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Abstract

Biomedical entity normalization unifies the001
language across biomedical experiments and002
studies, and further enables us to obtain a holis-003
tic view of life sciences. Current approaches004
mainly study the normalization of more stan-005
dardized entities such as diseases and drugs,006
while disregarding the more ambiguous but007
crucial entities such as pathways, functions008
and cell types, hindering their real-world appli-009
cations. To achieve biomedical entity normal-010
ization on these under-explored entities, we011
first introduce an expert-curated dataset OBO-012
syn encompassing 70 different types of entities013
and 2 million curated entity-synonym pairs.014
To utilize the unique graph structure in this015
dataset, we propose GraphPrompt, a prompt-016
based learning approach that creates prompt017
templates according to the graphs. Graph-018
Prompt obtained 41.0% and 29.9% improve-019
ment on zero-shot and few-shot settings re-020
spectively, indicating the effectiveness of these021
graph-based prompt templates. We envision022
that our method GraphPrompt and OBO-syn023
dataset can be broadly applied to graph-based024
NLP tasks, and serve as the basis for analyzing025
diverse and accumulating biomedical data.026

1 Introduction027

Mining biomedical text data, such as scientific lit-028

erature and clinical notes, to generate hypotheses029

and validate discovery has led to many impactful030

clinical applications (Zhao et al., 2021; Lever et al.,031

2019). One fundamental but unaddressed problem032

in biomedical text mining is entity normalization,033

which aims to map a phrase to a concept in the034

controlled vocabulary (Sung et al., 2020). Accurate035

entity normalization enables us to summarize and036

compare biomedical insights across studies and037

obtain a holistic view of biomedical knowledge.038

Current approaches (Wright, 2019; Ji et al., 2020;039

Sung et al., 2020) to biomedical entity normaliza-040

tion often focus on normalizing more standardized041

CD185 (human)
eukaryotic protein

CD115

human protein

macrophage colony-stimulating
factor 1 receptor (human)

Test synonym: CD115 (human)

[MASK] is identical with CD115 (human)
[MASK] is identical with macrophage ... receptor (human)
[MASK] is a kind of CD115
[MASK] is a kind of human protein
[MASK] is a kind of human protein, which is a kind of [MASK]

Figure 1: Illustration of GraphPrompt. GraphPrompt
classifies a test synonym (CD115 (human)) to an en-
tity in the graph by converting the graph into prompt
templates based on the zeroth-order neighbor (T 0),
first-order neighbors (T 1), and second-order neighbors
(T 2).

entities such as diseases (Doğan et al., 2014; Li 042

et al., 2016), drugs (Kuhn et al., 2007; Pradhan 043

et al., 2013), genes (Szklarczyk et al., 2016) and ad- 044

verse drug reactions (Roberts et al., 2017). Despite 045

their encouraging performance, these approaches 046

have not yet been applied to the more ambiguous 047

entities, such as processes, pathways, cellular com- 048

ponents, and functions (Smith et al., 2007), which 049

lie at the center of life sciences. As scientists rely 050

on these entities to describe disease and drug mech- 051

anisms (Yu et al., 2016), the inconsistent terminol- 052

ogy used across different labs inevitably hampers 053

the scientific communication and collaboration, ne- 054

cessitating the normalization of these entities. 055

The first immediate bottleneck to achieve the 056

normalization of these under-explored entities is 057

the lack of a high-quality and large-scale dataset, 058

which is the prerequisite for existing entity normal- 059

ization approaches (Wright, 2019; Ji et al., 2020; 060

Sung et al., 2020). To tackle this problem, we col- 061

lected 70 types of biomedical entities from OBO 062

Foundry (Smith et al., 2007), spanning a wide vari- 063

ety of biomedical areas and containing more than 064

2 million entity-synonym pairs. These pairs are 065

all curated by domain experts and together form a 066
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high-quality and comprehensive controlled vocab-067

