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ABSTRACT

We present SelfPrompt, a novel prompt-tuning approach for vision-language mod-
els (VLMs) in a semi-supervised learning setup. Existing methods for tuning
VLMs in semi-supervised setups struggle with the efficient use of the limited
label-set budget, the negative impact of the miscalibrated VLMs on pseudo-
labelling, and the accumulation of noisy pseudo-labels. SelfPrompt addresses
these challenges by introducing (a) a weakly-supervised sampling technique that
selects a diverse and representative labelled set, (b) a cluster-guided pseudo-
labelling method that improves pseudo-label accuracy, and (c) a confidence-aware
semi-supervised learning module that maximizes the utilization of unlabelled data
by combining supervised learning and weakly-supervised learning. We conduct
extensive evaluations across 13 datasets, significantly surpassing state-of-the-art
performances with average improvements of 6.23% in standard semi-supervised
learning, 6.25% in our proposed active semi-supervised learning, and 4.9% in
base-to-novel generalization, using a 2-shot setup. Furthermore, SelfPrompt
shows excellent generalization in single-shot settings, achieving an average im-
provement of 11.78%.

1 INTRODUCTION

Vision-language models (VLMs) (Radford et al., 2021) pre-trained on large-scale datasets of image-
text pairs have shown strong generalization on a wide range of tasks. Nonetheless, prior works
(Zhou et al., 2022a;b) have demonstrated that VLMs require fine-tuning on a considerable amount
of labelled data to perform well on downstream tasks. Additionally, the size of the foundation model
makes fine-tuning in a limited labelled data setting difficult without losing generalization (Roy &
Etemad, 2024). To reduce the reliance on labelled data, some recent works have explored solutions
that utilize auxiliary unlabelled data (Huang et al., 2022; Menghini et al., 2023; Zhang et al., 2024)
to improve learning from a limited set of labelled data.

Although prior works that leverage unlabelled data for tuning VLMs show substantial performance
gains, we identify several limitations in such approaches. (a) First, given a limited budget for the
labelled data (few samples per class), existing methods (Zhang et al., 2024; Menghini et al., 2023)
typically select the labelled sample set randomly. However, a randomly selected set of samples may
not adequately represent the underlying data distribution, leading to inefficient use of the limited
label budget. (b) Next, given the unlabelled set, prior works (Menghini et al., 2023; Zhang et al.,
2024) utilize the zero-shot capabilities of pre-trained VLMs to predict pseudo-labels for the unla-
belled data to then use as labelled samples. However, pre-trained VLMs do not necessarily possess
adequate knowledge of the downstream domain, which could lead to incorrect pseudo-labels. Such
wrong labels, especially in few-labelled settings, can negatively impact the final performance of the
model. (c) Finally, to learn from unlabelled data more effectively, previous works (Menghini et al.,
2023; Zhang et al., 2024) have employed incremental pseudo-labelling, wherein the labelled set is
continuously expanded by iteratively adding to the pseudo-label set from the unlabelled set. Never-
theless, as Figure 1 illustrates, this method often results in the accumulation of noisy pseudo-labels,
ultimately leading to performance degradation.

To solve the above-mentioned problems, we propose SelfPrompt, a new prompt tuning approach
that uses weak supervision by the pre-trained VLM itself to fine-tune the model with a confidence-
aware semi-supervised learning approach. SelfPrompt comprises three components. (a) A weakly-
supervised labelled set sampling module: To select the most representative set of samples for
the labelled set, we propose a novel sampling technique. First, the VLM’s predictions are used
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Figure 1: (left) Pseudo-label accuracy; (right) Test ac-
curacy over training sessions.
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Figure 2: Performance comparison to prior works on
semi-supervised tuning of VLMs.

as a source of weak supervision to filter out both the most and least confident samples from the
unlabelled set. This approach is based on the observation that the most confident samples do not
contribute significantly towards learning, while the least confident samples tend to be noisy and are
not representative of the dataset. This is followed by a clustering-based selection technique that
identifies a diverse set of samples from the remaining unlabelled data for labelling. (b) Cluster-
guided pseudo-labelling: To address the second problem, we propose a cluster-guided pseudo-
labelling approach that avoids using the VLM to predict the pseudo-labels at the start of the training.
Instead, by leveraging the clusters formed in the labelled set sampling module, we select samples that
are near the centroids of the above-mentioned clusters to which we assign the corresponding class
labels. (c) Confidence-aware semi-supervised learning: To make the best use of the unlabelled
data, we propose a confidence-aware semi-supervised module. This hybrid approach leverages high-
confidence pseudo-labels in a fully supervised learning setting, while learning from low-confidence
samples in a weakly-supervised manner.

Since our approach of sampling a labelled set is slightly different from standard semi-supervised
learning (where the labelled set is provided), our approach can be defined as active semi-supervised
learning. Accordingly, we evaluate SelfPrompt in comparison to existing methods in both standard
semi-supervised learning and active semi-supervised learning setups. While previous works report
these results on six datasets, we evaluate our solution (and the previous methods) on 13 datasets.
Our evaluation shows that SelfPrompt outperforms prior works by 6.23% in the standard semi-
supervised learning setup and by 6.25% on the active semi-supervised learning setup, with up to
11.23% and 13.82% improvements on individual datasets, respectively. Additionally, we show gen-
eralization by reducing the size of the labelled set to just one sample-per-class while outperforming
prior methods by an average of 11.78%. For completeness, we also compare our solution to few-
shot tuning methods (Zhou et al., 2022a; Khattak et al., 2022; Roy & Etemad, 2024; Li et al., 2024)
on base-to-novel generalization, where we also show an average improvement of 4.9% over prior
works in a 2-shot evaluation setup, with improvements in both base and novel classes. Finally, we
present extensive ablation and sensitivity studies on different components of our proposed method.
Overall, our contributions are:

• We introduce SelfPrompt, a novel prompt-tuning approach for VLMs that uses weak supervi-
sion from the pre-trained VLM itself to learn effective representations from limited labelled
data while improving generalization.

• SelfPrompt comprises three novel components: (a) Weakly-supervised labelled set sampling
technique that selects an effective representative and diverse set of labelled samples; (b) Cluster-
guided pseudo-labelling, which improves pseudo-label accuracy by assigning labels based on
cluster proximity; and (c) Confidence-aware semi-supervised learning, which adapts learning
based on the confidence of pseudo-labels to maximize the use of the unlabelled data.

• Our comprehensive experiments across 13 datasets demonstrate that SelfPrompt surpasses ex-
isting methods on various benchmarks, achieving average improvements of 6.23% in standard
semi-supervised learning, 6.25% in active semi-supervised learning, and 4.9% in base-to-novel
generalization, in the standard 2-shot evaluation setup. Additionally, SelfPrompt exhibits strong
generalization in a single-shot setting, resulting in an even higher improvement of 11.78%.

