
Under review as a conference paper at ICLR 2022

MULTI-VECTOR EMBEDDING ON NETWORKS WITH
TAXONOMIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Networks serve as efficient tools to describe close relationships among nodes.
Taxonomies consist of labels organized into hierarchical structures and are often
employed to describe rich attributes of the network nodes. Existing methods that
co-embed nodes and labels in a low-dimensional space all encounter an obstacle
called under-fitting, which occurs when the vector of a node is obliged to fit all
its labels and neighbor nodes. In this paper, we propose HIerarchical Multi-vector
Embedding (HIME), which allows multiple vectors of a node to fit different sets
of its labels in a Poincaré ball, where the label hierarchy is well preserved. Ex-
periments show that HIME has comprehensive advantages over existing network
embedding methods in preserving both node-node and node-label relationships.

1 INTRODUCTION

A network is usually applied to depict the proximities among nodes, with extra node properties de-
scribed by labels organized as a taxonomy. For instance, in a co-authorship network with a research
taxonomy, a network edge between two researchers reveals their close academic relationship, while
the hierarchical labels ’artificial intelligence’, ’natural language processing’ and ’sentiment analysis’
formed into a label-path in the taxonomy reveal a researcher’s areas of interest. Generally, a node
can have multiple label-paths in the taxonomy telling different properties, as shown in figure 1 (a).

Heterogeneous network embedding serves as an option for co-embedding nodes and labels. It learns
a low-dimensional vector for each entity, so that the distances among the embedding vectors indicate
the topographic distances among entities in the network with the taxonomy. However, the single
embedding vector of a node can be overloaded to preserve both the node-node and the node-label
relationships, which causes the under-fitting problem Yang et al. (2020). As illustrated in figure 1
(b), single-vector embedding methods will possibly embed a node in the middle of all its labels in
order to minimize the overall node-label distances, resulting in the node not being close to any of its
labels. The under-fitting problem seriously worsens the performance on the distance-related tasks,
such as label retrieval for a certain node according to the node-label distances.

To solve the under-fitting problems, one way is to reform the embedding position of the labels so
as to minimize the chances of under-fitting, which can be achieved by using hyperbolic spaces. A
hyperbolic space is a non-Euclidean space, and it grows exponentially with the increase of the space
radius. It can be viewed as a continuous version of trees, which naturally caters to the hierarchical
label structure Nickel & Kiela (2017). Labels in a label-path are embedded in the same direction
in the hyperbolic space, so that a node vector is less likely to under-fit the labels belonging to a
single label-path. But simply using hyperbolic embedding technique does not necessarily tackle the
under-fitting problem, since a node can have multiple label-paths in different directions. However,
by allocating multiple vectors to a node, with each fitting a small set of labels as shown in figure 1
(c), the under-fitting problem can be well resolved.

Therefore, we propose HIerarchical Multi-vector Embedding (HIME), which co-embeds network
nodes and taxonomy labels in a hyperbolic space. HIME gives each label a single embedding vec-
tor to preserve the hierarchical structure, while a node has multiple vectors, with one specialized
in maintaining the node-node proximity, and the others overcoming the under-fitting problem in
preserving the node-label relationships.

1

Under review as a conference paper at ICLR 2022

A

B

E

C

G

Single-Vector Embedding Multi-Vector EmbeddingNetwork and Taxonomy

A

B C

D E F G H

(a) (b) (c)

A
B

E

C

G

Figure 1: The difference between single-vector embedding and multi-vector embedding. Given a
network node with five circled labels in a taxonomy (a), single-vector embedding learns a vector
in the middle of all the five labels, which leads to under-fitting (b). However, by learning multiple
vectors for a node, the under-fitting problem can be overcome in a Poincaré disk (c).

Our work makes the following contributions: (1) We solve the under-fitting problem by allowing
multiple embedding vectors of a node to fit different sets of labels. (2) A Least Recently Used
(LRU) based algorithm balances the loads on the multiple vectors of a node. (3) Hyperbolic spaces
are applied to co-embed network nodes and hierarchical labels more effectively. (4) Experiments
show that HIME has better capability of preserving both node-node and node-label relationships
compared with existing network embedding methods.

2 RELATED WORK

In this section, we first introduce some classic approaches of network embedding, followed by the
taxonomy-related embedding methods most relevant to our background. Hyperbolic embedding
methods will then be presented. Finally we will introduce the concept of multi-aspect embedding.

Network Embedding. Approaches of network embedding can be mainly categorized into matrix
factorization, Skip-Gram with walk patterns Mikolov et al. (2013) and neural networks from the
perspective of methodology. Algorithms based on matrix factorization Belkin & Niyogi (2003); Cao
et al. (2015); Ou et al. (2016) obtain embedding vectors by factorizing either Laplacian eigenmaps or
the node proximity matrix. Methods using Skip-Gram model with walk patterns are prevailed in both
plain network embedding Perozzi et al. (2014); Grover & Leskovec (2016); Tang et al. (2015b), and
heterogeneous network embedding Dong et al. (2017); Tang et al. (2015a); Hussein et al. (2018).
The neural network based methods Kipf & Welling (2016); Hamilton et al. (2017); Wang et al.
(2018; 2016); Cao et al. (2016); Fu et al. (2017) generate the embedding vectors by ways such as
graph convolution and adversarial training Goodfellow et al. (2014). Though not customized for
networks with taxonomies, these classic methods laid the foundation for later embedding methods
varying for different tasks or data.

Taxonomy-Related Embedding. Several embedding methods on networks with taxonomies have
been proposed in recent years. Onto2Vec Smaili et al. (2018) first learns the embedding vectors
of the biomedical taxonomy, and then generates the vectors for biological entities based on the
learned taxonomy vectors. The drawback of Onto2Vec is that it ignores the label co-occurrences
when learning the vectors for labels. Tag2Vec Wang et al. (2019) applies meta-path patterns and
co-embeds nodes and hierarchical labels, while it still suffers from the under-fitting problem when a
node has multiple label-paths. Given a label in the taxonomy, TaxoGAN Yang et al. (2020) spares an
individual embedding space for it, where its nodes and its child labels are embedded by adversarial
training. Although TaxoGAN well preserves the node-label proximity in small sub-graphs, it fails
to maintain the node-label relationships globally. The key issue of embedding lies in using globally
functional vectors to overcome the under-fitting problem, which has not been well addressed by
existing taxonomy-related methods.