ulary for biomedical sciences, greatly augmenting068

existing biomedical entity normalization datasets069

(Doğan et al., 2014; Li et al., 2016; Roberts et al.,070

2017). The tedious and onerous curation of this071

high-quality dataset further confirms the necessity072

of developing data-driven approaches to automat-073

ing this process and motivates us to introduce this074

dataset to the NLP community.075

In addition to being the first large-scale dataset076

encompassing many under-explored entity types,077

this OBO-syn dataset presents a novel setting of078

graph-based entity normalization. Specifically, en-079

tities of the same type form a relational directed080

acyclic graph (DAG), where each edge represents081

a relationship (e.g., is_a) between two entities.082

Intuitively, this DAG could assist the entity nor-083

malization since nearby entities are biologically084

related, and thus more likely to be semantically085

and morphologically similar. Existing entity nor-086

malization and synonym prediction methods are087

incapable of considering the topological similar-088

ity from this rich graph structure (Wright, 2019;089

Ji et al., 2020; Sung et al., 2020), limiting their090

performance, especially in the few-shot and zero-091

shot settings. Recently, prompt-based learning has092

demonstrated many successful NLP applications093

(Radford et al., 2019; Schick and Schütze, 2020;094

Jiang et al., 2020). The key idea of using prompt095

is to circumvent the requirement of a large num-096

ber of labeled data by creating masked templates097

and then converting supervised learning tasks to098

a masked-language model task (Liu et al., 2021).099

However, it remains unknown how to convert a100

large graph into text templates for prompt-based101

learning. Representing graphs as prompt templates102

might effectively integrate the topological similar-103

ity and textural similarity by alleviating the over-104

smoothing caused by propagating textual features105

on the graph.106

In this paper, we propose GraphPrompt, a107

prompt-based learning method for entity normal-108

ization with the consideration of graph structures.109

The key idea of our method is to convert the graph110

structural information into prompt templates and111

solve a masked-language model task, rather than112

incorporating textual features into a graph-based113

framework. Our graph-based templates explicitly114

model the high-order neighbors (e.g., neighbors of115

neighbors) in the graph, which enables us to cor-116

rectly classify synonyms that have relatively lower117

morphological similarity with the ground-truth en- 118

tity (Figure 1). Experiments on the novel OBO- 119

syn dataset demonstrate the superior performance 120

of our method against existing entity normaliza- 121

tion approaches, indicating the advantage of con- 122

sidering the graph structure. Case studies and the 123

comparison to the conventional graph approach fur- 124

ther reassure the effectiveness of our prompt tem- 125

plates, implicating opportunities on other graph- 126

based NLP applications. Collectively, we intro- 127

duce a novel biomedical entity normalization task, 128

a large-scale and high-quality dataset, and a novel 129

prompt-based solution to advance biomedical en- 130

tity normalization. 131

2 Related Works 132

Biomedical entity normalization. Biomedical en- 133

tity normalization has been studied for decades be- 134

cause of its significance in a variety of biomedical 135

applications. Conventional approaches mainly re- 136

lied on rule-based methods (D’Souza and Ng, 2015; 137

Sullivan et al., 2011) or probabilistic graphical mod- 138

els (Leaman et al., 2013; Leaman and Lu, 2016) to 139

model the morphological similarity, which are in- 140

capable of normalizing functional entities that are 141

semantically similar but morphologically different. 142

Deep learning-based approaches (Li et al., 2017; 143

Wright, 2019; Pujary et al., 2020; Deng et al., 2019; 144

Luo et al., 2018) and pre-trained language models 145

(PLMs) (Ji et al., 2020; Sung et al., 2020; Lee et al., 146

2020; Miftahutdinov et al., 2021) have obtained en- 147

couraging results in capturing the semantics of enti- 148

ties through leveraging human annotations or large 149

collections of corpus. However, these approaches 150

focus on datasets comprising of less ambiguous 151

entity types, such as drugs and diseases and are 152

not able to incorporate graph structures into their 153

framework. In contrast, we aim to utilize rich graph 154

information to assist the normalization of more am- 155

biguous entities such as functions, pathways and 156

processes. 157

Incorporating graph structure into text mod- 158

eling. Graph-based approaches, such as network 159

embedding (Tang et al., 2015) and graph neural 160

network (Kipf and Welling, 2016), have been used 161

to model the structural information in the text data, 162

such as citation networks (An et al., 2021), so- 163

cial networks (Masood and Abbasi, 2021; Aljohani 164

et al., 2020) and word dependency graph (Fu et al., 165

2019). Among them, Kotitsas et al. (2019) con- 166

sidered the most similar DAG structure to our task 167
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Figure 2: Analysis of the OBO-syn dataset. a, Bar plot showing the distribution of the number of entity-synonym
pairs in 70 graphs. b, Box plot comparing the textual similarity of entity pairs having different shortest distances on
the graph. c, Line chart comparing the phrase mentions of NCBI, BC5CDR, OBO-syn. The y-axis is the number
of mentions in 28 million PubMed abstracts. The x-axis is the phrase percentile sorted by the number of mentions.