• To enable fast reproducibility and contribute to the area, we will make our code public upon
acceptance of the paper.

2 RELATED WORKS
Vision-language models. Vision-language models (VLMs), pre-trained on vast web-scale datasets
of image-text pairs, have demonstrated remarkable generalization across a wide range of down-
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stream tasks (Radford et al., 2021; Jia et al., 2021; Alayrac et al., 2022). These models are com-
posed of a vision encoder and a text encoder, jointly trained to align the representations of an image
and corresponding text. Once pre-trained, VLMs can perform zero-shot image classification by
matching an image embedding with the text embedding of the class name with a prompt, such as ’a
photo of a [class].’ While this zero-shot capability has delivered impressive results in various do-
mains, fine-tuning is often necessary to achieve optimal performance on new tasks or domains (Zhou
et al., 2022a). However, fine-tuning large models with limited labelled data presents significant chal-
lenges, including overfitting and reduced generalization (Roy & Etemad, 2024). To address these
issues, recent approaches have proposed semi-supervised tuning, which incorporates unlabelled data
alongside limited labelled data to improve the fine-tuning of VLMs on downstream tasks. In the fol-
lowing subsections, we first explore prompt tuning, a prominent approach for parameter-efficient
fine-tuning of pre-trained models by introducing a small set of additional parameters while keep-
ing the pre-trained encoder frozen. These methods help mitigate the risk of overfitting on limited
downstream labelled data. We then review prior work on the semi-supervised tuning of VLMs.

Prompt tuning. Prompt tuning is a parameter-efficient technique for adapting foundation models
to downstream tasks by learning soft prompts (textual (Ge et al., 2023; Zhou et al., 2022c) or vi-
sual (Bahng et al., 2022a; Jia et al., 2022)) from limited labelled data (Ge et al., 2023; Jia et al.,
2022). Text-based prompt tuning (Zhou et al., 2022c) optimizes learnable prompt vectors, which
are embedded within the input sentence tokens and fed into the sentence encoder. Extending this
idea, Zhou et al. (2022b) introduced soft prompt learning that conditions the prompt on the image
input. In contrast, visual prompt tuning (Bahng et al., 2022b) introduces a small number of trainable
parameters into the visual input tokens. PLOT (Chen et al.) fine-tuned VLM by learning multiple di-
verse prompts per category via a two-stage optimization strategy. MaPLe (Khattak et al., 2022) later
introduced a multi-modal approach that trains both textual and visual prompts simultaneously, lever-
aging their synergy to facilitate multi-modal representation learning while avoiding an overemphasis
on unimodal features. A similar multi-modal approach was proposed in PromptSRC (Khattak et al.,
2023), which, unlike MaPLe, focused on learning task-agnostic and independent prompts for text
and images. Later, CoPrompt (Roy & Etemad, 2024) proposed to enforce consistency between the
pre-trained and learnable encoders, aiming to reduce overfitting and enhance generalization. AWT
(Zhu et al., 2024) enhances vision-language models by augmenting inputs with diverse perspectives
and enriched descriptions, dynamically weighting inputs by prediction uncertainty, and transporting
semantic correlations into a shared embedding space. While these methods have demonstrated im-
proved performance on downstream tasks compared to pre-trained VLMs, they still face challenges
in domains where the target data significantly deviates from the pre-training distribution, primarily
due to the limited availability of domain-specific data.

Semi-supervised tuning. Recently, a new stream of research has focused on semi-supervised tun-
ing that leverages unlabelled data alongside a small set of labelled data to enhance downstream task
performance. The core idea behind these methods is pseudo-labelling (Sohn et al., 2020; Lee et al.,
2013), where the model predicts labels for unlabeled samples and then uses these pseudo-labels to
learn from the unlabeled data. For example, GRIP (Menghini et al., 2023) utilizes CLIP’s zero-shot
capabilities to generate pseudo-labels for unlabelled data and select the most confident samples to
serve as labelled data. However, this approach introduces a considerable amount of wrong pseudo-
labels due to the inherent miscalibration (LeVine et al., 2023) and imbalanced predictions (Wang
et al., 2022a) issues of the pre-trained VLM. To address these issues, CPL (Zhang et al., 2024) pro-
poses to generate refined candidate pseudo-labels through intra- and inter-instance label selection,
using a confidence score matrix to improve label accuracy and class balance during fine-tuning. Both
GRIP and CPL adopt an iterative process, where the model is used to continuously refine and select
additional samples from the unlabelled set. Although these methods have demonstrated promising
improvements in VLM performance on downstream tasks, they still face several key limitations.
These include the under-utilization of the labelling budget, the negative impact of miscalibrated
pseudo-labels, and the declining quality of pseudo-labelling as the number of samples increases.

Weakly-supervised learning. Weakly supervised learning encompasses a class of methods that
train models with limited or imprecise supervision (Peyre et al., 2017; Li et al., 2019; Zhou, 2018).
Unlike fully supervised learning, which requires large amounts of precisely labelled data, weakly
supervised learning leverages weak annotations, such as noisy, incomplete, or coarse-grained la-
bels. This paradigm significantly reduces the reliance on costly and time-intensive data annotation
processes. This paradigm has demonstrated broad applicability across various domains, includ-
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ing vision-language models (Wang et al., 2022b), medical image analysis (Kanavati et al., 2020).
Despite its potential, it has been underexplored in the context of semi-supervised learning, where
pseudo-label predictions frequently introduce noise. This positions weakly supervised learning as
an ideal candidate to address the challenges posed by noisy labels in semi-supervised frameworks.

3 METHOD

3.1 PRELIMINARIES AND PROBLEM FORMULATION

Let θ be a pre-trained image encoder and ϕ be a text encoder of a pre-trained VLM. For a given
input image x, the VLM predicts the output probability distribution over C classes as:

p(y|x; θ, ϕ) = exp(sim(z, wy)/t)∑C
k=1 exp(sim(z, wk)/t)

, (1)

where z = θ(x) is the image embedding and wk is the class-embedding of class k, generated using
a prompt template as wk = ϕ(‘a photo of a [category]k’), and t is the temperature parameter. Since
the zero-shot performance of the VLM is limited by its pre-trained knowledge of the downstream
task, further fine-tuning is often necessary for the VLM to adapt effectively to new tasks or domains.
A widely adopted approach for fine-tuning large foundation models is prompt tuning, which involves
adding a small set of learnable parameters to the model while keeping the pre-trained encoder frozen.
This approach typically involves prepending a set of K learnable tokens, P = {p1, p2, . . . , pK}, to
the tokenized input embeddings, enabling the model to adapt to new tasks with minimal parameter
updates. Two common forms of prompt tuning are visual prompt tuning (Bahng et al., 2022b) and
textual prompt tuning (Zhou et al., 2022a). We denote the prediction of VLM with the learnable
tokens as f(x) = p(y|x; θ, ϕ, P ). A recent class of solutions proposes the use of semi-supervised
learning for tuning VLMs by leveraging a large unlabelled set along with a small labelled set. In this
setup, we are given a large unlabelled set U = {xi}Mi=1 with a label budget of N ≪ M samples.
Here, N = C × n, where C is the number of classes, and n is the samples per class.

