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ABSTRACT

Recent developments in deep representation models through counterfactual bal-
ancing have led to a promising framework for estimating Individual Treatment
Effects (ITEs). While Randomized Control Trials are vital to the understanding of
causal effects, they are sometimes infeasible, costly, or unethical to conduct. Here,
we focus on transferring the causal knowledge acquired in prior experiments to
new scenarios where only limited data is available. We first provide regret bounds
on the counterfactual loss and ITE error of the target task indicating the trans-
ferability of causal knowledge. We also observe that the absolute values of ITEs
are invariant under the action of the symmetric group on the labels of treatments.
Given this invariance, we propose a symmetrized task distance for calculating the
similarity of a target scenario with those encountered before. The aforementioned
task distance is then used to transfer causal knowledge from the closest of all the
available previously learned tasks to the target scenario. Empirical studies are
provided for various datasets demonstrating that the proposed symmetrized task
distance is strongly related to the estimation of the counterfactual loss. Our results
indicate that transferring causal knowledge reduces the amount of required data
by up to 95% when compared to training from scratch.

1 INTRODUCTION

One of the most remarkable characteristics of humans is their ability to transfer causal knowledge
learned in a scenario to other similar situations. It is highly desirable for neural networks to have
the same ability because of their numerous potential applications. For instance, mutations of old
viruses often necessitate the development of new vaccines for treatment. To study the effect of new
vaccine candidates, researchers need to collect data from randomized control trials, which is time-
consuming and expensive (Kaur & Gupta, 2020). If the mutated viruses can be related to old ones
by a measure of similarity, then the effects of vaccine candidates can be quickly calculated based on
this similarity with a small amount of data collected for the new scenario. In other words, transfer
learning methods can help the research on the effects of various treatments (e.g., applications in
medicines, personal training, social policy) progress much faster (Ebbehoj et al., 2022).

Recently, there has been significant progress in transfer learning, especially in computer vision
and natural language processing applications (Wang & Deng, 2018; Alyafeai et al., 2020; Pan &
Yang, 2010; Zhuang et al., 2021). While this is very promising, a challenge for transferring causal
knowledge arises from statistical learning models’ vulnerability to non-causal correlations. For
example, camels and horses often exist in images with different background colors, and a classifier
may learn to use these colors to classify these objects (Arjovsky et al., 2019; Geirhos et al., 2019;
Beery et al., 2018). A more critical challenge for transferring causal knowledge is that, in practice,
the performance of the trained model for estimating ITEs can never be computed. This is because
counterfactual data can never be collected as shown in Figure 1. This problem is known in the
literature as the fundamental problem of causal inference (Rubin, 1974) and (Holland, 1986). For
example, to compute the effect of vaccination on an individual at some given time, she/he must be
both vaccinated and not be given the vaccine, which is obviously impossible. This contrasts with
conventional supervised learning problems, where practitioners often use a separate validation set to
estimate the true accuracy.
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Figure 1: Inaccessibility to counterfactual data (which requires a “flipped” world where alternative
treatments were assigned) makes transferring causal knowledge more challenging, since we do not
have access to the validation dataset to estimate test performance to avoid the negative transfer.

Figure 2: Overview of transfer learning in causal inference. The task distance is used to identify the
closest task(s) from the set of prior tasks. The models and datasets from the relevant prior tasks are
transferred to the target task.

The aforementioned challenges imply that much attention must be paid to selecting the appropriate
source model to transfer from in causal knowledge transfer. Additionally, the similarity of scenarios
must be calculated using a distance related to variations of counterfactual loss between scenarios.
This motivates our work in this paper, where we propose a task distance between causal inference
scenarios. The task distance is then used for transferring causal knowledge, as shown in Figure 2.
Our contributions can be summarized as follows:

1. For causal transfer learning scenarios, we establish new (to the best of our knowledge)
regret bounds for the learning of counterfactual outcomes and ITEs for target tasks. These
bounds prove the feasibility of transferring causal knowledge.

2. We observe a special property (symmetry) of causal inference tasks. Specifically, the ab-
solute value of ITEs must be invariant to relabeling the treatment groups under the action
of the symmetric group. Subsequently, we propose an intuitively appealing symmetrized
Fisher task distance for which this property holds. While we construct the proposed task
distance to satisfy this property mathematically, we also provide empirical evidence that it
successfully lends itself to this symmetry in Section 5.3.

3. We provide both theoretical (e.g., Theorem 4) and empirical evidence (e.g., Figure 3) sup-
porting the relevance of the symmetrized Fisher task distance to transferring causal knowl-
edge. Through extensive experiments, we demonstrate that the proposed task affinity is
highly correlated with the loss in estimating counterfactuals (not measurable in practice).

4. We present a representative set of causal inference datasets suitable for studying causal
knowledge transfer. Some of these are well-established datasets in the literature, while oth-
ers are derived from known causal relations in social sciences, physics, and mathematics.

5. We provide empirical evidence based on the above datasets that our methods can compute
the ITEs for the target task with significantly fewer (up to 95% reduction) data points
compared to the case where transfer learning is not performed.
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2 MATHEMATICAL BACKGROUND

We first establish the notation and briefly review the required mathematical background.

2.1 CAUSAL INFERENCE

Let X ∈ X ⊂ Rd be the covariates (features), T ∈ {0, . . . ,M} be the treatment, and Y ∈ Y ⊂ R
be the factual (observed) outcome. For every j ∈ {0, . . . ,M} we define Yj to be the Potential
Outcome that would have been observed if only treatment T = j, j ∈ {0, 1, · · · ,M} was assigned.
For example, in the medical context, X is the individual information (e.g. weight, heart rate, etc),
T is the treatment assignment (e.g., t = 0 when the individual didn’t receive a vaccine, and t = 1
where he/she did), Y is the outcome (e.g mortality data). A causal inference dataset is given by a
set of factual observations DF = {(xi, ti), yi}Ni=1, where N is the number of samples.

We present our results for M = 1 (binary case) in the sequel. However, our approach immediately
applies to any positive integer M < ∞. In the binary case, the individuals who received t = 0
(respectively t=1) are denoted by the control group (respectively the treatment group).
Definition 1 (ITE). The Individual Treatment Effect also referred to as the Conditional Average
Treatment Effect (CATE) (Imbens & Rubin, 2015), is defined as:

∀x ∈ X , τ(x) = E[Y1 − Y0|X = x] (1)

We assume that our data generation process respects overlap (i.e. 0 < p(t = 1|x) < 1 for all x ∈ X )
and conditional unconfoundedness (i.e. (Y 1, Y 0) ⊥⊥ T |X) (Robins, 1987). These assumptions
are sufficient conditions for the ITE to be identifiable (Imbens, 2004). We also assume that a true
underlying function f(x, t) describes the causal relationship. By definition τ(x) = f(x, 1)−f(x, 0).
Let f̂(x, t) denote a hypothesis that estimates the true function f(x, t). Thus, the ITE function can
then be estimated as τ̂(x) = f̂(x, 0)−f̂(x, 0). We let lf̂ (x, t, y) denote a loss function that quantifies

the performance of f̂(·, ·). A possible example is lf̂ (x, t, y) = (y − f̂(x, t))2 (L2 loss) .

