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Abstract

One of the main challenges in linear inverse problems is that a majority of such
problems are ill-posed in the sense that the solution does not depend on the data
continuously. To analyze this effect and reestablish a continuous dependence,
classical theory in Hilbert spaces largely relies on the analysis and manipulation of
the singular values of the linear operator and its pseudoinverse with the goal of, on
the one hand, keeping the singular values of the reconstruction operator bounded,
and, on the other hand, approximating the pseudoinverse sufficiently well for a
given noise level. While classical regularization methods manipulate the singular
values via explicitly defined functions, this paper considers learning such parameter
choice rules in such a way, that one obtains higher quality reconstruction results
while still remaining in a setting of provably convergent spectral regularization
methods. We discuss different ways of parametrizing our spectral regularization
methods via neural networks, interpret existing feed forward networks in the setting
of spectral regularization which can become provably convergent via an additional
projection, and finally demonstrate their superiority in 1d numerical examples.

1 Introduction

The classical theory for linear inverse problems considers a linear operator A : X → Y between
Hilbert spaces X and Y and asks the question how to reconstruct an unknown x ∈ X from an
observation yδ ∈ Y given as yδ = Ax+ nδ , where nδ ∈ Y represents noise of magnitude ‖nδ‖ = δ.
As soon as A is a compact linear operator with infinite dimensional range, A admits a singular value
decomposition (SVD)

Ax =

∞∑
n=1

σn〈x, un〉vn (1)

with singular vectors un ∈ X and vn ∈ Y , and zero being an accumulation point of the corresponding
singular values σn. Thus, the pseudoinverse A† of A becomes

A†y =

∞∑
n=1

1

σn
〈y, vn〉un. (2)

Since zero is an accumulation point of the σn, the pseudoinverse is unbounded, i.e., discontinuous.
The idea of spectral regularization is to replace the pseudoinverse A† by a family of operators
Rα : Y → X given by

Rαy =

∞∑
n=1

gα(σn)〈y, vn〉un (3)

in such a way that Rα is a continuous on the entire space Y and that it converges pointwise to A†
as the regularization parameter α goes to zero. A suitable choice of α as a function of δ (a-priori
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choice) or of (δ, yδ) (a-posteriori choice) allows to reestablish the continuous dependence of the
solution on the data in the sense that

‖Rαyδ −A†y‖ → 0 as δ → 0. (4)

In this paper we investigate learning a function N parameterized by θ such that

gα(σ) = N (σ, δ, yδ; θ) (5)

provably satisfies (4). We discuss a-priori as well as a-posteriori choices of the regularization,
demonstrate how learning improves the results over classical choices, and illustrate the performance
boost when turning to nonlinear reconstruction operators.

2 Related Work

Classically, the spectral regularization approaches have been defined manually, e.g. via functions gα
of the form

gα(σ) =

{
1
σ if σ ≥ α
0 otherwise

, (Truncated SVD)

gα(σ) =
1

σ + α
, (Lavrentiev)

gα(σ) =
σ

σ2 + α
(Tikhonov)

along with suitable parameter choice rules α, see e.g. [8]. The fact that Tikhonov regularization
is equivalent to solving a minimization problem with a quadratic penalty, subsequently gave rise
to nonlinear variational methods for which convergent regularization methods similar to (4) can be
guaranteed in different measures of distances, see e.g. [4, 2].

Due to the rise of deep learning techniques many benchmarks are currently dominated by directly
learning a mapping from yδ to a desired solution x via a neural network. Such techniques are,
however, largely lacking a theoretical understanding and rarely even take the noise level δ into
account explicitly (see e.g. [20] for an exception).

Several works have considered hybrid methods between regularization techniques that allow for de-
tailed analysis and learning based approaches: For instance, [6, 1, 10] use minimization/regularization
algorithms as a template for network architectures, [3, 12, 19, 11] optimize over a learned latent
space that contains mostly realistic solutions, [20] consider regularization by parametrization via
deep neural networks, and algorithmic schemes that replace the proximal operator of a regularizer
with a neural network have been studied in [15, 13]. Such techniques do, however, not correspond
to minimization problems anymore unless the network possesses very specific properties, see [16].
Beyond this, safeguarding techniques such as [14] or bilevel optimization problems that learn a
parameterized variational regularization (e.g. [18, 7, 5, 9]) are the only way to remain in the regime
of energy minimization methods. The additional difficulty of defining networks in such a way that
they act on continuous functions rather than their fixed discretizations, makes a convergence analysis
in the sense of (4) difficult and rare. On a related note, the work [17] considers learning itself as an
ill-posed inverse problem to derive convergence properties similar to (4).

