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Abstract

Biomedical entity normalization unifies the
language across biomedical experiments and
studies, and further enables us to obtain a holis-
tic view of life sciences. Current approaches
mainly study the normalization of more stan-
dardized entities such as diseases and drugs,
while disregarding the more ambiguous but
crucial entities such as pathways, functions
and cell types, hindering their real-world appli-
cations. To achieve biomedical entity normal-
ization on these under-explored entities, we
first introduce an expert-curated dataset OBO-
syn encompassing 70 different types of entities
and 2 million curated entity-synonym pairs.
To utilize the unique graph structure in this
dataset, we propose GraphPrompt, a prompt-
based learning approach that creates prompt
templates according to the graphs. Graph-
Prompt obtained 41.0% and 29.9% improve-
ment on zero-shot and few-shot settings re-
spectively, indicating the effectiveness of these
graph-based prompt templates. We envision
that our method GraphPrompt and OBO-syn
dataset can be broadly applied to graph-based
NLP tasks, and serve as the basis for analyzing
diverse and accumulating biomedical data.

1 Introduction

Mining biomedical text data, such as scientific lit-
erature and clinical notes, to generate hypotheses
and validate discovery has led to many impactful
clinical applications (Zhao et al., 2021; Lever et al.,
2019). One fundamental but unaddressed problem
in biomedical text mining is entity normalization,
which aims to map a phrase to a concept in the
controlled vocabulary (Sung et al., 2020). Accurate
entity normalization enables us to summarize and
compare biomedical insights across studies and
obtain a holistic view of biomedical knowledge.
Current approaches (Wright, 2019; Ji et al., 2020;
Sung et al., 2020) to biomedical entity normaliza-
tion often focus on normalizing more standardized
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Figure 1: Illustration of GraphPrompt. GraphPrompt
classifies a test synonym (CD115 (human)) to an en-
tity in the graph by converting the graph into prompt
templates based on the zeroth-order neighbor (770),
first-order neighbors (7 1), and second-order neighbors

(T2).

entities such as diseases (Dogan et al., 2014; Li
et al., 2016), drugs (Kuhn et al., 2007; Pradhan
et al., 2013), genes (Szklarczyk et al., 2016) and ad-
verse drug reactions (Roberts et al., 2017). Despite
their encouraging performance, these approaches
have not yet been applied to the more ambiguous
entities, such as processes, pathways, cellular com-
ponents, and functions (Smith et al., 2007), which
lie at the center of life sciences. As scientists rely
on these entities to describe disease and drug mech-
anisms (Yu et al., 2016), the inconsistent terminol-
ogy used across different labs inevitably hampers
the scientific communication and collaboration, ne-
cessitating the normalization of these entities.

The first immediate bottleneck to achieve the
normalization of these under-explored entities is
the lack of a high-quality and large-scale dataset,
which is the prerequisite for existing entity normal-
ization approaches (Wright, 2019; Ji et al., 2020;
Sung et al., 2020). To tackle this problem, we col-
lected 70 types of biomedical entities from OBO
Foundry (Smith et al., 2007), spanning a wide vari-
ety of biomedical areas and containing more than
2 million entity-synonym pairs. These pairs are
all curated by domain experts and together form a



high-quality and comprehensive controlled vocab-
ulary for biomedical sciences, greatly augmenting
existing biomedical entity normalization datasets
(Dogan et al., 2014; Li et al., 2016; Roberts et al.,
2017). The tedious and onerous curation of this
high-quality dataset further confirms the necessity
of developing data-driven approaches to automat-
ing this process and motivates us to introduce this
dataset to the NLP community.

In addition to being the first large-scale dataset
encompassing many under-explored entity types,
this OBO-syn dataset presents a novel setting of
graph-based entity normalization. Specifically, en-
tities of the same type form a relational directed
acyclic graph (DAG), where each edge represents
a relationship (e.g., is_a) between two entities.
Intuitively, this DAG could assist the entity nor-
malization since nearby entities are biologically
related, and thus more likely to be semantically
and morphologically similar. Existing entity nor-
malization and synonym prediction methods are
incapable of considering the topological similar-
ity from this rich graph structure (Wright, 2019;
Ji et al., 2020; Sung et al., 2020), limiting their
performance, especially in the few-shot and zero-
shot settings. Recently, prompt-based learning has
demonstrated many successful NLP applications
(Radford et al., 2019; Schick and Schiitze, 2020;
Jiang et al., 2020). The key idea of using prompt
is to circumvent the requirement of a large num-
ber of labeled data by creating masked templates
and then converting supervised learning tasks to
a masked-language model task (Liu et al., 2021).
However, it remains unknown how to convert a
large graph into text templates for prompt-based
learning. Representing graphs as prompt templates
might effectively integrate the topological similar-
ity and textural similarity by alleviating the over-
smoothing caused by propagating textual features
on the graph.

