
Under review as a conference paper at ICLR 2023

ADVERSARIALLY ROBUST NEURAL LYAPUNOV
CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

State-of-the-art learning-based stability control methods for nonlinear robotic sys-
tems suffer from the issue of reality gap, which stems from discrepancy of the
system dynamics between training and target (test) environments. To mitigate
this gap, we propose an adversarially robust neural Lyapunov control (ARNLC)
method to improve the robustness and generalization capabilities for Lyapunov
theory-based stability control. Specifically, inspired by adversarial learning, we
introduce an adversary to simulate the dynamics discrepancy, which is learned
through deep reinforcement learning to generate the worst-case perturbations dur-
ing the controller’s training. By alternatively updating the controller to minimize
the perturbed Lyapunov risk and the adversary to deviate the controller from its
objective, the learned control policy enjoys a theoretical guarantee of stability.
Empirical evaluations on five stability control tasks with the uniform and worst-
case perturbations demonstrate that ARNLC not only accelerates the convergence
to asymptotic stability, but can generalize better in the entire perturbation space.

1 INTRODUCTION

Designing a stable and robust controller to stabilize nonlinear dynamical systems has long been a
challenge. Lyapunov stability theory performs a fairly significant role in the controller design for
stability control of robotic systems (Uddin et al., 2021; Sharma & Kumar, 2020; Liu et al., 2020b;
Norouzi et al., 2020; Pal et al., 2020). However, many previous approaches are restricted to the poly-
nomial approximation of system dynamics (Kwakernaak & Sivan, 1969; Parrilo, 2000), and suffer
from sensitivity issues when searching for the Lyapunov functions (Löfberg, 2009). Recently, by
leveraging deep learning-based methods, some works have successfully incorporated the Lyapunov
stability theory with the powerful expressiveness of neural networks and convenience of gradient
descent for network learning (Chang et al., 2019; Abate et al., 2020; Mehrjou et al., 2021; Dawson
et al., 2022). One outstanding method among them is the neural Lyapunov control (NLC) (Chang
et al., 2019), where both the Lyapunov function and controller policy are approximated by neural
networks. In NLC, the networks are trained by minimizing a Lyapunov risk stemmed from the Lya-
punov stability theorem. Nevertheless, most existing learning-based controller are trained without
any distinction between the training and test environments (Cobbe et al., 2019; Witty et al., 2021).
Since the training simulator cannot perfectly model the target environment for testing, a reality gap
will incur inevitably by such a modelling error (i.e., discrepancy of system dynamics), which de-
grades the performance of controller at the actual deployment. Hence, learning-based controller
needs to consider the uncertainty of physical parameters (or external forces) that may cause the
modelling error (Liu et al., 2020a; Garg & Panagou, 2021; Islam et al., 2015; Zhao et al., 2020).
Motivated by this, we focus in this paper on addressing the challenging problem of learning a con-
troller to stabilize the nonlinear dynamical system in face of such a modelling error.

Over the years, several approaches have already been proposed to alleviate the controller’s per-
formance degradation incurred by modelling errors. The majority of them is built upon another
splendid learning-based control method: deep reinforcement learning (RL) (Sutton & Barto, 2018;
Schulman et al., 2017b). These deep RL-based control methods treat the modeling error as an extra
disturbance to the system (Başar & Bernhard, 2008), and have achieved a great success in control-
ling (Pinto et al., 2017; Tessler et al., 2019; Zhang et al., 2020; 2021; Mankowitz et al., 2020). For
example, in robust adversarial reinforcement learning (RARL), the policy learning is formulated as
a zero-sum game between the controller and an adversary that generates disturbances to the system,

1

Under review as a conference paper at ICLR 2023

where the learned controller is proved to have improved capability of robustness and generalization.
Since RL methods train policies by maximizing the sum of expected rewards that the agent obtains
during the interaction with environment, its performance depends greatly on the manually designed
reward function while the learned policy is sensitive to the preset control interval (Tallec et al., 2019;
Park et al., 2021). Hence, RL is prone to fail in the control tasks with a relatively small control in-
terval, as will later be verified in our experiments. While our aim is to find the control policy that
can enable a stable control, which is also robust to the choice of control intervals.

In this paper, we present a novel method that can automatically learn robust control policies with a
provable guarantee of stability. Specifically, we formulate a perturbed Lyapunov risk for learning a
controller in the dynamical system, which is imposed with the adversary’s perturbations in a certain
range. To train the controller policy to resist to the worst-case perturbations within that range, we
formulate the learning of adversary as a Markov decision process (MDP), and train the adversary
policy by proximal policy optimization (PPO). In the case of known system dynamics, the action
space in the MDP can be the range of external forces or space of physical parameters, which causes
the modelling error. More practically for the unknown dynamics, the original NLC no longer works
since update of the networks is infeasible without prior knowledge of the system dynamics. We
therefore train an environment model by sampling from the system, while the adversary’s action
is set as the offset to the output of this environment model. We further formulate an adversarially
robust controller learning problem, which is approximately solved by alternatively updating the
controller policy with Lyapunov methods and the adversary policy by PPO. Our contributions can
be summarized as follows.

• We propose a perturbed Lyapunov risk for learning the control policy under perturbations.
• We formulate an optimization problem for adversarially robust controller learning, to learn a

policy in face of the worst-case perturbations that are imposed by the RL-trained adversary.
• We propose an adversarially robust neural Lyapunov control (ARNLC) approach to approxi-

mately solve this problem, and demonstrate its performance on several stability control tasks.

2 RELATED WORK

Adversarial training. The idea of viewing the gap between training and test scenarios as an extra
disturbance of the system was first proposed in Morimoto & Doya (2005), with the problem formu-
lated as finding a min-max solution of the value function that takes the perturbations into account.
Inspired by Morimoto & Doya (2005), Pinto et al. (2017) propose the robust adversarial reinforce-
ment learning (RARL), where an adversary is learned simultaneously to prevent the agent from
accomplishing its goal, while the agent’s policy and the adversary policy are trained alternately.
Zhang et al. (2020) propose robust reinforcement learning based on perturbations on state observa-
tions, introducing an adversary to apply disturbances on the state observations of the agent. Tessler
et al. (2019) focus on a scenario where the agent attempts to perform an action, which behaves dif-
ferently from expected due to disturbances. All of the above literature mainly studies training the
adversary for RL settings, while our focus in this work is on introducing adversarial training to the
Lyapunov stability control.

Neural Lyapunov stability control. Chang et al. (2019) propose the neural Lyapunov control,
which uses neural networks to learn both the control and Lyapunov functions for nonlinear dynam-
ical systems based on the Lyapunov stability theory. Saha et al. (2021) learn a control law that
stabilizes an unknown nonlinear dynamic system. However, it needs to design a Lyapunov func-
tion manually. Dawson et al. (2022) also propose an approach for learning the robust nonlinear
controller based on the robust convex optimization and Lyapunov theory, achieving generalization
beyond system parameters seen during the training process. However, this approach only considers
the control-affine dynamical systems, not the more general nonlinear ones. In this work, we focus
on improving the robustness and generalization for control policies of nonlinear dynamical systems.

Robust model predictive control (Robust MPC). Robust MPC is another research branch to deal
with the uncertainty in physical parameters (Sun et al., 2018; Hu & Ding, 2019; Köhler et al., 2021).
It looks for the optimal feedback law among all the feasible feedback laws within a given finite
horizon, in terms of a given control performance criterion at every sampling instant (Houska &
Villanueva, 2019). However, it is usually restricted to the additive disturbances (Löfberg, 2003) and
is computationally expensive (Bemporad & Morari, 1998).

2

Under review as a conference paper at ICLR 2023

3 PRELIMINARIES AND BACKGROUND

We consider a continuous-time, time-invariant nonlinear dynamical system of the form:

ẋt = f(xt, at), (1)

where xt ∈ X ⊆ Rn is the state and at ∈ A ⊆ Rm is the control input at time t, respectively,
and ẋt denotes the first-order time derivative of xt. The system is feedback controlled by a policy
function: at = π(xt). We aim to stabilize this system at an equilibrium point x = 0 ∈ X , by finding
a policy to build a closed-loop controlled dynamical system ẋt = fπ(xt) with fπ(0) = 0, such that
the equilibrium point x = 0 achieves asymptotic stability as defined below.
Definition 1 (Asymptotic stability in the sense of Lyapunov (Lavretsky & Wise, 2013)). The
equilibrium point x = 0 of fπ is stable in the sense of Lyapunov if ∀ε > 0, ∀t0 > 0, there exists
δ(ε) > 0 such that if ∥x(t0)∥ ≤ δ(ε) then ∥x(t)∥ ≤ ε for all t ≥ t0. The equilibrium point x = 0
of fπ is asymptotically stable if it is stable and there exists a positive constant c = c(t0) such that
x(t) → 0 as t → ∞, for all ∥x(t0)∥ ≤ c.

3.1 STABILITY GUARANTEE WITH LYAPUNOV FUNCTIONS

Lyapunov stability theory provides an elegant way to guarantee the stability, as follows.
Theorem 1 (Lyapunov stability theorem (Lavretsky & Wise, 2013)). Suppose fπ : X → Rn is
locally Lipschitz in X ⊆ Rn. For a continuous-time controlled dynamical system fπ , if there exists
a continuous function V : X → R such that

V (0) = 0; and V (x) > 0, ∀x ∈ X − {0}; and V̇ (x) < 0; (2)

then the system is asymptotically stable at x = 0, where V is called a Lyapunov function.

The time derivative of V (x) can be derived as V̇ (x) =
∑n

i=1
∂V
∂xi

ẋi =
∑n

i=1
∂V
∂xi

[fπ]i(x), which
depends on both V (x) and the controlled dynamics fπ . Theorem 1 then states that the trajectories
of the system’s state will eventually reach the equilibrium x = 0, if we can design a control policy
π such that the Lyapunov function V (x) exists and satisfies the conditions in Eq. (2).

3.2 NEURAL LYAPUNOV CONTROL

Neural Lyapunov control (NLC) (Chang et al., 2019) leverages neural networks to approximate both
the control policy π and Lyapunov function Vθ(x), which are parameterized by θπ and θ, respec-
tively. The network parameters π and Vθ(x) are learned by minimizing the following Lyapunov
risk:

Lρ (θ, θ
π) = Ex∼ρ(X)

(
max(0,−Vθ(x)) + max(0, V̇θ(x)) + V 2

θ (0)

)
, (3)

where x is a random variable following a uniformly random distribution ρ over the state space
X . In its physical meaning, this Lyapunov risk quantifies the degree of violation of the Lyapunov
conditions in Eq. (2) over the state space X , given a certain policy and Lyapunov function.

