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Fig. 1: Illustration of the high-level idea and generalization ability of DyWA. Given a target object’s 6D pose and single-view
object point cloud, our non-prehensile manipulation policy aims to rearrange the object without grasping. Left: Our key insight
is to enhance action learning by jointly predicting future states while adapting to dynamics from historical trajectories. (For
clarity, rendered images are used for visualization, while the actual visual input consists of partial point clouds.) Right: After
being trained in simulation, our policy achieves zero-shot sim-to-real transfer and generalizes across diverse dynamic properties,
including variations in object geometry, object physical property (e.g., slipperiness and non-uniform mass distribution), and
surface friction.

Abstract— Nonprehensile manipulation is crucial for handling
objects that are too thin, large, or otherwise ungraspable in
unstructured environments. While conventional planning-based
approaches struggle with complex contact modeling, learning-
based methods have recently emerged as a promising alternative.
However, existing learning-based approaches face two major
limitations: they heavily rely on multi-view cameras and precise
pose tracking, and they fail to generalize across varying physical
conditions, such as changes in object mass and table friction.
To address these challenges, we propose the Dynamics-Adaptive
World Action Model (DyWA), a novel framework that enhances
action learning by jointly predicting future states while adapting
to dynamics variations based on historical trajectories. By unify-
ing the modeling of geometry, state, physics, and robot actions,
DyWA enables more robust policy learning under partial observ-
ability. Compared to baselines, our method improves the success
rate by 31.5% using only single-view point cloud observations in
the simulation. Furthermore, DyWA achieves an average success
rate of 68% in real-world experiments, demonstrating its ability
to generalize across diverse object geometries, adapt to varying
table friction, and robustness in challenging scenarios such as
half-filled water bottles and slippery surfaces.

I. INTRODUCTION

Non-prehensile manipulation—such as pushing, sliding,
and toppling—extends robotic capabilities beyond traditional
grasping, enabling task execution under geometric, clutter, or
workspace constraints. While planning-based methods [8, 11,
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9, 14] have shown success, they require precise knowledge of
object properties (e.g., mass, friction, CAD models), limiting
real-world applicability.

Learning-based approaches [15] offer improved generaliza-
tion by training in simulation and deploying policies zero-shot.
For instance, HACMan [16] and CORN [2] use vision-based
RL or distillation frameworks to learn contact-rich actions.
However, these methods face two key limitations: (1) heavy
reliance on multi-view cameras and accurate pose tracking [3],
and (2) poor generalization across dynamic conditions due to
geometry-centric modeling.

We argue that a generalizable non-prehensile manipulation
policy should work with a single camera and adapt to varying
physical properties without requiring tracking modules. To
this end, we revisit the teacher-student framework under this
constrained setting. While a privileged RL teacher achieves
strong performance, the student policy, based on partial ob-
servations, suffers significantly due to: (1) partial observability
omitting critical geometry, (2) Markovian policies averaging
over diverse dynamics, and (3) limited supervision during
distillation.

To tackle these issues, we propose DyWA (Dynamics-
Adaptive World Action Model). First, a dynamics adaptation
module encodes historical observation-action pairs, inspired
by RMA [4], to infer latent physical properties. Second, we
reformulate action prediction as joint prediction of actions and
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Fig. 2: Our World Action Model processes the embeddings of the current observation (partial point cloud, end-effector pose,
and joint state) and the goal point cloud (transformed from the initial partial observation) to predict the robot action and
next state. Additionally, an adaptation module encodes historical observations and actions, decoding them into the dynamics
embedding that conditions the model via FiLM. A pre-trained RL teacher policy (right) supervises both the action and adaptation
embedding using privileged full point cloud and physics parameter embeddings.

future states, introducing a world action model with richer
supervision. Finally, we apply Feature-wise Linear Modulation
(FiLM) to bridge dynamics and policy learning effectively.

We build a comprehensive benchmark based on CORN,
varying camera views and tracking settings. DyWA outper-
forms baselines by 31.5% in simulation. In real-world settings,
DyWA achieves 68% success across diverse geometries, vary-
ing friction, and non-uniform mass distributions (e.g., half-
filled bottles). We also demonstrate applications combining
DyWA with VLMs for thin/wide object manipulation.

II. METHOD

A. Task Formulation

Following HACMan and CORN, we consider 6D object
rearrangement via non-prehensile actions (e.g., pushing, flip-
ping), aiming to move an object from its initial pose to a goal
pose G on the table. We define G as a 6DoF transformation
relative to the initial stable pose. The task state St at time t is
the relative transformation between the current and goal pose.
Observations include the partial point cloud Pt, joint states Jt,
and end-effector pose Et.