3 Learned Spectral Regularizers

3.1 Architectures

For learning spectral regularizations we consider different types of parameterized functions to
represent gα:

• A-priori parameter choices: We parametrize N (σ, δ, yδ; θ) by two classical approaches,
namely a learned Lavrentiev and a learned Tikhonov regularization given via

NLav(σ, δ; θ) =
1

σ + δpÑ(σ, δ; θ)
, NTik(σ, δ; θ) =

σ

σ2 + δqÑ(σ, δ; θ)
, (6)
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with p ≤ 1, q ≤ 2, and a network

Ñ(σ, δ; θ) = θscale · sigmoid(FCN(σ, δ; θ)) (7)

with a 2-layer fully connected network FCN, and one additional scale parameter θscale. To
also make a comparison to classical (but noise-level optimal) regularization choices, we
additionally drop the dependence of Ñ on σ in (7) and refer to these methods as the classical
Lavrentiev and Tikhonov regularizations.

• A-posteriori parameter choice: Many papers have demonstrated great success in directly
predicting a solution x̂ for given data yδ by exploiting spatial regularity of x, e.g. through
convolutional neural networks in imaging applications. While the straight forward appli-
cation of such networks lacks any kind of convergence guarantee, such techniques can be
converted to a-posteriori spectral regularizations with convergence guarantees via suitable
projectors. Let x̂ = G(yδ; θ) be some prediction of a neural network G designed to solve
the underlying problem directly. Then the choice

gα(σn) =
〈un,G(yδ; θ)〉
〈vn, yδ〉

(8)

results in the spectral regularization yielding G(yδ; θ) as a reconstruction result (assuming
that 〈vn, yδ〉 6= 0, and that all σn are different). To ensure convergence, we modify such a
prediction via the following projection

N (σn, δ, y
δ; θ) = proj[

(1−
√
δθl)

σ
σ2+αlδ

,(1+
√
δθu)

σ
σ2+αuδ

]( 〈un,G(yδ; θ)〉
〈vn, yδ〉

)
(9)

with learnable parameters θl and θu. The projection can be interpreted as remaining in
between a strong and a weak Tikhonov regularization (αu << αl) up to some tolerance
with deceases to zero as δ → 0. For G we choose an architecture loosely motivated by
unrolling a proximal gradient descent algorithm, see A.2 in the appendix for details.

With the above choices, we can state the following convergence result:
Proposition 1 (Convergent spectral regularization methods). Both learning based approaches, the
a-priori choice (6) and the a-posteriori choice (9), are convergent regularization methods in the sense
of (4) provided that q < 2 and p < 1.

Proof. See appendix A.1.

4 Numerical Experiments

To compute the solution of inverse problems numerically, we need to discretize any infinite di-
mensional problem to a finite one, e.g., by considering a suitable subspace. While this step alone
reintroduces regularity as finite dimensional linear operators can never be discontinuous, the resulting
problem still remains ill-conditioned due to a quick decay of the singular values σn.

To investigate the behavior of our regularization strategy, we consider two inverse problems: The
differentiation as well as deblurring of a function y : [0, 1]→ R, giving rise to the linear operators

Aintx(t) =

∫ t

0

x(s) ds, Ablurx(t) =

∫ 1

0

g(s− t)x(s) ds, (10)

for g being a Gaussian kernel. In both cases we discretize x by evaluating it at positions (xn)1≤n≤N
and approximate the integrals of the operators by simple summations. Further details on the training
can be found in the appendix.

Figure 1 (left and middle) shows the learned Tikhonov and Lavrentiev regularizations along with
the classical Tikhonov regularization and a naive approach, in which gα is directly parameterized
as a fully connected network depending on σ and δ, for two different noise levels δ as a function
of σ. As we can see, all learned regularizers choose a Tikhonov-type shape of gα, but allow much
larger gα(σ) for σ on a medium scale. In particular, the learned Tikhonov and direct (naive) learning
yield remarkably similar shapes of gα. Looking at the spectral regularizers for fixed σ = 0.1 (right
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Figure 1: Exemplifying the results of the a-priori parameter choice rules. Left and middle: N (σ, δ; θ)
as a function of σ for two different noise levels δ = 0.2 and δ = 0.1. Right: N (σ, δ; θ) as a function
of δ for a fixed σ = 0.1.

plot in Fig. 1) as a function of δ, one can see that the Tikhonov, learned Tikhonov and Lavrentiev
regularizers yield a value of gα(σ) = 1/σ for δ = 0. The direct (naive) approach, however, fails
to yield such a value, which directly implies that this method is not a convergent regularization in
the sense of (4). We conclude that the choice of the architecture with built-in behavior is crucial for
obtaining theoretical guarantees.

Naive Lav. Tik. Learned Lav. Learned Tik. A-Post.

Deblur training 29.58 20.05 27.17 28.59 29.73 31.89
test 29.56 19.98 27.00 28.55 29.67 31.51

Diff. training 28.93 21.35 26.44 28.94 29.27 31.63
test 29.00 21.30 26.45 28.99 29.31 30.74

Table 1: PSNR values during training and testing for deblurring and differentiation for various
different regularization strategies.