and proposed a two-stage approach to integrate168

graph structural with textual information. The key169

difference between our method and existing ap-170

proaches is that we transform the graph structures171

into prompt templates and then solve a masked-172

language model task, whereas existing works rep-173

resent textual information as fixed node features174

and then optimize a graph-based model.175

Prompt-based learning. Prompt-based learn-176

ing have recently shown promising results in many177

applications(Liu et al., 2021), such as text genera-178

tion (Radford et al., 2019; Brown et al., 2020), text179

classification (Schick and Schütze, 2020; Gao et al.,180

2020) and question answering (Khashabi et al.,181

2020; Jiang et al., 2020). Prompt-based learning182

has not yet been applied to integrate the graph infor-183

mation. The most related prompt-based works to184

our task is prompt-based relation extraction (Chen185

et al., 2021; Han et al., 2021) and prompt-based186

knowledge base completion (Davison et al., 2019).187

These approaches only consider immediate neigh-188

bors in the graph and are not able to model more189

distant nodes, thus being incapable of capturing190

the topology of the entire graph. To the best of191

our knowledge, we are the first work that considers192

higher-order graph neighbors in the prompt-based193

learning framework.194

3 Dataset Description and Analysis195

We collected 70 relational graphs from Open Bio-196

logical and Biomedical Ontology Foundry (OBO)197

(Smith et al., 2007). Nodes in the same relational198

graph represent biomedical entities belonging to199

the same type, such as protein functions, cell types,200

and disease pathways. Each edge represents a rela-201

tional type, such as is_a, part_of , capable_of , and202

regulates. We leveraged these edge types to build 203

templates in our prompt-based learning framework. 204

The number of nodes in each graph ranges from 205

113 to 2,334,910 with a median value of 3,077. 206

The number of synonyms for each entity ranges 207

from 1 to 284 with a median value of 2 (ignoring 208

the entities without synonyms). On average, each 209

graph has 34,418 entity-synonym pairs and 72.9% 210

of graphs have more than 1,000 entity-synonym 211

pairs (Figure 2a). The graph structure and entity 212

synonym associations are all curated by domain 213

experts, presenting a large-scale and high-quality 214

collection. 215

In comparison to other biomedical entity normal- 216

ization datasets (Doğan et al., 2014; Li et al., 2016; 217

Roberts et al., 2017), OBO-syn presents a unique 218

graph structure among entities. Intuitively, nearby 219

entities as well as their synonyms should be se- 220

mantically similar, as their biological concepts are 221

relevant. To validate this intuition, we investigated 222

the consistency between graph-based entity simi- 223

larity and text-based entity similarity. In particular, 224

we used the shortest distance on the graph to cal- 225

culate graph-based similarity and Sentence-BERT 226

(Reimers et al., 2019) to calculate text-based sim- 227

ilarity. We observed a strong correlation between 228

these two similarity scores (Figure 2b), suggest- 229

ing the possibility to transfer synonym annotations 230

from nearby entities to improve the entity normal- 231

ization. 232

We next compared this OBO-syn dataset 233

with the existing biomedical entity normalization 234

dataset. We first observed very small overlaps 235

of 5.26%, 14.59%, 3.29% between our dataset 236

and three widely-used biomedical entity normal- 237

ization datasets NCBI-disease (Doğan et al., 2014), 238
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BC5CDR-disease (Li et al., 2016), and BC5CDR-239