4 ADVERSARIALLY ROBUST NEURAL LYAPUNOV CONTROL

In this paper, we aim to narrow down the reality gap incurred by the modelling discrepancy in the
system dynamics f between training and test environments, by learning a policy of controller µ
that is better stabilizing the system (i.e., achieving the asymptotic stability faster) and more robust
(i.e., resisting to variations of the system dynamics). Specifically, we consider modeling such a
discrepancy by an adversary, with the system function given by:

ẋt = f(xt, a
µ
t , a

ν
t), (4)

where aµt ∈ A and aνt ∈ Aadv are the controller’s action and adversary’s action at time t following
their policies πµ and πν , respectively, while the rest notations follow the definition in Eq. (1). In
view of the controller, aνt imposes a variation to and makes the dynamics f time-varying, which
can be rewritten as ẋt = fπν(xt)(xt, a

µ
t). Hence, introducing the adversary ν imposes a time-

varying modelling error to Eq. (1) during training of the controller. A practical example is where

3

Under review as a conference paper at ICLR 2023

the controller is applied to manipulate locomotion of a robot outdoor, while the adversary may be
the weather that produces unpredictable wind or rain to disturb this controller. Note that the system
dynamics in view of the controller reduces to Eq. (1) when aνt = πν(xt) = 0 for any time t. In this
section, we propose the adversarially robust neural Lyapunov control (ARNLC) method to train a
policy πµ for the controller µ, such that the system governed by Eq. (4) is stabilized in face of the
adversary ν.

4.1 PERTURBED CONTROLLER LEARNING

In our adversarial control setting, both the controller µ and adversary ν observe the system state xt at
time t, and then take actions aµt ∼ πµ(xt) and aνt ∼ πν(xt). After that, the system evolves according
to Eq. (4). Here, we utilize neural networks to learn the controller policy πµ(xt), adversary policy
πν(xt) and candidate Lyapunov function Vθ(x), as parameterized by θµ, θν and θ, respectively. Our
objective is to leverage the Lyapunov stability theory to find a controller policy πµ that can achieve
the stability of system in the presence of a certain adversary. Namely, the resulting closed-loop
controlled dynamical system ẋt = fπµ,πν

(xt) is asymptotically stable at the equilibrium point x =
0. Motivated by this, our proposed ARNLC seeks to minimize the following perturbed Lyapunov
risk w.r.t. θ and θµ, to update the controller policy together with the candidate Lyapunov function.
Definition 2 (Perturbed Lyapunov risk for controller). We consider a candidate Lyapunov func-
tion Vθ for a continuous-time dynamical system in Eq. (4). In the presence of an adversary policy
πν parameterized by θν , the perturbed Lyapunov risk for the controller µ is defined by:

Lρ (θ, θ
µ, θν) = Ex∼ρ(X)

(
max(−Vθ(x), 0) + max(0, V̇θ(x)) + V 2

θ (0)

)
, (5)

where ρ(X) is the state distribution, and V̇θ(x) =
∑n

i=1
∂Vθ

∂xi
[fπµ,πν]i(x).

The learning of πµ and Vθ can then be formulated as the following optimization problem:

min
θ,θµ

Lρ(θ, θ
µ, θν), s.t. ẋ = f(x, aµ, aν), aµ ∼ πµ, a

ν ∼ πν . (6)

This perturbed Lyapunov risk Lρ differs from the conventional Lyapunov risk in that the time deriva-
tive V̇θ(x) now depends on fπµ,πν

instead of fπ , which makes the closed-loop dynamical system
time-varying for the controller. In practice, we use the following empirically perturbed Lyapunov
risk, which is an unbiased estimator of Eq. (6):

Ln,ρ (θ, θ
µ, θν) =

1

N

N∑
i=1

(
max(−Vθ(xi), 0) + max(0, V̇θ(xi)) + V 2

θ (0)

)
. (7)

However, this practical estimator cannot guarantee satisfaction of the conditions in Theorem 1 on the
entire state space X . We thus apply additionally a falsifier to constantly find the counter-examples
that violate these conditions during the training process, which is a common strategy also used in
NLC. Specifically, the falsifier finds counter-example states according to the following criterion:

Vθ(x) ≤ 0 ∨ V̇θ(x) ≥ 0, ∀x ∈ X − {0}, (8)

which specifies the negation of conditions in Eq. (2). During the training of πµ and Vθ, the falsifier
constantly finds counter-examples and adds them into the training dataset.

4.2 ADVERSARY LEARNING

Compared with the conventional Lyapunov risk in Eq. (3), the perturbed counterpart Lρ presents
some new challenges to the learning of controller policy. Due to the perturbation from adversary,
the dynamical system in view of the controller becomes time-varying, which prevents the learning
of its policy πµ from reaching the stability as will be shortly shown in experiments. Inspired by
the idea of adversarial training, the proposed ARNLC leverages reinforcement learning method to
train the adversary policy. The intuition behind is that if we can train a controller under the worst-
case perturbation (which degrades the performance of its policy to the most) in a certain range, the
controller then obtains a conservative policy that is robust to any perturbation within that same range.

4

Under review as a conference paper at ICLR 2023

We formulate training of the adversary as a discrete-time Markov decision process (MDP) with
a fixed control interval, defined as the tuple (X ,Aadv,A,P, r, γ), where γ is the discount factor.
The adversary agent observes the system state x ∈ X at each time step and takes action aν ∈ Aadv ,
while the controller acts aµ ∈ A. The system then evolves to the next state x′ according to transition
probability P(·|x, aµ, aν) between time steps, and the adversary agent receives reward r(x, aµ, aν).

Adversary’s action design. Depending on whether or not the system dynamics f can be accessed,
ARNLC applies different action design for the adversary agent. i) For known dynamics f , the
action space Aadv of adversary can be range of the external disturbing force or space of the envi-
ronment parameters, which changes the system dynamics in view of the controller. The adversary
action can then be directly imposed on the system, which simulates the external force (e.g., strong
wind) and change of environment parameters (e.g., friction coefficient) that the controller may en-
counter in the test environment. ii) For unknown dynamics f , NLC is unable to back propagate
the gradients to update πµ and Vθ, since f is required to compute Lρ. Alternatively, we use super-
vised learning to train an environment model Mη that is approximated by the neural network for
the unknown dynamical system. Then, πµ and Vθ can be updated by the gradients of Mη . Since
coefficients of Mη do not have a clear physical meaning of the environment (which are weights and
biases of the network), we define actions of the adversary as the additive error to the output of Mη .
However, perturbations imposed by the adversary’s action may lead to an unstable training, or even
the non-existence of an asymptotically stable equilibrium. Hence, we limit the adversary’s action to
a certain range, which can be tuned practically to balance the stable training and adversary learning.

Adversary’s reward design. Adversary should be assigned a higher reward if it leads the system
to an unstable state at each time step, which is contrary to the controller’s goal. For example, in the
task where we aim to design a controller to swing the pendulum into a upright position, the reward
of the adversary can be set as the square of the normalized angle between the pendulum and the
vertical direction. The reward functions for training the adversary in all the tasks used in the paper
are shown in Table A-3 in Appendix A.3. In general, the controller’s action that tends to stabilize the
system will decrease the reward for the adversary, while the adversary policy that achieves a higher
reward will prevent the controller from minimizing Lρ.

Transition kernel. The transition kernel is determined by the system dynamics f . Given a fixed
control interval ∆t, it can be derived as P(·|xt, a

µ, aν) = xt + f(xt, a
µ
t , a

ν
t)∆t.

Given the controller policy πµ, the goal of RL is to find the optimal adversary policy π∗
ν that maxi-

mizes the following state value function:

π∗
ν = argmax

πν

V πµ(πν) = Eaµ
h∼πµ,aν

h∼πν ,xh∼P

[∞∑
h=0

γhr(xh, a
µ
h, a

ν
h)

]
, (9)

where the state value function V πµ(πν) denotes the expected cumulative discounted reward starting
from initial state x0. Provided with an appropriate adversary’s reward design, π∗

ν can produce the
worst-case perturbation sequence, which adversarially destabilizes the system to the most extent.

4.3 ADVERSARIALLY ROBUST CONTROLLER LEARNING

Given an adversary policy π∗
ν trained by RL that performs the worst-case perturbation to the con-

troller, we formulate the adversarially robust controller learning problem as:

min
θ,θµ

Lρ(θ, θ
µ, θν), s.t. ẋ = f(x, aµ, aν), aµ ∼ πµ, a

ν ∼ π∗
ν = argmax

πν

V πµ(πν). (10)

Note that formulations of the objective functions for neural Lyapunov-controller and RL-adversary
are totally different, hence the adversarial learning problem here cannot be formulated as a two-
player zero-sum game. The proposed ARNLC in Algorithm 1 uses an alternating procedure to solve
this problem approximately, where we summarize it for the case of unknown system dynamics f .
Training environment model: at each iteration e, we sample M1 transitions in the environment
with a random policy and update the environment model by minimizing the error between its pre-
diction Mη(x, a) and the next state x′ on the transitions. Training controller’s and adversary’s
policies: at each outer iteration i, we perform a two-stage optimization. i) We train the controller
policy and Lyapunov function while the adversary policy is fixed based on the Lyapunov theory.
We initialize a state dataset S by randomly sampling from X . At each inner iteration jµ, we con-
struct {xk, a

µ
k , a

ν
k, x

′
k}k on the state subset of size M3 from S , and update πµ and Vθ by performing

5

Under review as a conference paper at ICLR 2023

Algorithm 1 Adversarially robust neural Lyapunov control (ARNLC) for unknown dynamics
Input: unknown environmentM and state space X
Output: learned policies πµ and πν

1: Initialize: η for environment modelMη , θµ for controller µ, θν for adversary ν, θ for Lyapunov function
Vθ , control interval ∆t, uniformly random policy πr

2: for e = 1, 2, . . . Ne do ▷ train an environment model for the system
3: Sample transitions {xi, ai, x

′
i}M1

i=1 fromM using πr with ∆t

4: UpdateMη by minimizing 1
M1

∑M1
i=1 |Mη(xi, ai)− x′

i|2 w.r.t. η
5: end for
6: for i = 1, 2, . . . Niter do ▷ train controller
7: Randomly sample M2 states S = {xk}M2

k=1 from state space X
8: for jµ = 1, 2, . . . Nµ do
9: aµ

k = πµ(xk), aν
k = πν(xk) and x′

k = Mη(xk, a
µ
k) + aν

k on {xk}M3
k=1 sampled from S

10: πµ, Vθ ←min
θ,θµ

Lρ(θ, θ
µ, θν) on {xk, a

µ
k , a

ν
k, x

′
k}M3

k=1 ▷ use SGD to update

11: Find counter-example set Ω of size M4 following criterion in Eq. (8) and S ← S ∪ Ω
12: end for
13: for jν = 1, 2, . . . Nν do ▷ train adversary
14: {xh, a

µ
h, a

ν
h, rh}

Ntraj

h=1 ← generate(Mη, πµ, πν)

15: πν ← policyOptimize
(
{xh, a

µ
h, a

ν
h, rh}

Ntraj

h=1 , πν

)
16: end for
17: end for

stochastic gradient descent (SGD) w.r.t. Eq. (6). ii) We train the adversary policy while the con-
troller policy is fixed. At each inner iteration jν , we generate transitions on learned environment
model Mη with the controller’s and adversary’s policies. We then perform the policy optimization
method from RL to update πν on these generated transitions. For known system dynamics, learning
of the environment model at Lines 2-5 in Algorithm 1 is not required, and the transition generation
in the two stages follows the known system dynamics f . Due to space limit, the proposed ARNLC
for known system dynamics is provided in Appendix A.2.