As for the overall performance of each approach, Table 4 shows the PSNR values for all methods
over training and testing in both applications for a fixed discretization of N = 50. As we can see,
the learning-based methods clearly outperform the classical approach while still remaining provably
convergent in the sense of Prop. 1. Moreover, the learned Tikhonov parametrization is superior to
its Lavrentiev counterpart. The naive approach does yield good PSNR values (although with a high
initialization-depending variance), but does not yield a convergent regularization, i.e., does not yield
faithful results for small noise levels. The best results by far are obtained by the learned a-posteriori
approach, which converts a direct prediction of the solution x to a spectral regularization.
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Shown in the inset figure are two curves of gα = N (·, δ, yδ; θ) for
the same y and δ, such that merely the realizations of the noise differ.
As we can see, the learned a-posteriori choice is non-monotone, does
not yield smooth curves such as in Fig. 1, and differs significantly
for different realizations of noisy data. Yet, the PSNR values of
this approach is significantly higher, indicating the importance of
non-linear regularizations that vary for different yδ .

5 Conclusions

In this paper we studied spectral regularization methods for linear inverse problems and successfully
learned provably convergent regularization methods that outperform their classical counterpart. By
considering a-posteriori choice rules in spectral regularizations, we turned to non-linear reconstruc-
tion techniques, which yield even better reconstruction results and ultimately raise the quest for
establishing provably convergent learned regularization methods in other notions of distance, e.g.
resembling the analysis of variational methods using Bregman distances.
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A Supplementary Material

A.1 Proof of Proposition 1

The techniques used for proving our proposition are well known and follow the arguments in [8]. For
the sake of completeness, we will still give an overview of the proof. The central idea is to show the
following results that ensure a convergent spectral regularization method: For a regularization of the
form (3) the following criteria ensure (4).

gα(σ) ≤ Cα for all σ > 0, (11a)

gα(σ)
α→0→ 1

σ
for all σ > 0, (11b)

σgα(σ) ≤ C̃ <∞ for all α, σ > 0, (11c)

δCα(δ,yδ)
δ→0→ 0. (11d)

Proof. The condition (11a) ensures that Rα is a continuous linear operator for any fixed δ > 0
because ‖Rα‖ = Cα. For y in the domain of A†, y ∈ D(A†), and yδ with ‖y− yδ‖ ≤ δ we estimate

‖A†y −Rαyδ‖ = ‖A†y −Rαy +Rαy −Rαyδ‖ ≤ ‖A†y −Rαy‖+ ‖Rα‖δ. (12)
Now using ‖Rα‖ = Cα condition (11d) ensures that the second term in the above estimate converges
to zero for δ → 0. As for the first term we find

‖Rαy −A†y‖2 =

∞∑
n=1

(
gα(σn)−

1

σn

)2

|〈vn, y〉|2, (13)

=

∞∑
n=1

(σgα(σn)− 1)
2 1

σ2
n

|〈vn, y〉|2. (14)

Due to condition (11c) the above sum remains bounded independent of α and therefore is uniformly
convergent, such that summation and a limit of δ → 0 can be exchanged. Finally, condition (11b)
ensures that the above term converges to zero.

Left to verify is that our learnable architectures satisfy the conditions (11). For both a-priori choice
rules (11a) holds due to the sigmoid function being strictly greater than zero for all inputs. Condition
(11b) holds for p, q > 0 since the sigmoid function is bounded by 1. Condition (11c) holds with
C̃ = 1, and (11d) holds if p < 1 and q < 2. Similarly, the projection operator of the a-posteriori
choice (9) ensures the conditions (11) to be met.

A.2 Details on Network Architectures and Training

The fully-connected networks in the learned Lavrentiev and learned Tikhonov models consist of two
fully-connected layers with hidden dimension 10. The naive network consists of 3 fully-connected
layers with hidden dimension 2→ 100→ 100→ 1.

For the a-posteriori prediction x̂ = G(yδ; θ) we utilize an iteration inspired by proximal gradient
descent

xi = Gi(xi−1 − τAT (Axi−1 − y); θi) (15)
where x0 = 0 and τ = 1. The networks Gi themselves are 3-layer convolutional networks with
hidden layer sizes of 10. For the convoultions we use zero padding and we fix the minimum kernel
size such that the receptive field of the output covers the entire input xi−1.

A.2.1 Training

For each resolution N ∈ {10, 11, . . . , 50} we generate R = 5000 many training examples xi,N by
sampling random superpositions of sine and cosine functions, applying the discretized operator A
and adding zero-mean Gaussian noise of different standard deviations δi,N with δi,N ∈ [0, 0.2] to
obtain simulated data yδi,Ni,N . Then we train our networks in a supervised way via

min
θ

50∑
N=10

1

R

R∑
i=1

∥∥∥∥∥
N∑
n=1

N (σn,N , δi,N , y
δi,N
i,N ; θ)〈yδi,Ni,N , vn,N 〉un,N − xi,N

∥∥∥∥∥
2

. (16)
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The superpositions of sine and cosine functions are realized by

f(x) = cos(ω1x) + γ sin(ω2x) (17)

where ω1 and ω2 are drawn from a standard normal distribution and γ is sampled uniformly from the
interval [−1, 1].
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