chemical (Li et al., 2016), respectively. The small240

overlaps with existing datasets indicate the unique-241

ness of our dataset, and further make us question242

the performance of the state-of-the-art entity nor-243

malization methods on this novel dataset. More im-244

portantly, we noticed a substantially large number245

of out-of-vocabulary phrases in our dataset com-246

pared to existing datasets (Figure 2c). We cal-247

culate the number of mentions of each phrase in248

29 million PubMed abstracts, which are used as249

the pre-training corpus for biomedical pre-trained250

models (Lee et al., 2020; Gu et al., 2020). The 95251

percentile of the number of mentions in our dataset252

is only 51, substantially lower than 487 in NCBI253

and 582 in BC5CDR, suggesting a worse general-254

ization ability using pre-trained language models255

and motivating us to exploit the graph structures256

for this dataset.257

4 Problem Statement258

The goal of entity normalization is to map a259

given synonym phrase s to the corresponding en-260

tity v based on their semantic similarity. One261

unique feature of our problem setting is that en-262

tities belonging to the same type form a relational263

graph. Formally, we denote this relational graph264

as G = (V,R, E), where V is the set of entities,R265

is the set of relation types and E ⊂ V ×R× V is266

the set of edges. Let C be the vocabulary of the cor-267

pus. Each node vi ∈ V is represented as an entity268

phrase vi , 〈v1i , v2i , . . . , v
|vi|
i 〉, where vki ∈ C. In269

addition to the graph, we also have a set of mapped270

synonyms S that will be used as the training data.271

Each sj , 〈s1j , s2j , . . . , s
|sj |
j 〉 ∈ S is mapped to one272

entity vi in the graph S, and skj ∈ C.273

Our goal is to classify a test synonym s′ to an274

entity v in the graph. Since the majority of entities275

only have very few synonyms (e.g., 96.9% of en-276

tities have less than 5 synonyms), we consider a277

few-shot and a zero-shot setting. Specifically, in the278

few-shot setting, the test set entities are included279

in the training set entities. On the contrary, the280

entities in the training set and the test set present no281

overlap in the zero-shot setting, and therefore the282

entities of training datasets are unobservable for283

test procedure. The small number of training syn-284

onyms for each entity could exacerbate over-fitting.285

To mitigate the over-fitting problem, we propose286

graph-based prompt templates, where we consider287

the synonyms of nearby entities in the training data. 288

4.1 Base model 289

We first introduce a base model that only con- 290

siders the textual information of synonyms and 291

entities while disregarding the graph structure. Fol- 292

lowing the previous work (Sung et al., 2020), the 293

base model uses two encoders to calculate the sim- 294

ilarity between the queried synonym s and the can- 295

didate entity v. The first encoder Encs encodes 296

the queried synonym into the dense representation 297

xs = Encs(ts). The second encoder Encv encodes 298

the candidate entity into the dense representation 299

xv = Encv(tv). Then the predicted probability of 300

choosing entity v is calculated as: 301

P (xv|xs) =
Q(xv,xs)∑

v′∈V Q(xv′ ,xs)
, (1) 302

where Q is defined as Q(xv,xs) = exp(xT
v xs). 303

We select BioBERT with [CLS] readout function as 304

Encv and Encs, and share the parameters between 305

both encoders. Following Sung et al. (2020), the in- 306

put tv and ts are designed as “[CLS] v [SEP]” and 307

“[CLS] s [SEP]” respectively. In practice, we find 308

that the initial [CLS] output vectors are fairly close. 309

This can result in large positive xT
v xs, which leads 310

to slow convergence and potential numerical is- 311

sues, yet it is not addressed by BioSyn (Sung et al., 312

2020). To alleviate this issue, we use a trainable 313

1-d BatchNorm layer and redefine our similarity 314

function Q as: 315

Q(xv,xs) = exp(BN(xT
v xs)). (2) 316

When the candidate entity set is large, back- 317

propagating through xv results in high memory 318

complexity due to the construction of |V| compu- 319

tation graphs to get xv′ . To tackle this problem, 320

we apply the stop gradient trick to xv′ , following 321

Sung et al. (2020). Besides, we utilize the hard 322

negative strategy following Sung et al. (2020) by 323

sampling difficult negative candidates U ⊂ V . The 324

loss function is defined as: 325

Lbase = −
∑
(v,s)

log
Q(sg(xv),xs)∑

v′∈U∪{v}Q(sg(xv′),xs)
,

(3) 326

where sg denotes the stop gradient opera- 327

tion.Besides, To further save computation time, we 328

cache the values of sg(xv′), v
′ ∈ V and iteratively 329

update them. See more details for the base model 330

in A.2. 331

4.2 Prompt model 332

Previous work (Sung et al., 2020) and the base 333
model use BioBERT with [CLS] readout function 334
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as the encoders, which take the synonym or entity335
as the input and use the hidden state of [CLS] as336
the output. However, using the synonym or en-337
tity as the input text might not fully capture its338
semantic since PLMs are often pre-trained with339
sentences instead of phrases. To tackle this prob-340
lem, we construct two simple prompt templates341
T 0 for a training entity-synonym pair (v, s) as:342

T 0([MASK], v) = “[MASK] is identical with343

v” and T 0([MASK], s) = “[MASK] is identi-344
cal with s” ([CLS] and [SEP] are omitted). Then345
we optimize the model by solving an masked lan-346
guage modeling task, where we use the output of347
BioBERT at [MASK] token as the dense represen-348
tation xv (xs) for v (s), respectively:349

xv = BioBERT(T 0([MASK], v)), (4)350

xs = BioBERT(T 0([MASK], s)). (5)351

Since the graph is not used here, we refer to xv352

as the zeroth-order representation of entity v. The353

loss function of prompt model is similar to base354

model’s, where we select the whole entity set V as355

candidates instead of its subset:356

Lp = −
∑
(v,s)

log
Q(sg(xv),xs)∑

v′∈V Q(sg(xv′),xs)
. (6)357

5 GraphPrompt model358

5.1 Intuition359

The observation that nearby entities are more se-360

mantically similar (Figure 2b) motivates us to in-361

tegrate textual similarity with graph topological362

similarity to boost the entity normalization. Con-363

ventional approaches often integrate text and graph364

information by adapting a graph-based framework365

and incorporating text features as node features366

(Kotitsas et al., 2019). However, such approaches367

might not fully utilize the strong generalization368

ability of pre-trained models, which have been cru-369

cial for a variety of NLP tasks (Devlin et al., 2018;370

Petroni et al., 2019). In contrast to conventional371

approaches, we propose to utilize a prompt-based372

learning framework to integrate text and graph in-373

formation through representing the graph informa-374

tion as prompt templates. To the best of our knowl-375

edge, our method is the first attempt to represent376

the graph structure as prompt templates.377

5.2 First-order GraphPrompt378

GraphPrompt uses Equation 1 for inference, but379

utilizes the graph information during training.380

GraphPrompt considers first-order neighborhood381

(i.e., immediate neighbors) and second-order neigh-382

borhood (i.e., neighbors of the neighbors) to con-383

struct prompt templates for a given entity.384

To model first-order neighbors, GraphPrompt de- 385

fines the template T 1
r (vi, vj) = “vi r

′ vj” for an 386

edge between entity vi and its immediate neighbor 387

entity vj with relation type r. r′ is created from r 388

with minor morphological change, as listed in Ta- 389

ble 3. For a given triple (vi, r, vj) in the graph, we 390

create a masked-language model task by randomly 391

masking vi or vj . We also include the template that 392

replaces the unmasked v with its training synonym 393

s. For example, when vi is masked and vj is re- 394

placed with sk, we obtain the following template: 395

T 1
r ([MASK], vj) = “[MASK] r′ sk”. We then 396

use BioBERT to obtain the first-order representa- 397

tion yvi based on this template: 398

yvi = BioBERT(T 1
r ([MASK], vj)). (7) 399

We then calculate the loss term by comparing the 400

first-order representation of vi with the zeroth-order 401

presentation xvi : 402

L1 = −
∑

(vi,vj)