5 EXPERIMENT

We evaluate our proposed ARNLC algorithm on several control tasks, where the system dynam-
ics are variable by external forces or perturbations on environment parameters. We compare our
ARNLC with NLC (Chang et al., 2019), PNLC (perturbed NLC) in Section 4.1, RARL (Pinto et al.,
2017) and Robust MPC (Löfberg, 2003; 2012). We use proximal policy optimization (PPO) (Schul-
man et al., 2017a) as our baseline RL algorithm for the adversary training at Line 15 in Algorithm
1. In NLC and PNLC, we build neural networks for the controller policy and Lyapunov function,
which are updated by minimizing the Lyapunov risk in Eq. (3) and Perturbed Lyapunov risk in Eq.
(5), respectively. A uniformly random adversary policy is applied to impose perturbations in PNLC.
In ARNLC and RARL, we build a neural network for the adversary policy and update it with PPO.
In ARNLC, the controller policy is optimized together with the empirically perturbed Lyapunov
function in Eq. (5), where the controller policy is learned by PPO with the negative adversary re-
ward. Since the RL-based adversary and discrete-time predictor of environment model are learned
in ARNLC, we compute the difference of Lyapunov function V (xt+∆t)−V (xt) instead of the time
derivative V̇ (xt) (see Appendix A.1 for detailed explanation). In robust MPC, a bounded pertur-
bation is added to the system dynamics where the controller takes actions by searching the optimal
feedback among all feasible horizons generated by the perturbed function. In our experiments, we
find that the computation time for Robust MPC at each control step may exceed the control interval,
which would lead to the controller failure in practice. But we simply neglect this and consider its
simulation performance. For detail of the experimental settings, please refer to Appendix A.3. Our
experiments are designed to answer the following questions.

• Can our proposed ARNLC still achieve asymptotic stability in face of the worst-case perturba-
tions? Will ARNLC reach the stability faster than the other baseline algorithms?

• How will the controller’s performance of ARNLC degrade in the entire perturbation space?

6

Under review as a conference paper at ICLR 2023

Table 1: Types of perturbations for each task

Task Perturbation Type

Pendulum Mass of Ball, Length of Pole, Friction Coefficient, Gravity
Cart Pole Mass of Cart, Length of Pole, Mass of Pole, Gravity

Car Trajectory Tracking Velocity of Car, Radius of Path
2-link Pendulum Pole1 Length, Pole1 Position of the Center of Mass

• Will ARNLC suffer from the issues of RL methods (Tallec et al., 2019; Park et al., 2021), i.e.,
being sensitive to control intervals?

5.1 CONTROL OF PERTURBED NONLINEAR SYSTEMS

We consider four balancing tasks. 1) Pendulum: balance a pendulum (one end attached to ground
by a joint) by applying a force to a ball at the other end. The system has two state variables, angular
position φ and angular velocity φ̇ of pendulum, and one control input aµ on the ball; 2) Cart Pole:
control a cart (attached to a pole by a joint) by applying a force to prevent the pole from falling. State
variables of the system are cart position x, cart velocity ẋ, pendulum angular position φ and pendu-
lum angular velocity φ̇. Control input is force aµ applied to the cart; 3) Car Trajectory Tracking:
control a car to follow a target circular path. The system has two state variables: the distance error
xe and angle error φe between current car position and the target path. The control input is force aµ
on the car; 4) 2-link Pendulum: control a two-joint pendulum system (two pendulums are linked
by a joint and one end is linked to ground by another joint) to keep both pendulums upright. The
system has four state variables: the angular position φ1 and angular velocity φ̇1 of the first pendu-
lum, the angular position φ2 and angular velocity φ̇2 of the second pendulum. Two control inputs
are forces aµ1 and aµ2 on the two joints. We evaluate different comparison algorithms on these tasks
with perturbed environment parameters as shown in Table 1, under both known and unknown sys-
tem dynamics settings. For example, in the pendulum task, the friction coefficient can be changed at
each time step. We set two test scenarios: i) perturbations are randomly generated w.r.t. a uniform
distribution at each control step, which are larger than training ones; ii) perturbations are taken w.r.t.
the trained adversary policy of ARNLC.

We run the training process of learning-based algorithms, i.e., ARNLC, NLC, PNLC and RARL
on these tasks until the convergence. Here, we slightly modify and improve the original NLC and
PNLC to make them compatible with the setting of unknown system dynamics. We then deploy the
trained policies and robust MPC in the two test scenarios. For known system dynamics, control
curves under uniform (U) perturbations are shown in Figs. 1(a), 1(c), 1(e) and 1(g), while control
curves under worst-case (W) perturbations learned by the adversary are illustrated in Figs. 1(b), 1(d),
1(f) and 1(h). For unknown system dynamics, control curves under uniform (U) perturbations are
shown in Figs. 1(i), 1(k), 1(m) and 1(o), while control curves under worst-case (W) perturbations
learned by the adversary are illustrated in Figs. 1(j), 1(l), 1(n) and 1(p). The horizontal axis is
the control time, while the vertical axis is the system state. Here we set the fixed control interval
to 0.01s, and state zero as the equilibrium point. We observe that by incorporating a RL-based
adversary during training, our ARNLC can achieve asymptotic stability under both test scenarios
in all the tasks, while it reaches the stability the fastest compared to the other baselines under both
conditions of known and unknown system dynamics. Though NLC reaches the stability in some
tasks, it fails to reach the equilibrium point in Car Tracking W, 2-link Pendulum U and W with
known system dynamics and Car Tracking U and W, 2-link Pendulum W with unknown system
dynamics. PNLC trained under uniform sampled perturbations outperforms NLC in some tasks
(e.g., Pendulum and Cart Pole), but is worse in Cart Tracking U and 2-link Pendulum W and U with
known system dynamics and 2-link Pendulum U with unknown system dynamics. RARL and robust
MPC fail to reach the stability in the 2-link Pendulum task.

5.2 GENERALIZATION IN PERTURBATION SPACE

We further evaluate the generalization capability of trained policies of learning-based algorithms in
the entire perturbation space. We exclude the evaluation of robust MPC here, since it requires to
know system dynamics under each perturbation setting, which is an unfair comparison. Besides, we
additionally evaluate ARNLC and RARL for unknown system dynamics in the Inverted Pendulum

7

Under review as a conference paper at ICLR 2023

(a) Pendulum U (b) Pendulum W (c) Cart Pole U (d) Cart Pole W

(e) Car Tracking U (f) Car Tracking W (g) 2-link Pendulum U (h) 2-link Pendulum W

0 1 2 3 4 5
time(s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Friction Coefficient
ARNLC
NLC
PNLC
RARL

(i) Pendulum U

0 1 2 3 4 5
time(s)

0.8

0.6

0.4

0.2

0.0

0.2

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Friction Coefficient

ARNLC
NLC
PNLC
RARL

(j) Pendulum W

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.02

0.01

0.00

0.01

0.02

0.03

0.04

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Mass of Pole
ARNLC
NLC
PNLC
RARL

(k) Cart Pole U

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Mass of Pole
ARNLC
NLC
PNLC
RARL

(l) Cart Pole W

0 1 2 3 4 5
time(s)

0.25

0.20

0.15

0.10

0.05

0.00

di
st

an
ce

 e
rro

r (
m

)

Velocity of Car

ARNLC
NLC
PNLC
RARL

(m) Car Tracking U

0 1 2 3 4 5
time(s)

0.25

0.20

0.15

0.10

0.05

0.00

di
st

an
ce

 e
rro

r (
m

)

Velocity of Car

ARNLC
NLC
PNLC
RARL

(n) Car Tracking W

0 10 20 30 40 50
time(s)

0.3

0.2

0.1

0.0

0.1

pe
nd

ul
um

-1
 a

ng
ul

ar
 p

os
iti

on
 (r

ad
) Length of Pendulum-1

ARNLC
NLC
PNLC

(o) 2-link Pendulum U

0 10 20 30 40 50
time(s)

0.0

0.1

0.2

0.3

0.4

0.5

pe
nd

ul
um

-1
 a

ng
ul

ar
 p

os
iti

on
 (r

ad
) Length of Pendulum-1

ARNLC
NLC
PNLC

(p) 2-link Pendulum W

Figure 1: Control curves of Pendulum, Cart Pole, Car Tracking and 2-link Pendulum with different
perturbation types under uniform perturbations (U) and learned adversary’s worst-case (W) pertur-
bations in testing. 1(a))-(1(h)): known system dynamics; 1(i)-1(p): unknown system dynamics.

task provided by MuJoCo (Todorov et al., 2012), which controls a cart (attached to a pendulum) to
balance the whole system and keep the pendulum upright. While NLC and PNLC are not compared,
since they require known system dynamics during training and cannot be trained in the Inverted
Pendulum task. We use the cumulative negative reward of adversary to evaluate the performance of
controller policy in the environment with a certain perturbation, where a higher negative reward in-
dicates the better performance of controller. The performance heatmaps of these five tasks achieved
by different algorithms are shown and compared in Fig. 2 with both known and unknown system
dynamics, and 3(g) with unknown system dynamics, where the performance is averaged on ten
equal-length runs. We observe that ARNLC achieves the best generalization performance under
both conditions of known and unknown system dynamics except for Car Tracking with unknown
system dynamics. PNLC generalizes better than NLC in Pendulum and CartPole with known sys-
tem dynamics, while showing similar or even worse performance in other tasks. RARL presents the
worst performance in all the tasks except for Pendulum.

5.3 IMPACT OF CONTROL INTERVALS

Eventually, we evaluate the impact of different control intervals to our ARNLC, which are set to
0.01s, 0.1s, 0.005s and 0.001s, respectively. The resulting control curves obtained for Pendulum
are shown in Figs. 1(a)-1(b) and 3(a)-3(f). We observe that ARNLC and other Lyapunov-based
baselines can achieve asymptotic stability with all different control intervals, while RARL is sensi-
tive to the change of control intervals as also verified in (Tallec et al., 2019) and fails to reach the
equilibrium state. Note that here we report the most important results in the main text, please also
see Appendices A.4 and A.5 for additional results.