2

Under review as a conference paper at ICLR 2022

Hyperbolic Embedding. Previous researches have shown that preserving hierarchical structures
in Euclidean space requires large embedding dimension Nickel et al. (2014), while it can be eas-
ily achieved by using low-dimensional hyperbolic spaces Gromov (1987); Boguná et al. (2010).
HGCN Chami et al. (2019) embeds nodes by using graph convolution operation defined in hyper-
bolic spaces. Poincaré Nickel & Kiela (2017) embeds words into a Poincaré ball so as to maintain the
hypernym relationships, while HMLC Chen et al. (2020) performs hierarchical multi-label text clas-
sification by co-embedding words and labels into a hyperbolic space. The success of single-vector
hyperbolic embedding on words mainly attributes to the fact that most words are univocal in the
hierarchy. However, these methods are not capable of representing nodes with multiple label-paths.

Multi-Aspect Embedding. Contrast to existing single-vector embedding methods, several recent
works have revealed the necessity of learning multiple vectors for each node in different aspects.
PolyDW Liu et al. (2019) represents each facet of an item using an embedding vector; Splitter
Epasto & Perozzi (2019) allows multiple node embedding vectors to encode different communities;
Asp2Vec Park et al. (2020) employs random walks to dynamically assign aspects to each node
according to its local context; JOIE Hao et al. (2019) presents a two-view embedding model for
a knowledge graph. Though innovative, most multi-aspect methods preserve relationships among
nodes in different aspects, while neglecting either node-aspect proximity or hierarchical structures.
Differently, HIME preserve both node-node and node-label relationships under the label hierarchy.

3 PRELIMINARIES

In this part, we will first formally define our problem, and introduce the notations used throughout
the paper. Then we will briefly describe the Poincaré ball where nodes and labels are embedded.

3.1 PROBLEM STATEMENT

HIME takes the following data as inputs:

• a network N = {V,E}, where V = {vi}, i = 1, 2, .., n is the set of nodes, and E =
{eij}, i, j = 1, 2, .., n, i 6= j is the set of edges;

• a label taxonomy T = {L, S}, where L = {li}, i = 1, 2, ...,m is the set of labels, and
S = {sij}, i, j = 1, 2, ...,m, i 6= j is the set of parent-child edges;

• a label assignment A = {Ai}, i = 1, 2, ..., n, where Ai is the set of labels that node vi has.
Once a label appears in Ai, all its ancestors in the taxonomy will also appear in Ai.

Given the inputs, HIME learns a single vector for each label and multiple vectors for each node.
Specifically, every node has a single ’root vector’ to preserve node proximity, and several ’branch
vectors’ to fit its labels. Formally, given dimension d and branch vector number k, HIME produces:

• The root vectors Rn×d of the nodes, with Ri referring to the root vector of vi;
• The branch vectors Bn×k×d of the nodes, with Bij , i = 1, 2, .., n, j = 1, 2, ..., k referring

to the j-th branch vector of vi;
• The label vectors Qm×d, with Qi referring to the representation vector of li.

In this way, R preserves the node proximity, Q preserves the hierarchical taxonomy, while B and Q
together preserve the node-label relationships. All vectors function in a Poincaré Ball as follows.

3.2 THE POINCARÉ BALL MODEL

Let ‖·‖ denotes the Euclidean norm. A Poincaré ball with dimension d and radius 1 can be defined as:
Dd,1 := {x ∈ Rd : ‖x‖2 < 1}, gx = λ2xId, where gx is the Riemannian metric tensor, λx = 2

1−‖x‖2

and Id is the identity matrix. The distance between two points x, y ∈ Dd,1 can be computed as:

dist(x, y) = arcosh

(
1 + 2

‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
. (1)

Though having limited radius, the Poincaré ball has infinite space volume. A hierarchical structure
can be embedded in the ball by placing the root near the center while leaves near the open surface.

3

Under review as a conference paper at ICLR 2022

4 METHOD

In this section, we will first introduce multi-vector embedding used for preserving the node-label re-
lationships. Then a load balancing strategy that optimizes multi-vector embedding will be explained.
Finally we will detail the whole learning procedure and discuss the complexities of HIME.

4.1 MULTI-VECTOR EMBEDDING

Traditional single-vector embedding methods generate a single embedding vector for each node.
When a node has numerous labels, the single vector is often overloaded to preserve all the node-
label relationships, and therefore stuck in an under-fitting position. However, by giving multiple
branch vectors to a node, the under-fitting problem will be significantly alleviated.

To implement multi-vector embedding, we should first define the distance Distnl(·, ·) between a
node and a label. Since the label will be fit by the node if only one of the node’s branch vectors
is close to it, we define the node-label distance as the shortest distance from all the node’s branch
vectors to the label vector. With the distance function dist(·, ·) defined by equation 1, formally,

Distnl(vi, lj) = min
a=1,2,...k

dist(Bia, Qj). (2)

We optimize the branch vectors and the label vectors by Skip-Gram with negative sampling Mikolov
et al. (2013). Specifically, we view all the ground-truth node-label pairs as the positive set R. Given
the negative sampling number p, for every node vi, we sample p|Ai| labels not in set Ai, and form
the negative node-label pairs with vi. We gather all the negative node-label pairs as a set Rneg .
Given the node-label distance defined by equation 2, the loss function of node-label relationships
can be written as:

Lossnl = −
∑

(vi,lj)∈R

log σ(−Distnl(vi, lj))−
∑

(vi,lj)∈Rneg

log σ(Distnl(vi, lj)). (3)

where σ(x) = (1
1+e−x). We first randomly initialize the vectors of B and Q near the origin of

the Poincaré ball. By minimizing Lossnl, the negative samples serve as a strong force to push all
the vectors away from the origin, while the positive samples decrease the distances of the ground-
truth node-label pairs. Finally, the node-label distances of the positive node-label pairs will become
relatively smaller, while those of the negative ones will become larger.

Here we show how B and Q are optimized by minimizing Lossnl. Given a node vi and a label lj ,
Lossnl first computes their node-label distance by equation 2. Suppose Bi1 is the branch vector
closest to Qj among all vi’s branch vectors. In this way, Distnl(vi, lj) = dist(Bi1, Qj). Therefore,
during the back propagation process, onlyQj andBi1 are updated by pair (vi, lj), with the gradients
of vi’s other branch vectors being unchanged. Particularly, when (vi, lj) serves as a positive sample,
the label lj will be assigned to the closest branch vector of vi, and both the label vector and the branch
vector will be updated closer. The branch vectors and label vectors can be compared to centroids
and points in K-means clustering algorithm, where a point is always assigned to its closest centroid,
while a centroid fits a cluster of points.