logP (xvi |yvi) (8) 403

404

5.3 Second-order GraphPrompt 405

To consider second-order neighbors, Graph- 406

Prompt first finds all 2-hop relational paths 407

(vi, r, vj , is_a, vk) in the graph. Since is_a relation 408

contributes to the majority of the relation type, we 409

fix the second relation to be is_a for simplicity. The 410

prompt template is then defined as T 2
r (vi, vj , vk) = 411

“vi r
′ vj , which is a kind of vk”. 412

Different from T 0 and T 1, there are three tokens 413
that can be masked in T 2. We chose to mask two 414
tokens in each template, resulting in two kinds of 415
second-order templates: 416

zvi ,zvk = BioBERT(T 2
r ([MASK], vj , [MASK])) 417

zvj ,zvk = BioBERT(T 2
r (vi, [MASK], [MASK])) 418

We don’t consider the template of 419

T 2
r ([MASK], [MASK], vk) because of the 420

DAG structure in our dataset. The numbers of 421

child nodes and grandchild nodes grow expo- 422

nentially in DAG and will introduce too many 423

paths using T 2
r ([MASK], [MASK], vk) template, 424

slowing down the optimization. 425

To calculate the loss term based on 426

T 2
r ([MASK], vj , [MASK]), we compare the 427

second-order dense representation zvi , zvk 428

to the zeroth-order dense representation xvi , 429

xvk . z′
vj , z′

vk
and the loss term based on 430

T 2
r (vi, [MASK], [MASK]) is defined similarly. 431

We define the loss term for second-order neighbors 432

as: 433
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Dataset mp cl hp fbbt doid
#synonyms 26119 27242 20070 23870 21401
#entities 13752 10939 16544 17475 13313
data split zero-shot few-shot zero-shot few-shot zero-shot few-shot zero-shot few-shot zero-shot few-shot

Acc@1 Acc@10 Acc@1 Acc@10 Acc@1 Acc@10 Acc@1 Acc@10 Acc@1 Acc@10 Acc@1 Acc@10 Acc@1 Acc@10 Acc@1 Acc@10 Acc@1 Acc@10 Acc@1 Acc@10

Sieve-Based 3.40 – – – 6.80 – – – 4.60 – – – 1.00 – – – 8.20 – – –
BNE 43.60 68.10 51.70 70.90 40.00 65.30 49.20 66.60 32.50 58.40 36.70 59.40 34.30 59.80 44.40 62.10 40.10 58.40 40.00 57.40
NormCo – – 41.25 53.48 – – 52.68 59.76 – – 49.44 55.25 – – 32.58 42.57 – – 58.23 67.01
TripletNet 40.67 67.54 42.39 68.75 28.81 60.07 28.61 60.96 26.54 51.99 27.69 52.29 6.21 14.14 3.15 9.46 26.59 43.34 25.79 42.92
BioSyn 62.04 74.08 73.55 82.67 53.55 66.18 64.34 75.59 50.72 67.24 59.84 72.25 40.38 61.95 57.32 68.06 40.68 53.82 48.90 61.04
GCN 70.88 88.61 83.83 93.18 60.49 84.09 74.95 90.50 54.92 79.47 68.39 87.17 48.98 73.68 54.91 78.50 46.57 65.91 55.27 75.42

Base model 76.47 88.38 85.78 93.02 65.14 82.58 76.64 89.19 61.53 78.14 72.04 86.38 65.38 79.24 69.76 84.08 50.71 64.86 59.40 74.69
Prompt 79.51 89.74 87.56 95.41 66.45 82.02 80.93 93.33 62.80 81.67 75.12 90.40 68.53 79.29 73.75 86.49 56.43 69.51 66.31 81.03
GraphPrompt ( w/o T 2) 79.40 90.95 88.05 95.75 68.00 84.89 82.04 93.81 66.36 84.24 77.60 92.33 68.10 80.08 75.65 89.06 56.85 70.67 66.70 81.99

GraphPrompt 80.00 91.62 88.86 95.61 68.87 84.34 82.86 94.24 68.63 85.24 77.87 92.66 69.01 81.90 75.55 89.74 57.42 70.55 67.53 82.50

Table 1: The performance of our method and comparison approaches on 5 datasets using zero-shot and few-shot
settings. The best model in each column is colored in blue and the second best is colored in light blue. See
Appendix A.2 for detailed implementations of comparison approaches.