8

Under review as a conference paper at ICLR 2023

(a) Pendulum (b) Cart Pole

(c) Car Tracking (d) 2-link Pendulum

0.10.1
7
0.2

4
0.3

1
0.3

8
0.4

5
0.5

2
0.5

9
0.6

6
0.7

30.8

mass of ball

0.4
0.51
0.62
0.73
0.84
0.95
1.06
1.17
1.28
1.39

1.5

le
ng

th
 o

f p
ol

e

ARNLC

0.10.1
7
0.2

4
0.3

1
0.3

8
0.4

5
0.5

2
0.5

9
0.6

6
0.7

30.8

0.4
0.51
0.62
0.73
0.84
0.95
1.06
1.17
1.28
1.39

1.5

NLC

0.10.1
7
0.2

4
0.3

1
0.3

8
0.4

5
0.5

2
0.5

9
0.6

6
0.7

30.8

0.4
0.51
0.62
0.73
0.84
0.95
1.06
1.17
1.28
1.39

1.5

PNLC

0.10.1
7
0.2

4
0.3

1
0.3

8
0.4

5
0.5

2
0.5

9
0.6

6
0.7

30.8

0.4
0.51
0.62
0.73
0.84
0.95
1.06
1.17
1.28
1.39

1.5

RARL

2000

1500

1000

500

(e) Pendulum

0.10.3
9
0.6

8
0.9

7
1.2

6
1.5

5
1.8

4
2.1

3
2.4

2
2.7

13.0

mass of pole

0.1
0.59
1.08
1.57
2.06
2.55
3.04
3.53
4.02
4.51

m
as

s o
f c

ar
t

ARNLC

0.10.3
9
0.6

8
0.9

7
1.2

6
1.5

5
1.8

4
2.1

3
2.4

2
2.7

13.0

0.1
0.59
1.08
1.57
2.06
2.55
3.04
3.53
4.02
4.51

NLC

0.10.3
9
0.6

8
0.9

7
1.2

6
1.5

5
1.8

4
2.1

3
2.4

2
2.7

13.0

0.1
0.59
1.08
1.57
2.06
2.55
3.04
3.53
4.02
4.51

PNLC

0.10.3
9
0.6

8
0.9

7
1.2

6
1.5

5
1.8

4
2.1

3
2.4

2
2.7

13.0

0.1
0.59
1.08
1.57
2.06
2.55
3.04
3.53
4.02
4.51

RARL

500

1000

1500

2000

(f) Cart Pole

4.04.34.64.95.25.55.86.16.46.77.0

velocity of car

0.1
0.39
0.68
0.97
1.26
1.55
1.84
2.13
2.42
2.71

3.0

ra
di

us
 o

f p
at

h

ARNLC

4.04.34.64.95.25.55.86.16.46.77.0

0.1
0.39
0.68
0.97
1.26
1.55
1.84
2.13
2.42
2.71

3.0

NLC

4.04.34.64.95.25.55.86.16.46.77.0

0.1
0.39
0.68
0.97
1.26
1.55
1.84
2.13
2.42
2.71

3.0

PNLC

4.04.34.64.95.25.55.86.16.46.77.0

0.1
0.39
0.68
0.97
1.26
1.55
1.84
2.13
2.42
2.71

3.0

RARL

2500

2000

1500

1000

500

(g) Car Tracking

0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1.0

length of pole1

0.5
0.56
0.62
0.68
0.74

0.8
0.86
0.92
0.98
1.04

1.1

m
as

s o
f p

ol
e2

ARNLC

0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1.0

0.5
0.56
0.62
0.68
0.74

0.8
0.86
0.92
0.98
1.04

1.1

NLC

0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1.0

0.5
0.56
0.62
0.68
0.74

0.8
0.86
0.92
0.98
1.04

1.1

PNLC

1400

1200

1000

800

600

400

(h) 2-link Pendulum

Figure 2: Heatmap of averaged cumulative negative adversary’s reward with known and unkown
system dynamics. In (d) and (h), RARL fails to converge. 2(a)-2(d): known system dynamics; 2(e)-
2(h): unknown system dynamics.

(a) 0.1s U (b) 0.1s W (c) 0.005s U (d) 0.005s W

(e) 0.001s U (f) 0.001s W (g) Inverted Pendulum

Figure 3: (a)-(f) Control curves of Pendulum with control interval set to 0.1s, 0.005s and 0.001s,
respectively; (g) heatmap of averaged cumulative negative adversary’s reward with unknown system
dynamics.

6 CONCLUSIONS AND FUTURE WORK

We have proposed ARNLC to improve the robustness and generalization in stability control tasks for
nonlinear dynamical systems. Specifically, we formulated a perturbed Lyapunov risk stemmed from
Lyapunov theorem to jointly update the controller and candidate Lyapunov function under pertur-
bations generated by an adversary during training, where the adversary was trained by RL method
to destabilize the system. We adopted an alternative training procedure to update the controller and
adversary. We have empirically evaluated ARNLC in several stability control tasks, demonstrating
its robustness under different perturbations and better generalization in entire perturbation space. An
exciting future research direction could be to extend our ARNLC to non-stability control tasks for
the dynamical systems that are not required to achieve an equilibrium point, where the reward func-
tion for the adversary can alternatively be designed based on the imitation error, like in the imitation
learning. We hope to revisit this in our future works.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Alessandro Abate, Daniele Ahmed, Mirco Giacobbe, and Andrea Peruffo. Formal synthesis of
lyapunov neural networks. IEEE Control Systems Letters, 5(3):773–778, 2020.

Tamer Başar and Pierre Bernhard. H-infinity optimal control and related minimax design problems:
a dynamic game approach. Springer Science & Business Media, 2008.

Alberto Bemporad and Manfred Morari. Robust model predictive control: A survey. In Robustness
in Identification and Control, volume 245 of Lecture Notes in Control and Information Sciences,
pp. 207–226. Springer, 1998.

Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. In Advances in Neural
Information Processing Systems, pp. 3240–3249, 2019.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generaliza-
tion in reinforcement learning. In International Conference on Machine Learning, pp. 1282–1289.
PMLR, 2019.

Charles Dawson, Zengyi Qin, Sicun Gao, and Chuchu Fan. Safe nonlinear control using robust
neural lyapunov-barrier functions. In Conference on Robot Learning, pp. 1724–1735. PMLR,
2022.

Kunal Garg and Dimitra Panagou. Robust control barrier and control lyapunov functions with fixed-
time convergence guarantees. In 2021 American Control Conference, ACC, pp. 2292–2297. IEEE,
2021.

Boris Houska and Mario E Villanueva. Robust optimization for mpc. In Handbook of Model Pre-
dictive Control, pp. 413–443. Springer, 2019.

Jianchen Hu and Baocang Ding. Output feedback robust MPC for linear systems with norm-bounded
model uncertainty and disturbance. Automatica, 108, 2019.

Shafiqul Islam, Peter Xiaoping Liu, and Abdulmotaleb El-Saddik. Robust control of four-rotor un-
manned aerial vehicle with disturbance uncertainty. IEEE Transactions on Industrial Electronics,
62(3):1563–1571, 2015.

Johannes Köhler, Raffaele Soloperto, Matthias A. Müller, and Frank Allgöwer. A computation-
ally efficient robust model predictive control framework for uncertain nonlinear systems. IEEE
Transactions on Automatic Control, 66(2):794–801, 2021.

Huibert Kwakernaak and Raphael Sivan. Linear optimal control systems, volume 1072. Wiley-
interscience, 1969.

Eugene Lavretsky and Kevin A Wise. Robust adaptive control. In Robust and adaptive control, pp.
317–353. Springer, 2013.

Chengju Liu, Jing Yang, Kang An, Ming Liu, and Qijun Chen. Robust control of semi-passive biped
dynamic locomotion based on a discrete control lyapunov function. Robotica, 38(8):1345–1358,
2020a.

Lei Liu, Yan-Jun Liu, Aiqing Chen, Shaocheng Tong, and CL Chen. Integral barrier lyapunov
function-based adaptive control for switched nonlinear systems. Science China Information Sci-
ences, 63(3):1–14, 2020b.

Johan Löfberg. Approximations of closed-loop minimax MPC. In 42nd IEEE Conference on Deci-
sion and Control, pp. 1438–1442. IEEE, 2003.

Johan Löfberg. Pre- and post-processing sum-of-squares programs in practice. IEEE transactions
on automatic control, 54(5):1007–1011, 2009.

Johan Löfberg. Automatic robust convex programming. Optimization Methods and Software, 27(1):
115–129, 2012.

10

Under review as a conference paper at ICLR 2023

Daniel J. Mankowitz, Nir Levine, Rae Jeong, Abbas Abdolmaleki, Jost Tobias Springenberg,
Yuanyuan Shi, Jackie Kay, Todd Hester, Timothy A. Mann, and Martin A. Riedmiller. Robust
reinforcement learning for continuous control with model misspecification. In International Con-
ference on Learning Representations, 2020.

Arash Mehrjou, Mohammad Ghavamzadeh, and Bernhard Schölkopf. Neural lyapunov redesign. In
Proceedings of the 3rd Annual Conference on Learning for Dynamics and Control, volume 144
of Proceedings of Machine Learning Research, pp. 459–470. PMLR, 2021.

Jun Morimoto and Kenji Doya. Robust reinforcement learning. Neural Computation, 17(2):335–
359, 2005.

Armin Norouzi, Ali Barari, and Hadi Adibi-Asl. Stability control of an autonomous vehicle in over-
taking manoeuvre using wheel slip control. International Journal of Intelligent Transportation
Systems Research, 18(2):320–330, 2020.

Anil Kumar Pal, Shyam Kamal, Shyam Krishna Nagar, Bijnan Bandyopadhyay, and Leonid Frid-
man. Design of controllers with arbitrary convergence time. Automatica, 112:108710, 2020.

Seohong Park, Jaekyeom Kim, and Gunhee Kim. Time discretization-invariant safe action repetition
for policy gradient methods. In Advances in Neural Information Processing Systems, pp. 267–
279, 2021.

Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robust-
ness and optimization. California Institute of Technology, 2000.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In International Conference on Machine Learning, pp. 2817–2826. PMLR, 2017.

Priyabrata Saha, Magnus Egerstedt, and Saibal Mukhopadhyay. Neural identification for control.
IEEE Robotics and Automation Letters, 6(3):4648–4655, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017a. URL http://arxiv.org/abs/
1707.06347.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Aman Sharma and Narendra Kumar. Lyapunov stability theory based non linear controller design
for a standalone pv system. In 2020 IEEE International Conference for Innovation in Technology
(INOCON), pp. 1–7. IEEE, 2020.

