou)—linked by a chain: 445

α1 → α2 → α3 446

All such forms are grouped into a realization clus- 447

ter: 448

RC(α) = {α1, α2, α3} 449

where RC(α) denotes the set of all known surface 450

realizations of α. During encoding, any g ∈ RC(α) 451

is mapped to a shared latent representation [α]. At 452

decoding, the model selects g′ ∈ RC(α) that maxi- 453

mizes contextual likelihood: 454

g′ = arg max
g∈RC(α)

P (g | context) 455

This structure avoids the limitations of hard sub- 456

stitution (e.g., g 7→ gmodern), which discards di- 457

achronic signal and precludes reverse mapping. In- 458

stead, GN maintains bijective paths between sur- 459

face forms and semantic anchors, enabling: - Gen- 460

eralization: gunseen ∈ RC(α) can be semantically 461

interpreted even if absent from training. - Align- 462

ment: tokens are grouped not by appearance, but by 463

historical and semantic equivalence. - Reversibil- 464

ity: decoding remains faithful to inscriptional form, 465

preserving chronological granularity. 466
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Figure 4: An illustrative example of diachronic glyph
realization. The semantic unit α has a unique form α1

in the Shang period, gradually expanding to {α1, α2}
in Western Zhou and {α1, α2, α3} by the Eastern Zhou.
This realization chain reflects both orthographic evolu-
tion and semantic continuity.

This formulation reflects both philological con-467

vention and neural modeling requirements, provid-468

ing a scalable solution for lexical generalization469

across historical scripts.470

A.3 Pre-Qin Corpus Composition471

The DAPT corpus consists of 40 classical and ex-472

cavated texts, covering all major schools of early473

Chinese thought. Table 4 provides a representative474

subset categorized by philosophical or historical475

affiliation. These texts provide broad coverage of476

the syntactic and lexical patterns most proximate477

to inscriptional Chinese.478

A.4 Perplexity Evaluation479

Table 5 and Table 6 report perplexity (PPL) scores480

for masked language modeling across mBERT and481

SIKU-BERT. Lower perplexity indicates better pre-482

dictive confidence under the MLM objective.483

For both encoders, DAPT and glyph-aware aug-484

mentation significantly reduce PPL relative to the485

baseline. Injecting variant forms (GN-inject) con-486

sistently outperforms replacement (GN-replace),487

confirming that preserving surface variation im-488

proves generalization. SIKU-BERT achieves lower489

PPL than mBERT across all configurations, con-490

sistent with its pretraining alignment with classical491

Chinese. The lowest overall PPL (.13.86) is ob-492

tained with SIKU-BERT under the DAPT + TAPT493

+ GN-inject setting, demonstrating the combined494

benefit of domain adaptation and glyph-variant in-495

tegration.496
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Category Titles

Confucianism Analects, Mengzi, Liji, Xiao Jing, Xunzi, Yili
Mohism Mozi
Daoism Laozi, Zhuangzi, Liezi, He Guan Zi, Yu Liaozi
Legalism Hanfeizi, Shang Jun Shu, Shenzi, Jian Zhu Ke Shu, Guanzi
School of Names Gongsunlongzi
School of the Military Sunzi Bingfa, Wu Zi, Liu Tao, Si Ma Fa
Miscellaneous Schools Gui Gu Zi, Lü Shi Chun Qiu
Histories Guo Yu, Yanzi Chun Qiu, Zhan Guo Ce, Mutianzi Zhuan, Zhushu Jinian, Zuo Zhuan
Ancient Classics Book of Poetry, Shang Shu, Book of Changes, Rites of Zhou, Chu Ci, Shan Hai Jing, Yizhoushu
Etymology/Medicine/Excavated Huangdi Neijing, Guodian, Mawangdui

Table 4: Subset of pre-Qin texts included in the DAPT corpus.

Scenario mBERT PPL Std. Dev.

Baseline 169.39 ± 28.72
TAPT + GN (inject) 16.14 ± 2.00
TAPT + GN (replace) 18.27 ± 1.84
DAPT + TAPT + GN (inject) 15.98 ± 1.98
DAPT + TAPT + GN (replace) 17.48 ± 1.69

Table 5: Perplexity results for mBERT under different
training configurations.

Scenario SIKU-BERT PPL Std. Dev.

Baseline 1253.66 ± 281.67
TAPT + GN (inject) 14.05 ± 1.72
TAPT + GN (replace) 18.25 ± 2.44
DAPT + TAPT + GN (inject) 13.86 ± 1.78
DAPT + TAPT + GN (replace) 17.15 ± 2.15

Table 6: Perplexity results for SIKU-BERT under dif-
ferent training configurations.
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