Despite recent progress in semi-supervised prompt tuning for VLMs, we have identified three key
open challenges in this area:
(a) In a few-shot learning setting with N samples, the common strategy is to randomly selected n
samples per class from the unlabelled set U to form the labelled set (Zhang et al., 2024; Menghini
et al., 2023). However, in such a setting, random selection may fail to adequately represent the data
distribution of the target domain, leading to inefficient use of the limited label budget.
(b) Given an unlabelled set U , the typical approach is to initiate the training protocol by using
the pre-trained VLM to generate pseudo-labels for U (using Eq. 1) and selecting the most confident
M/S samples (Zhang et al., 2024; Menghini et al., 2023). Here, S represents the number of sessions
over which this pseudo-labelling and selection process is repeated. However, pre-trained VLMs of-
ten lack adequate knowledge of the target domain, i.e., domain miscalibration (LeVine et al., 2023),
thus resulting in considerable numbers of incorrect pseudo-labels. This in turn can misguide the
fine-tuning of the model, leading to degraded final performances.
(c) To maximize the information obtained from unlabelled data, prior works have employed an
iterative pseudo-labelling strategy, where unlabelled samples are progressively added to the pseudo-
labelled set. However, as shown in Figure 1, this approach results in an accumulation of noisy
samples, leading to a drop in the model’s final performance. While CPL (Zhang et al., 2024) pro-
posed avoiding pseudo-labels in favour of using multiple top predictions as partial labels, this results
in underutilizing the unlabelled data by avoiding correct pseudo-labels as well.

3.2 PROPOSED METHOD

In light of the challenges above, we propose SelfPrompt, a novel semi-supervised prompt tuning
method for VLMs that introduces three novel components: a weakly-supervised sampling module,
cluster-guided pseudo-labelling, and confidence-aware semi-supervised learning.

Weakly-supervised sampling. To overcome the limitations of random selection, we introduce a
weakly-supervised sampling module that selects the most diverse and representative N samples
from the unlabelled set. This module operates through a two-step protocol: (i) a filtering strategy
that leverages the VLM predictions as weak supervision to remove uninformative samples, and (ii)
a clustering-based selection method to ensure diversity among the selected samples. By leveraging
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Figure 3: (left) A visual illustration of the weakly-supervised sampling module is presented. Using predictions
from the pre-trained VLM, the least and most confident samples, which are not representative of the downstream
data, are filtered out. The remaining feature space is then clustered into a number of clusters equal to the
labelling budget to ensure maximum diversity among the selected samples. (right) Cluster-guided pseudo-
labelling assigns the same class label to samples near the cluster centers as the pseudo-label.

clusters formed based on semantic similarity, our approach ensures diversity in the selected labelled
samples, optimizing the use of the limited label budget.

Step 1: Filtering with weak supervision. We leverage the zero-shot predictions of the pre-trained
VLM as weak supervision to filter the unlabelled set U . Specifically, we remove samples with both
the highest and lowest confidence predictions by the VLM. Most confident samples offer minimal
information gain, as the model is already certain of their classification (refer to A.2 for more details).
Conversely, low-confidence samples are likely to be outliers or noisy data points that can negatively
impact model generalization, especially in few-shot learning scenarios where training data is scarce.

For each unlabelled sample i, we generate a probability distribution over the output classes with the
pre-trained VLM using Eq. 1 as: pi = [p1i , p

2
i , · · · , pCi ]. We define the confidence score for each

sample as the maximum probability value over the classes:

ci = max
1≤c≤C

pci = max{p1i , p2i , · · · , pCi }. (2)

We then sort the samples in descending order of confidence: Dsorted = {x(1), x(2), . . . , x(N)}, where
x(i) is the sample with the i-th highest confidence score, satisfying: c(1) ≥ c(2) ≥ . . . ≥ c(N).
Next, we divide the sorted samples into q quantiles, {Q1, Q2, · · ·Qq}, and remove the first and last
quantiles, corresponding to the most and least confident samples. Finally, the filtered unlabelled
dataset after the first step can be represented as Dfiltered =

⋃q−1
k=2 Qk.

Step 2: Diversity Sampling. Next, we select N diverse samples from the filtered dataset Dfiltered, with
a cluster-based sampling technique. First, we obtain the representations for each sample using a pre-
trained vision encoder θ as zi = θ(xi) ∈ Rd, where zi is the d-dimensional embedding of sample
xi. We then apply k-means clustering to group the samples into N clusters C = {C1, C2, . . . , CN},
such that each cluster contains semantically similar samples, while different clusters have diverse
semantics. For each cluster, j ∈ {1, 2, ..., N}, we select the sample closest to the cluster center:

x∗
j = argmin

xi∈Cj

∥zi − µj∥2, (3)

where µj is the center of cluster Cj , and x∗
j is the selected sample. Finally, our labelled set is formed

by gathering the labels of the selected samples, XL = {(x∗
1, y1), (x

∗
2, y2), · · · , (x∗

N , yN )}. Our
weakly-supervised sample technique is illustrated in Figure 3 (left).

Cluster-guided pseudo-labelling. To improve the pseudo-label quality, especially at the beginning
of the training, we propose a novel clustering-guided pseudo-labelling approach that does not utilize
the zero-shot prediction from the VLM as the pseudo-label. By not relying on VLM predictions
for pseudo-labelling, we ensure that our method is unaffected by any miscalibration of the VLM.
Instead, our proposed solution leverages the clusters (C = {C1, C2, . . . , CN}) formed during the
weakly-supervised sampling step. Since the clusters are formed based on embedding similarity,
samples under the same cluster have similar semantics. Especially the samples close to the cluster
centres (also close to the selected labelled sample) are likely to belong to the same class as the
sample at the cluster’s center. Implicating this realization, we select additional p samples from each
cluster and label them with the label of the cluster center. Specifically, for each cluster Cj , we pick
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the p samples closest the cluster centers to form a pseudo-label set Pj = {x1
j , x

2
j , . . . , x

p
j}, where Pj

is the pseudo-label set for cluster Cj , and xk
j is the k-th closest sample to x∗

j . Here, closest sample
is identified by xk

j = argminxi∈Cj\{x∗
j } ∥zi − z∗j∥2, where z∗j = θ(x∗

j ), and ∥ · ∥2 is the squared
Euclidean distance in the embedding space. Finally, each sample in Pj is assigned to the label of the
cluster center of Cj to form our pseudo-label set Xp = {(xj1, yj), (xj2, yj), . . . , (xNp, yN )}. Our
cluster-guided pseudo-labelling technique is illustrated in Figure 3 (right).