In this paper, we propose GraphPrompt, a
prompt-based learning method for entity normal-
ization with the consideration of graph structures.
The key idea of our method is to convert the graph
structural information into prompt templates and
solve a masked-language model task, rather than
incorporating textual features into a graph-based
framework. Our graph-based templates explicitly
model the high-order neighbors (e.g., neighbors of
neighbors) in the graph, which enables us to cor-
rectly classify synonyms that have relatively lower

morphological similarity with the ground-truth en-
tity (Figure 1). Experiments on the novel OBO-
syn dataset demonstrate the superior performance
of our method against existing entity normaliza-
tion approaches, indicating the advantage of con-
sidering the graph structure. Case studies and the
comparison to the conventional graph approach fur-
ther reassure the effectiveness of our prompt tem-
plates, implicating opportunities on other graph-
based NLP applications. Collectively, we intro-
duce a novel biomedical entity normalization task,
a large-scale and high-quality dataset, and a novel
prompt-based solution to advance biomedical en-
tity normalization.

2 Related Works

Biomedical entity normalization. Biomedical en-
tity normalization has been studied for decades be-
cause of its significance in a variety of biomedical
applications. Conventional approaches mainly re-
lied on rule-based methods (D’Souza and Ng, 2015;
Sullivan et al., 2011) or probabilistic graphical mod-
els (Leaman et al., 2013; Leaman and Lu, 2016) to
model the morphological similarity, which are in-
capable of normalizing functional entities that are
semantically similar but morphologically different.
Deep learning-based approaches (Li et al., 2017;
Wright, 2019; Pujary et al., 2020; Deng et al., 2019;
Luo et al., 2018) and pre-trained language models
(PLMs) (Ji et al., 2020; Sung et al., 2020; Lee et al.,
2020; Miftahutdinov et al., 2021) have obtained en-
couraging results in capturing the semantics of enti-
ties through leveraging human annotations or large
collections of corpus. However, these approaches
focus on datasets comprising of less ambiguous
entity types, such as drugs and diseases and are
not able to incorporate graph structures into their
framework. In contrast, we aim to utilize rich graph
information to assist the normalization of more am-
biguous entities such as functions, pathways and
processes.

Incorporating graph structure into text mod-
eling. Graph-based approaches, such as network
embedding (Tang et al., 2015) and graph neural
network (Kipf and Welling, 2016), have been used
to model the structural information in the text data,
such as citation networks (An et al., 2021), so-
cial networks (Masood and Abbasi, 2021; Aljohani
et al., 2020) and word dependency graph (Fu et al.,
2019). Among them, Kotitsas et al. (2019) con-
sidered the most similar DAG structure to our task
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Figure 2: Analysis of the OBO-syn dataset. a, Bar plot showing the distribution of the number of entity-synonym
pairs in 70 graphs. b, Box plot comparing the textual similarity of entity pairs having different shortest distances on
the graph. c, Line chart comparing the phrase mentions of NCBI, BCSCDR, OBO-syn. The y-axis is the number
of mentions in 28 million PubMed abstracts. The x-axis is the phrase percentile sorted by the number of mentions.

and proposed a two-stage approach to integrate
graph structural with textual information. The key
difference between our method and existing ap-
proaches is that we transform the graph structures
into prompt templates and then solve a masked-
language model task, whereas existing works rep-
resent textual information as fixed node features
and then optimize a graph-based model.

Prompt-based learning. Prompt-based learn-
ing have recently shown promising results in many
applications(Liu et al., 2021), such as text genera-
tion (Radford et al., 2019; Brown et al., 2020), text
classification (Schick and Schiitze, 2020; Gao et al.,
2020) and question answering (Khashabi et al.,
2020; Jiang et al., 2020). Prompt-based learning
has not yet been applied to integrate the graph infor-
mation. The most related prompt-based works to
our task is prompt-based relation extraction (Chen
et al., 2021; Han et al., 2021) and prompt-based
knowledge base completion (Davison et al., 2019).
These approaches only consider immediate neigh-
bors in the graph and are not able to model more
distant nodes, thus being incapable of capturing
the topology of the entire graph. To the best of
our knowledge, we are the first work that considers
higher-order graph neighbors in the prompt-based
learning framework.