B. World Action Model

a) Observation and Goal Encoding.: We use separate
encoders for each modality. The point cloud is processed by a
simplified PointNet++ [12], yielding fP

t . Joint states fJ
t and

end-effector pose fE
t are encoded via MLPs. The goal point

cloud PG is constructed as GP0 and encoded by the same
network as Pt.

b) State-based World Modeling.: We jointly predict ac-
tion At and next task state St+1 via MLPs. The model
learns from both the teacher policy and simulated rollouts.
We represent the task state with translation Tt+1 ∈ R3 and
9D rotation Rt+1 ∈ SO(3) [5, 7], with world model loss:

Lworld = |Tt+1 − T̂t+1|2 + |Rt+1 − R̂t+1| (1)

The imitation loss is:

Limitation = |As
t −At

t|2 (2)

C. Dynamics Adaptation

We extract dynamics information from history to enhance
adaptability.

a) Adaptation Embedding.: At each timestep, we con-
catenate observation embeddings fO

t = fP
t , fJ

t , f
E
t with

the previous action embedding fA
t−1. A sequence of L such

tuples is passed through a 1D CNN to obtain the adaptation
embedding zt:

zt = Embed({concat(fO
t−i−1, f

A
t−i−2)}Li=1) (3)

Supervision is provided by matching zt to the teacher-provided
full geometry and physics embedding:

Ladapt = |zGeo,Phy
t − concat(fGeo

t , fPhy
t )|2 (4)

b) Dynamics Conditioning.: We decode zt into a dynam-
ics embedding and apply it via FiLM [10] blocks:

FiLM(f | γ, β) = γf + β (5)

FiLM blocks are densely inserted in early layers of the world
model, enabling adaptive modulation.

D. Action Space with Variable Impedance

We adopt variable impedance control to enable compliant
interaction. The action includes a subgoal residual ∆Tee ∈
SE(3) and joint-space impedance parameters: gains P ∈ R7,
damping factors ρ ∈ R7, with D = ρ

√
P . Desired joint posi-

tion is computed via damped least-squares inverse kinematics
[1]:

qd = qt + IK(∆Tee) (6)

We implement impedance control using the Polymetis API [6].



Methods Action Type Known State (3 view) Unknown State (3 view) Unknown State (1 view)

Seen Unseen Seen Unseen Seen Unseen

HACMan [16] Primitive 3.8(42.2) 5.7(39.4) 3.0(23.6) 4.1(26.5) 2.1(19.2)

CORN [2] Closed-loop 86.8 79.9 46.0 47.8 29.0 29.8
CORN (PN++) Closed-loop 87.3 84.3 76.1 75.7 50.7 49.4
Ours Closed-loop 87.9 85.0 85.8 82.3 82.2 75.0

TABLE I: Quantitative results measured by success rate in the simulation benchmark. For HACMan, we also reports its
performance given 3 DoF planar goal(i.e.[∆x,∆y,∆θ]) in parentheses. Note that the third track with unknown state and single
view camera is the most realistic and challenging track for fully comparison of each methods.

Methods W.M. D.A. FiLM Seen Unseen

DAgger ✘ ✘ ✘ 59.9 57.5
World Model ! ✘ ✘ 61.6 59.4
RMA [4] ✘ ! ✘ 65.6 57.9
Ours w/o W.M. ✘ ! ! 70.0 63.7
Ours w/o FiLM ! ! ✘ 73.3 59.4
Ours ! ! ! 82.2 75.0

TABLE II: Ablation study on the most challenging evaluation
track, i.e., unknown state with single-view observation. W.M.
means World Model and D.A. means Dynamics Adaptation.

Fig. 3: Loss curves during the distillation process. We
adopt DAgger which starts with teacher action for execution
and gradually adds the weights of student action so that the
initial loss declines rapidly. Left: Comparison of imitation loss
between using only Dynamics Adaptation and incorporating
the World Model. Right: Comparison of World Model loss
between using only the World Model and integrating Dynam-
ics Adaptation.

E. Training Protocol

The overall objective is:

L = Limitation + Lworld + Ladapt (7)

The teacher policy is trained via PPO for 200K steps. The
student is trained with DAgger for 500K steps. Domain ran-
domization is applied on mass, scale, friction, and restitution.
To improve sim-to-real transfer, we inject noise into torques,
point clouds, and goal poses during student training.