Confidence-aware semi-supervised learning. To make the best use of the unlabelled data, we
propose a confidence-aware semi-supervised module that learns from the high-confident samples in
a supervised learning setup, while learning from the low-confident samples in a weakly-supervised
setting. Such a hybrid approach ensures efficient utilization of high-confident pseudo-labels while
minimizing the adverse effects of low-confident samples. Specifically, we first predict the output
probability distribution for each sample in the unlabelled set U as pi = f(xi) ∈ RC . Then we
incorporate the t (defined as τ ×M ) most confident samples-per-class into our pseudo-label set as:

X+ = XP ∪
( C⋃
c=1

topt({xi| argmax(pi) = c})
)
, (4)

where τ is a hyper-parameter that controls the number of samples to be included in the pseudo-
label set, topt({xi| argmax(pi) = c}) selects the t most confident samples for each class c, with
confidence defined as max(pi). We learn from the remaining relatively low-confident samples in a
weakly-supervised setting. Specifically, we follow CPL (Zhang et al., 2024), and gather the top-k
predictions per sample to form a weakly-labelled set Xweak = {(xi, si) | xi ∈ U \ X+}, where si is
a one-hot vector containing sci = 1 if class c is among the top predictions for sample i. Finally, we
learn from the labelled set XL, pseudo-labeled set X+, and weakly labelled set Xweak, together as
follow:

Lfinal =
1

|XL|
∑

(x,y)∈XL

ℓ(f(x), y) +
1

|X+|
∑

(x,y)∈X+

ℓ(f(x), y) +
λ

|Xweak|
∑

(x,s)∈Xweak

ℓw(f(x), s). (5)

Here, ℓ is the cross-entropy loss, λ is a loss factor, and ℓw is a partial label learning loss defined as:

ℓw(f(x), s) = −
∑
c∈C

sc log (p(c|x)) . (6)

Following CPL (Zhang et al., 2024), we continue the semi-supervised training over S sessions. We
provide a pseudo-code of SelfPrompt in the Appendix A.3.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We report the results of our experiments on 13 datasets of diverse semantic concepts. For evaluating
the proposed solution, we closely follow the training and evaluation protocol established by Zhang
et al. (2024) and Menghini et al. (2023). Specifically, we utilize few samples from the training set
of a dataset as the labelled set and the remaining samples as the unlabelled set. All experiments are
conducted in a 2-shot setup, with ten sessions of iterative pseudo-labelling (50 epochs per session).
The model is optimized using SGD with a learning rate of 0.02 and a batch size of 64. The main
results are reported with the value of q = 5, τ = 0.05, and λ = 1. Results are reported as the
average accuracy and the standard deviation over three runs with random seeds. More details are
provided in Appendix A.1.

4.2 STANDARD SEMI-SUPERVISED LEARNING

First, we present our results on standard semi-supervised learning in a 2-shot setup. The results
of this experiment are presented in Table 1, where we observe that SelfPrompt shows large and
consistent improvements over prior works across the 13 datasets. On average, SelfPrompt achieves
an accuracy of 76.12% with just two labelled samples per class, which is a 4.71% improvement over
the previous SOTA CPL. Notably, SelfPrompt shows up to 10.54% improvement over the previous
SOTA on individual datasets. More importantly, SelfPrompt shows higher improvements on datasets
with lower zero-shot (VLM) accuracies (e.g., FGVCAircraft and MNIST). We also report the results
for visual prompt tuning in Table 2. Similar to textual prompting, SelfPrompt with visual prompt
tuning outperforms CPL by up to 19.50%, with a 6.23%, which is higher than the improvement
with text prompts. On average, SelfPrompt with visual prompt tuning achieves an overall average
accuracy of 73.34%.
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Table 1: Performance across 13 benchmarks on standard semi-supervised tuning with textual prompting. Here,
SelfPrompt is trained with the same random labelled set as existing methods.

Methods Average Flowers102 RESISC45 DTD CUB EuroSAT FGVCAircraft
Zero-shot CLIP 55.17 63.670.00 54.480.00 43.240.00 51.820.00 32.880.00 17.580.00
CoOp 62.28 75.960.74 68.130.55 37.105.45 55.290.59 62.051.64 20.020.77
GRIP 67.40 83.600.48 74.110.68 56.070.79 56.650.33 58.662.64 16.980.20
PromptKD 66.90 84.281.77 77.211.99 55.191.23 57.281.78 59.212.31 14.171.31
CPL 71.41 89.660.36 80.980.11 61.210.56 58.530.24 77.510.80 22.480.63
SelfPrompt 76.12 91.120.31 82.190.19 70.450.68 66.670.18 84.140.11 33.020.72
∆ ↑ 4.71 ↑ 1.46 ↑ 1.21 ↑ 9.24 ↑ 10.14 ↑ 6.63 ↑ 10.54

Caltech101 MNIST Food101 StanfordCars OxfordPets SUN397 UCF101
Zero-shot CLIP 82.010.00 25.100.00 78.810.00 60.290.00 84.320.00 62.540.00 60.420.00
CoOp 84.691.43 58.221.98 76.231.45 58.232.45 82.341.44 62.191.78 69.191.03
GRIP 85.991.06 71.782.59 80.891.14 62.831.42 89.400.33 67.340.98 71.940.95
PromptKD 84.282.11 70.242.01 81.340.99 64.112.45 88.281.97 64.122.56 70.111.95
CPL 92.871.14 75.184.40 79.381.05 61.931.30 87.791.31 66.980.65 73.881.32
SelfPrompt 93.110.91 82.120.35 81.930.16 70.190.32 89.640.47 69.980.19 75.010.43
∆ ↑ 0.24 ↑ 6.94 ↑ 0.59 ↑ 6.08 ↑ 0.24 ↑ 2.64 ↑ 1.13

Table 2: Performance across 13 benchmarks on standard semi-supervised tuning with visual prompting. Here,
SelfPrompt is trained with the same random labelled set as existing methods.