Definition 2 (Factual Loss). For a hypothesis f̂ and a corresponding loss function lf̂ we define the
factual and counterfactual losses respectively as

ϵF (f̂) =

∫
X×{0,1}×Y

lf̂ (x, t, y) p(x, t, y)dxdtdy (2)

We also define the factual loss for the treatment (t = 1) and control (t = 0) groups respectively as:

ϵt=1
F (f̂) =

∫
X×Y

lf̂ (x, 1, y) p(x, y|t = 1)dxdy (3)

and
ϵt=0
F (f̂) =

∫
X×Y

lf̂ (x, 0, y) p(x, y|t = 0)dxdy (4)

Definition 3 (Counterfactual Loss). The counterfactual loss is defined as (Shalit et al., 2016)

ϵCF (f̂) =

∫
X×{0,1}×Y

lf̂ (x, t, y) p(x, 1− t, y)dxdtdy (5)

Intuitively, the counterfactual loss corresponds to the expected loss value in a parallel universe where
the roles of the control and treatment groups are exchanged.
Definition 4. We define the Expected Precision in Estimating Heterogeneous Treatment Effect
(PEHE) (Hill, 2011) as

εPEHE(f̂) =

∫
X
(τ̂(x)− τ(x))

2
p(x)dx. (6)

The value εPEHE is often used as the performance metric for estimation of ITEs as in (Shalit
et al., 2016),(Hill, 2011), and (Johansson et al., 2016). Small factual and counterfactual losses are
sufficient conditions for causal models to have good performance (i.e., low εPEHE) (Shalit et al.,
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2016). Intuitively, this measures if a model has a good performance in predicting the effect both
when the treatment is administered or not. Lower εPEHE also implies that the model is good for
predicting the ITEs. We note that the above measures of performance are not directly accessible in
causal inference scenarios, because the calculation of the ground truth ITE values requires access to
counterfactual values. In this light, we may resort to selecting a hypothesis that optimizes an upper
bound instead, such as the one given in the following section (see Equation 8).

2.2 TARNET AND COUNTERFACTUAL REGRESSION

TARNet (Shalit et al., 2016) has proven to be a successful framework for counterfactual balancing
to estimate ITEs. It is defined as a pair of functions (Φ, h) where Φ : Rd → Rl is a representation
function of the features and h : Rl × {0, 1} → R is a function learning the two potential outcomes
functions in the representation space. The hypothesis learning the true causal function is: f̂(x, t) =
h(Φ(x), t). We denote the loss function lf̂ by l(Φ,h). TARNet uses integral probability metric (IPM)
defined as

IPMG(p, q) := sup
g∈G

∣∣∣∣∫
S
g(s)(p(s)− q(s))ds

∣∣∣∣ , (7)

where the supremum is taken over a given class of functions G to measure the distance between
distributions. It is a consequence of Kantorovich-Rubinstein duality Villani (2009) that IPM reduces
to 1-Wassertein distance when G is the set of 1-Lipschtiz functions as is the case in our numerical
experiments.

TARNet (Shalit et al., 2016) estimates the counterfactual outcomes by minimizing:

L(Φ, h) = 1

N

N∑
i=1

wi · l(Φ,h)(xi, ti, yi) + α · IPMG

(
{Φ (xi)}i:ti=0 , {Φ (xi)}i:ti=1

)
(8)

where wi = ti
2u + 1−ti

2(1−u) , and u = 1
N

∑N
i=1 ti. The parameter α is referred to as the balanc-

ing weight since it controls the trade-off between the similarity of the representations in the latent
domain, and the performance of the model on the factual data.

3 TRANSERABILITY OF CAUSAL KNOWLEDGE

In this section, we use superscripts Ta and Sr to denote quantities related to target and source
task respectively. Suppose that we have a model (ΦSr, hSr) trained on a source causal inference
task. We apply the source model to a different target task. For notational simplicity, we denote
P (Φ(X)|T = t) by P (Φ(Xt)) for t ∈ {0, 1}. We are interested in the performance of a well-
trained source model when applied to a target task, i.e.

ϵTa
PEHE(Φ

Sr, hSr) =

∫
x∈X

(
τTa(x)− [hSr(ΦSr(x), 1)− hSr(ΦSr(x), 0)]

)2

P (XTa = x)dx

where τTa is the individual treatment effect function of the target, Φ is the representation learning
function, and h is the potential outcomes hypothesis. While it is difficult to estimate, this error can
have an upper bound that only involves obtainable quantities if we make reasonable assumptions
about the relationship between the source and target task (defined in the Assumption 4 below). We
make the following assumptions throughout this section:

1. Assumption 1: The loss function is non-negative, i.e. ℓTa
Φ,h(x, t, y) ≥ 0 for all (x, t, y) ∈

(X × {0, 1} × Y),
2. Assumption 2: Φ is injective (thus Ψ = Φ−1 exists on Im(Φ)) (We borrow this assumption

from (Shalit et al., 2016)),
3. Assumption 3: There exists a real function space G on R = Im(Φ) and a constant BTa

Φ

such that the function r 7→ 1
BTa

Φ

· ℓTa
Φ,h(Ψ(r), t, y) ∈ G.

4. Assumption 4: Causal Knowledge Transferability Assumption: There exists a function
class G′ on Y such that y 7→ lΦ,h(x, t, y) ∈ G′ and IPMG′(P (Y Sr

t |x), P (Y Ta
t |x)) ≤ δ

for t ∈ {0, 1}.
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Note that the causal knowledge transferability assumption implies that the outcome distributions
(causal effects) of treatment t in source and target tasks need to be similar in order for transfer
learning to be beneficial.

Our main Theorem guarantees that causal knowledge can be transferred and is proved using two
Lemmas that are stated below. These lemmas provide upper bounds on the factual and counterfactual
losses for transferring causal knowledge and may be by themselves of independent interest. The
proofs of these Lemmas and that of the Theorem are provided in the Appendix 8.5.
Lemma 1. (Factual Loss of Source Model on Target Task) Suppose that Assumptions 1-4 hold. The
factual losses of any model (Φ, h) on source and target task satisfy:

∀t ∈ {0, 1}, ϵTa,t
F (Φ, h) ≤ ϵSr,t

F (Φ, h) +BTa
Φ · IPMG(P (Φ(XTa

t )), P (Φ(XSr
t ))) + δ

Lemma 2. (Counterfactual Loss of Source Model on Target Task) Suppose that Assumptions 1-4
hold. The counterfactual losses of any model (Φ, h) on source and target task satisfy:

ϵTa
CF (Φ, h) ≤ϵSr,t=1

F (Φ, h) + ϵSr,t=0
F (Φ, hS)

+BTa
Φ · IPMG(P (Φ(XTa

1 )), P (Φ(XSr
1 )))

+BTa
Φ · IPMG(P (Φ(XTa

0 )), P (Φ(XSr
0 )))

+BTa
Φ · IPMG(P (Φ(XTa

0 )), P (Φ(XTa
1 ))) + 2δ

The above lemmas quantify the relationship between causality and transfer learning. In particular
Lemma 2 bounds the inherently non-observable counterfactual loss by tractable quantities.
Theorem 1. (Transferability of Causal Knowledge) Suppose that Assumptions 1-4 hold. The per-
formance of source model on target task, i.e. ϵTa

PEHE(Φ
Sr, hSr), is upper bounded by:

ϵTa
PEHE(Φ

Sr, hSr) ≤2(ϵSr,t=1
F (ΦSr, hSr) + ϵSr,t=0

F (ΦSr, hSr)

+BTa
ΦSr · IPMG(P (ΦSr(XTa

1 )), P (ΦSr(XSr
1 )))

+BTa
ΦSr · IPMG(P (ΦSr(XTa

0 )), P (ΦSr(XSr
0 )))

+BTa
ΦSr · IPMG(P (ΦSr(XTa

0 )), P (ΦSr(XTa
1 )) + 2δ)

Theorem 1 implies that good performance on the target task is guaranteed if (1) the source model
has a small factual loss (e.g., the first and second term in the upper bound) and (2) the distributions
of the control and the treatment group features are similar in the latent domain (the rest three terms
in the upper bound). This upper bound provides us with a sufficient condition for transfer learning
in causal inference scenarios, indicating the transferability of causal knowledge. Please note that
these regret bounds can be applied to any transfer learning framework that involves a pair of tasks.