3 Dataset Description and Analysis

We collected 70 relational graphs from Open Bio-
logical and Biomedical Ontology Foundry (OBO)
(Smith et al., 2007). Nodes in the same relational
graph represent biomedical entities belonging to
the same type, such as protein functions, cell types,
and disease pathways. Each edge represents a rela-
tional type, such as is_a, part_of, capable_of, and

regulates. We leveraged these edge types to build
templates in our prompt-based learning framework.
The number of nodes in each graph ranges from
113 to 2,334,910 with a median value of 3,077.
The number of synonyms for each entity ranges
from 1 to 284 with a median value of 2 (ignoring
the entities without synonyms). On average, each
graph has 34,418 entity-synonym pairs and 72.9%
of graphs have more than 1,000 entity-synonym
pairs (Figure 2a). The graph structure and entity
synonym associations are all curated by domain
experts, presenting a large-scale and high-quality
collection.

In comparison to other biomedical entity normal-
ization datasets (Dogan et al., 2014; Li et al., 2016;
Roberts et al., 2017), OBO-syn presents a unique
graph structure among entities. Intuitively, nearby
entities as well as their synonyms should be se-
mantically similar, as their biological concepts are
relevant. To validate this intuition, we investigated
the consistency between graph-based entity simi-
larity and text-based entity similarity. In particular,
we used the shortest distance on the graph to cal-
culate graph-based similarity and Sentence-BERT
(Reimers et al., 2019) to calculate text-based sim-
ilarity. We observed a strong correlation between
these two similarity scores (Figure 2b), suggest-
ing the possibility to transfer synonym annotations
from nearby entities to improve the entity normal-
ization.

We next compared this OBO-syn dataset
with the existing biomedical entity normalization
dataset. We first observed very small overlaps
of 5.26%, 14.59%, 3.29% between our dataset
and three widely-used biomedical entity normal-
ization datasets NCBI-disease (Dogan et al., 2014),



BC5CDR-disease (Li et al., 2016), and BC5CDR-
chemical (Li et al., 2016), respectively. The small
overlaps with existing datasets indicate the unique-
ness of our dataset, and further make us question
the performance of the state-of-the-art entity nor-
malization methods on this novel dataset. More im-
portantly, we noticed a substantially large number
of out-of-vocabulary phrases in our dataset com-
pared to existing datasets (Figure 2¢). We cal-
culate the number of mentions of each phrase in
29 million PubMed abstracts, which are used as
the pre-training corpus for biomedical pre-trained
models (Lee et al., 2020; Gu et al., 2020). The 95
percentile of the number of mentions in our dataset
is only 51, substantially lower than 487 in NCBI
and 582 in BC5CDR, suggesting a worse general-
ization ability using pre-trained language models
and motivating us to exploit the graph structures
for this dataset.

4 Problem Statement

The goal of entity normalization is to map a
given synonym phrase s to the corresponding en-
tity v based on their semantic similarity. One
unique feature of our problem setting is that en-
tities belonging to the same type form a relational
graph. Formally, we denote this relational graph
as G = (V,R,E), where V is the set of entities, R
is the set of relation typesand € C V x R x Vis
the set of edges. Let C be the vocabulary of the cor-
pus. Each node v; € V is represented as an entity
phrase v; £ <’UZ»1,UZ-2, ... ,v,livib, where vf e€C. In
addition to the graph, we also have a set of mapped
synonyms S that will be used as the training data.
Each s; (sjl-, s?, ce s‘jsj|> € S is mapped to one
entity v; in the graph S, and s? eC.

Our goal is to classify a test synonym s’ to an
entity v in the graph. Since the majority of entities
only have very few synonyms (e.g., 96.9% of en-
tities have less than 5 synonyms), we consider a
few-shot and a zero-shot setting. Specifically, in the
few-shot setting, the test set entities are included
in the training set entities. On the contrary, the
entities in the training set and the test set present no
overlap in the zero-shot setting, and therefore the
entities of training datasets are unobservable for
test procedure. The small number of training syn-
onyms for each entity could exacerbate over-fitting.
To mitigate the over-fitting problem, we propose
graph-based prompt templates, where we consider

the synonyms of nearby entities in the training data.
4.1 Base model

We first introduce a base model that only con-
siders the textual information of synonyms and
entities while disregarding the graph structure. Fol-
lowing the previous work (Sung et al., 2020), the
base model uses two encoders to calculate the sim-
ilarity between the queried synonym s and the can-
didate entity v. The first encoder Enc, encodes
the queried synonym into the dense representation
s = Encg(ts). The second encoder Enc, encodes
the candidate entity into the dense representation
x, = Enc,(t,). Then the predicted probability of
choosing entity v is calculated as:

Q(xy, )
Zv’ev Q(xv’y xs) 7
where @ is defined as Q(zx,, x5) = exp(x, x;).
We select BioBERT with [CLS] readout function as
Enc, and Enc,, and share the parameters between
both encoders. Following Sung et al. (2020), the in-
put ¢, and ¢, are designed as “|[CLS] v [SEP]” and
“[CLS] s [SEP]” respectively. In practice, we find
that the initial [CLS] output vectors are fairly close.
This can result in large positive ] s, which leads
to slow convergence and potential numerical is-
sues, yet it is not addressed by BioSyn (Sung et al.,
2020). To alleviate this issue, we use a trainable
1-d BatchNorm layer and redefine our similarity
function @ as:

Q(xy, xs) = exp(BN(mIazs)). (2)
When the candidate entity set is large, back-
propagating through x, results in high memory
complexity due to the construction of |V| compu-
tation graphs to get x,/. To tackle this problem,
we apply the stop gradient trick to «,, following
Sung et al. (2020). Besides, we utilize the hard
negative strategy following Sung et al. (2020) by
sampling difficult negative candidates &/ C V. The
loss function is defined as:

Lase:_ 1
b (vz:s)ogz

P(zy|xs) = (D

Q(Sg(mv)a ms)

v eUU{v} Q(Sg(mv’)a ws) 7
3)

where sg denotes the stop gradient opera-

tion.Besides, To further save computation time, we

cache the values of sg(x,/),v" € V and iteratively

update them. See more details for the base model

in A.2.

4.2 Prompt model

Previous work (Sung et al., 2020) and the base
model use BioBERT with [CLS] readout function




as the encoders, which take the synonym or entity
as the input and use the hidden state of [CLS]| as
the output. However, using the synonym or en-
tity as the input text might not fully capture its
semantic since PLMs are often pre-trained with
sentences instead of phrases. To tackle this prob-
lem, we construct two simple prompt templates

TP for a training entity-synonym pair (v, s) as:
TO(IMASK],v) = “MASK] is identical with
v” and T°([MASK],s) = “MASK] is identi-
cal with s” ([CLS] and [SEP] are omitted). Then

we optimize the model by solving an masked lan-
guage modeling task, where we use the output of

BioBERT at [MASK] token as the dense represen-
tation x,, (x;) for v (s), respectively:
x, = BioBERT(T°([MASK],v)), 4)
x; = BioBERT(T°(]MASK], 5)). 5)

Since the graph is not used here, we refer to x,
as the zeroth-order representation of entity v. The
loss function of prompt model is similar to base
model’s, where we select the whole entity set V as
candidates instead of its subset:

Q(sg(®y), zs)

Ly=— log .
P~ LR Qloe(e ) 2

(6)

5 GraphPrompt model

5.1 Intuition

The observation that nearby entities are more se-
mantically similar (Figure 2b) motivates us to in-
tegrate textual similarity with graph topological
similarity to boost the entity normalization. Con-
ventional approaches often integrate text and graph
information by adapting a graph-based framework
and incorporating text features as node features
(Kotitsas et al., 2019). However, such approaches
might not fully utilize the strong generalization
ability of pre-trained models, which have been cru-
cial for a variety of NLP tasks (Devlin et al., 2018;
Petroni et al., 2019). In contrast to conventional
approaches, we propose to utilize a prompt-based
learning framework to integrate text and graph in-
formation through representing the graph informa-
tion as prompt templates. To the best of our knowl-
edge, our method is the first attempt to represent
the graph structure as prompt templates.

5.2 First-order GraphPrompt

GraphPrompt uses Equation 1 for inference, but
utilizes the graph information during training.
GraphPrompt considers first-order neighborhood
(i.e., immediate neighbors) and second-order neigh-
borhood (i.e., neighbors of the neighbors) to con-
struct prompt templates for a given entity.

To model first-order neighbors, GraphPrompt de-
fines the template 7, (v;,v;) = “v; v’ v;” for an
edge between entity v; and its immediate neighbor
entity v; with relation type r. r’ is created from r
with minor morphological change, as listed in Ta-
ble 3. For a given triple (v;, r, v;) in the graph, we
create a masked-language model task by randomly
masking v; or v;. We also include the template that
replaces the unmasked v with its training synonym
s. For example, when v; is masked and v; is re-
placed with s, we obtain the following template:
TH(IMASK],v;) = “[MASK] 7’ s;”. We then
use BioBERT to obtain the first-order representa-
tion y,, based on this template:

y,, = BioBERT(7,'([MASK], v;)). (7

We then calculate the loss term by comparing the
first-order representation of v; with the zeroth-order
presentation x,,:

El = - Z logp(xvi‘yvi) (8)

(Uirvj)

5.3 Second-order GraphPrompt

To consider second-order neighbors, Graph-
Prompt first finds all 2-hop relational paths
(vi, 7, v5,1s_a, vy) in the graph. Since is_a relation
contributes to the majority of the relation type, we
fix the second relation to be is_a for simplicity. The
prompt template is then defined as 7,2 (v;, v;, vg) =
“v; " vj, which is a kind of vy”.