Methods Average Flowers102 RESISC45 DTD CUB EuroSAT FGVCAircraft
Zero-shot CLIP 55.17 63.670.00 54.480.00 43.240.00 51.820.00 32.880.00 17.580.00
VPL 60.02 67.030.65 65.140.25 47.601.09 52.860.42 52.472.53 20.140.26
GRIP 64.77 67.951.20 71.220.77 54.574.86 53.830.11 63.483.09 19.430.50
PromptKD 64.60 68.471.35 70.780.91 55.124.98 54.260.23 64.052.87 18.890.61
CPL 67.11 73.520.37 78.460.74 58.740.81 49.500.42 72.031.24 20.510.68
SelfPrompt 73.34 80.440.51 84.120.32 69.980.68 55.680.28 91.530.14 21.170.71
∆ ↑ 6.23 ↑ 6.92 ↑ 5.66 ↑ 11.23 ↑ 1.85 ↑ 19.50 ↑ 0.65

Caltech101 MNIST Food101 StanfordCars OxfordPets SUN397 UCF101
Zero-shot CLIP 82.010.00 25.100.00 78.810.00 60.290.00 84.320.00 62.540.00 60.420.00
VPL 84.291.51 42.5314.1 78.851.11 61.252.01 84.781.01 62.011.86 61.251.11
GRIP 87.451.21 69.665.51 79.151.32 61.011.12 85.440.39 63.560.90 65.270.99
PromptKD 86.722.34 68.194.87 78.431.56 62.271.67 84.130.58 62.111.12 66.451.03
CPL 91.031.03 71.232.67 77.191.19 62.011.04 86.341.51 64.580.79 67.281.52
SelfPrompt 94.960.91 79.710.47 79.500.30 64.010.30 90.110.47 68.150.18 74.090.43
∆ ↑ 3.93 ↑ 8.48 ↑ 2.31 ↑ 1.75 ↑ 3.77 ↑ 3.57 ↑ 6.81

4.3 ACTIVE SEMI-SUPERVISED LEARNING

Next, we present the performance of SelfPrompt and existing methods in the active semi-supervised
learning setup. For a fair comparison, we augment and reproduce the baselines by incorporating the
same weakly-supervised sampling module used in our approach. As we find from Table 3, Self-
Prompt consistently outperforms priors SOTA across the datasets. On average, SelfPrompt shows
6.25% improvement over existing methods, with up to 13.82% improvements on individual datasets.

Performance on different shots. To further investigate the effectiveness of SelfPrompt in label-
scarce scenarios, we evaluate its performance under various few-shot settings, specifically 1-, 2-,
and 4-shot configurations. The results, presented in Table 4, demonstrate SelfPrompt’s consistent
superiority over the previous SOTA across all few-shot settings. Notably, our performance improve-
ment is more pronounced with fewer labelled samples. For instance, our method achieves an average
accuracy improvement of 7.92% with 2-shots, compared to an 11.78% improvement with a 1-shot
setup. Interestingly, in a few cases, SelfPrompt with 1-shot performs slightly better than 2-shots.
This may occur because increasing the number of labelled samples can in turn increase the number
of initial pseudo-labels selected by our cluster-guided pseudo-labelling module (X+). As we select
p samples per cluster, the likelihood of including incorrect pseudo-labels also increases. While this
issue can be resolved with a dataset-specific hyperparameter for this module, we opt to not resort
to such approaches for more generalizability. Another interesting observation is that CPL’s perfor-
mance, unlike ours, does not improve with additional labelled samples (4-shot) compared to the
2-shot setup, and even degrades by 2.99%, further highlighting the effectiveness of our method.

Performance of pseudo-labelling. In this section, we evaluate the performance of pseudo-labelling
in our proposed SelfPrompt method. As shown earlier in Figure 1 (left), SelfPrompt achieves sig-
nificantly higher pseudo-label accuracy compared to previous methods. The plots are calculated on
the FGVCAircraft dataset, which is the most difficult dataset for the VLM, which is evident from
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Table 3: Performance across 13 benchmarks on active semi-supervised tuning with textual prompting. We have
reproduced the results for previous SOTA methods on this setup.

Methods Average Flowers102 RESISC45 DTD CUB EuroSAT FGVCAircraft
GRIP 69.12 86.590.48 76.880.68 58.700.79 58.190.33 60.082.64 17.450.20
CPL 73.08 91.120.36 82.190.11 63.450.56 60.670.24 78.140.80 22.890.63
SelfPrompt 79.33 93.040.33 85.580.18 72.180.78 68.840.16 87.490.12 36.710.70
∆ ↑ 6.25 ↑ 1.92 ↑ 3.39 ↑ 8.73 ↑ 8.17 ↑ 9.35 ↑ 13.82

Caltech101 MNIST Food101 StanfordCars OxfordPets SUN397 UCF101
GRIP 87.641.06 74.452.59 81.091.14 64.431.42 89.520.33 70.280.98 73.310.95
CPL 92.981.14 76.864.40 81.931.05 65.191.30 89.641.31 69.980.65 75.011.32
SelfPrompt 94.100.92 90.230.36 82.190.17 75.210.33 89.860.48 74.770.18 81.070.44
∆ ↑ 1.12 ↑ 13.37 ↑ 0.26 ↑ 10.02 ↑ 0.22 ↑ 4.49 ↑ 6.06

Table 4: Performance across 13 benchmarks on semi-supervised tuning with textual prompting with varying
numbers of shots.
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1-shot CPL 66.69 89.13 73.44 48.67 52.13 74.63 19.03 92.22 58.62 78.65 58.98 85.51 65.43 70.60
SelfPrompt 78.48 92.47 84.09 71.49 69.57 83.33 36.29 94.74 84.97 82.15 75.81 89.69 74.63 81.06

2-shot CPL 71.41 89.66 80.98 61.21 58.53 77.51 22.48 92.87 75.18 79.38 61.93 87.79 66.98 73.88
SelfPrompt 79.33 93.04 85.58 72.18 68.84 87.49 36.71 94.10 90.23 82.19 75.21 89.86 74.77 81.07

4-shot CPL 68.42 89.88 72.84 53.34 52.77 75.96 19.08 93.38 64.83 78.85 66.23 86.28 65.45 70.62
SelfPrompt 79.48 93.14 85.60 72.19 69.62 87.44 36.75 94.75 90.25 82.36 75.36 89.90 74.79 81.15

the low zero-shot accuracy of the VLM. SelfPrompt achieves higher pseudo-label accuracy from
the very first session, driven by the labelled set selection module, which selects the most represen-
tative samples as the labelled set, and the cluster-guided pseudo-labelling module, which ensures
high-quality pseudo-labels. As the training progresses, after iteration 3, CPL shows a drop in the
pseudo-label accuracy. This results in a sub-optimal test accuracy after iteration 4 (see Figure 1
(right). In contrast, SelfPrompt gradually improves the pseudo-label and test accuracy.

Table 5: Impact of different en-
coders.

Encoder Parameters Accuracy
CLIP-B/32 151.3 M 79.33
CLIP-B/16 149.6 M 82.03
CLIP-L/14 427.6 M 86.54

Performance on different backbones. Previously, we presented our
main results using the CLIP-B/32 backbone, following (Menghini
et al., 2023; Zhang et al., 2024). In this section, we further evalu-
ate the versatility of SelfPrompt by exploring its performance across
various encoder architectures as backbones. Specifically, we eval-
uate CLIP-B/32, CLIP-B/16, and CLIP-L/14 as encoders for our
method. As shown in Table 5, SelfPrompt exhibits strong gener-
alizability across different encoder sizes, including the large-scale CLIP-L/14 with 427.6 million
parameters. Utilizing CLIP-L/14 as the backbone achieves an accuracy of 86.54%, representing a
7.21% improvement over the default encoder.