4 SYMMETRIZED TASK AFFINITY FOR CAUSAL INFERENCE TASKS

While these regret bounds indicate the transferability of causal knowledge between any pair of causal
inference tasks, they don’t provide a constructive way to choose the best source task to transfer
from, when multiple source tasks exist. The order of performance of different models and that of
their upper bounds are not necessarily the same. Hence, we propose a label-invariant task affinity
that finds the closest source task. Moreover, this task affinity satisfies the symmetry property (see
section 4.3) of causal inference tasks. Our new task affinity is built on the Fisher task distance (FTD).
We first give a brief introduction to FTD, then we propose a symmetrized Fisher task distance for
causal inference tasks.

4.1 TASK REPRESENTATION

The ordered pair of a causal task T and its dataset D = (X,T ) will be denoted by (T , D), where
dataset D itself consists of pair of covariates and their assigned treatments.

We will mathematically formalize a sufficiently well-trained deep network representing a causal
task-dataset pair (T , D) in the Appendix 8.7. From now on, we assume that all the previously
trained models are sufficiently well-trained networks.
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4.2 FISHER TASK DISTANCE

Here, we recall the definition of the Fisher Information matrix for a neural network, and well-defined
Fisher task distance (Achille et al., 2019; Le et al., 2021b; 2022b).
Definition 5 (Fisher Information Matrix). For a neural network Nθa with weights θa trained on
data Da, a given test dataset Db and the negative log-likelihood loss function L(θ,D), the Fisher
Information matrix is defined as:

Fa,b = ED∼Db

[
∇θL(θa, D)∇θL(θa, D)T

]
= −ED∼Db

[
H
(
L(θa, D)

)]
, (9)

where H is the Hessian matrix, i.e., H
(
L(θ,D)

)
= ∇2

θL(θ,D), and expectation is taken w.r.t the
data. It can proved that Fisher Information Matrix is asymptotically well-defined (Le et al., 2022b).
In practice, we approximate the above with the empirical Fisher Information matrix:

F̂a,b =
1

|Db|
∑
d∈Db

∇θL(θa, d)∇θL(θa, d)
T . (10)

Here, the empirical Fisher Information Matrix is positive semi-definite because it is the summation
of positive semi-definite terms, regardless of the number of samples. For completeness, we next
review the task affinity score (Le et al., 2021b).
Definition 6 (Task Affinity Score (TAS)). Let (Ta, Da) and (Tb, Db) respectively denote the source
and target task-dataset pairs. Let Da = Dtr

a ∪ Dte
a (respectively Db = Dtr

b ∪ Dte
b ) with Dtr

a
(respectively Dtr

b ) and Dte
a (respectively Dte

b ) be the training and test sets of dataset Da (respectively
Db), where the training for Ta is performed using the source representation network Nθa . Consider
the Fisher information matrix H

(
L(θ,Da)

)
of Nθa with test data Dte

a . Let Fa,a be the diagonal
matrix of absolute values of elements of major diagonal of H

(
L(θ,Da)

)
normalized to have unit

trace. Let Fa,b be constructed in an analogous manner but using the training data Dtr
b (instead of

Dte
a ). The TAS from the source task Ta to the target task Tb is defined as:

s[a, b] =
1√
2

∥∥∥F 1/2
a,a − F

1/2
a,b

∥∥∥
F

(11)

It can be proved that 0 ≤ TAS ≤ 1 where TAS = 0 denotes extreme similarity and TAS = 1
indicates extreme disimilarity. In Appendix 8.5, we prove under stringent assumptions that the order
of TAS between candidate source tasks and the target task are preserved when a parallel universe
experiment is performed in which the roles of the control and treatment groups are exchanged.

4.3 LABEL-INVARIANT TASK AFFINITY

Symmetry Property of Causal Inference Tasks Causal inference tasks can be considered as
having multiple regression problems, one for each treatment group. Given a source task, if we
alternate the treatment labels (i.e., 0 to 1 and 1 to 0), the treatment effect (i.e., E[Y1−Y0|X]) will be
negated. Consequently, the unsymmetrized task distance (Le et al., 2022b) between the original task
and the permuted task can be very large. However, the original model does not need to be retrained
for transfer learning as we only need to permute the roles of output layers of the model to predict the
individual treatment effects correctly for each group. In other words, the causal distance between
these two permuted tasks must be zero. The following proposed label-invariant task affinity lends
itself to this property of causal inference tasks.

Our causal inference tasks are represented by TARNet type networks. We also restrict to the case,
where all causal tasks under consideration have the same number of treatment labels M (e.g., M =
2). Let (Ta, Da) (respectively (Tb, Db)) with Da = (Xa, Ta, Ya) (respectively Db = (Xb, Tb, Yb))
be the source (respectively target) causal inference tasks. Clearly Ta, Tb ∈ {0, 1, . . . ,M}.

Consider the symmetric group SM+1 consisting of all permutations of labels {0, 1, . . . ,M}. For
σ ∈ SM+1, let Tσ(b) denote the permutation of the target treatment labels under the action of σ. Let

dσ = 1√
2

∥∥∥F 1/2
a,a − F

1/2
a,σ(b)

∥∥∥
F

, then

ssym[a, b] = min
σ∈SM+1

(dσ)
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is the label-invariant task affinity distance between causal tasks Ta and Tb (The pseudocode is pro-
vided in the Appendix 8.3). It follows from the above definition that the order of closeness of tasks
under label-invariant task affinity closeness is robust to the architectural choice of the representation
networks since task affinity distance has been shown to enjoy this property (Le et al., 2022b).

5 EXPERIMENTAL RESULTS

We first describe the datasets we have used for our empirical studies. Subsequently, we present
empirical results about quantifying the gains of transfer learning for causal inference, demonstrating
the strong correlation between the proposed task distance and the counterfactual loss, and showing
that the proposed task distance identifies the symmetries within causal inference tasks.

5.1 CAUSAL INFERENCE DATASETS

We present a representative family of causal inference datasets suitable for studying causal knowl-
edge transfer. Some of these are well-established datasets in the literature, while others are motivated
by known causal structures in diverse areas such as social sciences, physics, health, and mathematics.
Table 1 provides a brief description of the datasets used in our studies. A more detailed description
is provided in Appendix 8.4.1. For each dataset, a number of corresponding causal inference tasks
exist, which can be used to study transfer learning scenarios. Please note that we can only access the
counterfactual data of the synthetic/semi-synthetic datasets (i.e., IHDP, RKHS, Movement, Heat).
We are not in possession of the counterfactual data of the real-world datasets (i.e., Twins, Jobs).

Table 1: Causal inference datasets constructed for Transfer Learning Studies. Regres-
sion/Classification Problem (REG/CLS); Counterfactual Data Availability (CF Avail); Total Num-
ber of Tasks for the Dataset (#Task); Number of Samples in Each Task (#Sample).