Different from 7 and 7, there are three tokens
that can be masked in 72. We chose to mask two
tokens in each template, resulting in two kinds of
second-order templates:

Zv,, Zv, = BIoBERT(7,7([MASK], v;, [MASK]))

Zu,, Zv;, = BioBERT(7,” (vi, [MASK], [MASK]))

We don’t consider the template of
T2([MASK],[MASK],v;) because of the
DAG structure in our dataset. The numbers of
child nodes and grandchild nodes grow expo-
nentially in DAG and will introduce too many
paths using 7,2([MASK], [MASK], v;) template,
slowing down the optimization.

To calculate the loss term based on
7.2(IMASK],v;,[MASK]), we compare the
second-order dense representation 2, 2,
to the zeroth-order dense representation x,,,
Ty,. 2, %, and the loss term based on
7,2 (v;, IMASK], [MASK]) is defined similarly.
We define the loss term for second-order neighbors
as:



Dataset mp cl hp fbbt doid
#synonyms 26119 27242 20070 23870 21401
#entities 13752 10939 16544 17475 13313
data split zero-shot few-shot zero-shot few-shot zero-shot few-shot zero-shot few-shot zero-shot few-shot
Acc@]  Acc@10 Acc@] Acc@10 Acc@l Acc@I0 Acc@l Acc@10 Acc@] Acc@10 Acc@l Acc@10 Acc@] Acc@10 Acc@l Acc@10 Acc@] Acc@10 Acc@l Acc@10
Sieve-Based 340 - - - 6.80 - - - 4.60 - - - 1.00 - - - 8.20 - - -
BNE 4360 6810 5170 7090 4000 6530 4920 6660 3250 5840 3670 5940 3430 5980 4440 6210 4010 5840 4000 5740
NormCo - - 4125 5348 - - 5268 59.76 - - 4944 5525 - - 3258 4257 - - 5823 67.01
TripletNet 4067 6754 4239 6875 2881  60.07 2861 6096 2654 5199 2769 5229 621 1414 315 946 2059 4334 2579 4292
BioSyn 6204 7408 7355 8267 5355 6608 6434 7559 5072 6724 5984 7225 4038 6195 5732 6806 4068 5382 4890  61.04
GCN 7088 8861 8383 9318 6049 8409 7495 9050 5492 7947 6839 8717 4898 7368 5491 7850 4657 6591 5527 7542
Base model 7647 8838 8578 9302 6514 8258  76.64  89.19 6153 7814 7204 8638 6538 7924 6976 8408 5071 6486 5940 7469
Prompt 7951 8974 8756 9541 6645 8202 8093 9333 6280 8167 7512 9040 6853 7929 7375 8649 5643  69.51 6631 8103
GraphPrompt (wio 7%) 7940~ 90.95  88.05 [W9575°" 68.00 ["8489°" 8204 9381 6636 8424 7760 9233 6810  80.08 [7SEET 89.06 5685 [NT0ETT 6670 819
GraphPrompt 80.00 9162 8886 95601 6887 8434 8286 9424  68.63 8524 7787 9266 6901 8190 7555 8974 5742 7055 6753 8250

Table 1: The performance of our method and comparison approaches on 5 datasets using zero-shot and few-shot
settings. The best model in each column is colored in blue and the second best is colored in light blue. See
Appendix A.2 for detailed implementations of comparison approaches.

Lo=— Z (log P(xw,;|2v;) + log P(xv, |20, )
(vi,vj5,v)
+ log P(mvj |z;j ) +log P(xy, \zi,k ).
Although we can further define higher-order tem-
plates accordingly, we observed limited improve-
ment by including third-order or even higher-order
templates in our experiments. This observation is
consistent with conventional graph embedding ap-
proaches where only first-order and second-order
neighborhood are explicitly modeled (Tang et al.,
2015). For the 2-hop relational path, we didn’t
consider sibling-based templates such as “Both
[MASK] and [MASK] are a kind of v” due to the
large number of sibling pairs in the DAG. Never-
theless, such templates might be worth exploring
on other graphs.