Zhongqi Sun, Li Dai, Kun Liu, Yuanqing Xia, and Karl Henrik Johansson. Robust MPC for tracking
constrained unicycle robots with additive disturbances. Automatica, 90:172–184, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Corentin Tallec, Léonard Blier, and Yann Ollivier. Making deep q-learning methods robust to time
discretization. In International Conference on Machine Learning, pp. 6096–6104. PMLR, 2019.

Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and appli-
cations in continuous control. In International Conference on Machine Learning, pp. 6215–6224.
PMLR, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Nur Uddin, Hendra G Harno, and Rianto Adhy Sasongko. Altitude control system design of bicopter
using lyapunov stability approach. In 2021 International Symposium on Electronics and Smart
Devices (ISESD), pp. 1–6. IEEE, 2021.

11

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Under review as a conference paper at ICLR 2023

Sam Witty, Jun K Lee, Emma Tosch, Akanksha Atrey, Kaleigh Clary, Michael L Littman, and David
Jensen. Measuring and characterizing generalization in deep reinforcement learning. Applied AI
Letters, 2(4):e45, 2021.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane S. Boning, and Cho-Jui
Hsieh. Robust deep reinforcement learning against adversarial perturbations on state observations.
In Advances in Neural Information Processing Systems, 2020.

Huan Zhang, Hongge Chen, Duane S. Boning, and Cho-Jui Hsieh. Robust reinforcement learning
on state observations with learned optimal adversary. In International Conference on Learning
Representations, 2021.

Pan Zhao, Yanbing Mao, Chuyuan Tao, Naira Hovakimyan, and Xiaofeng Wang. Adaptive robust
quadratic programs using control lyapunov and barrier functions. In 59th IEEE Conference on
Decision and Control, CDC, pp. 3353–3358. IEEE, 2020.

12

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 CONTROLLER LEARNING FOR DISCRETE-TIME CONTROL

We consider a discrete-time dynamical system sampled from a continuous-time dynamical system
with fixed time interval ∆t:

x′
t = xt+∆t = xt + ẋ∆t = f(xt, a

µ
t , a

ν
t), (A-1)

where aµt ∈ A and aνt ∈ Aadv are the controller’s action and adversary’s action at time t ∈ N
following their policies πµ and πν , respectively; and x′

t is the state at time t + ∆t (i.e., at the next
sampling step).

Theorem A-1 (Lyapunov stability theorem for discrete-time dynamical systems). For a
discrete-time dynamical system in Eq. (A-1), if there exists a continuous function V : X → R
such that

V (0) = 0; and V (x) > 0, ∀x ∈ X − {0}; and V (x′)− V (x) < 0; (A-2)

then the system is asymptotically stable at x = 0, where V is called a Lyapunov function.

For the discrete-time dynamical system, we focus on the difference of the Lyapunov function instead
of the time derivative in the continuous-time case. To satisfy the Lyapunov stability theorem, we
require that: i) the value of V (0) is zero; ii) the value of V (x) is positive; and iii) the value of the
difference V (x′)− V (x) is negative.

Definition A-1 (Discrete-time perturbed Lyapunov risk for controller). We consider a candidate
Lyapunov function Vθ paramterized by θ for discrete-time dynamical system in Eq. (A-1). In the
presence of an adversary policy πν parameterized by θν , the discrete-time perturbed Lyapunov risk
for the controller µ is defined by:

Lρ (θ, θ
µ, θν) = Ex∼ρ(X)

(
max(−Vθ(x), 0) + max(0, Vθ(x

′)− Vθ(x)) + V 2
θ (0)

)
, (A-3)

where ρ(X) is the state distribution.

In practice, we use the following empirically perturbed Lyapunov risk, which is an unbiased estima-
tor of Eq. (A-3):

Ln,ρ (θ, θ
µ, θν) =

1

N

N∑
i=1

(
max(−Vθ(xi), 0) + max(0, Vθ(x

′
i)− Vθ(xi)) + V 2

θ (0)

)
. (A-4)

We use the negations of the Lyapunov conditions in Lyapunov stability theorem to define the
counter-examples, which means that if the value of Vθ(x) is non-positive or the value of the differ-
ence Vθ(x

′)−Vθ(x) is non-negative, then the state x is considered as a counter-example. Therefore,
the criterion for discrete-time dynamical systems can be set as follows:

Ω(x) = Vθ(x) ≤ 0 ∨ Vθ(x
′)− Vθ(x) ≥ 0, ∀x ∈ X − {0}. (A-5)

A.2 ARNLC FOR KNOWN SYSTEM DYNAMICS

We summarize the ARNLC for known system dynamics f in Algorithm A-1 of this Appendix. Its
difference from ARNLC for unknown system dynamics lies in that there is no need to learn an
environment model. This algorithm follows the same alternating procedure as described in Section
4.3 in the main text to train the controller’s and the adversary’s policies.

A.3 DETAILS OF EXPERIMENTAL SETTINGS

The network architectures for Lyapunov function and controller policy are tuned for each task and
are summarized in Table A-1. The detailed hyperparameters for adversary policy training are sum-
marized in Table A-2. The environment specific parameters are summarized in Table A-3.

13

Under review as a conference paper at ICLR 2023

Algorithm A-1 Adversarially robust neural Lyapunov control for known system dynamics
Input: known dynamical system f and state space X
Output: learned policies πµ and πν

1: Initialize: θµ for controller µ, θν for adversary ν, θ for Lyapunov function Vθ , control interval ∆t
2: for i = 1, 2, . . . Niter do
3: Randomly sample M1 states S = {xk}M1

k=1 from state space X
4: for jµ = 1, 2, . . . Nµ do ▷ train controller
5: aµ

k = πµ(xk), aν
k = πν(xk) and x′

k = f(xk, a
µ
k , a

ν
k) on {xk}M2

k=1 sampled from S
6: πµ, Vθ ←min

θ,θµ
Lρ(θ, θ

µ, θν) on {xk, a
µ
k , a

ν
k, x

′
k}M2

k=1 ▷ use SGD to update

7: Find counter-example set Ω of size M3 following criterion in Eq. (A-5) and S ← S ∪ Ω
8: end for
9: for jν = 1, 2, . . . Nν do ▷ train adversary

10: {xh, a
µ
h, a

ν
h, rh}

Ntraj

h=1 ← generate(f, πµ, πν)

11: πν ← policyOptimize
(
{xh, a

µ
h, a

ν
h, rh}

Ntraj

h=1 , πν

)
12: end for
13: end for

Table A-1: Lyapunov function and controller policy specific settings

Task Network Architecture Training
Iterations

Learning
Rate

Batch
SizeLyapunov Function Controller Policy

Pendulum 2-6-1 2-1 200

0.01 512Cart Pole 4-64-64-1 4-64-64-1 20
Car Trajectory Tracking 2-64-1 2-1 12

2-link Pendulum 4-6-1 4-64-2 6
Inverted Pendulum 4-64-64-1 4-64-64-1 40

Table A-2: Adversary hyperparameters

Parameter Value

Optimizer Adam
Learning rate for actor policy network 3× 10−4

Learning rate for critic network 1× 10−3

Discount (γ) 0.99
Clipping ratio (ϵ) 0.2

Number of hidden layers (all tasks) 2
Number of hidden units per layer 64

Nonlinearity tanh

Table A-3: Environment specific parameters

Task State Space Adversary Reward

Pendulum |φ| ≤ 6, |φ̇| ≤ 6 φ2

Cart Pole |x| ≤ 1, |ẋ| ≤ 1, |φ| ≤ 0.2, |φ̇| ≤ 1 −1 if |φ| < 0.2
Car Trajectory Tracking |xe| ≤ 0.5, |φe| ≤ 0.5 |xe|+ |φe|

2-link Pendulum |φ1| ≤ 0.8, |φ̇1| ≤ 0.8, |φ2| ≤ 0.8, |φ̇2| ≤ 0.8 |φ1|+ |φ2|
Inverted Pendulum |x| ≤ 1, |ẋ| ≤ 1, |φ| ≤ 0.2, |φ̇| ≤ 1 −1 if |φ| < 0.2

A.3.1 SYSTEM DYNAMICS

Pendulum. The system is shown in Fig. A-1 and the system dynamics can be described as

θ̈ =
mgl sin(θ) + u− bθ̇

ml2
, (A-6)

where m = 0.15, g = 9.81, b = 0.1 and l = 0.5.

14

Under review as a conference paper at ICLR 2023

Figure A-1: Schematic diagram of the Pendulum task.

The adversary reward in this environment is set as the square of the normalized angle between
the pendulum and the goal state. The actions of the adversary are set to adding an external force
to the pendulum, changing the acceleration of gravity in the environment, changing the length
of the pendulum, changing the coefficient of friction, and changing the mass of the ball, respectively.

Cart Pole. The system is shown in Fig. A-2 and the system dynamics can be described as

θ̈ =

g sin θ + cos θ

(
−u−mplθ̇

2 sin θ
mc+mp

)
l

(
4
3 − mp cos2 θ

mc+mp

) ,

ẍ =
u+mpl(θ̇

2 sin θ − θ̈ cos θ)

mc +mp
,

(A-7)

where g = 9.8, mc = 1.0, mp = 0.1, l = 0.5.

Figure A-2: Schematic diagram of the Cart Pole task.

If the angle between the pendulum and the vertical direction is less than 0.2, the adversary gets
reward -1. The actions of the adversary are set to adding an external force to the cart, changing the
acceleration of gravity in the environment, changing the length of the pendulum, changing the mass
of the cart, and changing the mass of the ball, respectively.

Car Trajectory Tracking. The system is shown in Fig. A-3 and the system dynamics can be
described as

ṡ =
v cos(θe)

1− ḋeκ(s)
,

ḋe = v sin(θe),

θ̇e =
v tan(u)

L
− vκ(s) cos(θe)

1− ḋeκ(s)
,

(A-8)

where v = 6, l = 1.

The adversary reward in this environment is set as the sum of the absolute value of the distance
error and the absolute value of the normalized angle error. The actions of the adversary are set to
adding an external force to the pendulum, changing the velocity of the car, and changing the radius
of the target path, respectively.

15

Under review as a conference paper at ICLR 2023

Figure A-3: Schematic diagram of the Car Trajectory Tracking task.

2-link Pendulum. The system is shown in Fig. A-4 and the system dynamics can be described as

θ̈1 =
a22[u1 + a12θ̇

2
2 sin(θ2 − θ1) + b1 sin θ1]− a12 cos(θ2 − θ1)[u2 + a21θ̇

2
1 sin(θ1 − θ2) + b2 sin θ2]

a11a22 − a12a21 cos(θ1 − θ2) cos(θ2 − θ1)
,

θ̈2 =
a21 cos(θ1 − θ2)[u1 + a12θ̇

2
2 sin(θ2 − θ1) + b1 sin θ1]− a11[u2 + a21θ̇

2
1 sin(θ1 − θ2) + b2 sin θ2]

a12a21 cos(θ2 − θ1) cos(θ1 − θ2)− a11a22
,

(A-9)
where

a11 = I1 +m1l
2
c1 + l21m2,

a12 = a21 = m2l1lc2,

a22 = I2 +m2l
2
c2,

b1 = (m1lc1 + l1m2)g,

b2 = (m2lc2)g,

(A-10)

and I1 = I2 = 1, m1 = m2 = 1, l1 = l2 = 1, lc1 = lc2 = 0.5, g = 9.8.