L2 = −
∑

(vi,vj ,vk)

(logP (xvi |zvi) + logP (xvk |zvk )434

+ logP (xvj |z
′
vj ) + logP (xvk |z

′
vk )).435

Although we can further define higher-order tem-436

plates accordingly, we observed limited improve-437

ment by including third-order or even higher-order438

templates in our experiments. This observation is439

consistent with conventional graph embedding ap-440

proaches where only first-order and second-order441

neighborhood are explicitly modeled (Tang et al.,442

2015). For the 2-hop relational path, we didn’t443

consider sibling-based templates such as “Both444

[MASK] and [MASK] are a kind of v” due to the445

large number of sibling pairs in the DAG. Never-446

theless, such templates might be worth exploring447

on other graphs.448

In practice, different entities may have similar449

xv, making them indistinguishable at the test stage.450

This issue could be exacerbated when the graph451

structure is incorporated. For example, for two452

edges (vi, is_a, vj) and (vi′ , is_a, vj), the model453

tends to increase the similarity between the em-454

beddings of siblings vi and vi′ . To alleviate this455

problem, we consider another contrastive loss term456

Lc that encourages the model to distinguish differ-457

ent entities:458
Lc = −

∑
v

logP (xv|xv) (9)459

The final loss of our model combines of Lp, Lc, L1460

and L2, with weights λp, λc, λ1 and λ2 chosen on461

the validation set:462

L = λpLp + λcLc + λ1L1 + λ2L2. (10)463

464

6 Experimental Results465

6.1 Experimental settings466

We selected five graphs (mp, cl, hp, fbbt, doid)467

with the number of entities between 10,000 and468

20,000 from OBO-syn. We investigated a few-shot 469

setting and a zero-shot setting. In the few-shot 470

setting, we split the synonyms into six folds, and 471

then used four folds as training set, one fold as 472

validation set and one fold as test set. In the zero- 473

shot setting, we split all entities into three folds, 474

and then used two folds as training set and one fold 475

as test set. All synonyms of training (test) entities 476

are observable (unobservable) during training. Our 477

method and all comparison approaches used the 478

same data split. 479

We compared our method to the state-of-the- 480

art entity normalization approaches: Sieve-Based 481

(D’Souza and Ng, 2015) , BNE (Phan et al., 2019), 482

NormCo (Wright, 2019), TripletNet (Mondal et al., 483

2020) and BioSyn (Sung et al., 2020), and a graph 484

convolutional network (GCN) (Kipf and Welling, 485

2016). We also compared our method with a base 486

model (Lbase), a prompt model (Lp + Lc) and a 487

first-order GraphPrompt (w / o T 2) (L1+Lp+Lc). 488

See more details for the implement of baselines and 489

our methods in appendix A.2 . 490

6.2 Improved performance in few-shot 491

setting 492

We first sought to evaluate the performance of our 493

method in the few-shot setting (Table 1). We found 494

that our method outperformed all other approaches 495

in all metrics on all the datasets. When compar- 496

ing to the best-performed entity normalization ap- 497

proach BioSyn, our method obtains an average 498

27.7% improvement on Acc@10 and 35.5% im- 499

provement on Acc@1, indicating the prominence 500

of using the graph structure to leverage annotations 501

from nearby entities. We found that using graph 502

structure leads to large improvement on datasets 503

with fewer training samples (39.6% improvement 504

on doid comparing to 24.9% on mp), suggesting 505
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Figure 3: Performance analysis of GraphPrompt. a, Bar plot showing the improvement of GraphPrompt over the
base model under different entity-synonym similarity intervals. x-axis is the upper bound of the interval (e.g., 0.6
stands for [0.4-0.6]). b, Bar plot showing the improvement of GraphPrompt over GCN under different entity depths
in the DAG. c, Bar plot showing the effect of Lc in the few-shot setting. Orange bar stands for training 2 times
more epochs without using Lc.