4.4 BASE-TO-NOVEL GENERALIZATION

Base-to-novel generalization is a widely adopted evaluation protocol in the few-shot tuning litera-
ture (Zhou et al., 2022a). This setup involves fine-tuning the VLM on a subset of classes with a
few labelled samples and evaluating its performance on the seen classes, as well as its zero-shot
performance on the unseen classes. We evaluate our proposed solution on the evaluation protocol
of PromptKD (Li et al., 2024) by utilizing the unlabelled data along with the labelled data. Table 6
presents the results of our experiments and their comparison to prior works in a 2-shot evaluation
setup. As we observe in this table, SelfPrompt shows an average improvement of 4.9% in the har-
monic mean over the prior works. SelfPrompt not only improves the performance of the seen classes
but also improves the generalization of the unseen (novel) classes. Specifically, the improvement on
the base and novel classes are 5.9% and 4.0% on average. More importantly, SelfPrompt shows
greater improvements on the datasets where prior works, as well as the pre-trained VLM, show sub-
optimal performances. For example, SelfPrompt shows a 9.5% improvement on the FGVCAircraft
dataset, where the accuracy of the pre-trained CLIP is only 31.1%.

Qualitative analysis. We present a qualitative analysis of our weakly supervised sampling module
and cluster-guided pseudo-labelling module in Figure 4. As shown in Figure 4 (left), most confi-
dent samples distinctly represent their corresponding classes, and thus may not provide additional
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Table 6: Comparison with existing methods on base-to-novel generalization in a 2-shot training setup. The
notation “ul.” indicates that the method is trained using both the unlabeled set and the labeled set.

(a) Average.
ViT-B/16 ul. Base Novel HM
CLIP ✗ 69.3 74.2 71.7
Co-CoOp ✗ 71.9 73.4 72.6
MaPLe ✗ 74.9 73.3 74.0
PromptSRC ✗ 78.1 74.7 76.3
CoPrompt ✗ 74.2 72.4 73.1
PromptKD ✓ 79.7 76.8 78.1
SelfPrompt ✓ 85.6 80.8 83.0
∆ ↑ 5.9 ↑ 4.0 ↑ 4.9

(b) ImageNet
ViT-B/16 ul. Base Novel HM
CLIP ✗ 72.4 68.1 70.2
Co-CoOp ✗ 72.5 69.1 70.8
MaPLe ✗ 75.5 70.5 72.9
PromptSRC ✗ 75.2 69.8 72.4
CoPrompt ✗ 74.7 70.9 72.8
PromptKD ✓ 75.3 70.8 73.0
SelfPrompt ✓ 75.6 71.3 73.4
∆ ↑ 0.1 ↑ 0.4 ↑ 0.4

(c) Caltech101
ViT-B/16 ul. Base Novel HM
CLIP ✗ 96.8 94.0 95.4
Co-CoOp ✗ 93.7 93.3 93.5
MaPLe ✗ 96.3 96.2 96.2
PromptSRC ✗ 97.0 94.4 95.7
CoPrompt ✗ 97.7 95.6 96.6
PromptKD ✓ 98.1 96.5 97.3
SelfPrompt ✓ 99.1 96.3 97.7
∆ ↑ 0.4 ↓ 0.2 ↑ 0.4

(d) OxfordPets
ViT-B/16 ul. Base Novel HM
CLIP ✗ 91.1 97.2 94.1
Co-CoOp ✗ 93.3 97.8 95.5
MaPLe ✗ 90.1 91.1 90.6
PromptSRC ✗ 94.9 96.8 95.8
CoPrompt ✗ 92.0 96.8 94.3
PromptKD ✓ 96.1 97.1 96.6
SelfPrompt ✓ 96.3 98.1 97.2
∆ ↑ 0.2 ↑ 0.3 ↑ 0.6

(e) StanfordCars
ViT-B/16 ul. Base Novel HM
CLIP ✗ 63.3 74.8 68.6
Co-CoOp ✗ 64.5 73.4 68.7
MaPLe ✗ 67.8 74.5 71.0
PromptSRC ✗ 67.8 74.2 70.9
CoPrompt ✗ 64.9 72.9 68.7
PromptKD ✓ 77.1 84.1 80.4
SelfPrompt ✓ 80.4 84.2 82.3
∆ ↑ 3.3 ↑ 0.1 ↑ 1.9

(f) Flowers102
ViT-B/16 ul. Base Novel HM
CLIP ✗ 72.0 77.8 74.8
Co-CoOp ✗ 78.6 76.0 77.3
MaPLe ✗ 85.9 75.8 80.5
PromptSRC ✗ 89.9 77.8 83.4
CoPrompt ✗ 80.0 72.8 76.2
PromptKD ✓ 87.2 73.5 79.8
SelfPrompt ✓ 99.1 81.6 89.5
∆ ↑ 9.2 ↑ 3.8 ↑ 6.1

(g) Food101
ViT-B/16 ul. Base Novel HM
CLIP ✗ 90.1 91.2 90.6
Co-CoOp ✗ 90.5 91.3 90.9
MaPLe ✗ 89.6 90.1 89.8
PromptSRC ✗ 89.2 91.2 90.2
CoPrompt ✗ 87.2 91.3 89.2
PromptKD ✓ 90.9 92.7 91.8
SelfPrompt ✓ 92.4 93.6 93.0
∆ ↑ 1.5 ↑ 0.9 ↑ 1.2

(h) FGVCAircraft
ViT-B/16 ul. Base Novel HM
CLIP ✗ 27.2 36.3 31.1
Co-CoOp ✗ 30.3 37.1 33.4
MaPLe ✗ 32.9 35.8 34.3
PromptSRC ✗ 33.1 33.3 33.2
CoPrompt ✗ 26.0 17.1 20.6
PromptKD ✓ 16.8 12.3 14.2
SelfPrompt ✓ 44.5 43.2 43.8
∆ ↑ 11.4 ↑ 6.1 ↑ 9.5

(i) SUN397
ViT-B/16 ul. Base Novel HM
CLIP ✗ 69.4 75.4 72.2
Co-CoOp ✗ 73.3 77.8 75.5
MaPLe ✗ 75.6 76.3 75.9
PromptSRC ✗ 78.0 77.2 77.6
CoPrompt ✗ 78.7 78.7 78.7
PromptKD ✓ 80.2 80.8 80.5
SelfPrompt ✓ 84.3 81.6 82.9
∆ ↑ 4.1 ↑ 0.8 ↑ 2.4