Figure A-4: Schematic diagram of the 2-link Pendulum task.

The adversary reward in this environment is set as the sum of the normalized angles between the
two pendulums and the goal state. The actions of the adversary are set to adding two external forces
to the pendulum, changing the length of the first pendulum, and changing the position of the center
of mass of the first pendulum, respectively.

Inverted Pendulum. This task is provided by MuJoCo, where the goal is to control a cart (attached
to a pendulum) to balance the whole system and keep the pendulum upright, as shown in Fig. A-
5. Since the system dynamics of Inverted Pendulum are unknown, it is impossible to generate
perturbations on concrete physical parameters at each control step. Therefore, we only conduct the
generalization test in the entire perturbation space for this task. If the angle between the pendulum
and the vertical direction is less than 0.2, the adversary gets reward -1. The actions of the adversary
are set as the additive error to the output of the learned environment model.

16

Under review as a conference paper at ICLR 2023

Figure A-5: Schematic diagram of the Inverted Pendulum task.

A.4 ADDITIONAL EXPERIMENTAL RESULTS WITH KNOWN SYSTEM DYNAMICS SCENARIOS

This section reports experimental results on all the evaluation tasks under perturbation types that
have not been presented in the main text.

A.4.1 CONTROL OF PERTURBED NONLINEAR SYSTEMS

We run the training process of learning-based algorithms on Pendulum, Cart Pole, Car Trajectory
Tracking, and 2-link Pendulum under different perturbation types as shown in Table 1 in the main
text until convergence. Control curves under uniform (U) perturbations are shown in Fig. A-6,
while control curves under worst-case (W) perturbations learned by the adversary are illustrated in
Fig. A-7. We observe that our ARNLC can achieve asymptotic stability under both test scenarios
in almost all the tasks, while it reaches the stability the fastest compared to the other baselines. The
uniform external force perturbations in the Car Trajectory Tracking task is the only test scenario
where our ARNLC performs the worst, as shown in Fig. A-6(k). Though NLC reaches the stability
in some tasks, it fails to reach the equilibrium point in Car Trajectory Tracking W, 2-link Pendulum
W and U. RARL and robust MPC fail to reach the stability in 2-link Pendulum.

We additionally compute the percentile of negative adversary rewards for controller policies
achieved by each algorithm to further evaluate their robustness. We run each policy with 100 dif-
ferent initial system states in each perturbed task, and then sort the cumulative negative adversary
reward of each run to obtain the n-th percentile. The results obtained under uniform (U) perturba-
tions are shown in Fig. A-8, while percentile plots under worst-case (W) perturbations learned by
the adversary are illustrated in Fig. A-9. In general, control policies that can gain higher rewards at
the same percentile perform better. While control policies in a lower percentile have better control
performance if they receive the same reward, i.e., they can gain higher rewards with more episodes.
We observe that our ARNLC can receive the highest rewards under both test scenarios in all the
tasks. RARL sometimes fail to reach the stability in Car Trajectory Tracking, and therefore, RARL
sometimes receives extremely low rewards in this task.

17

Under review as a conference paper at ICLR 2023

(a) Pendulum U (b) Pendulum U (c) Pendulum U (d) Pendulum U

(e) Cart Pole U (f) Cart Pole U (g) Cart Pole U (h) Cart Pole U

(i) Car Tracking U (j) Car Tracking U (k) Car Tracking U (l) Car Tracking U

(m) 2-link Pendulum U (n) 2-link Pendulum U (o) 2-link Pendulum U (p) 2-link Pendulum U

Figure A-6: Control curves of Pendulum, Cart Pole, Car Trajectory Tracking and 2-link Pendulum
under uniform (U) perturbations in testing.

18

Under review as a conference paper at ICLR 2023

(a) Pendulum W (b) Pendulum W (c) Pendulum W (d) Pendulum W

(e) Cart Pole W (f) Cart Pole W (g) Cart Pole W (h) Cart Pole W

(i) Car Tracking W (j) Car Tracking W (k) Car Tracking W (l) Car Tracking W

(m) 2-link Pendulum W (n) 2-link Pendulum W (o) 2-link Pendulum W (p) 2-link Pendulum W

Figure A-7: Control curves of Pendulum, Cart Pole, Car Trajectory Tracking and 2-link Pendulum
under learned adversary’s worst-case (W) perturbations in testing.

19

Under review as a conference paper at ICLR 2023

(a) Pendulum U (b) Pendulum U (c) Pendulum U (d) Pendulum U

(e) Pendulum U (f) Cart Pole U (g) Cart Pole U (h) Cart Pole U

(i) Cart Pole U (j) Cart Pole U (k) Car Tracking U (l) Car Tracking U

(m) Car Tracking U (n) 2-link Pendulum U (o) 2-link Pendulum U (p) 2-link Pendulum U

Figure A-8: Percentile plots of Pendulum, Cart Pole, Car Trajectory Tracking and 2-link Pendulum
under uniform (U) perturbations in testing.

20

Under review as a conference paper at ICLR 2023

(a) Pendulum W (b) Pendulum W (c) Pendulum W (d) Pendulum W

(e) Pendulum W (f) Cart Pole W (g) Cart Pole W (h) Cart Pole W

(i) Cart Pole W (j) Cart Pole W (k) Car Tracking W (l) Car Tracking W

(m) Car Tracking W (n) 2-link Pendulum W (o) 2-link Pendulum W (p) 2-link Pendulum W

Figure A-9: Percentile plots of Pendulum, Cart Pole, Car Trajectory Tracking and 2-link Pendulum
under learned adversary’s worst-case (W) perturbations in testing.

21

Under review as a conference paper at ICLR 2023

A.4.2 GENERALIZATION IN PERTURBATION SPACE

In this subsection, we evaluate the generalization capability of learning-based algorithms in the
entire perturbation space generated from other combinations of perturbation types that are not pre-
sented in the main text. We observe that ARNLC achieves the best generalization performance
among all the combinations of different physical parameters. PNLC generalizes better than NLC in
most combinations, while showing worse performance in Figs. A-10(f) and A-10(j).

(a) Pendulum (b) Pendulum

(c) Pendulum (d) Pendulum

(e) Pendulum (f) Cart Pole

(g) Cart Pole (h) Cart Pole

(i) Cart Pole (j) Cart Pole

Figure A-10: Heatmap of averaged cumulative negative adversary’s reward for Pendulum, Cart Pole.

22

Under review as a conference paper at ICLR 2023

A.4.3 IMPACT OF CONTROL INTERVALS

We evaluate the impact of different control intervals (0.01s, 0.1s, 0.005s and 0.001s) to our
ARNLC on Pendulum with perturbation types (Length of Pole, Mass of Ball, Friction Coefficient,
Acceleration of Gravity) different from the results presented in the main text. The resulting control
curves obtained for Pendulum under uniform perturbations are shown in Figs. A-6(a)-A-6(d) and
Fig. A-11. And the control curves under perturbation of learned adversary are shown in Figs.
A-7(a)-A-7(d) and Fig. A-12. The resulting percentile plots obtained for Pendulum under uniform
perturbations are shown in Figs. A-8(a)-A-8(e) and Fig. A-13. And the percentile plots under
perturbation of learned adversary are shown in Figs. A-9(a)-A-9(e) and Fig. A-14. The results
demonstrate that our ARNLC is robust to different control intervals.

We further evaluate our ARNLC in the continuous-time dynamical system of Pendulum, with the
system dynamics given in Eq. (A-6). Here we show that our ARNLC can achieve asymptotic
stability faster than NLC in Figs. A-15(a)-A-15(d) and can receive higher rewards in Figs. A-15(e)-
A-15(h). The regions of attraction are shown in Figs. A-15(i)-A-15(l), demonstrating that those
estimated by our ARNLC are comparable with those estimated by neural Lyapunov Controller. This
indicates that we still have the advantage of the larger region of attraction inherited from the original
method after incorporating the adversarial training.

0 1 2 3 4 5
time(s)

1.5

1.0

0.5

0.0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Length of Pole

ARNLC
NLC
PNLC
RARL

(a) 0.1s U (b) 0.1s U (c) 0.1s U

(d) 0.005s U (e) 0.005s U (f) 0.005s U

(g) 0.001s U (h) 0.001s U (i) 0.001s U

Figure A-11: Control curves of Pendulum under uniform (U) perturbations in testing with control
interval set to 0.1s, 0.005s and 0.001s, respectively.

23

Under review as a conference paper at ICLR 2023

0 1 2 3 4 5
time(s)

4

3

2

1

0

1

2

3

4

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Length of Pole
ARNLC
NLC
PNLC
RARL

(a) 0.1s W (b) 0.1s W (c) 0.1s W

(d) 0.005s W (e) 0.005s W (f) 0.005s W

(g) 0.001s W (h) 0.001s W (i) 0.001s W

Figure A-12: Control curves of Pendulum under learned adversary’s worst-case (W) perturbations
in testing with control interval set to 0.1s, 0.005s and 0.001s, respectively.

24

Under review as a conference paper at ICLR 2023

0 20 40 60 80 100
Percentile

40
35
30
25
20
15
10

5
0

Re
wa

rd

Length of Pole
ARNLC
NLC
PNLC
RARL

(a) 0.1s U (b) 0.1s U (c) 0.1s U (d) 0.1s U

(e) 0.005s U (f) 0.005s U (g) 0.005s U (h) 0.005s U

(i) 0.001s U (j) 0.001s U (k) 0.001s U (l) 0.001s U

Figure A-13: Percentile plots of Pendulum under uniform (U) perturbations in testing with control
interval set to 0.1s, 0.005s and 0.001s, respectively.

0 20 40 60 80 100
Percentile

80
70
60
50
40
30
20
10

0

Re
wa

rd

Length of Pole

ARNLC
NLC
PNLC
RARL

(a) 0.1s W (b) 0.1s W (c) 0.1s W (d) 0.1s W

(e) 0.005s W (f) 0.005s W (g) 0.005s W (h) 0.005s W

(i) 0.001s W (j) 0.001s W (k) 0.001s W (l) 0.001s W

Figure A-14: Percentile plots of Pendulum under learned adversary’s worst-case (W) perturbations
in testing with control interval set to 0.1s, 0.005s and 0.001s, respectively.