In practice, different entities may have similar
x,,, making them indistinguishable at the test stage.
This issue could be exacerbated when the graph
structure is incorporated. For example, for two
edges (vj,is_a,v;) and (vy,is_a,v;), the model
tends to increase the similarity between the em-
beddings of siblings v; and v;,. To alleviate this
problem, we consider another contrastive loss term
L. that encourages the model to distinguish differ-
ent entities:

Le=—) log P(m,|z,) ©)

The final loss of our model combines of Ly, Le, L4

and Lo, with weights A, Ac, A1 and A2 chosen on
the validation set:

L= )\p[,p + AcLec + ML+ X Lo, (10)

6 Experimental Results

6.1 Experimental settings

We selected five graphs (mp, cl, hp, fbbt, doid)
with the number of entities between 10,000 and

20,000 from OBO-syn. We investigated a few-shot
setting and a zero-shot setting. In the few-shot
setting, we split the synonyms into six folds, and
then used four folds as training set, one fold as
validation set and one fold as test set. In the zero-
shot setting, we split all entities into three folds,
and then used two folds as training set and one fold
as test set. All synonyms of training (test) entities
are observable (unobservable) during training. Our
method and all comparison approaches used the
same data split.

We compared our method to the state-of-the-
art entity normalization approaches: Sieve-Based
(D’Souza and Ng, 2015) , BNE (Phan et al., 2019),
NormCo (Wright, 2019), TripletNet (Mondal et al.,
2020) and BioSyn (Sung et al., 2020), and a graph
convolutional network (GCN) (Kipf and Welling,
2016). We also compared our method with a base
model (Lpqse), @ prompt model (£, + L) and a
first-order GraphPrompt (w /0 T2) (L1 + Lo+ Le).
See more details for the implement of baselines and
our methods in appendix A.2 .

6.2 Improved performance in few-shot
setting

We first sought to evaluate the performance of our
method in the few-shot setting (Table 1). We found
that our method outperformed all other approaches
in all metrics on all the datasets. When compar-
ing to the best-performed entity normalization ap-
proach BioSyn, our method obtains an average
27.7% improvement on Acc@10 and 35.5% im-
provement on Acc@1, indicating the prominence
of using the graph structure to leverage annotations
from nearby entities. We found that using graph
structure leads to large improvement on datasets
with fewer training samples (39.6% improvement
on doid comparing to 24.9% on mp), suggesting
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Figure 3: Performance analysis of GraphPrompt. a, Bar plot showing the improvement of GraphPrompt over the
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stands for [0.4-0.6]). b, Bar plot showing the improvement of GraphPrompt over GCN under different entity depths
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more epochs without using L..

GraphPrompt’s ability to learn from limited sam-
ples.

We next compared our method to a graph-based
approach GCN and observed a superior perfor-
mance of GraphPrompt, confirming the effective-
ness of modeling graph structures using prompt
templates. The base model, which does not ex-
ploit the graph structure, also performed better than
GCN, partially due to the over-smoothing issue in
GCN. Despite showing a less superior performance
comparing to our method, GCN still outperformed
most of the entity normalization approaches that
do not consider graph structure, reassuring the ad-
vantage of using graph structure in this dataset.

To further verify that the improvement of our
method comes from using graph structure, we
compared the performance of GraphPrompt with
the base prompt model and the first-order prompt
model. Overall, GraphPrompt is better than both
approaches by utilizing the second-order neighbor-
hood, while the first-order prompt is better than
the base prompt model. Collectively, our results
clearly assure the importance of considering the
graph structure and the effectiveness of modeling
it using prompt templates.

6.3 Improved performance in zero-shot
setting

After verifying the superior performance of
our method in few-shot learning, we next investi-
gate the more challenging zero-shot setting, where
ground-truth entities in the test set have no syn-
onyms in the training set (Table 1). Likewise, our
method outperformed all comparison approaches
in all metrics on all datasets. We found that Graph-

Prompt obtained larger improvement over BioSyn
in the zero-shot setting compared to the few-shot
setting. Since ground-truth entities do not have
any observed synonyms in the zero-shot setting,
graph information becomes more crucial to aggre-
gate synonym annotations from nearby entities.
The consistent improvement of GraphPrompt
over GCN in both zero-shot and few-shot settings
further confirms the effectiveness of using prompt
templates to capture the graph structure. Graph-
Prompt also shows consistent improvement over
the base prompt model and the first-order prompt
model, indicating the importance of considering
second-order neighbors in the graph.
6.4 Improvement analysis

We sought to investigate the superior performance
of GraphPrompt. We first calculated the tex-
tual similarity between the test synonyms and
their ground truth entities using Sentence-BERT
(Reimers et al., 2019). We found that the im-
provement of GraphPrompt over the base model
increases with the decreasing of this textual sim-
ilarity (Figure 3a). Entity-synonym pairs that
have smaller textual similarity are more difficult to
be predicted correctly with only the textual infor-
mation, thus obtaining larger improvement from
the graph structure. Moreover, the low overlaps
with pre-training corpus limit the knowledge from
PLMs, necessitating the consideration of graph in-
formation.