4.2 LOAD BALANCING STRATEGY

Here, we will first discuss the problem of inactive branch vectors that penalizes multi-vector embed-
ding, then an LRU-based policy will be presented to settle this problem.

4.2.1 THE INACTIVE BRANCH VECTORS

As mentioned above, given a positive node-label sample (vi, lj), lj ∈ Ai, lj is always assigned to
the branch vector closest to it during the optimization. We call a node’s branch vector ’active’ if
at least one of the node’s labels is assigned to it. Relatively, an ’inactive’ branch vector means that
none of the node’s labels is assigned to it, also indicating that it fits no labels. In order to balance
the loads of fitting labels on all branch vectors of a node, we aim at maximizing the number of the
active branch vectors.

4

Under review as a conference paper at ICLR 2022

1

2

3

1 1

1 1 1

3

3

3 3

3
2 2

2
2

2

(a)

(f)

(b)

(e) (d)

(c)

Figure 2: An illustration of the LRU replacement policy. Three red branch vectors are allocated to
fit the blue labels, with one continuously being lazy (a). After two LRU periods (b)-(c) and (d)-
(e), finally each branch vector fits a small set of labels (f). In real cases, the label vectors are also
updated, and the geodesic line between any two points in a 2D Poincaré disk is actually a curve.

For a node having a small number q of labels where q < k, unavoidably, at least k − q inactive
branch vectors exist at any time. However, there is no guarantee that all the k branch vectors will be
active if q > k. Consider situation (a) shown in figure 2. A node is given k = 3 red branch vectors
to fit its q = 7 blue labels, with the third branch vector being inactive since it is not the closest
to any labels. Given the node-label loss function in equation 3 and the node-label distance defined
by equation 2, in the following iterations, the presently active branch vectors will be continually
updated by the positive node-label pairs of the node, with the inactive branch vector never being
optimized positively. Therefore, the second branch vector is continually pulled by five labels and
stuck in an under-fitting position, with contrast to the third branch vector always being lazy.

It should be pointed out that a node is allowed to have less than k active branch vectors, which is
similar toK-means clustering algorithm having less thanK active centroids. But in order to prevent
the unbalanced loads shown in figure 2 (a), we aim at making the most of the k branch vectors. We
present a solution to the unbalanced loads based on the LRU algorithm.

4.2.2 THE VECTOR REPLACEMENT POLICY

The least recently used (LRU) algorithm originally describes a cache replacement policy that swaps
out the least recently used cache pages to make room for frequently used pages. Here, we apply the
LRU algorithm to balance the loads among different branch vectors. The main idea is to move an
inactive branch vector to a place near the most active branch vector so as to share the burden of it.

Figure 2 illustrates the optimization process using the LRU policy. In (b), a vector replacement is
performed, and branch vector 3 is replaced by a new vector close to branch vector 2, with their
margin being 10−3 ∗ ε, where ε is a random normal distribution vector. Extreme cases exist that
the new vector attracts all the labels of the original vector, as shown in (c), causing the previously
active branch vector 2 becomes inactive. However, iterations of the LRU policy will finally achieve
a correct vector replacement. As illustrated in (d), after an LRU period, the inactive branch vector 2
is relocated so that branch vectors 2 and 3 each attracts a set of labels, which is shown in (e). Finally
each of the three branch vectors is optimized to fit a small group of labels, as shown in (f).

In the implementation, we maintain a hit matrix Hn×k to support the LRU algorithm. Specifically,
Hij record the hit number ofBij . A hit ofBij means thatBij fits a label of node vi. H can be simply
maintained by sending a Boolean variable to the function 2 that calculates node-label distances. The
Boolean variable indicates whether the node-label pairs are positive samples. Specifically, if a node-

5

Under review as a conference paper at ICLR 2022

Algorithm 1 The whole learning process.
Input: network N , label taxonomy T , label assignment A, dimension d, the branch vector number

k, negative sampling number p, epoch number g, LRU period t
Output: root vectors R, branch vectors B, label vectors Q
1: initialize H = 0; randomly initialize B, R and Q near the origin of the Poincaré Ball
2: for epoch in {1, 2, ..., g} do
3: negatively sample label-label, node-label and node-node pairs
4: compute Lossll and update Q by batches
5: compute Lossnl and update Q and B by batches meanwhile maintaining H
6: compute Lossnn and update R by batches
7: if epoch mod t == 0 then
8: update B by the LRU algorithm
9: H = 0

10: end if
11: end for
12: output R, B, Q and H

label pair is a positive sample, the function will remember the index a of the branch vector that fits
the label, and then plus Hia by 1 to record a hit. After a period of optimization, for every node with
inactive branch vectors, we replace one of its inactive vectors with a new vector initialized close to
the active branch vector with the highest hit value. We then clear H to 0 for the next LRU period.

4.3 THE WHOLE LEARNING PROCESS OF HIME

There are three kinds of relationships that need to be preserved: the node-node relationships pre-
sented by the network N , the label-label relationships given by the taxonomy T , and the node-label
relationships revealed by the label assignment A. We have mainly discussed how to preserve node-
label relationships by multi-vector embedding. Here we briefly present the loss functions of the
node-node and label-label relationships.

Node-Node Relationships. Node-node relationships are reflected by the edges of the network N .
Each node vi has a single root vector Ri, and we use the root vectors to preserve the node-node
relationships. Given the edge set E of the network N , let E denote the set of edges not being in E.
For every edge eij in E, we negatively sample p edges from E either connecting node vi or node
vj . We combine these edges into a set of negative samples Eneg . With equation 1 calculating the
distance between two vectors, we aim at minimizing the following loss function:

Lossnn = −
∑

eij∈E
log σ(−dist(Ri, Rj))−

∑
eij∈Eneg

log σ(dist(Ri, Rj)), (4)

Label-Label Relationships. The label-label relationships are given by the label hierarchy T =
{L, S}, where S = {sij}, i, j = 1, 2, ...,m contains the parent-child relationships between label
pairs. Here, we view edges in S as un-directed. Similarly, we take the edges in S as positive
samples, and for every edge sij in S, we negatively sample p edges from S connecting either li
or lj , where S is the complementary set of S. We gather these negative samples as set Sneg . The
objective function of label-label relationships is:

Lossll = −
∑
sij∈S

log σ(−dist(Qi, Qj))−
∑

sij∈Sneg

log σ(dist(Qi, Qj)). (5)

Given the three Loss functions 3, 4 and 5, the learning process aims at minimizing the following
loss function:

Losstotal = Lossnn + Lossll + Lossnl.