Name Type Task CF Avail Subject #Task #Sample
IHDP Semi-Synthetic REG YES Health 100 747
Twins Real-world CLS YES Health 11 2000
Jobs Real-world CLS NO Social Sciences 10 619
RKHS Synthetic REG YES Mathematics 100 2000
Movement Synthetic REG YES Physics 12 4000
Heat Synthetic CLS YES Physics 20 4000

5.2 COMPARISON OF PERFORMANCE WITH/WITHOUT TRANSFER LEARNING

Here we briefly discuss our experiments quantifying the impact of transferring causal knowledge on
the size of required training data. In this experiment, we use Heat (Physics), Movement (Physics),
IHDP, and RKHS datasets for which the counterfactual outcomes are available. We first fix a target
causal inference task. For a wide range of balancing weights (α), we record the values of εPEHE

for the training of the model from scratch while increasing the size of training datasets (at the end
training process). In this process, the training datasets are slowly expanded such that smaller training
sets are subsets of larger ones. We then report the minimum εPEHE achieved for each dataset size.
For the Target task, we identify the closest source task and repeat the above process with a small
amount of target task data. We then compare the performance with and without transfer learning
to quantify the amount of data needed by transfer learning models to achieve the best possible
performance without transferring causal knowledge. The results are summarized in Table 2, which
demonstrates that transferring causal knowledge decreases the required amount of training data in
this setting by a percentage between 75% and 95%.

5.3 TASK DISTANCE AND COUNTERFACTUAL LOSS

Here, we show empirically the strong correlation between task distance (which only uses available
data) and counterfactual loss (which is impossible to measure perfectly except for synthetic datasets).
We show in Figure 3 that for different balancing weights α (see Equation 8), the correlation between
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Table 2: The impact of causal knowledge transfer on the size of the required training dataset. Num-
ber of training data used without and with TL (ORI/TL Size); Minimum εPEHE achieved dur-
ing training (not obtainable in practice because no validation data is available) (W/O TL (Ideal));
εPEHE of the model without transfer learning (model with minimum training loss)(W/O TL
(Prac)); εPEHE of the model with transfer learning (model with minimum training loss)(TL
(Prac)); Percentage of Reduction in Data provided by Causal Transfer Learning (Gain).

Dataset ORI/TL Size W/O TL(Ideal) W/O TL (Prac) TL (Prac) Gain
IHDP 747/150 0.61 0.97 0.65 > 80%
RKHS 2000/50 0.68 0.96 0.46 > 95%
Movement 4000/750 0.021 0.025 0.011 > 80%
Heat 4000/500 6.7e-6 1.4e-5 4.2e-6 > 85%

task distance and counterfactual error on the IHDP, RKHS, Movement(Physics), and Heat(Physics)
datasets for which counterfactuals are known. It is intuitively appealing and empirically observed
that the task distance and the counterfactual loss have a strong correlation: the model of a source task
has a smaller counterfactual loss on the target data if the target task is closer (in terms of the proposed
task distance). Note that the points in Figure 3for different values of α (i.e., balancing weight) are
extremely close. This shows that the proposed task affinity not only indicates counterfactual loss, but
also is robust to change of hyper-parameters. This is a highly desirable property, especially in causal
inference scenarios where no validation data can be accessed to cross-validate the hyper-parameters.
Our numerical results for the Jobs and Twins datasets verify that the proposed task distance can
capture the symmetries within causal inference problems. We flip treatment labels (0 and 1) with
probability p (without any changes to the features and the outcomes) independently for each control
and treatment data point. In Figure 4, we depict the trend of the symmetrized task distance between
the original and the altered dataset by varying p, p ∈ [0, 1]. The symmetry of task distance is evident
(with some deviation due to limited training data for calculating the task distance). The altered
dataset with p = 1 is the closest to the original dataset (as it should be) since we have completely
flipped the treatment assignments. The altered dataset with p = 0.5 is the furthest (as it should be),
since we have randomly shuffled the control and the treatment groups. For all datasets, it can also
be observed that the task distance trends are robust to variations in the balancing weight.

Figure 3: Task Distance vs. Counterfactual Error on causal inference datasets. The task distance
shows a strong correlation with the (unmeasurable) counterfactual loss. Note that the various points
for the Movement and Heat datasets are extremely close for different values of α.

6 RELATED WORK

In the setting of transfer learning (Pan & Yang, 2010; Zhuang et al., 2021), prior learned models are
used to increase the learning efficiency and decrease the required data. For instance, the parameters
from a trained model may be used as initialization values for the target task. Many approaches in
transfer learning (Thrun & Pratt, 1998; Blum & Mitchell, 1998; Silver & Bennett, 2008; Raza-
vian et al., 2014; Finn et al., 2016; Fernando et al., 2017; Rusu et al., 2016) have been proposed,
analyzed and applied in various machine learning applications. Transfer learning techniques inher-
ently assume that prior knowledge in the selected source model helps learn a target task. In other
words, these methods often do not consider the selection of the base task to perform knowledge
transfer. Consequently, in some rare cases, transfer learning may even degrade the performance of
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Figure 4: The symmetry of Task Distance. p (on the x-axis) denotes the probability of flipping
treatment assignments of the original dataset. The altered dataset with p = 1 is the closest to the
original task (as expected). The altered dataset with p = 0.5 is the furthest (as expected). Thus, the
trend of points should resemble an inverted ‘U’, which is successfully captured by the task distance.

the model Standley et al. (2020). In order to avoid potential performance loss during knowledge
transfer to a target task, task affinity (or task similarity) is considered as a selection method that
identifies a group of closest base candidates from the set of the prior learned tasks. Task affinity has
been recently investigated and applied to various domains, such as transfer learning (Zamir et al.,
2018; Dwivedi & Roig, 2019; Achille et al., 2019; Wang et al., 2019), neural architecture search (Le
et al., 2021a; 2022a; Le et al., 2021), few-shot learning (Pal & Balasubramanian, 2019; Le et al.,
2022b), multi-task learning (Standley et al., 2020), and continual learning (Kirkpatrick et al., 2017;
Chen et al., 2018). The related prior learned tasks are identified with similarity measures and then
employed for knowledge transfer. Task affinity is inherently a non-commutative measure as it may
be straightforward to transfer the knowledge from a more comprehensive task to a simpler task than
the other way around (Le et al., 2021b).

While transfer learning and task affinity have been investigated in numerous application areas, their
applications to causal inference have not been fully developed. Neyman-Rubin Causal Model and
Pearl’s Do-calculus are two popular frameworks for causal studies based on different perspectives.
A central question in these frameworks is determining conditions for identifiability of causal quan-
tities such as Average and Individual Treatment Effects. Past work considered estimators for Av-
erage Treatment Effect based on various methods such as Covariate Adjustment (a.k.a back-door
adjustment) (Pearl, 2009; Rubin, 1978), weighting methods such as those utilizing propensity scores
(Rosenbaum & Rubin, 1983), and Doubly Robust estimators (Funk et al., 2011). With the emergence
of Machine Learning (ML) techniques, more recent approaches to causal inference include the ap-
plications of decision trees(Wager & Athey, 2015), Gaussian Processes (Alaa & van der Schaar,
2017) and Generative Modeling (Yoon et al., 2018) to ITE estimation. In particular, deep neural
networks have successfully learned ITEs and estimated counterfactual outcomes by data balancing
in the latent domain (Johansson et al., 2016; Shalit et al., 2016). It is important to note that the trans-
portability of causal graphs is another closely related field that has been well-studied in the causality
literature (Bareinboim & Pearl, 2021). It studies transferring knowledge of causal relationships in
Pearl’s do-calculus framework. In contrast, in this paper we are interested in transferring knowledge
of Individual Treatment Effects from a source task to a target task in the Neyman-Rubin framework
using representation learning.