We then sought to study the improvement of
GraphPrompt over GCN. Interestingly, we found
that GCN tends to have better performance on
Acc@10 rather than Acc@1, whereas our method
shows consistent improvement on these two met-



Test synonym
Ground-truth entity
Baseline predictions

adult abdominal ganglion Leucokinin neuron

adult Leucokinin ABLK neuron of the abdominal ganglion

adult Leucokinin neuron of the central nervous system (GCN), adult anterior LK Leucokinin neuron (Base model)

Prompt templates

[adult abdominal ganglion Leucokinin neuron] is a kind of abdominal neuron, which is a kind of [...]
[...] is identical with larval Leucokinin ABLK neuron of the abdominal ganglion, which is a kind of [abdominal neuron]

Table 2: An example of GraphPrompt prediction. Selected second-order prompt templates that affect the results

are listed. Masked tokens are displayed within brackets.

rics. As GCN is known to suffer from over-
smoothing (Li et al., 2018; Hoang and Maehara,
2019), it might not distinguish very close entities
on the graph, leading to much worse top 1 pre-
diction performance, but better top 10 prediction
performance. In contrast, our prompt-based graph
learning does not show a performance degrade in
top 1 prediction, suggesting that our method is less
prone to over-smoothing.

To further verify this, we examined the im-
provement of our method against GCN at different
depths in the graph (Figure 3b). We found that the
improvement of our method over GCN becomes
larger when the depth of the entity is smaller. Be-
cause of the DAG structure in our graph, entities
that have smaller depth are closer to the center of
the graph, and could be more disturbed by the over-
smoothing issue. In contrast, our method explicitly
converts the graph structure into prompt templates,
successfully alleviating the over-smoothing issue
caused by propagating on the entire graph.

Next, we examined the effect of the £. norm
in our method (Figure 3c). As expected, adding
L. greatly improved the performance on all the
datasets in the few-shot setting. The improvement
is much larger on datasets that have worse over-
all performance (e.g., fbbt, doid), indicating the
importance of separating the embeddings of differ-
ent entities. We also noticed that the accuracy of
the state-of-the-art entity normalization approaches,
such as BioSyn and NormCo, is much worse on our
OBO-syn dataset than on the mainstream datasets,
such as BC5CDR and NCBI (see results in Sung
et al. (2020) ), further confirming the difficulty of
our task and dataset.

Finally, we presented two case studies of how
GraphPrompt utilized the graph structure to cor-
rectly identify the entity (Figure 1 and Table 2).
We found that GraphPrompt performed a ‘recom-
bination’ of two nearby phrases using the graph-
based prompt templates during the prediction. For
example, GraphPrompt correctly classified the test
synonym ‘adult Leucokinin ABLK neuron of the
abdominal ganglion’ to the entity ‘adult abdomi-
nal ganglion Leucokinin neuron’ by combining it

with the second-order neighbor ‘larval Leucokinin
ABLK neuron of the abdominal ganglion’, whereas
comparison approaches classified to incorrect but
semantically similar entities (e.g., ‘adult anterior
LK Leucokinin neuron’) (Table 2). Likewise,
GraphPrompt correctly classified ‘CD115 (human)’
to ‘macrophage ... receptor (human)’ by recom-
bining it with CD115 according to the first-order
prompt template. These recombinations of nearby
entities reassure the effectiveness of graph-based
prompts in biomedical entity normalization.

7 Conclusion and Future Work

We have presented a novel biomedical entity nor-
malization dataset OBO-syn that encompasses
70 biomedical entity types and 2 million entity-
synonym pairs. OBO-syn has demonstrated small
overlaps with existing datasets and more challeng-
ing entity-synonym predictions. To leverage the
unique graph structures in OBO-syn, we have pro-
posed GraphPrompt, which converts graph struc-
tures into prompt templates and then solves a
masked-language model task. GraphPrompt has ob-
tained superior performance to the state-of-the-art
entity normalization approaches on both few-shot
and zero-shot settings.