III. EXPERIMENTS

A. Benchmarking Tabletop Non-prehensile Rearrangement in
Simulation

We benchmark our method and baselines in a unified
IsaacGym-based simulation to ensure fair comparison. While
prior works [2, 16] developed their own simulators, a standard

benchmark is still lacking. We establish one based on CORN,
using 323 DexGraspNet [13] objects for training and 50
unseen test objects (10 shapes × 5 scales). We vary two percep-
tion conditions: (i) single vs. multi-view observations and (ii)
known vs. unknown object poses. Dynamics properties (mass,
friction, restitution) are randomized during both training and
testing.

a) Task Setup.: Each episode starts with the object in
a random stable pose and the robot initialized above the
workspace. A goal pose at least 0.1m away is sampled. Stable
poses are precomputed. Success is defined as final pose within
0.05m and 0.1 radians of the goal.

b) Baselines.: We compare with HACMan (primitive-
based) and CORN (closed-loop). HACMan is re-implemented
in our setup. CORN is adapted with our vision encoder for
fairness. When object pose is unknown, all methods receive
the same goal point cloud.

c) Results.: As shown in Table I, our method outper-
forms all baselines, with at least 31.5% higher success rate.
Gains are largest in the hardest settings (single-view, unknown
state), where dynamics modeling is crucial. Compared to
HACMan, our closed-loop execution and variable impedance
control provide greater robustness. CORN, despite sharing
architecture, lacks our adaptation mechanism that refines dy-
namics understanding over time.

B. Ablation Study
We conduct ablations on the hardest track (unknown state,

single-view) to assess module contributions.
a) Synergy between Next State Prediction and Action

Learning.: Training curves show that combining world mod-
eling with dynamics adaptation improves learning efficiency
and action coverage. This synergy is further explored in the
supplementary.

b) Indivisibility of Dynamics Adaptation and World Mod-
eling.: Table II shows that using only dynamics adapta-
tion or only world modeling yields marginal gains (1.7%,
5.7%). Combining both boosts performance from 59.9% to
73.3%, validating their complementarity. Dynamics adaptation
provides context for modeling, while world modeling gives
structure for learning—together, they enable effective gener-
alization.

C. Real-World Experiments
a) Setup.: We use a Franka arm and a side-mounted

RealSense D435 camera. The policy is evaluated on 10 un-



Methods Normal Slippery Non-uniform Mass Avg.
Mug Bulldozer Card Book Dinosaur Chips Can Switch YCB-Bottle Half-full Bottle Coffee jar

CORN w tracking 1/5 3/5 4/5 4/5 2/5 0/5 2/5 0/5 0/5 2/5 18/50 (36%)
Ours 3/5 4/5 4/5 4/5 3/5 2/5 4/5 3/5 4/5 3/5 34/50 (68%)

TABLE III: Quantitative results in the real world.

Methods µ1 µ2 µ3 µ4

S.R. ↑ Avg. Time ↓ S.R. ↑ Avg. Time ↓ S.R. ↑ Avg. Time ↓ S.R. ↑ Avg. Time ↓

Ours w/o D.A. 3/5 65 s 3/5 81 s 4/5 96 s 3/5 124 s
Ours 4/5 45 s 4/5 50 s 4/5 49 s 4/5 51 s

TABLE IV: Experiments on different surface frition, with progressive friction levels, µ1<µ2<µ3<µ4.

Fig. 4: Qualatative Results in the real world. The goal pose is shown transparently.

Fig. 5: Our policy helps grasping a thin card and broad cracker
box.

seen real-world objects, including slippery and asymmetrically
weighted ones (e.g., half-filled bottle). For each trial, we record
the goal point cloud by first placing the object in the desired
pose. The object is then repositioned randomly, and the policy
executes the task. We use ICP to compute final pose error,
relaxing alignment criteria for symmetric objects by ignoring
irrelevant rotation axes.

b) Generalization.: Compared to CORN, which relies
on external pose tracking, our method achieves significantly
higher success (68% vs. 36%) without external perception
(Table III). CORN suffers from occlusions and tracking errors,

while our model handles diverse geometries and dynamics,
including slippery and unbalanced objects.

c) Robustness to Friction Variations.: To test dynamics
adaptation, we manipulate a bulldozer toy on four surfaces
with increasing friction (µ1–µ4). Without adaptation, per-
formance degrades and execution becomes unstable. With
adaptation, our method maintains high success and consistent
execution time across all conditions (Table IV).

D. Applications

By specifying a goal pose via a VLM and using our method
as a pre-grasping step, we can reorient objects into graspable
poses, boosting grasp success.

IV. CONCLUSION AND LIMITATIONS

In this work, we present a novel policy learning approach
that jointly predicts future states while adapting dynamics
from historical trajectories. Our model enhances generalizable
non-prehensile manipulation by reducing reliance on multi-
camera setups and pose tracking modules while maintaining
robustness across diverse physical conditions. However, our
method also has certain limitations since it relies solely on
point clouds as the visual input modality. It struggles with
symmetric objects due to geometric ambiguity, and faces
challenges with transparent and specular objects, where raw
depth is imcomplete.
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