During the back propagation, we use Riemannian Stochastic Gradient Descent (RSGD) Bonnabel
(2013) to update R, B and Q in the Poincaré ball.

Algorithm 1 shows the whole learning process of HIME. The space complexity of HIME is O((1 +
k)|V |d+|L|d), which is the space occupied byR,B andQ. For simplicity, we use |A| to refer to the

6

Under review as a conference paper at ICLR 2022

total number of ground-truth node-label pairs. Given the predetermined negative sampling number
p, during each epoch, (1 + p)|S| label-label pairs, (1 + p)|A| node-label pairs and (1 + p)|E|
node-node pairs are passed to the model. The extra cost of our method lies in the minimization
computation defined by equation 2, which is O(k). Therefore the total time complexity of learning
for g epochs is O(gp|S| + gkp|A| + gp|E|), which grows linearly with the increase of the branch
vector number k.

5 EXPERIMENTS

We conduct the experiments on datasets from different domains to evaluate HIME’s performance in
preserving node-label and node-node relationships compared with existing methods.

DBLP. Yang et al. combines a DBLP co-authorship network with ACM research taxonomy. The
nodes are authors, and the labels are hierarchical key words. A label will be assigned to an author
if the paper of the author contains that key word. Based on their dataset, we extract a dense sub-
network containing 12379 nodes and 268 labels organized into a 4-level hierarchy. Our DBLP
dataset has 12164 un-directed node-node links and 50402 node-label links, therefore a node has
1.97 neighbor nodes and 4.07 labels on average.

STRING-GO. We use the protein-protein interaction network of humans from STRING database
Szklarczyk et al. (2021) ,with the Cellular Components domain of Gene Ontology (GO) Ashburner
et al. (2000); GO2 (2021) being the taxonomy. The GO annotation of human proteins is given by
GOA database Camon et al. (2004); Huntley et al. (2015). The STRING-GO dataset consists of
13840 nodes and 4184 labels organized into a 4-level DAG, and has 348658 un-directed node-node
links and 205629 node-label links. On average, a node has 50.38 neighbor nodes and 14.86 labels.

Methods for Comparison. We include 7 existing network embedding methods either classic or
state-of-the-art for comparison. Node2Vec Grover & Leskovec (2016), LINE Tang et al. (2015b)
and GraphGAN Wang et al. (2018) deal with plain networks, and we run these methods by viewing
labels as plain nodes and label-related edges as plain edges. GraphSAGE Hamilton et al. (2017),
PTE Tang et al. (2015a) and TaxoGAN Yang et al. (2020) are embedding methods on heterogenous
or attributed networks, among which TaxoGAN is the state-of-the-art method on networks with
taxonomies. We also include Poincaré Nickel & Kiela (2017), which embeds nodes and labels in the
Poincaré Ball to better preserve the hierarchical structures. In the experiments, we set the embedding
dimension of all methods to 256. We test HIME with k being 2, 4 and 8, and therefore the dimension
of branch vectors are 128, 64, 32 respectively so as to ensure that HIME has the total dimension of
256. All methods are trained for 50 epochs.

5.1 NODE-LABEL RELATIONSHIPS

We design three tasks to evaluate the performance of all methods in preserving node-label relation-
ships, namely label retrieval, label-path retrieval and node retrieval. For better describing the tasks,
we first define the proximity score of two objects as the inner product of their representation vec-
tors for methods in Euclidean spaces. For HIME and Poincaré, the score is the negative hyperbolic
distance between the two vectors.

Label Retrieval. In the Label-retrieval task, given a node, the method should recall all the ground-
truth labels of the node by ranking the scores of all labels with regard to that node. We use the
Mean Rank MR of the ground-truth labels to evaluate the label-retrieval performance on a node.
We average the MR over all nodes to obtain MR.

Label-Path Retrieval. The label-path retrieval task evaluates a method’s capability of retrieving a
correct label-path for a node. Given the node, the method first predicts the label with the highest
score at the top level of the taxonomy. If the predicted label falls into one of the node’s label-
path, then the prediction will move to the sub-tree rooted at the predicted label. The prediction will
continue until either a false prediction occurs or the whole label-path is predicted correctly. The
accuracy Acc is computed as the ratio of the number of accurately predicted labels to the label-path
length. We use Acc averaged over all nodes to evaluate the label-path retrieval performance.

Node Retrieval. Given a label, the node-retrieval task aims at ranking the nodes of that label ahead
of those not belonging to that label. The method ranks the scores of all nodes with regard to the

7

https://dblp.uni-trier.de/xml
https://dl.acm.org

Under review as a conference paper at ICLR 2022

Table 1: The experiments on the two datasets with the embedding dimensions of all methods being
256. The dimensions of vectors of HIME 2, HIME 4, HIME 8 are 128, 64 and 32 respectively,
satisfying the constraint that all methods have 256 dimensions.

DBLP node-label node-node label-label

MR Acc AUPRC AUPRC AUROC MR

TaxoGAN 124.61 54.60 4.53 99.53 99.92 136.81
Node2Vec 111.20 33.59 11.23 94.58 97.59 68.67

LINE 85.57 29.83 27.85 82.79 92.74 80.40
GraphSAGE 58.27 66.46 27.56 65.39 87.62 81.51
GraphGAN 90.74 25.53 35.00 99.88 99.98 76.95

PTE 172.48 10.80 5.04 81.84 92.85 144.71
Poincare 23.72 52.39 45.69 96.12 98.92 81.20
HIME 2 7.72 87.39 91.26 98.47 99.13 50.81
HIME 4 7.36 87.44 96.51 98.38 99.10 49.75
HIME 8 6.69 68.95 76.61 97.25 98.42 68.44

STRING-GO node-label node-node label-label

MR Acc AUPRC AUPRC AUROC MR

TaxoGAN 2356.12 73.71 4.69 91.09 96.77 2053.35
Node2Vec 617.73 12.80 19.10 69.49 87.36 611.01

LINE 1110.57 14.98 27.61 78.06 91.09 1072.03
GraphSAGE 1256.21 9.90 20.24 43.33 77.38 1165.21
GraphGAN 1231.63 12.45 25.74 92.98 97.84 1325.69

PTE 2891.33 10.98 5.07 79.68 92.35 1644.75
Poincare 110.39 18.12 22.10 85.90 93.10 710.47
HIME 2 91.33 26.00 53.64 86.59 94.84 596.30
HIME 4 86.44 17.93 70.16 86.64 94.91 562.49
HIME 8 90.30 19.13 78.85 86.70 94.98 584.19

label, and we use the Area Under the Precision-Recall Curve AUPRC to evaluate the ranking. We
then average the AUPRC over all labels to obtain AUPRC evaluating the overall performance.