GraphPrompt’s ability to learn from limited sam-506

ples.507

We next compared our method to a graph-based508

approach GCN and observed a superior perfor-509

mance of GraphPrompt, confirming the effective-510

ness of modeling graph structures using prompt511

templates. The base model, which does not ex-512

ploit the graph structure, also performed better than513

GCN, partially due to the over-smoothing issue in514

GCN. Despite showing a less superior performance515

comparing to our method, GCN still outperformed516

most of the entity normalization approaches that517

do not consider graph structure, reassuring the ad-518

vantage of using graph structure in this dataset.519

To further verify that the improvement of our520

method comes from using graph structure, we521

compared the performance of GraphPrompt with522

the base prompt model and the first-order prompt523

model. Overall, GraphPrompt is better than both524

approaches by utilizing the second-order neighbor-525

hood, while the first-order prompt is better than526

the base prompt model. Collectively, our results527

clearly assure the importance of considering the528

graph structure and the effectiveness of modeling529

it using prompt templates.530

6.3 Improved performance in zero-shot531

setting532

After verifying the superior performance of533

our method in few-shot learning, we next investi-534

gate the more challenging zero-shot setting, where535

ground-truth entities in the test set have no syn-536

onyms in the training set (Table 1). Likewise, our537

method outperformed all comparison approaches538

in all metrics on all datasets. We found that Graph-539

Prompt obtained larger improvement over BioSyn 540

in the zero-shot setting compared to the few-shot 541

setting. Since ground-truth entities do not have 542

any observed synonyms in the zero-shot setting, 543

graph information becomes more crucial to aggre- 544

gate synonym annotations from nearby entities. 545

The consistent improvement of GraphPrompt 546

over GCN in both zero-shot and few-shot settings 547

further confirms the effectiveness of using prompt 548

templates to capture the graph structure. Graph- 549

Prompt also shows consistent improvement over 550

the base prompt model and the first-order prompt 551

model, indicating the importance of considering 552

second-order neighbors in the graph. 553

6.4 Improvement analysis 554

We sought to investigate the superior performance 555

of GraphPrompt. We first calculated the tex- 556

tual similarity between the test synonyms and 557

their ground truth entities using Sentence-BERT 558

(Reimers et al., 2019). We found that the im- 559

provement of GraphPrompt over the base model 560

increases with the decreasing of this textual sim- 561

ilarity (Figure 3a). Entity-synonym pairs that 562

have smaller textual similarity are more difficult to 563

be predicted correctly with only the textual infor- 564

mation, thus obtaining larger improvement from 565

the graph structure. Moreover, the low overlaps 566

with pre-training corpus limit the knowledge from 567

PLMs, necessitating the consideration of graph in- 568

formation. 569

We then sought to study the improvement of 570

GraphPrompt over GCN. Interestingly, we found 571

that GCN tends to have better performance on 572

Acc@10 rather than Acc@1, whereas our method 573

shows consistent improvement on these two met- 574
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Test synonym adult Leucokinin ABLK neuron of the abdominal ganglion
Ground-truth entity

:::::
adult

:::::::::
abdominal

:::::::::
ganglion

::::::::::
Leucokinin

:::::::
neuron

Baseline predictions adult Leucokinin neuron of the central nervous system (GCN), adult anterior LK Leucokinin neuron (Base model)

Prompt templates [
::::
adult

::::::::::
abdominal

::::::::
ganglion

:::::::::::
Leucokinin

::::::
neuron] is a kind of abdominal neuron, which is a kind of [...]

[...] is identical with larval Leucokinin ABLK neuron of the abdominal ganglion, which is a kind of [abdominal neuron]

Table 2: An example of GraphPrompt prediction. Selected second-order prompt templates that affect the results
are listed. Masked tokens are displayed within brackets.