25

Under review as a conference paper at ICLR 2023

(a) Pendulum W (b) Pendulum W (c) Pendulum W (d) Pendulum W

(e) Pendulum W (f) Pendulum W (g) Pendulum W (h) Pendulum W

(i) Pendulum W (j) Pendulum W (k) Pendulum W (l) Pendulum W

Figure A-15: Control curves, percentile plots and regions of attraction for pendulum balancing in
continuous-time control under learned adversary’s worst-case (W) perturbations in testing.

A.5 ADDITIONAL EXPERIMENTAL RESULTS WITH UNKNOWN SYSTEM DYNAMICS
SCENARIOS

This section reports experimental results for unknown system dynamics. We carry out the same
experiments on all the tasks, while assuming that we have no access to the system dynamics. There-
fore, we utilize Algorithm 1 in the main text in Pendulum, Cart Pole, Car Trajectory Tracking and
2-link Pendulum tasks. The evaluation of robust MPC is excluded here, since it requires to know
exactly the system dynamics, which makes it no longer feasible.

A.5.1 CONTROL OF PERTURBED NONLINEAR SYSTEMS

We run the training process of learning-based algorithms on Pendulum, Cart Pole, Car Trajectory
Tracking, and 2-link Pendulum utilizing Algorithm 1 in the main text until convergence. Control
curves under uniform (U) perturbations are shown in Fig. A-16, while control curves under worst-
case (W) perturbations learned by the adversary are illustrated in Fig. A-17. We use the learned
adversary in RARL to add perturbations in worst-case testing. This is because for unknown system
dynamics, the adversary’s actions are the additive error to the output of the learned environment
model, and in testing, we require the perturbations in the true dynamics (e.g., physical parameters
or external force). We observe that our ARNLC can achieve asymptotic stability under both test
scenarios in almost all the tasks, while it reaches the stability the fastest compared to the other
baselines. The learned adversary’s external force perturbations in the Car Trajectory Tracking task
is the only test scenario where our ARNLC fails to reach the equilibrium point, as shown in Fig.
A-17(i). Though NLC reaches the stability in some tasks, it fails to reach the equilibrium point in
Pendulum W, Car Tracking W and 2-link Pendulum U and W, when the perturbation type in testing
is the external force. PNLC trained under uniform sampled perturbations outperforms NLC in some
tasks (e.g., Pendulum and Cart Pole), but is worse in Car Tracking W and 2-link Pendulum U.

We additionally compute the percentile of rewards for controller policies achieved by each algorithm
to further evaluate their robustness. We run each policy with 100 different initial system states in

26

Under review as a conference paper at ICLR 2023

each perturbed task, and then sort the cumulative negative adversary reward of each run to obtain the
n-th percentile. The results obtained under uniform (U) perturbations are shown in Fig. A-18, while
percentile plots under worst-case (W) perturbations learned by the adversary are illustrated in Fig.
A-19. In general, control policies that can gain higher rewards at the same percentile perform better.
While control policies in a lower percentile have better control performance if they receive the same
reward, i.e., they can gain higher rewards with more episodes. We observe that our ARNLC can
receive the highest rewards under both test scenarios in all the tasks. RARL sometimes fails to reach
the stability in Car Trajectory Tracking, and therefore, RARL sometimes receives extremely low
rewards in this task.

0 1 2 3 4 5
time(s)

0

1

2

3

4

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) External Force
ARNLC
NLC
PNLC
RARL

(a) Pendulum U

0 1 2 3 4 5
time(s)

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Acceleration of Gravity

ARNLC
NLC
PNLC
RARL

(b) Pendulum U

0 1 2 3 4 5
time(s)

4

3

2

1

0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Length of Pole

ARNLC
NLC
PNLC
RARL

(c) Pendulum U

0 1 2 3 4 5
time(s)

0

1

2

3

4

5

6

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Mass of Ball
ARNLC
NLC
PNLC
RARL

(d) Pendulum U

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.02

0.01

0.00

0.01

0.02

0.03

0.04

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) External Force
ARNLC
NLC
PNLC
RARL

(e) Cart Pole U

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.02

0.01

0.00

0.01

0.02

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Acceleration of Gravity
ARNLC
NLC
PNLC
RARL

(f) Cart Pole U

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.04

0.03

0.02

0.01

0.00

0.01

0.02

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Length of Pole
ARNLC
NLC
PNLC
RARL

(g) Cart Pole U

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.04

0.03

0.02

0.01

0.00

0.01

0.02

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Mass of Cart

ARNLC
NLC
PNLC
RARL

(h) Cart Pole U

0 1 2 3 4 5
time(s)

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
0.05

di
st

an
ce

 e
rro

r (
m

)

External Force

ARNLC
NLC
PNLC
RARL

(i) Car Tracking U

0 1 2 3 4 5
time(s)

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

an
gl

e
er

ro
r (

ra
d)

External Force
ARNLC
NLC
PNLC
RARL

(j) Car Tracking U

0 1 2 3 4 5
time(s)

0.4

0.3

0.2

0.1

0.0

di
st

an
ce

 e
rro

r (
m

)

Radius of Path

ARNLC
NLC
PNLC
RARL

(k) Car Tracking U

0 1 2 3 4 5
time(s)

0.05

0.00

0.05

0.10

0.15

0.20

an
gl

e
er

ro
r (

ra
d)

Radius of Path
ARNLC
NLC
PNLC
RARL

(l) Car Tracking U

0 10 20 30 40 50
time(s)

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pe
nd

ul
um

-1
 a

ng
ul

ar
 p

os
iti

on
 (r

ad
) External Force

ARNLC
NLC
PNLC

(m) 2-link Pendulum U

0 10 20 30 40 50
time(s)

0.4

0.2

0.0

0.2

pe
nd

ul
um

-2
 a

ng
ul

ar
 p

os
iti

on
 (r

ad
) External Force

ARNLC
NLC
PNLC

(n) 2-link Pendulum U

0 10 20 30 40 50
time(s)

0.30
0.25
0.20
0.15
0.10
0.05
0.00
0.05
0.10

pe
nd

ul
um

-1
 a

ng
ul

ar
 p

os
iti

on
 (r

ad
) Position of the Center of Mass of Pendulum-1

ARNLC
NLC
PNLC

(o) 2-link Pendulum U

0 10 20 30 40 50
time(s)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

pe
nd

ul
um

-2
 a

ng
ul

ar
 p

os
iti

on
 (r

ad
) Position of the Center of Mass of Pendulum-1

ARNLC
NLC
PNLC

(p) 2-link Pendulum U

Figure A-16: Control curves of Pendulum, Cart Pole, Car Trajectory Tracking and 2-link Pendulum
under uniform (U) perturbations in testing.

27

Under review as a conference paper at ICLR 2023

0 1 2 3 4 5
time(s)

2.5

2.0

1.5

1.0

0.5

0.0

0.5

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) External Force

ARNLC
NLC
PNLC
RARL

(a) Pendulum W

0 1 2 3 4 5
time(s)

5

4

3

2

1

0
pe

nd
ul

um
 a

ng
ul

ar
 p

os
iti

on
 (r

ad
) Acceleration of Gravity

ARNLC
NLC
PNLC
RARL

(b) Pendulum W

0 1 2 3 4 5
time(s)

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Length of Pole

ARNLC
NLC
PNLC
RARL

(c) Pendulum W

0 1 2 3 4 5
time(s)

0.2

0.0

0.2

0.4

0.6

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Mass of Ball
ARNLC
NLC
PNLC
RARL

(d) Pendulum W

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) External Force
ARNLC
NLC
PNLC
RARL

(e) Cart Pole W

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.010

0.005

0.000

0.005

0.010

0.015

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Acceleration of Gravity
ARNLC
NLC
PNLC
RARL

(f) Cart Pole W

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.02

0.01

0.00

0.01

0.02
pe

nd
ul

um
 a

ng
ul

ar
 p

os
iti

on
 (r

ad
) Length of Pole

ARNLC
NLC
PNLC
RARL

(g) Cart Pole W

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.0100
0.0075
0.0050
0.0025
0.0000
0.0025
0.0050
0.0075

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Mass of Cart

ARNLC
NLC
PNLC
RARL

(h) Cart Pole W

0 1 2 3 4 5
time(s)

0.05

0.00

0.05

0.10

0.15

0.20

0.25

di
st

an
ce

 e
rro

r (
m

)

External Force

ARNLC
NLC
PNLC
RARL

(i) Car Tracking W

0 1 2 3 4 5
time(s)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

an
gl

e
er

ro
r (

ra
d)

External Force

ARNLC
NLC
PNLC
RARL

(j) Car Tracking W

0 1 2 3 4 5
time(s)

0.1

0.0

0.1

0.2

0.3

di
st

an
ce

 e
rro

r (
m

)

Radius of Path
ARNLC
NLC
PNLC
RARL

(k) Car Tracking W

0 1 2 3 4 5
time(s)

0.15

0.10

0.05

0.00

0.05

an
gl

e
er

ro
r (

ra
d)

Radius of Path

ARNLC
NLC
PNLC
RARL

(l) Car Tracking W

0 10 20 30 40 50
time(s)

0.15

0.10

0.05

0.00

0.05

0.10

pe
nd

ul
um

-1
 a

ng
ul

ar
 p

os
iti

on
 (r

ad
) Position of the Center of Mass of Pendulum-1

ARNLC
NLC
PNLC

(m) 2-link Pendulum W

0 10 20 30 40 50
time(s)

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pe
nd

ul
um

-2
 a

ng
ul

ar
 p

os
iti

on
 (r

ad
) Position of the Center of Mass of Pendulum-1

ARNLC
NLC
PNLC

(n) 2-link Pendulum W

0 10 20 30 40 50
time(s)

0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

pe
nd

ul
um

-1
 a

ng
ul

ar
 p

os
iti

on
 (r

ad
) External Force

ARNLC
NLC
PNLC

(o) 2-link Pendulum W

0 10 20 30 40 50
time(s)

0.3

0.2

0.1

0.0

0.1

0.2

0.3

pe
nd

ul
um

-2
 a

ng
ul

ar
 p

os
iti

on
 (r

ad
) External Force

ARNLC
NLC
PNLC

(p) 2-link Pendulum W

Figure A-17: Control curves of Pendulum, Cart Pole, Car Trajectory Tracking and 2-link Pendulum
under learned adversary’s worst-case (W) perturbations in testing.