The three ’node-label’ columns of table 1 correspond to the three tasks. In the label retrieval task,
HIME and Poincaré are the best two methods on both datasets, mainly because the Poincaré Ball
has more embedding capacity compared to its Euclidean counterparts with the same dimension.
Moreover, HIME performs slightly better than Poincaré, in that HIME minimizes the distances
between a node and its labels by using multiple branch vectors, causing the ground-truth labels
ranked further ahead.

In the label-path retrieval task, HIME and TaxoGAN are the two methods having the overall best
performances on both DBLP and STRING-GO, mainly because they both allow multiple vectors of
a node in essence. On DBLP, HIME obtains higher Acc than TaxoGAN, While on STRING-GO,
TaxoGAN outperforms all other algorithms with a considerable margin. This is because TaxoGAN is
specialized in retrieving a node’s ground-truth label from the label’s siblings by embedding them into
a small sub-graph. Compared to DBLP which has only 268 labels, STRING-GO has 4184 labels,
which makes the effect of decomposing the taxonomy into different sub-graphs more remarkable.
However, the drawback of decomposition is also obvious since the embedding vectors of the nodes
only function locally in different sub-graphs, and this side-effect will be revealed by the task of node
retrieval as follows.

By allowing multiple globally functional vectors of a node, HIME significantly outperforms all other
methods on the task of node retrieval. HIME 4 and HIME 8 are the best on DBLP and STRING-GO
respectively. By contrast, TaxoGAN performs poorly on the node-retrieval task. This is because in
TaxoGAN, a local embedding vector of a node is not able to reflect the node’s relationship with
a label outside of the sub-graph. Therefore, the scores between most node-label pairs are almost
random, which accounts for the poor ranking performance of TaxoGAN.

8

Under review as a conference paper at ICLR 2022

natural language processing

sentiment analysis

information retrieval

artificial intelligence

retrieval tasks and goals

HIME_2

natural language processing sentiment analysis

information retrieval
artificial intelligence

retrieval tasks and goals

HIME_4

natural language processing

sentiment analysis

information retrieval
artificial intelligence

retrieval tasks and goals

HIME_8

Figure 3: The research areas of an author in a 2D Poincaré disk. The blue points are the hierarchical
labels, with the red points being the author’s active branch vectors. ’Information retrieval’ and
’retrieval tasks and goals’ are embedded apart in HIME 8.

5.2 NODE-NODE RELATIONSHIPS

We apply the task of node-pair retrieval to evaluate the performance in preserving node-node rela-
tionships. Specifically, we randomly sample positive and negative node-node pairs, with their ratio
being 1:4. The methods calculate the score of every node-node pair, and generate a ranking for all
node-node pairs. We use AUPRC and AUROC to evaluate the node-node pair retrieval performance.

The columns of ’node-node’ in table 1 display the results of node-pair retrieval. GraphGAN has
the highest AUPRC and AUROC values compared to other methods, followed by TaxoGAN, HIME
and Poincaré. The power of adversarial training can be inferred from the good performance of
TaxoGAN and GraphGAN. Though not the best on the node-node pair retrieval task, HIME performs
better than other Euclidean and hyperbolic methods. The success of HIME in preserving node-node
relationships can be partly attributed to the branch vectors, which liberate the root vectors from the
burden of fitting labels.

5.3 LABEL-LABEL RELATIONSHIPS

We use the retrieval of parent-child edges to evaluate the preservation of label taxonomy. Given a
label, the methods rank the scores of all other labels with respect to the label. We use the Mean
Rank MR of the its immediate child labels to evaluate the preservation of hierarchy. We average
the MR over all labels to obtain MR.

The ’label-label’ column in table 1 shows the results. HIME, Poincaré and Node2Vec are the three
best methods, with HIME 4 being the best on both DBLP an STRING-GO. It can be seen from
figure 3 and table 1 that the hierarchical label structure of HIME 8 is not well preserved compared
to that of HIME 2 and HIME 4. This is because the label vectors are mainly optimized by Lossnl.
When k increases, the branch vectors of nodes are given more degrees of freedom than the label
vectors. The decrease of Lossnl is mainly contributed to the branch vectors instead of the label
vectors, causing the label vectors being optimized insufficiently. Therefore, we recommend setting
k less than 5 so as to gain a significant increase in performance compared to single-vector embedding
methods, meanwhile keeping a low time complexity.

6 CONCLUSIONS

We propose a method called HIME, which endows a node with multiple vectors to alleviate the
effect of under-fitting in the hyperbolic embedding space. Our multi-vector embedding can be easily
extended to Euclidean spaces by simply changing the distance function, and can also be applied in
plain networks where a node belongs to multiple communities. We point out that though multiple
vectors can help preserving the node’s relationships with labels, they may also distort the label
hierarchy by over-fitting. Therefore, we suggest setting a small multi-vector number so as to achieve
a notable improvement in performance with a small time cost. But how to strike an embedding
balance between the node-label relationships and the label hierarchy awaits future researches.

9

Under review as a conference paper at ICLR 2022

REFERENCES

The gene ontology resource: enriching a gold mine. Nucleic Acids Research, 49(D1):D325–D334,
2021.

Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler, J Michael
Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al. Gene ontology: tool
for the unification of biology. Nature genetics, 25(1):25–29, 2000.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Marián Boguná, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the internet with hy-
perbolic mapping. Nature communications, 1(1):1–8, 2010.

Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229, 2013.