rics. As GCN is known to suffer from over-575

smoothing (Li et al., 2018; Hoang and Maehara,576

2019), it might not distinguish very close entities577

on the graph, leading to much worse top 1 pre-578

diction performance, but better top 10 prediction579

performance. In contrast, our prompt-based graph580

learning does not show a performance degrade in581

top 1 prediction, suggesting that our method is less582

prone to over-smoothing.583

To further verify this, we examined the im-584

provement of our method against GCN at different585

depths in the graph (Figure 3b). We found that the586

improvement of our method over GCN becomes587

larger when the depth of the entity is smaller. Be-588

cause of the DAG structure in our graph, entities589

that have smaller depth are closer to the center of590

the graph, and could be more disturbed by the over-591

smoothing issue. In contrast, our method explicitly592

converts the graph structure into prompt templates,593

successfully alleviating the over-smoothing issue594

caused by propagating on the entire graph.595

Next, we examined the effect of the Lc norm596

in our method (Figure 3c). As expected, adding597

Lc greatly improved the performance on all the598

datasets in the few-shot setting. The improvement599

is much larger on datasets that have worse over-600

all performance (e.g., fbbt, doid), indicating the601

importance of separating the embeddings of differ-602

ent entities. We also noticed that the accuracy of603

the state-of-the-art entity normalization approaches,604

such as BioSyn and NormCo, is much worse on our605

OBO-syn dataset than on the mainstream datasets,606

such as BC5CDR and NCBI (see results in Sung607

et al. (2020) ), further confirming the difficulty of608

our task and dataset.609

Finally, we presented two case studies of how610

GraphPrompt utilized the graph structure to cor-611

rectly identify the entity (Figure 1 and Table 2).612

We found that GraphPrompt performed a ‘recom-613

bination’ of two nearby phrases using the graph-614

based prompt templates during the prediction. For615

example, GraphPrompt correctly classified the test616

synonym ‘adult Leucokinin ABLK neuron of the617

abdominal ganglion’ to the entity ‘adult abdomi-618

nal ganglion Leucokinin neuron’ by combining it619

with the second-order neighbor ‘larval Leucokinin 620

ABLK neuron of the abdominal ganglion’, whereas 621

comparison approaches classified to incorrect but 622

semantically similar entities (e.g., ‘adult anterior 623

LK Leucokinin neuron’) (Table 2). Likewise, 624

GraphPrompt correctly classified ‘CD115 (human)’ 625

to ‘macrophage ... receptor (human)’ by recom- 626

bining it with CD115 according to the first-order 627

prompt template. These recombinations of nearby 628

entities reassure the effectiveness of graph-based 629

prompts in biomedical entity normalization. 630

7 Conclusion and Future Work 631

We have presented a novel biomedical entity nor- 632

malization dataset OBO-syn that encompasses 633

70 biomedical entity types and 2 million entity- 634

synonym pairs. OBO-syn has demonstrated small 635

overlaps with existing datasets and more challeng- 636

ing entity-synonym predictions. To leverage the 637

unique graph structures in OBO-syn, we have pro- 638

posed GraphPrompt, which converts graph struc- 639

tures into prompt templates and then solves a 640

masked-language model task. GraphPrompt has ob- 641

tained superior performance to the state-of-the-art 642

entity normalization approaches on both few-shot 643

and zero-shot settings. 644

Since GraphPrompt can in principle be applied 645

to integrate other types of graphs and text informa- 646

tion, we are interested in exploiting GraphPrompt 647

in other graph-based NLP tasks, such as citation 648

network analysis and graph-based text generation. 649

The novel OBO-syn dataset can also advance tasks 650

beyond entity normalization, such as link predic- 651

tion, graph representation learning, and be inte- 652

grated with other scientific literature datasets to 653

investigate entity linking, key phrase mining, and 654

named entity recognition. We envision that our 655

method GraphPrompt and OBO-syn will pave the 656

path for comprehensively analyzing diverse and 657

accumulating biomedical data. 658
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A Appendix891

A.1 Relations and phrases892

Table 3 shows the relations among entities and their893

corresponding synonyms. The relation identical894

links a entity and a synonym to claim that the syn-895

onym refers to the entity. During training, the re-896

lation identical links [MASK] and a synonym or897

entity to extract the textual feature. Among other898

relations, is_a is the most common relation, which899

describes the subsumption relation between a child900

entity and a parent entity. We transform these rela-901

tions into phrases to put them in templates used by902

our Prompt-based model.903

A.2 Implementation details904

Details about prompt-based methods For905

prompt-based methods (Prompt, GraphPrompt906

(w/o T 2), and GraphPrompt), we trained the 907

model with Lc for 400 iterations to warm-up entity 908

embedding xv. For zero-shot setting, we followed 909

the bi-encoder architecture that uses two encoders 910

for entities and synonyms. Every time we updated 911

the embeddings of entities xv′ , v
′ ∈ V , we had 912

to run the encoder for every entity. For few-shot 913

learning, we found that the entity embedding can 914

be directly trained with an embedding layer. We 915

used the entity side of the bi-encoder to generate 916

entity embedding x0
v′ , and used this embedding 917

to initialize the embedding layer. Then we used 918

embeddings from this trainable embedding layer to 919

replace the sg(xv′) and sg(xv) term in the loss. 920

Details about second-order GraphPrompt 921

The second-order GraphPrompt (GraphPrompt 922

in Table 1) actually didn’t include zeroth-order 923

and first-order templates, since we considered 924

that they are sub-templates of second-order 925

templates. We achieved this by padding a [MASK] 926

neighbor. For example, T 0([MASK], v) is imple- 927

mented as T 2
identical([MASK], v, [MASK]), 928

and T 1
r ([MASK], v) is implemented as 929

T 2
r ([MASK], v, [MASK]). To get xv and 930

yv from this template, you only need to ignore the 931

output of the second mask. 932

Details about the base model The base model 933

is a BioSyn-like model with some important modi- 934

fications. We trained the model for 30 epochs with 935

initial learning rate 1e-5, and decayed it to about 936

Table 3: Relations and phrases

Relation Phrase cl fbbt doid mp hp
identical is identical with X X X X X
is_a is a kind of X X X X X
capable_of is capable of X
negatively_regulates negatively regulates X
positively_regulates positively regulates X
regulates regulates X
part_of is part of X X
has_part has X
develops_from develops from X X
has_sensory_dendrite_in has sensory dendrite in X
sends_synaptic_output_to sends synaptic output to X
synapsed_to is synapsed to X
synapsed_by is synapsed by X
continuous_with is continuous with X
synapsed_via_type_Ib_bouton_to is synapsed via type Ib bouton to X
receives_synaptic_input_in receives synaptic input in X
overlaps overlaps X
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1e-6 when the model converged. We used sparse937

features (Sung et al., 2020) during candidate gen-938

eration. During encoding, we didn’t add sparse939

features, since we found that sparse features had no940

significant impact on the results, and even caused a941

slight decrease of accuracy. Besides, we found that942

BioSyn (Sung et al., 2020) sometimes failed to re-943

trieve positive candidates due to limited candidate944

size and the inaccuracy of the model. Therefore,945

we manually added positive candidate in order to946

make full use of training data. The procedure for947

inference is the same as BioSyn (Sung et al., 2020).948

Details about baselines NormCo (Wright,949

2019) was initially introduced to perform bio-entity950

linking with inputs being text corpora. Central to951

its proposed method is the modeling of coherence952

leveraging concept co-mentions in each text corpus.953

However, as NormCo is not designed to learn the954

semantics of concepts, it is not capable of zero-955

shot learning in our dataset. Therefore, we did not956

report its results under zero-shot setting.957

In addition, to construct a coherence sequence958

analogous to the co-appearances of mentions in the959

original setting, we took the mentions (entities and960

synonyms) of neighbor concepts of each training961

concept (excluding validation and test mentions962

when training), where the mentions are arranged963

in order based on their distance from the central964

concept we build this sequence for.965

As Sieve-Based (D’Souza and Ng, 2015) is a966

rule-based entity normalization method which does967

not need the training data, we treated the model968

as a zero-shot model. Besides, Sieve-Based does969

not include a scoring mechanism, so we could only970

report the results of Acc@1.971
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