Since GraphPrompt can in principle be applied
to integrate other types of graphs and text informa-
tion, we are interested in exploiting GraphPrompt
in other graph-based NLP tasks, such as citation
network analysis and graph-based text generation.
The novel OBO-syn dataset can also advance tasks
beyond entity normalization, such as link predic-
tion, graph representation learning, and be inte-
grated with other scientific literature datasets to
investigate entity linking, key phrase mining, and
named entity recognition. We envision that our
method GraphPrompt and OBO-syn will pave the
path for comprehensively analyzing diverse and
accumulating biomedical data.
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A Appendix

A.1 Relations and phrases

Table 3 shows the relations among entities and their
corresponding synonyms. The relation identical
links a entity and a synonym to claim that the syn-
onym refers to the entity. During training, the re-
lation identical links [MASK] and a synonym or
entity to extract the textual feature. Among other
relations, is_a is the most common relation, which
describes the subsumption relation between a child
entity and a parent entity. We transform these rela-
tions into phrases to put them in templates used by
our Prompt-based model.

A.2 TImplementation details

Details about prompt-based methods For
prompt-based methods (Prompt, GraphPrompt

(w/o T?), and GraphPrompt), we trained the
model with L. for 400 iterations to warm-up entity
embedding x,. For zero-shot setting, we followed
the bi-encoder architecture that uses two encoders
for entities and synonyms. Every time we updated
the embeddings of entities x,/,v’ € V, we had
to run the encoder for every entity. For few-shot
learning, we found that the entity embedding can
be directly trained with an embedding layer. We
used the entity side of the bi-encoder to generate
entity embedding a:g,, and used this embedding
to initialize the embedding layer. Then we used
embeddings from this trainable embedding layer to
replace the sg(x,/) and sg(x,) term in the loss.
Details about second-order GraphPrompt
The second-order GraphPrompt (GraphPrompt
in Table 1) actually didn’t include zeroth-order
and first-order templates, since we considered
that they are sub-templates of second-order
templates. We achieved this by padding a [MASK]
neighbor. For example, 7°([MASK], v) is imple-

mented as T3, . ([MASK], v, [MASK]),
and 7,'([MASK],v) is implemented as
T2([MASK],v,[MASK]).  To get =, and

vy, from this template, you only need to ignore the
output of the second mask.

Details about the base model The base model
is a BioSyn-like model with some important modi-
fications. We trained the model for 30 epochs with
initial learning rate le-5, and decayed it to about

Table 3: Relations and phrases

Relation Phrase cl | fbbt | doid | mp | hp
identical is identical with v IV v v |V
is_a is a kind of v | v v v |V
capable_of is capable of v

negatively_regulates negatively regulates v

positively_regulates positively regulates v

regulates regulates v

part_of is part of V| Vv

has_part has v

develops_from develops from V| Vv
has_sensory_dendrite_in has sensory dendrite in v
sends_synaptic_output_to sends synaptic output to v

synapsed_to is synapsed to v

synapsed_by is synapsed by v

continuous_with 18 continuous with v
synapsed_via_type_Ib_bouton_to | is synapsed via type Ib bouton to v
receives_synaptic_input_in receives synaptic input in v

overlaps overlaps v
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le-6 when the model converged. We used sparse
features (Sung et al., 2020) during candidate gen-
eration. During encoding, we didn’t add sparse
features, since we found that sparse features had no
significant impact on the results, and even caused a
slight decrease of accuracy. Besides, we found that
BioSyn (Sung et al., 2020) sometimes failed to re-
trieve positive candidates due to limited candidate
size and the inaccuracy of the model. Therefore,
we manually added positive candidate in order to
make full use of training data. The procedure for
inference is the same as BioSyn (Sung et al., 2020).

Details about baselines NormCo (Wright,
2019) was initially introduced to perform bio-entity
linking with inputs being text corpora. Central to
its proposed method is the modeling of coherence
leveraging concept co-mentions in each text corpus.
However, as NormCo is not designed to learn the
semantics of concepts, it is not capable of zero-
shot learning in our dataset. Therefore, we did not
report its results under zero-shot setting.

In addition, to construct a coherence sequence
analogous to the co-appearances of mentions in the
original setting, we took the mentions (entities and
synonyms) of neighbor concepts of each training
concept (excluding validation and test mentions
when training), where the mentions are arranged
in order based on their distance from the central
concept we build this sequence for.

As Sieve-Based (D’Souza and Ng, 2015) is a
rule-based entity normalization method which does
not need the training data, we treated the model
as a zero-shot model. Besides, Sieve-Based does
not include a scoring mechanism, so we could only
report the results of Acc@1.
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