7 CONCLUSION

In this paper, we provided theoretical analysis proving the transferability of causal knowledge and
proposed a method for causal transfer learning based on a task affinity framework. To this end,
we constructed a new task distance suitable for measuring the similarity of causal inference tasks.
Given a new causal inference task, we transferred the causal knowledge from the closest available
trained task. Extensive Simulations on a representative family of datasets provide empirical evidence
demonstrating the gains of our method and the efficacy of the proposed symmetrized task distance.
Reductions as much as 95% in the amount of required training data for new scenarios were observed.
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8 APPENDIX

Here, we provide a simple example to help understand causal inference dataset, the pseudocode, the
datasets description, the theorems, the proofs for those theorems, and other supplementary materials.

8.1 REPRODUCIBILITY STATEMENT

In the supplementary material, we have included our codes that implement TARNet and the proposed
task distance.

8.2 CAUSAL INFERENCE: AN EXAMPLE

Let X ∈ X be the features (e.g., age, sex, etc..), the treatment variable T ∈ {A,B} be the indicator
representing if the subject received vaccine A or B, and Y ∈ Y indicates the mortality outcome.
The main challenge of causal inference arises from the absence of counterfactual observations. We
do not observe the outcomes of individuals upon receiving treatment A if they have received treat-
ment B (and vice versa). The subjects who received vaccine A may be significantly different from
those who received treatment B. This is commonly called selection bias (e.g. elderly people are
more likely to receive treatment A than young people). Thus estimating the counterfactual effects is
challenging due to this unbalance between the treatment groups.
Let f̂(x, t) be a hypothesis modeling the outcome for an individual x if he received treatment t. The
factual loss is defined as

ϵF (f̂) =

∫
X×{A,B}×Y

lf̂ (x, t, y) p(x, t, y)dxdtdy (12)

By Bayes rule, we can write the factual loss as

ϵF (f̂) =

∫
X×Y

lf̂ (x,A, y) p(x, y|t = A)p(t = A)dxdy

+

∫
X×Y

lf̂ (x,B, y) p(x, y|t = B)p(t = B)dxdy

= p(t = A)

∫
X×Y

lf̂ (x,A, y) p(x, y|t = A)dxdy

+ (1− p(t = A))

∫
X×Y

lf̂ (x,B, y) p(x, y|t = B)dxdy

= p(t = A)ϵt=A
F (f̂) + (1− p(t = A)) ϵt=B

F (f̂)

Where we define the factual loss for the group who received vaccine A to be

ϵt=A
F (f̂) =

∫
X×Y

lf̂ (x,A, y) p(x, y|t = A)dxdy (13)

Respectively, the factual loss for the group who received vaccine B is

ϵt=B
F (f̂) =

∫
X×Y

lf̂ (x,B, y) p(x, y|t = B)dxdy (14)

Let us now consider a parallel universe where the treatment assignments are flipped (those who
received vaccine A receive vaccine B and vice versa). The performance of our hypothesis f̂ in this
parallel universe is the counterfactual loss, defined as:

ϵCF (f̂) =

∫
X×{A,B}×Y

lf̂ (x, t, y) p(x, 1− t, y)dxdtdy (15)
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8.3 PESUDOCODE FOR SYMMETRIZED TASK DISTANCE

The pseudocode for our proposed task affinity is given in Algorithm 1.

Algorithm 1: Label-Invariant Task Affinity Score for Causal Inference
Data: Source tasks: S = {(X1, T1, Y1), . . . , (Xm, Tm, Ym)}, Target task: (Xt, Tt, Yt)
Input: TARNet models Nθ1 , Nθ2 , . . . , Nθm
Output: TARNet model for the target task t

1 Function TAS(Xa, Ta, Xb, Tb, Nθa):
2 Compute Fa,a using Nθa with Xa, Ta

3 Compute Fa,b using Nθa with Xb, Tb

4 return s[a, b] =
1√
2

∥∥∥F 1/2
a,a − F

1/2
a,b

∥∥∥
F

5 Function Main:
▷ Find the closest tasks in S

6 for i = 1, 2, . . . ,m do
7 Train Nθi for source task i using (Xi, Ti, Yi)
8 Compute the distance from source task i to target task t:
9 s+i = TAS(Xi, Ti, Xt, Tt, Nθi)

10 Compute the distance from source task i to target task t′ where t′’s treatments are
inverted treatments of t:

11 s−i = TAS(Xi, Ti, Xt, 1− Tt, Nθi)

12 Symmetrized distance: ssymi
= min(s+i , s

−
i )

13 return closest tasks: i∗ = argmin
i

ssymi

▷ Causal Knowledge Transfer

14 Finetune Nθ∗
i

with the target task’s data (Xt, Tt, Yt)

15 return Nθ∗
i

8.4 DATASETS AND EXPERIMENTS DESCRIPTIONS

8.4.1 DATASETS

IHDP The IHDP dataset was first introduced by Hill (2011) based on real covariates available from
the Infant Health and Development Program (IHDP), studying the effect of development programs
on children. The features in this dataset come from a Randomized Control Trial, and the potential
outcomes were simulated using Setting ”B” in (Hill, 2011), hence the word semi-synthetic. The
dataset consists of 747 individuals (139 in the treatment group and 608 in the control group), each
with 25 features. Hill generated the potential outcomes with Y0 ∼ N (exp(βT ·(X+W )), 1), where
W has the same dimension as X with all values = 0.5 and Y1 ∼ N (βT (X+W )−ω, 1) with ω = 4.
β is 25-element vector of regression coefficients randomly sampled from a categorical distribution
with support (0, 0.1, 0.2, 0.3, 0.4) and respective probabilities µ = (0.6, 0.1, 0.1, 0.1, 0.1). We refer
to the dataset generated according to these parameters as the base dataset.

We retain the base dataset and introduce 9 new settings according to Table 3 by varying µ and
ω. We also generate 10 new datasets for each setting, each consisting of 747 individuals (139 in
the treatment group and 608 in the control group) by running the same process but with different
random samples of the aforementioned Gaussian distribution.

Jobs The original Jobs dataset (LaLonde, 1986) has 619 observations. The causal inference task
is to learn the effect of participation/lack of participation in a specific professional training pro-
gram (corresponding to receiving a treatment t = 1) at a time on the success in landing a job
in the following three years. We generate a family of related datasets by randomly reverting
the treatment assignments of the original dataset with various probabilities p ∈ [0, 1]. Specif-
ically, to generate a dataset, we first choose a probability value p ∈ [0, 1], and then alter in-
dividuals (original) treatment assignment (i.e., 0 ↔ 1) with probability p. We choose values
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Table 3: The settings to generate IHDP datasets

Dataset µ ω
IHDP (Base) (0.6, 0.1, 0.1, 0.1, 0.1) 4
IHDP 1 (0.61, 0.09, 0.1, 0.1, 0.1) 4.1
IHDP 2 (0.62, 0.08, 0.1, 0.1, 0.1) 4.2
IHDP 3 (0.63, 0.07, 0.1, 0.1, 0.1) 4.3
IHDP 4 (0.64, 0.06, 0.1, 0.1, 0.1) 4.4
IHDP 5 (0.65, 0.05, 0.1, 0.1, 0.1) 4.5
IHDP 6 (0.66, 0.04, 0.1, 0.1, 0.1) 4.6
IHDP 7 (0.67, 0.03, 0.1, 0.1, 0.1) 4.7
IHDP 8 (0.68, 0.02, 0.1, 0.1, 0.1) 4.8
IHDP 9 (0.69, 0.01, 0.1, 0.1, 0.1) 4.9

p ∈ {0 = 0/9, 1/9, 2/9, 3/9, 4/9, 5/9, · · · , 9/9 = 1}. Clearly, p = 0 corresponds to the origi-
nal dataset, and p = 1 corresponds to all reverted treatment assignments. We choose the original
Jobs dataset (LaLonde, 1986) as the base dataset for our experiments, as discussed in Section 8.4.2.