Evelyn Camon, Michele Magrane, Daniel Barrell, Vivian Lee, Emily Dimmer, John Maslen, David
Binns, Nicola Harte, Rodrigo Lopez, and Rolf Apweiler. The gene ontology annotation (goa)
database: sharing knowledge in uniprot with gene ontology. Nucleic Acids Research, 32(suppl 1):
D262–D266, 2004.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM International Conference on Information
and Knowledge Management, pp. 891–900, 2015.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph representations.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. Advances in Neural Information Processing Systems, 32:4868–4879, 2019.

Boli Chen, Xin Huang, Lin Xiao, Zixin Cai, and Liping Jing. Hyperbolic interaction model for
hierarchical multi-label classification. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pp. 7496–7503, 2020.

Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable representation
learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 135–144, 2017.

Alessandro Epasto and Bryan Perozzi. Is a single embedding enough? learning node representa-
tions that capture multiple social contexts. In The World Wide Web Conference, pp. 394–404.
Association for Computing Machinery, 2019.

Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. Hin2vec: Explore meta-paths in heterogeneous
information networks for representation learning. In Proceedings of the 26th ACM International
Conference on Information and Knowledge Management, pp. 1797–1806, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, volume 27, 2014.

Mikhael Gromov. Hyperbolic groups. In Essays in group theory, pp. 75–263. Springer, 1987.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30, 2017.

10

Under review as a conference paper at ICLR 2022

Junheng Hao, Muhao Chen, Wenchao Yu, Yizhou Sun, and Wei Wang. Universal representation
learning of knowledge bases by jointly embedding instances and ontological concepts. In Pro-
ceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1709–1719, 2019.

Rachael P Huntley, Tony Sawford, Prudence Mutowo-Meullenet, Aleksandra Shypitsyna, Carlos
Bonilla, Maria J Martin, and Claire O’Donovan. The goa database: gene ontology annotation
updates for 2015. Nucleic Acids Research, 43(D1):D1057–D1063, 2015.

Rana Hussein, Dingqi Yang, and Philippe Cudré-Mauroux. Are meta-paths necessary? revisiting
heterogeneous graph embeddings. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, pp. 437–446, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, and Xia Hu. Is a single vector
enough? exploring node polysemy for network embedding. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 932–940,
2019.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Maximilian Nickel, Xueyan Jiang, and Volker Tresp. Reducing the rank in relational factorization
models by including observable patterns. In Advances in Neural Information Processing Systems,
volume 27, 2014.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representa-
tions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30, 2017.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity preserv-
ing graph embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1105–1114, 2016.

Chanyoung Park, Carl Yang, Qi Zhu, Donghyun Kim, Hwanjo Yu, and Jiawei Han. Unsupervised
differentiable multi-aspect network embedding. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1435–1445, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 701–710, 2014.

Fatima Zohra Smaili, Xin Gao, and Robert Hoehndorf. Onto2vec: joint vector-based representation
of biological entities and their ontology-based annotations. Bioinformatics, 34(13):i52–i60, 2018.

Damian Szklarczyk, Annika L Gable, Katerina C Nastou, David Lyon, Rebecca Kirsch, Sampo
Pyysalo, Nadezhda T Doncheva, Marc Legeay, Tao Fang, Peer Bork, et al. The string database in
2021: customizable protein–protein networks, and functional characterization of user-uploaded
gene/measurement sets. Nucleic Acids Research, 49(D1):D605–D612, 2021.

Jian Tang, Meng Qu, and Qiaozhu Mei. Pte: Predictive text embedding through large-scale hetero-
geneous text networks. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1165–1174, 2015a.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th International Conference on World
Wide Web, pp. 1067–1077, 2015b.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1225–1234, 2016.

11

Under review as a conference paper at ICLR 2022

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie,
and Minyi Guo. Graphgan: Graph representation learning with generative adversarial nets. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Junshan Wang, Zhicong Lu, Guojie Song, Yue Fan, Lun Du, and Wei Lin. Tag2vec: Learning tag
representations in tag networks. In The World Wide Web Conference, pp. 3314–3320, 2019.

Carl Yang, Jieyu Zhang, and Jiawei Han. Co-embedding network nodes and hierarchical labels
with taxonomy based generative adversarial networks. In 2020 IEEE International Conference
on Data Mining (ICDM), pp. 721–730. IEEE, 2020.

12

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 RIEMANNIAN STOCHASTIC GRADIENT DESCENT

Riemannian Stochastic Gradient Descent (RSGD) Bonnabel (2013) is a technique that updates pa-
rameters by back-propagation in hyperbolic spaces. Here we briefly introduce the RSGD process
applied by Nickel & Kiela (2017) in a Poincaré ball.

Suppose we are given a set Θ = {θi}ni=1 of parameters in a Poincaré ball of radius 1: ∀θi ∈
Θ, ‖θi‖ < 1. Given a loss function L(Θ), We aim at optimizing Θ by minimizing L(Θ):

Θ
′
← argmin

Θ
L(Θ)

We should first calculate the Riemannian gradients for every parameters, and then update the param-
eters in the Poincaré ball. given the learning rate η, the back propagation in the Poincaré ball can be
defined as:

θt+1 ← Pθt(−η∇RL(θt)),

where P is a retraction function, ∇R is the Riemannian gradient. The retraction is related to both
η∇RL(θt) and θ’s position at time t, and its function is similar to the optimization step in Euclidean
space simply achieved by:

θt+1 ← θt − η∇EL(θt).

The Riemannian gradient is not difficult to calculate. Given the Riemannian metric tensor: gθt =
λ2θtI where λθt = 2

1−‖θt‖2
and I being the identity matrix, the Riemannian gradient can be calcu-

lated based on the Euclidean gradient∇E :

∇RL(θt) = g−1θt ∇EL(θt).

Therefore, given the loss function L, we can first calculate the Euclidean gradient ∇E of the pa-
rameter θ at time t by traditional back-propagation in Euclidean space, and then divided it by gθt to
obtain the Riemannian gradient of θt.

Given the Riemannian gradient∇RL(θt), Nickel & Kiela define their updating process as:

θt+1 ← Q(θt − η∇RL(θt)),

where

Q(x) =

{
x/ ‖x‖ − ε ‖x‖ ≥ 1

x ‖x‖ < 1
,

and ε serve as a small vector. In this way, if θt+1 falls out of the Poincaré ball with radius 1, ε will
pull it back into the ball, therefore θt always satisfies ‖θt‖ < 1.