(j) DTD
ViT-B/16 ul. Base Novel HM
CLIP ✗ 53.2 59.9 56.4
Co-CoOp ✗ 61.1 53.4 57.0
MaPLe ✗ 63.7 60.4 62.0
PromptSRC ✗ 71.9 55.3 62.5
CoPrompt ✗ 65.2 60.5 62.8
PromptKD ✓ 80.2 67.0 73.0
SelfPrompt ✓ 86.0 64.3 73.6
∆ ↑ 5.8 ↓ 2.7 ↑ 0.6

(k) EuroSAT
ViT-B/16 ul. Base Novel HM
CLIP ✗ 56.5 64.1 60.0
Co-CoOp ✗ 59.1 66.8 62.7
MaPLe ✗ 68.2 60.6 64.2
PromptSRC ✗ 80.6 75.5 78.0
CoPrompt ✗ 68.8 60.1 64.2
PromptKD ✓ 88.4 89.1 88.7
SelfPrompt ✓ 96.4 93.3 94.8
∆ ↑ 8.0 ↑ 4.2 ↑ 6.1

(l) UCF101
ViT-B/16 ul. Base Novel HM
CLIP ✗ 70.5 77.5 73.9
Co-CoOp ✗ 74.2 71.9 73.0
MaPLe ✗ 78.6 75.5 77.0
PromptSRC ✗ 81.9 77.0 79.4
CoPrompt ✗ 81.1 79.3 80.2
PromptKD ✓ 86.3 80.4 83.2
SelfPrompt ✓ 87.8 81.1 84.3
∆ ↑ 1.5 ↑ 0.7 ↑ 1.1

information is used to fine-tune the VLM. In contrast, low-confidence samples lack a clear visual
representation of the desired class objects, and therefore their inclusion in the labelled set may not
effectively aid the model’s learning process. Figure 4 (middle) depicts the diverse set of samples se-
lected by our model. Finally, Figure 4 (right) shows one example of clutter-guided pseudo-labelling,
where samples close to the clutter centers are visually and semantically similar to the labelled sam-
ple, and can be assigned to the same pseudo-labels.

4.5 ABLATION

Table 7: Ablation study. W.S.S., C.G.P.,
and C.A.SSL correspond to weakly-
sup sampling, cluster-guided pseudo-
labelling, and confidence-aware SSL.

W.S.S. C.G.P. C.A.SSL Accuracy
✓ ✓ ✓ 79.33
✗ ✓ ✓ 76.12
✓ ✗ ✓ 74.39
✓ ✓ ✗ 78.01
✗ ✗ ✓ 73.49
✗ ✓ ✗ 75.67
✓ ✗ ✗ 73.08
✗ ✗ ✗ 71.41

We present an ablation study on our proposed method in Ta-
ble 10. Here, W.S.S., C.G.P., and C.A.SSL correspond to
the three modules of our proposed solution, namely, weakly-
supervised sampling, cluster-guides pseudo-labelling, and
confidence-aware semi-supervised learning. The results are
reported as the average accuracy over all datasets. Here,
our model has an average accuracy of 79.33% (also shown
in Table 1), while removing all three components results in
an accuracy of 71.41%. As we find from this table, cluster-
guides pseudo-labelling has a high impact on the overall per-
formance, removing of which results in a 4.94% drop in the
performance. This is also evident from the fact including only
this component shows a 4.26% improvement over the baseline. Next, removing weakly-supervised
sampling shows a 3.21% drop in performance, while removing confidence-aware semi-supervised
learning shows a 1.32% drop in performance. Another notable observation is that including weakly-
supervised sampling alone provides a 1.61% improvement, but including it with cluster-guides
pseudo-labelling shows an additional 2.34% improvement. These findings suggest that selecting
a more representative set of labelled samples also improves the pseudo-label quality of the clutter-
guided pseudo-labelling module.

Next, we present a comprehensive set of experiments on different components of our method. First,
we study the performance of different clustering methods for the weakly-supervised sampling mod-
ule. To this end, we explore k-means, k-means++, and Bisecting k-means++ as the clustering
method. The results of this study are presented in Table 8a. We find from this study that SelfPrompt
is not very sensitive to the choice of clustering algorithm, as all three clustering methods show simi-
lar performances, with the best accuracy being 79.35%. Next, Table 8b presents a study on filtering
using different confidence intervals, using different quantiles q = 3, 5, and 20, during step 1 of our

9
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Table 8: Sensitivity analysis of different components of SelfPrompt, averaged across 13 datasets.
(a) Cluster algo.

Method Accuracy

k-means 79.33
k-means++ 79.35
Bi. km++ 79.29

(b) Filtering thresh.

q Accuracy

3 78.25
5 79.33

10 79.12
20 78.75

(c) Cluster samples

p Accuracy

5 77.01
20 79.03
50 79.33
75 79.31

(d) Sup. samples

τ Accuracy

0.05 79.33
0.10 79.10
0.20 79.01

A diverse set of samples selected 
as the labelled set

Samples close to the 
cluster center

A photo of a fish
A photo of a cat

A photo of a fish
A photo of a cat

A photo of a fish
A photo of a cat

A photo of a fish
A photo of a cat

True label: fish True label: fish

True label: catTrue label: cat

Figure 4: Qualitative analysis of weakly-supervised sampling and cluster-guided
pseudo-labelling with two classes (fist and cat). (left) Illustrations of the most con-
fident samples, which provide minimal information gain, alongside the least con-
fident samples, which are less representative of their respective classes. (middle)
Examples of selected samples demonstrating high semantic diversity. (right) Sam-
ples close to the cluster centers) exhibit high visual and semantic similarity.

weakly supervised
sampling module.
Here, q = 20 in-
dicates that the
unlabeled dataset
is divided into 20
quantiles and removes
the lowest and highest
5% of samples while
retaining 90% of the
samples. Here, we
observe that the best
result is obtained
when we filter the
most and least confi-
dent 20% of samples (q = 5), indicating that discarding of more low-confidence samples improves
performance. Next, we study the impact of the number of pseudo-labels (p) selected with the
cluster-guided pseudo-labelling approach. Specifically, we study the performance of selecting
5, 20, and 50 samples per cluster. The results are presented in Table 8c, where we observe that
performance improves as the number of samples per cluster increases. We specifically observe
a significant improvement when increasing the number of samples from 5 to 20, with the best
performance achieved at 50 samples per cluster. Finally, we study the performance of selecting
different portions of most confident samples (τ ) as the labelled set. The results are presented in
Table 8d, where the best performance is achieved when selecting the most confident 5% of the
sample (τ = 0.05) as pseudo-labels.

4.6 COMPUTATIONAL COMPLEXITY

Table 9: Time complexity.