Twins The Twins dataset was first introduced by Louizos et al. (2017) based on the collected data
about twins’ births in the United States from 1989 to 1991. It is assumed that twins share significant
parts of their features. We consider whether one of the twins was born heavier than the other as
the treatment assignment and if he/she died in infancy (mortality) as the outcome. We divide the
twins into two groups: In the treatment (respectively control) group, we consider the outcome for
the heavier (respectively lighter) twin as factual. In both groups, the outcome for the remaining twin
is assumed to be counterfactual.

We first construct a base dataset by selecting a set of 2000 pairs of twins from the original
dataset (Louizos et al., 2017). Then, each element is assigned to the treatment group according
to a Bernoulli experiment with the probability of success q = 0.75.

Next, the base dataset is used to generate more datasets. In an analogous manner to that of the Jobs
dataset, we generate a family of related datasets by randomly reverting the treatment assignments of
the base dataset (0 ↔ 1) with corresponding probabilities p ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, · · · , 1}. For
instance, to generate dataset i = 1, 2, · · · , 11, we let pi = (i− 1)/10 revert the individual treatment
assignments in the base dataset Bernoulli experiment with probability of success pi. Clearly, p = 0
corresponds to the original dataset while p = 1 corresponds to all treatment assignments reverted.

RKHS We generate 100 Reproducing Kernel Hilbert Space (RKHS) datasets, each having 2000
data points. For each dataset, we start by generating the treatment and the control populations
X1, X0 ∈ R4 respectively from Gaussian distributions N (µ1, I4) and N (µ0, I4). We sample µ1 ∈
R4 and µ0 ∈ R4 respectively according to Gaussian distributions N (eee, I4) and N (−eee, I4) where
eee = [1, 1, 1, 1]T is the all ones vector.

Subsequently, we generate the potential outcome functions f0 and f1 with a Radial Basis Function
(RBF) kernel K(·, ·) as described next.

Let γ0, γ1 ∈ R4 be two vectors sampled respectively from N (7eee, I4) and N (9eee, I4), and let λ ∈ N
be sampled uniformly from {10, 11, . . . , 99, 100}
For j ∈ {0, 1}:

1. We sample mj ∈ N according to Pois(λ) (e.g., the Poisson distribution with parameter λ),

2. For every i ∈ {1, . . . ,mj}, we sample xi
j according to N (γj , I4), and

3. The potential outcome functions fj , j = 0, 1 are constructed as fj(·) =
∑mj

i=1 K(xi
j , ·).

Given the potential outcome functions fj , j ∈ {0, 1}, the corresponding potential outcomes Y0 and
Y1 are generated by:

Y0(x) = f0(x), for every x ∈ R4,
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and
Y1(x) = f1(x), for every x ∈ R4.

We will refer to the first constructed dataset in the above as the base dataset.

Note that in the above, all the generated potential outcome functions are in the same RKHS.

Heat (Physics) Consider a hot object left to cool off over time in a room with temperature T0. A
person is likely to suffer a burn if he/she touches the object at time u.

The causal inference task of interest is the effect of room temperature T0 on the probability of
suffering a burn. This family consists of 20 datasets; each includes 4000 observations with 2000 in
each control and treatment group. The treatment in our setting is t = 1 when T0 = 5, and t = 0
when T0 = 25.

The treatment and control groups touching times are respectively sampled from two Chi-squared
distributions χ2(5) and χ2(2) (intentionally in order to create artificial bias).

From the solution to Newton’s Heat Equation (Winterton, 1999) the underlying causal structure is
governed by the equation

T (u) = C · exp(−ku) + T0

where T (u) is the temperature at time u and C, k > 0 are constants.

We let T0 = 25 and C = 75 for all the control groups in the datasets. Similarly, we let T0 = 5 and
C = 95 for all the treatment groups in the datasets. We choose 20 values of k = {0.5, · · · , 2} uni-
formly spaced in [0.5, 2]. For each value of k, we generate a new dataset. The dataset corresponding
to k = 0.5 is referred to as the base dataset.

Let T 0(u) and T 1(u) respectively denote the temperature at time u for the control and treatment
groups. The potential outcomes Y0(u) and Y1(u) corresponding to the probability of suffering a
burn at time t for respectively the control and treatment groups are given by

Yj(u) = max

(
1

75
(T j(u)− 25), 0

)
for j ∈ {0, 1}.

Movement (Physics) Consider a falling person in the air encountering air resistance. Opening
her/his parachute can change the air resistance and control its descent velocity. The causal inference
task of interest is the effect of the air resistance (e.g., with t = 1 or without parachute t = 0) on the
object’s velocity at different times.

This family consists of 12 datasets. Each includes 4000 observations with 2000 in each treatment
and control group. Here, the covariate is the time u, and the outcome is the velocity at time u. The
treatment and control groups’ times are respectively sampled from two Chi-squared distributions
χ2(2) and χ2(5) (intentionally in order to create artificial bias).

The underlying causal structure is governed by an ordinary differential equation (ODE) with the
following analytical solution describing the velocity of a person at time u:

v(u) =
g

C
+ (v0 −

g

C
)e−Cu (16)

where C = k
m , m and k are respectively the mass, and the air resistance constant, and g = 10 is

the gravitational constant of earth. In the above v0 = v(0) is the initial velocity at time u = 0. We
assume v0 = 0, corresponding to a free fall without initial velocity.

For the control group, we assume m = k = C = 1 and the potential outcome is calculated as
Y0(u) = v(u) = 10 − e−u using the Equation 16. For the treatment groups, we vary m and k
for different datasets with (5, 1), (5, 5), (5, 10), (5, 20), (10, 5), (10, 10), (10, 20), (20, 5), (20, 10),
(20, 20), (50, 10), (50, 20). The potential outcomes Y1(u) is calculated from Equation 16. We have
chosen the the dataset corresponding to (m, k) = (5, 1) as the base dataset.
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8.4.2 DETAILS OF EXPERIMENTS

In this paper, we first create various causal inference tasks from the above families of datasets. For
each family of datasets (e.g. IHDP, Jobs, Twins), the base task is created from its base dataset.
Similarly, we construct the other tasks from the remaining datasets in that family. In order to study
the effects of transfer learning on causal inference, we define the source tasks and the target tasks as
follows:

• In the first experiment in Section 5.3, we choose the base task to be the source task and the
other tasks to be the target tasks.

• In the second experiment in Section 5.2, we choose the base task to be the target task and
the other tasks to be the source tasks.

8.5 PROOF OF LEMMAS AND THEOREMS

We will use the following known results (Shalit et al., 2016) for causal inference. The proofs for
these results are given in (Shalit et al., 2016) .

For x ∈ X , t ∈ {0, 1}, with notational simplicity, we define

LTa
Φ,h(x, t) =

∫
Y

lh,Φ(x, t, y)P (Y Ta
t = y|x)dy.