The drawback of this linear retraction is that it neglects the characteristics of the hyperbolic spaces.
By contrast, We use exponential map to perform the retraction. Exponential and logarithmic maps
serve as transformation tools between a Poincaré Ball Dd,1 and an Euclidean tangent space Ed. For
any point x ∈ Dd,1, the exponential map and the logarithm map for v 6= 0 and y 6= x are:

expx(v) = x⊕ (tanh(
λx ‖v‖

2
)
v

‖v‖
),

logx(y) =
2

λx
tanh−1(‖−x⊕ y‖) −x⊕ y

‖−x⊕ y‖
,

where

x⊕ y =
(1 + 2〈x,y〉+ ‖y‖2)x+ (1− ‖x‖2)y

1 + 2〈x,y〉+ ‖x‖2‖y‖2
.

The Riemannian gradient∇RL(θt) can be viewed as a vector in the tangent space of θt. Therefore,
we can perform the optimization step on θt by mapping the Riemannian gradient from θt’s tangent
space to the Poincaré ball to obtain θt+1. Formally, we finally gets θt+1 by:

θt+1 ← expθt
(−∇RL(θt)).

13

Under review as a conference paper at ICLR 2022

Table 2: The experiments on preserving node-label relationships. HIME k refers to HIME using k
branch vectors. All results are shown in percentage.

DBLP 1−MR/|L| Acc AUPRC

Dimension 32 8 2 32 8 2 32 8 2
TaxoGAN 79.14 79.47 78.99 65.27 65.22 63.31 15.41 13.97 8.24
Node2Vec 86.20 80.32 62.56 60.14 45.81 24.25 56.55 34.37 10.39

LINE 84.56 82.40 70.84 58.34 46.82 42.71 49.34 33.98 15.55
GraphSAGE 87.31 85.83 81.02 62.94 47.60 41.69 54.64 38.39 13.10
GraphGAN 85.01 69.58 62.86 52.62 31.18 24.23 53.75 32.46 12.71

PTE 86.17 83.12 77.04 61.96 52.53 46.38 58.13 36.01 18.40
Poincaré 96.60 96.28 94.64 62.28 59.85 55.57 50.62 41.36 36.62
HIME 2 98.30 98.43 97.97 94.78 90.46 82.81 87.97 82.92 71.99
HIME 4 98.58 98.72 98.63 94.56 92.08 90.82 93.78 90.96 86.50
HIME 8 98.92 98.90 98.28 97.82 95.04 72.94 97.42 95.22 87.36

STRING-GO 1−MR/|L| Acc AUPRC

Dimension 32 8 2 32 8 2 32 8 2
TaxoGAN 82.48 80.37 78.11 53.09 49.12 43.34 5.03 4.92 4.70
Node2Vec 75.50 70.65 58.85 23.38 13.10 6.08 27.58 16.02 7.19

LINE 72.03 68.54 54.78 19.10 16.55 8.96 19.05 14.06 6.65
GraphSAGE 76.35 72.93 62.22 22.06 17.61 9.62 24.93 16.28 8.25
GraphGAN 76.88 69.79 60.07 25.90 19.58 8.64 28.82 17.83 7.77

PTE 80.94 73.67 66.28 26.57 18.42 9.32 29.10 18.80 10.12
Poincaré 97.02 96.56 90.96 24.89 18.61 14.31 25.46 21.26 15.59
HIME 2 98.01 97.65 97.75 30.67 23.70 22.93 38.66 35.84 25.11
HIME 4 98.35 98.31 98.17 33.77 29.06 25.90 57.76 55.56 38.76
HIME 8 98.66 98.72 98.37 40.18 32.63 29.69 69.67 68.30 43.66

A.2 EXPERIMENTS

A.2.1 DATASET CONSTRUCTION

DBLP. We sample a subset of the DBLP network with the research taxonomy, where each author
has at least one co-author in the network. Every author in the network has at least one label in the
research taxonomy.

STRING-GO. We use the protein-protein interaction network (PPI) of humans provided by
STRING Szklarczyk et al. (2021). We set a threshold of 800 to sample the edges in the original
data to form our PPI network. We then delete the proteins not appearing in GOA Camon et al.
(2004); Huntley et al. (2015), so that each protein has its GO-terms in the GO taxonomy.

A.2.2 PARAMETER SETTINGS

On both datasets, we set the learning rate of the root vectorsR and the label vectorsQ to 0.01, while
for the branch vectors B we set their learning rate to 0.02. The negative sampling number is set to
5, and the batch size is 1000. The LRU period is set to 5 epochs. We train HIME on both DBLP and
STRING-GO for 100 epochs.

A.2.3 RESULTS

Table 2 and figure 4 reveal the performance of all methods on the node-label preservation under
different dimensions. Besides, table 3 and figure 5 tell detailed results of node-node preservation.

14

Under review as a conference paper at ICLR 2022

0
1-MR/|L| Acc AUPRC

25

50

75

100

125

150

175

200

225

250

275

300

79.1
65.3

15.4

79.5

65.2

14.0

79.0

63.3

8.2

86.2

60.1 56.6

80.3

45.8
34.4

62.6

24.2

10.4
84.6

58.3
49.3

82.4

46.8

34.0

70.8

42.7

15.5
87.3

62.9
54.6

85.8

47.6
38.4

81.0

41.7

13.1

85.0

52.6 53.8

69.6

31.2 32.5

62.9

24.2
12.7

86.2

62.0 58.1

83.1

52.5

36.0

77.0

46.4

18.4
96.6

62.3
50.6

96.3

59.9

41.4

94.6

55.6

36.6

98.3 94.8 88.0

98.4
90.5

82.9

98.0

82.8

72.0

98.6 94.6 93.8

98.7
92.1 91.0

98.6

90.8 86.5

98.9 97.8 97.4

98.9 95.0 95.2

98.3

72.9
87.4

DBLP

0
1-MR/|L| Acc AUPRC

25

50

75

100

125

150

175

200

225

250

275

300

82.5

53.1

80.4

49.1

78.1

43.3

75.5

23.4 27.6

70.6

13.1 16.0

58.8

72.0

19.1 19.1

68.5

16.6 14.1

54.8

9.0

76.3

22.1 24.9

72.9

17.6 16.3

62.2

9.6 8.3

76.9

25.9 28.8

69.8

19.6 17.8

60.1

8.6

80.9

26.6 29.1

73.7

18.4 18.8

66.3

9.3 10.1

97.0

24.9 25.5

96.6

18.6 21.3

91.0

14.3 15.6

98.0

30.7
38.7

97.7

23.7

35.8

97.7

22.9

25.198.4

33.8

57.8

98.3

29.1

55.6

98.2

25.9

38.8

98.7

40.2

69.7

98.7

32.6

68.3

98.4

29.7

43.7

Protein_GO

TaxoGAN
Node2Vec

LINE
GraphSAGE

GraphGAN
PTE

Poincare
HIME_2

HIME_4
HIME_8

Figure 4: The experiments on preserving node-label relationships.