Method Tr. time (H)
CPL 2:04
SelfPrompt 2:10

In this section, we discuss the computational complexity of our proposed
solution. Since we do not change the model architecture or the parame-
ters, our model is as efficient as prior works such as (Zhang et al., 2024)
during inference. In the training stage, our proposed solution introduces
some additional computations at the beginning of the training due to the
introduction of sample selection and the pseudo-labelling strategy. Here,
the algorithm requires the representations for all the unlabelled samples. The computational cost of
this step is equivalent to a forward pass over all the unlabelled samples with the pre-trained encoder,
which adds a negligible computational cost compared to the overall training process. The clustering
process is also a small one-time operation at the beginning of the training. Overall, the training time
of SelfPrompt is on par with the previous SOTA CPL (see Table 9 for training time on EuroSAT).

5 CONCLUSION

In this paper, we propose SelfPrompt, a novel prompt-tuning approach for vision-language mod-
els in semi-supervised setups. Our method addresses three key limitations of prior works: under-
utilization of the limited label-set budget, reliance on miscalibrated VLMs for pseudo-labelling, and
the accumulation of noisy pseudo-labels. We demonstrate SelfPrompt’s superior performance across
13 datasets, showing an average improvement of 6.23% in standard semi-supervised learning, 6.25%
in active semi-supervised learning, and 4.9% in base-to-novel generalization tasks compared to prior
methods. Notably, SelfPrompt achieves significant improvements with as few as one labelled sample
per class. Our extensive evaluations highlight the effectiveness of our proposed solution in adapting
VLMs to downstream tasks with limited labelled data, paving the way for real-world applications
where data annotation is a critical bottleneck.
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A APPENDIX

A.1 EXPERIMENT SETUP

Datasets. Following Zhang et al. (2024) and Menghini et al. (2023) we use Flower102 (Nilsback
& Zisserman, 2008), Resisc-45 (Cheng et al., 2017), DTD (Cimpoi et al., 2014), CUB-200 (Wah
et al., 2011), EuroSAT (Helber et al., 2019), FGVCAircraft (Maji et al., 2013), and MNIST (Deng,
2012). Additionally, we use the following 6 datasets, bringing the total to 13 datasets: Caltech101
(Fei-Fei et al., 2004), Food101 (Bossard et al., 2014), StanfordCars (Krause et al., 2013), SUN397
(Xiao et al., 2010), OxfordPets (Parkhi et al., 2012), UCF101 (Soomro et al., 2012).

Protocol. For evaluating the proposed solution, we closely follow the training and evaluation pro-
tocol established by Zhang et al. (2024) and Menghini et al. (2023). Specifically, we utilize a few
samples from the training set of a dataset as the labelled set and the remaining samples as the unla-
belled set, followed by the assessment of the trained model on the test set.

Implementation details. Following Zhang et al. (2024) and Menghini et al. (2023) we adopt a
CLIP ViT-B/32 (Radford et al., 2021) as the pre-trained backbone of our model. All experiments are
conducted in a 2-shot setup, with ten sessions of iterative pseudo-labelling (50 epochs per session).
The model is optimized using SGD with a learning rate of 0.02 and a batch size of 64. The main
results are reported with the value of q = 5, τ = 0.05, and λ = 1. Results are reported as the average
accuracy and the standard deviation over three runs with random seeds. Training is performed on a
single Nvidia V100 GPU.

A.2 DISCUSSION

Table 10: Comparison of different settings for weakly-
supervised sampling.

Setting Accuracy
Ours (removes both high- and low-confidence samples) 73.08
Removing only the low-confidence samples 72.03
Removing only the high-confidence samples 72.43
Keeping only the high-confidence samples 71.78
Keeping only the low-confidence samples 72.55

The primary reason for excluding both
high-confidence and low-confidence sam-
ples is that retaining high-confidence sam-
ples (in the labelled set) results in rep-
resentations that fail to generalize effec-
tively to distributions outside the selected
labelled set. Previous works, such as (Roy
& Etemad, 2024; Sarkar et al., 2024) have
demonstrated that overconfidence on a spe-
cific distribution hinders effective generalization. This issue is particularly pronounced when the
model has not been fine-tuned on the distribution of the specific downstream task. Accordingly,
we hypothesize that selecting a more diverse and representative set of samples and excluding both
high- and low-confidence samples would improve generalization. To validate this hypothesis, we
conduct experiments comparing the outcomes of different sampling strategies: (a) removing only
the low-confidence samples, (b) removing only the high-confidence samples, (c) keeping only the
high-confidence samples, and (d) keeping only the low-confidence samples. The results averaged
across all datasets with q = 5, are presented below. These experiments were performed using only
the weakly-supervised sampling module to isolate the behaviour of this specific module. As we find
from Table 10, excluding both the high- and low-confidence samples yields the best performance.
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A.3 ALGORITHM

Algorithm 1 SelfPrompt
1: Input: Unlabelled set U with M samples, label budget N , pre-trained VLM (θ, ϕ), learnable

prompt P , number of sessions S, hyper-parameters t, number of clusters N , pseudo-labels per
cluster p

2: // Filtering with weak supervision
3: for each xi ∈ U do
4: Compute the class probability distribution using Eq. 1 as: pi = [p1i , p

2
i , · · · , pCi ]

5: Compute confidence scores, ci = max1≤c≤C(p
c
i )

6: end for
7: Sort samples in descending order of ci and divide into q quantiles, {Q1, Q2, · · ·Qq}.
8: Remove samples from first and last quantiles to get Dfiltered =

⋃q−1
k=2 Qk

9: // Diversity Sampling
10: Extract embeddings zi = θ(xi) for xi ∈ Dfiltered.
11: Perform k-means clustering on {zi} to form N clusters {C1, C2, . . . , CN}.
12: Select a sample from each cluster j, x∗

j = argminxi∈Cj
∥zi − µj∥2 for j = 1, . . . , N , where

µj is the cluster center.
13: Form labelled set XL = {(x∗

1, y1), (x
∗
2, y2), . . . , (x

∗
N , yN )}.

14: // Cluster-guided pseudo-labelling
15: for j = 1 to N do
16: Select p additional samples per cluster Cj nearest to the cluster center x∗

j .
17: Assign cluster label to selected samples: Pj = {(xjk, yj)}pk=1
18: end for
19: Create pseudo-label set: Xp =

⋃
j Pj

20: // Confidence-aware semi-supervised learning
21: for s = 1 to S do
22: if s == 1 then continue
23: end if
24: Predict probability distribution, pi = f(xi) ∈ RC , for xi ∈ U

25: Update X+ as, X+ = XP ∪
(⋃C

c=1 topt({xi| argmax(pi) = c})
)

26: Form weakly-labelled set: Xweak = {(xi, si) | xi ∈ U \ X+}
27: Train VLM using loss:

Lfinal =
1

|XL|
∑

(x,y)∈XL

ℓ(f(x), y) +
1

|X+|
∑

(x,y)∈X+

ℓ(f(x), y) +
λ

|Xweak|
∑

(x,s)∈Xweak

ℓw(f(x), s)

28: end for
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