Theorem 2 (Bounding The Counterfactual Loss). Let Φ be an invertible representation with inverse
Ψ. Let pt=i

Φ = pϕ(r|t = i), i ∈ {0, 1} Let h : R× {0, 1} → Y be a hypothesis.
Assume that there exists a constant BΦ > 0 such that for t = 0, 1, the function gΦ,h(r, t) :=
1

BΦ
· Lh,Φ(Ψ(r), t) ∈ G. Here, we have

ϵCF (h,Φ) ≤ (1− u)ϵt=1
F (h,Φ) + uϵt=0

F (h,Φ) +BΦ · IPMG

(
pt=1
Φ , pt=0

Φ

)
. (17)

Theorem 3 (Bounding the ϵPEHE). The Expected Precision in Estimating Heterogeneous Treat-
ment Effect ϵPEHE satisfies

ϵPEHE(h,Φ) ≤ 2
(
ϵCF (h,Φ) + ϵF (h,Φ)− 2σ2

Y

)
≤ 2

(
ϵt=0
F (h,Φ) + ϵt=1

F (h,Φ) +BΦIPMG

(
pt=1
Φ , pt=0

Φ

)
− 2σ2

Y

)
.

(18)

Next we relate the performance of target task ϵTa,t=0
F (h,Φ) to that of a source task ϵSr,t=0

F (h,Φ).
Without loss of generality, we present the proof for the case t = 0.

We make the following assumptions throughout the sequel.

1. Assumption 1: The loss function is non-negative, i.e. ℓTa
Φ,h(x, t, y) ≥ 0 for all (x, t, y) ∈

(X × {0, 1} × Y),

2. Assumption 2: Φ is injective (thus Ψ = Φ−1 exists on Im(Φ)) (Shalit et al., 2016),

3. Assumption 3: There exists a real function space G on R = Im(Φ) and a constant BTa
Φ

such that the function r 7→ 1
BTa

Φ

· ℓTa
Φ,h(Ψ(r), t, y) ∈ G.

4. Assumption 4: Causal Knowledge Transferability Assumption: There exists a function
class G′ on Y such that y 7→ lΦ,h(x, t, y) ∈ G′ and IPMG′(P (Y Sr

t |x), P (Y Ta
t |x)) ≤ δ

for t ∈ {0, 1}.
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Proof of Lemma 1

ϵTa,t=0
F (Φ, h)− ϵSr,t=0

F (Φ, h)

=

∫
X
LTa
Φ,h(x, 0)P (XTa

0 = x)− LSr
Φ,h(x, 0)P (XSr

0 = x)dx

=

∫
X
LTa
Φ,h(x, 0)P (XTa

0 = x)− LTa
Φ,h(x, 0)P (XSr

0 = x) + LTa
Φ,h(x, 0)P (XSr

0 = x)

− LSr
Φ,h(x, 0)P (XSr

0 = x)dx

=

∫
X
LTa
Φ,h(x, 0)P (XTa

0 = x)− LTa
Φ,h(x, 0)P (XSr

0 = x)dx︸ ︷︷ ︸
Γ

+

∫
X

(
LTa
Φ,h(x, 0)− LSr

Φ,h(x, 0)
)
P (XSr

0 = x)dx︸ ︷︷ ︸
Θ

We next upper bound Θ and Γ.
To bound Θ, we use the following inequality:

LTa
Φ,h(x, t)− LSr

Φ,h(x, t) =

∫
Y

ℓΦ,h(x, t, y)
(
P (Y Ta

t = y|x)− P (Y Sr
t = y|x)

)
dy

≤ maxf∈G′

∣∣∣∣∣
∫
Y

f(y)P (Y Ta
t = y|x)− P (Y Sr

t = y|x)dy

∣∣∣∣∣
= IPMG′

(
P (Y Ta

t = y|x), P (Y Sr
t = y|x)

)
≤ δ

With the above inequality:

Θ =

∫
X

(
LTa
Φ,h(x, 0)− LSr

Φ,h(x, 0)
)
P (XSr

0 = x)dx

≤
∫
X
δP (XSr

0 = x)dx = δ

∫
X
P (XSr

0 = x)dx = δ

To bound Γ, we use the change of variable formula

Γ =

∫
R
LTa
Φ,h(x, 0)P (XTa

0 = x)− LTa
Φ,h(x, 0)P (XSr

0 = x)dx

=

∫
X
LTa
Φ,h

(
Ψ(r), 0

)
P
(
Φ(XTa

0 ) = r
)
− LTa

Φ,h

(
Ψ(r), 0

)
P
(
Φ(XSr

0 ) = r
)
dr

≤ BTa
Φ ·maxg∈G

∣∣∣∣∣
∫
R
g(r)

(
P
(
Φ(XTa

0 ) = r
)
− P

(
Φ(XSr

0 ) = r
))

dr

∣∣∣∣∣
= BTa

Φ · IPMG

(
P
(
Φ(XTa

0 )
)
, P

(
Φ(XSr

0

))
Combining the above upper bounds for Γ and Θ, we have

ϵTa,t=0
F (Φ, h)− ϵSr,t=0

F (Φ, h) ≤ BTa
Φ · IPMG

(
P
(
Φ(XTa

0 )
)
, P

(
Φ(XSr

0 )
))

+ δ.

We conclude that

ϵTa,t=0
F (Φ, h) ≤ ϵSr,t=0

F (Φ, h) +BTa
Φ · IPMG

(
P
(
Φ(XTa

0 )
)
, P

(
Φ(XSr

0 )
))

+ δ.

This concludes the proof.
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Proof of Lemma 2 We apply Theorem 2 to establish an upper bound for the counterfactual loss
of the target task and subsequently apply Lemma 1 .

ϵTa
CF (h,Φ) ≤ ϵTa,t=1

F (h,Φ) + ϵTa,t=0
F (h,Φ) +BTa

Φ IPMG

(
Φ(XTa

0 ),Φ(XTa
1 )

)
Therefore,

ϵTa
CF (h,Φ) ≤ ϵSr,t=1

F (Φ, h) + ϵSr,t=0
F (ΦSr, hS) + 2δ +BT

ΦSr · IPMG

(
P
(
Φ(XTa

1 )
)
, P

(
Φ(XSr

1 )
))

+BT
ΦSr · IPMG

(
P
(
Φ(XTa

0 )
)
, P

(
Φ(XSr

0 )
))

+BT
ΦSr · IPMG

(
P
(
ΦS(XTa

0 )
)
, P

(
ΦSr(XTa

1 )
))

This concludes the proof.

Proof of Theorem 1 By applying Theorem 3, we get

ϵTa
PEHE(h,Φ) ≤ 2

(
ϵTa,t=0
F (h,Φ) + ϵTa,t=1

F (h,Φ) +BTa
Φ IPMG

(
P (Φ(XTa

0 )), P (Φ(XTa
1 ))

))
After applying Lemma 1 to the first and second terms in the above:

ϵTa
PEHE(Φ

S , hS) ≤ 2
(
ϵSr,t=0
F (Φ, h) +BTa

Φ · IPMG

(
P (XTa

0 ), P (XSr
0 )

)
+ δ + ϵSr,t=1

F (Φ, h)

+BTa
Φ · IPMG

(
P (XTa

1 ), P (XSr
1 )

)
+ δ + IPMG

(
P
(
ΦS(XT

0 )
)
, P

(
ΦS(XT

1 )
))

Hence,

ϵTa
PEHE(Φ

S , hS) ≤ 2

(
ϵS,t=1
F (ΦS , hS) + ϵS,t=0

F (ΦS , hS) +BT
ΦSr · IPMG

(
P
(
Φ(XTa

1 )
)
, P

(
Φ(XSr

1 )
))

+BT
ΦSr · IPMG

(
P
(
Φ(XTa

0 )
)
, P

(
Φ(XSr

0 )
))

+BT
ΦS · IPMG

(
P
(
ΦS(XT

0 )
)
, P

(
ΦS(XT

1 )
))

+ 2δ

)
.