A.2.4 THE DISTORTION OF THE HIERARCHY

As shown in figure 6, 7, and 8, with the increase of the branch vector number k, the hierarchy
structure of the labels is less preserved. Here we mainly present our understanding of hierarchy
distortion caused by multi-vector embedding. Given the total loss function:

Losstotal = Lossnn + Lossll + Lossnl,

We should first figure out which part of the loss function contributes to the preservation of the label
hierarchy most, and then find the reason of the hierarchy distortion.

At first glance, one may first guess that Lossll helps preserving the label hierarchy most, since it
depicts the parent-child relationships among labels. However, by using the taxonomy information
T alone, the machine are not likely to generate a correct tree structure in the Poincaré ball, with the
root label embedded close to the origin, while the leaf labels embedded near the border. This can be
explained by the fact that each label in a taxonomy tree with un-directed links can be equally viewed
as the root. The un-directed parent-child set S gives no extra information of the true root labels to
the machine.

Since Lossnn is specialized in preserving node-node relationships, Lossnl becomes the only an-
swer. Labels in a higher hierarchy level will be frequently updated by the positive node-label

15

Under review as a conference paper at ICLR 2022

Table 3: The experiments on preserving node-node relationships.
Dataset DBLP
Metric AUPRC AUROC

Dimension 32 8 2 32 8 2
TaxoGAN 99.12 98.18 64.34 99.70 99.29 90.67
Node2Vec 88.62 73.81 29.16 96.27 90.42 65.18

LINE 83.46 54.30 26.14 93.22 78.67 53.22
GraphSAGE 81.25 59.06 23.43 90.94 79.11 55.67
GraphGAN 99.38 96.43 71.15 99.95 99.10 90.75

PTE 88.38 85.45 47.02 96.04 95.07 73.89
Poincare 94.42 91.95 81.23 97.52 96.04 89.32
HIME 99.56 99.46 98.03 99.93 99.91 99.27
Dataset STRING-GO
Metric AUPRC AUROC

Dimension 32 8 2 32 8 2
TaxoGAN 93.10 85.61 41.83 97.47 93.73 74.90
Node2Vec 87.84 79.10 43.10 96.02 89.11 71.01

LINE 75.98 58.94 38.89 90.52 79.98 64.96
GraphSAGE 88.65 77.26 34.03 96.62 89.12 62.87
GraphGAN 93.85 86.49 55.00 97.89 95.15 82.03

PTE 89.29 75.49 41.40 97.09 88.78 73.57
Poincare 90.51 82.12 69.25 97.01 91.69 85.25
HIME 94.04 88.90 85.05 98.09 95.95 94.13

Node2Vec GraphSAGE PTE HIME

AUPRC AUROC
0

50

100

150

200

250

300

99
.1

99
.7

98
.2

99
.3

64
.3 90

.7

88
.6 96
.3

73
.8 90

.429
.2

65
.2

83
.5 93
.2

54
.3

78
.7

26
.1

53
.2

81
.3 90
.9

59
.1 79

.1

23
.4

55
.7

99
.4

99
.9

96
.4

99
.1

71
.1 90

.8

88
.4 96
.0

85
.4 95

.147
.0

73
.9

94
.4

97
.5

91
.9 96
.0

81
.2 89

.3

99
.6

99
.9

99
.5

99
.9

98
.0

99
.3

DBLP

AUPRC AUROC
0

50

100

150

200

250

300

93
.1

97
.5

85
.6 93

.741
.8

74
.9

87
.8 96
.0

79
.1 89

.143
.1

71
.0

76
.0 90

.5

58
.9

80
.0

38
.9

65
.0

88
.6 96
.6

77
.3 89

.134
.0

62
.9

93
.9

97
.9

86
.5 95

.2

55
.0

82
.0

89
.3 97
.1

75
.5 88

.841
.4

73
.6

90
.5

97
.0

82
.1 91

.7

69
.2 85

.2

94
.0

98
.1

88
.9 95

.9

85
.1 94

.1

STRING-GO

TaxoGAN LINE GraphGAN Poincare

Figure 5: The experiments on preserving node-node relationships. The different shades of the colors
represent the results under dimension 32, 8 and 2 from bottom to top.

pairs, therefore single-vector Poincaré embedding will place high-level labels near the center of
the Poincaré ball so as to reduce the overall node-label distances. While low-level labels are pushed
away from the center by negative samples. But when excessive branch vectors are allowed, the
node-label distances call be decreased by updating multiple branch vectors, with labels being lazy
and stuck in the middle, as shown in figure 8. Therefore, the hierarchy of the labels will be distorted.
To prevent the hierarchy distortion, a small branch vector number is suggested.

16

Under review as a conference paper at ICLR 2022

natural language processing

information retrieval

machine learning approaches

computer visionartificial intelligence

data mining

machine learning

HIME_2

Figure 6: The embedding vectors of the research taxonomy produced by HIME 2.

17

Under review as a conference paper at ICLR 2022

natural language processing

information retrievalmachine learning approaches

computer vision
artificial intelligence

data mining

machine learning

HIME_4

Figure 7: The embedding vectors of the research taxonomy produced by HIME 4.

18

Under review as a conference paper at ICLR 2022

natural language processing
information retrieval

machine learning approaches

computer vision

artificial intelligence

data mining
machine learning

HIME_8

Figure 8: The embedding vectors of the research taxonomy produced by HIME 8.

19

	Introduction
	Related Work
	Preliminaries
	Problem Statement
	The Poincaré Ball model

	Method
	Multi-Vector Embedding
	Load Balancing Strategy
	The Inactive Branch Vectors
	The Vector Replacement Policy

	The Whole Learning Process of HIME

	Experiments
	Node-Label Relationships
	Node-Node Relationships
	Label-Label Relationships

	Conclusions
	Appendix
	Riemannian Stochastic Gradient Descent
	Experiments
	Dataset Construction
	Parameter Settings
	Results
	The Distortion of the Hierarchy