This concludes the proof.

8.6 BASELINE: DATA BUNDLING

8.6.1 TRANSFER LEARNING SCENARIO: DIFFERENT POTENTIAL OUTCOMES

In many causal inference scenarios, we only have access to the trained model and the corresponding
data is not available. For instance, in medical applications, this could be the case due to privacy
reason. Consequently, bundling the datasets of source tasks is not feasible. In contrast, for some
specific applications, the data may be available. In this case, we create another baseline referred to
as data bundling.

In data bundling, we create the bundled dataset by combining the datasets of source tasks and the
dataset of the target task. Below, we compare our approach with data bundling for the IHDP and the
Movement(Physics) datasets. For data bunding, we report the model best performance, i.e. εPEHE ,
achieved by hyperparameter search. For our approach, we only report the performance of the model
with the lowest training error. This gives more advantage to data bundling baseline. The results are
summarized in Figure 5. Even with the aforementioned advantage, the data bundling method has
poor performance. This may be due to data imbalance, lack of precision in determining similarity
from propensity score, and differences in outcome functions.

8.6.2 SAME POTENTIAL OUTCOMES, DIFFERENT PROPENSITY SCORES

We compare the effectiveness of data bundling with that of transfer learning in scenarios where only
the propensity scores are changing across tasks (i.e., same potential outcome functions). Figure 6
provides a summary of our findings. In this experiment, we generate synthetic source and target
datasets, each having 1000 data points. For the source dataset, we generate the treatment XSr

1
and the control XSr

0 populations respectively from two Gaussian distributions N ((0, 0), I2) and
N ((5, 5), 2·I2). Subsequently, we build the target dataset by adding noise to the source task samples.
Specifically, we add standard Gaussian noise to the ith sample of the source task in order to generate
the ith sample of the target task, i.e., xTa

i = xSr
i + ϵi where xTa

i and xSr
i are respectively the ith

samples of the target task and the source task, and ϵi ∼ N ((0, 0), I2) is the additive noise. For every
sample i ∈ {1, .., 1000}, we assign the treatment labels as follows:
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Figure 5: Performance comparison between data bundling and our approach. Our approach (red
horizontal line) significantly outperforms data bundling. An increase in the size of training data
doesn’t improve the performance of data bundling.

• If the ith sample of the source task is in the treatment group, then the corresponding ith

sample of the target task is also in the treatment group.

• If the ith sample of the source task is in the control group, then the corresponding ith

sample of the target task is in the treatment group with probability p = 0.1, and in the
control group with p = 0.9.

Subsequently, the output is defined based on the potential outcome functions f0 and f1 as follows:

f0(x) = 0.5× e(−0.005BT
0 x),

and
f1(x) = 0.5× e(−0.03BT

1 x) + 5,

where B0, B1 ∈ R2 and their components are respectively sampled from N (0, 1) and N (4, 1).
Please note that these are only sampled once, and these parameters are shared between the source
and the target tasks. Our experiments (see Figure 6) suggest that even when only the propensity
scores are different, transfer learning has better performance than bundling the source and the target
datasets together.

Figure 6: Performance comparison between data bundling and our approach. Here, only the propen-
sity scores are changed across the two tasks. Our approach (red horizontal line) outperforms data
bundling method, regardless of the size of training data.
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8.7 TASK DISTANCE

Let PNθ
(T , Dte) ∈ [0, 1] be a function that measures the performance of a given model Nθ param-

eterized by θ ∈ Rd on the test set Dte of the causal task T .

Definition 7 (ε-approximation Network). A model Nθ is called an ε-approximation network for a
task-dataset pair (T , D) if it is trained using the training data Dtr such that PNθ

(T , Dte) ≥ 1− ε,
for a given 0 < ε < 1.

8.7.1 COMPARISON BETWEEN UNSYMMETRIZED AND SYMMETRIZED TASK DISTANCE

We compare the unsymmetrized and symmetrized task distances on the Jobs and the Twins dataset.
Figure 7 shows that the proposed symmetrized task distance has successfully captured the symme-
tries within causal inference tasks. p (on the x-axis) denotes the probability of flipping treatment
assignments of the original dataset. The altered datasets with p = 1 (i.e., the flipped dataset) and
p = 0 (i.e., the original dataset) are the closest task to the original task (as expected). The altered
dataset with p = 0.5 is the furthest dataset (as expected). Thus, the trend of the points is expected
to resemble an inverted ’U’. We observe that the symmetrized task distance exhibits this trend. In
contrast, the unsymmetrized task distance (in the right figures) fails to demonstrate this trend.

Figure 7: Comparison between unsymmtrized and symmetrized task distances. The left plots are
symmetrized task distance; the right plots are unsymmetrized task distance. The inverted ‘U’ shape
of the symmetrized task distance demonstrates that it has successfully identified the symmetry within
causal inference tasks. This trend (i.e., the inverted ‘U’) is not observed on the unsymmetrized task
distance.
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8.7.2 TASK DISTANCE BETWEEN COUNTERFACTUAL TASKS

In the following section, we denote the pair a = (Ta, Da) by aF = (TaF
, DaF

) (respectively aCF =
(TaCF

, DaCF
)) whenever Da is sampled from the factual (respectively counterfactual) distribution.

We refer to (TaF
, DaF

) and (TaCF
, DaCF

) as the corresponding factual and counterfactual tasks.

The following theorem proves that the order of proximity of tasks is preserved even if we go to a
parallel universe where we observe the counterfactual tasks instead. In other words, a task, which is
more similar to the target task when measured using factual data, remains more similar to the target
task even when measured using counterfactual data.
Theorem 4. Let T be the set of tasks and let aF = (TaF

, DaF
), bF = (TbF , DbF ), and cF =

(TcF , DcF ) be three factual tasks and aCF = (TaCF
, DaCF

), bCF = (TbCF
, DbCF

), and cCF =
(TcCF

, DcCF
) their corresponding counterfactual tasks.

Suppose that there exists a class of neural networks N = {Nθ}θ∈Θ for which:

∀a, b, c ∈ T, s[a, b] ≤ s[a, c] + s[c, b] (19)

and the TAS between the factual and the counterfactual can be arbitrarily small

∀ϵ > 0,∃Nθ ∈ N , s[aF , aCF ] < ϵ (20)

Then we have the following result,

s[aF , bF ] ≤ s[aF , cF ] =⇒ s[aCF , bCF ] ≤ s[aCF , cCF ] (21)

Proof of Theorem 4
Suppose that s[aF , bF ] ≤ s[aF , cF ]. Then for every ϵ > 0 we have,

s[aCF , bCF ] ≤ s[aCF , aF ] + s[aF , bF ] + s[bF , bCF ]

≤ ϵ+ s[aF , cF ] + ϵ

≤ s[aF , aCF ] + s[aCF , cCF ] + s[cF , cCF ] + 2ϵ

≤ s[aCF , cCF ] + 4ϵ

This is true for every ϵ > 0, therefore s[aCF , bCF ] ≤ s[aCF , cCF ].
This concludes the proof.
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