28

Under review as a conference paper at ICLR 2023

0 20 40 60 80 100
Percentile

140

120

100

80

60

40

20

0

Re
wa

rd

External Force
ARNLC
NLC
PNLC
RARL

(a) Pendulum U

0 20 40 60 80 100
Percentile

200

150

100

50

0
Re

wa
rd

Friction Coefficient
ARNLC
NLC
PNLC
RARL

(b) Pendulum U

0 20 40 60 80 100
Percentile

140

120

100

80

60

40

20

0

Re
wa

rd

Acceleration of Gravity
ARNLC
NLC
PNLC
RARL

(c) Pendulum U

0 20 40 60 80 100
Percentile

200
175
150
125
100

75
50
25

0

Re
wa

rd

Length of Pole
ARNLC
NLC
PNLC
RARL

(d) Pendulum U

0 20 40 60 80 100
Percentile

160
140
120
100

80
60
40
20

0

Re
wa

rd

Mass of Ball
ARNLC
NLC
PNLC
RARL

(e) Pendulum U

0 20 40 60 80 100
Percentile

1900
1925
1950
1975
2000
2025
2050
2075
2100

Re
wa

rd

External Force
ARNLC
NLC
PNLC
RARL

(f) Cart Pole U

0 20 40 60 80 100
Percentile

1900
1925
1950
1975
2000
2025
2050
2075
2100

Re
wa

rd
Acceleration of Gravity

ARNLC
NLC
PNLC
RARL

(g) Cart Pole U

0 20 40 60 80 100
Percentile

1900
1925
1950
1975
2000
2025
2050
2075
2100

Re
wa

rd

Length of Pole
ARNLC
NLC
PNLC
RARL

(h) Cart Pole U

0 20 40 60 80 100
Percentile

1900
1925
1950
1975
2000
2025
2050
2075
2100

Re
wa

rd

Mass of Cart
ARNLC
NLC
PNLC
RARL

(i) Cart Pole U

0 20 40 60 80 100
Percentile

1900
1925
1950
1975
2000
2025
2050
2075
2100

Re
wa

rd

Mass of Pole
ARNLC
NLC
PNLC
RARL

(j) Cart Pole U

0 20 40 60 80 100
Percentile

2000
1750
1500
1250
1000

750
500
250

0

Re
wa

rd

External Force

ARNLC
NLC
PNLC
RARL

(k) Car Tracking U

0 20 40 60 80 100
Percentile

2500

2000

1500

1000

500

0

Re
wa

rd

Velocity of Car

ARNLC
NLC
PNLC
RARL

(l) Car Tracking U

0 20 40 60 80 100
Percentile

4000

3000

2000

1000

0

Re
wa

rd

Radius of Path

ARNLC
NLC
PNLC
RARL

(m) Car Tracking U

0 20 40 60 80 100
Percentile

1600

1400

1200

1000

800

600

400

Re
wa

rd

External Force
ARNLC
NLC
PNLC

(n) 2-link Pendulum U

0 20 40 60 80 100
Percentile

1600

1400

1200

1000

800

600

400

Re
wa

rd

Position of the Center of Mass of Pendulum-1
ARNLC
NLC
PNLC

(o) 2-link Pendulum U

0 20 40 60 80 100
Percentile

1600

1400

1200

1000

800

600

400

Re
wa

rd

Length of Pendulum-1
ARNLC
NLC
PNLC

(p) 2-link Pendulum U

Figure A-18: Percentile plots of Pendulum, Cart Pole, Car Trajectory Tracking and 2-link Pendulum
under uniform (U) perturbations in testing.

29

Under review as a conference paper at ICLR 2023

0 20 40 60 80 100
Percentile

250

200

150

100

50

0

Re
wa

rd

External Force
ARNLC
NLC
PNLC
RARL

(a) Pendulum W

0 20 40 60 80 100
Percentile

200
175
150
125
100

75
50
25

0
Re

wa
rd

Friction Coefficient
ARNLC
NLC
PNLC
RARL

(b) Pendulum W

0 20 40 60 80 100
Percentile

120

100

80

60

40

20

0

Re
wa

rd

Acceleration of Gravity
ARNLC
NLC
PNLC
RARL

(c) Pendulum W

0 20 40 60 80 100
Percentile

350

300

250

200

150

100

50

0

Re
wa

rd

Length of Pole

ARNLC
NLC
PNLC
RARL

(d) Pendulum W

0 20 40 60 80 100
Percentile

160
140
120
100

80
60
40
20

0

Re
wa

rd

Mass of Ball
ARNLC
NLC
PNLC
RARL

(e) Pendulum W

0 20 40 60 80 100
Percentile

1900
1925
1950
1975
2000
2025
2050
2075
2100

Re
wa

rd

External Force
ARNLC
NLC
PNLC
RARL

(f) Cart Pole W

0 20 40 60 80 100
Percentile

1900
1925
1950
1975
2000
2025
2050
2075
2100

Re
wa

rd
Acceleration of Gravity

ARNLC
NLC
PNLC
RARL

(g) Cart Pole W

0 20 40 60 80 100
Percentile

1900
1925
1950
1975
2000
2025
2050
2075
2100

Re
wa

rd

Length of Pole
ARNLC
NLC
PNLC
RARL

(h) Cart Pole W

0 20 40 60 80 100
Percentile

1900
1925
1950
1975
2000
2025
2050
2075
2100

Re
wa

rd

Mass of Cart
ARNLC
NLC
PNLC
RARL

(i) Cart Pole W

0 20 40 60 80 100
Percentile

1900
1925
1950
1975
2000
2025
2050
2075
2100

Re
wa

rd

Mass of Pole
ARNLC
NLC
PNLC
RARL

(j) Cart Pole W

0 20 40 60 80 100
Percentile

4000

3000

2000

1000

0

Re
wa

rd

External Force

ARNLC
NLC
PNLC
RARL

(k) Car Tracking W

0 20 40 60 80 100
Percentile

4000

3000

2000

1000

0

Re
wa

rd

Velocity of Car

ARNLC
NLC
PNLC
RARL

(l) Car Tracking W

0 20 40 60 80 100
Percentile

4000

3000

2000

1000

0

Re
wa

rd

Radius of Path

ARNLC
NLC
PNLC
RARL

(m) Car Tracking W

0 20 40 60 80 100
Percentile

1400

1200

1000

800

600

400

Re
wa

rd

Position of the Center of Mass of Pendulum-1

ARNLC
NLC
PNLC

(n) 2-link Pendulum W

0 20 40 60 80 100
Percentile

1400

1200

1000

800

600

400

Re
wa

rd

Length of Pendulum-1

ARNLC
NLC
PNLC

(o) 2-link Pendulum W

0 20 40 60 80 100
Percentile

1600

1400

1200

1000

800

600

400

Re
wa

rd

External Force
ARNLC
NLC
PNLC

(p) 2-link Pendulum W

Figure A-19: Percentile plots of Pendulum, Cart Pole, Car Trajectory Tracking and 2-link Pendulum
under learned adversary’s worst-case (W) perturbations in testing.

30

Under review as a conference paper at ICLR 2023

A.5.2 GENERALIZATION IN PERTURBATION SPACE

In this subsection, we evaluate the generalization capability of learning-based algorithms in the en-
tire perturbation space. We observe that ARNLC achieves the best generalization performance under
most unknown system dynamics and among all the combinations of different physical parameters.
RARL presents the worst performance in all the tasks except for Pendulum.

(a) Pendulum (b) Pendulum

(c) Pendulum

0.10.1
8
0.2

6
0.3

4
0.4

20.50.5
8
0.6

6
0.7

4
0.8

20.9

length of pole

0.1
0.69
1.28
1.87
2.46
3.05
3.64
4.23
4.82
5.41

6.0

m
as

s o
f p

ol
e

ARNLC

0.10.1
8
0.2

6
0.3

4
0.4

20.50.5
8
0.6

6
0.7

4
0.8

20.9

0.1
0.69
1.28
1.87
2.46
3.05
3.64
4.23
4.82
5.41

6.0

NLC

0.10.1
8
0.2

6
0.3

4
0.4

20.50.5
8
0.6

6
0.7

4
0.8

20.9

0.1
0.69
1.28
1.87
2.46
3.05
3.64
4.23
4.82
5.41

6.0

PNLC

0.10.1
8
0.2

6
0.3

4
0.4

20.50.5
8
0.6

6
0.7

4
0.8

20.9

0.1
0.69
1.28
1.87
2.46
3.05
3.64
4.23
4.82
5.41

6.0

RARL

500

1000

1500

2000

(d) Cart Pole

0.10.1
9
0.2

8
0.3

7
0.4

6
0.5

5
0.6

4
0.7

3
0.8

2
0.9

11.0

mass of ball

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0fri

ct
io

n
co

ef
fic

ie
nt

ARNLC

0.10.1
9
0.2

8
0.3

7
0.4

6
0.5

5
0.6

4
0.7

3
0.8

2
0.9

11.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

NLC

0.10.1
9
0.2

8
0.3

7
0.4

6
0.5

5
0.6

4
0.7

3
0.8

2
0.9

11.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

PNLC

0.10.1
9
0.2

8
0.3

7
0.4

6
0.5

5
0.6

4
0.7

3
0.8

2
0.9

11.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

RARL

700

600

500

400

300

200

100

(e) Pendulum

0.10.2
9
0.4

8
0.6

7
0.8

6
1.0

5
1.2

4
1.4

3
1.6

2
1.8

12.0

mass of ball

5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0

ac
ce

le
ra

tio
n

of
 g

ra
vi

ty ARNLC

0.10.2
9
0.4

8
0.6

7
0.8

6
1.0

5
1.2

4
1.4

3
1.6

2
1.8

12.0

5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0

NLC

0.10.2
9
0.4

8
0.6

7
0.8

6
1.0

5
1.2

4
1.4

3
1.6

2
1.8

12.0

5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0

PNLC

0.10.2
9
0.4

8
0.6

7
0.8

6
1.0

5
1.2

4
1.4

3
1.6

2
1.8

12.0

5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0

RARL

2500

2000

1500

1000

500

(f) Pendulum

1.02.94.86.78.610
.5
12

.4
14

.3
16

.2
18

.1
20

.0

acceleration of gravity

0.1
0.59
1.08
1.57
2.06
2.55
3.04
3.53
4.02
4.51

5.0

m
as

s o
f c

ar
t

ARNLC

1.02.94.86.78.610
.5
12

.4
14

.3
16

.2
18

.1
20

.0

0.1
0.59
1.08
1.57
2.06
2.55
3.04
3.53
4.02
4.51

5.0

NLC

1.02.94.86.78.610
.5
12

.4
14

.3
16

.2
18

.1
20

.0

0.1
0.59
1.08
1.57
2.06
2.55
3.04
3.53
4.02
4.51

5.0

PNLC

1.02.94.86.78.610
.5
12

.4
14

.3
16

.2
18

.1
20

.0

0.1
0.59
1.08
1.57
2.06
2.55
3.04
3.53
4.02
4.51

5.0

RARL

500

1000

1500

2000

(g) Cart Pole

1.02.94.86.78.610
.5
12

.4
14

.3
16

.2
18

.1
20

.0

acceleration of gravity

0.01
0.51
1.01
1.51
2.01

2.5
3.0
3.5
4.0
4.5
5.0

m
as

s o
f p

ol
e

ARNLC

1.02.94.86.78.610
.5
12

.4
14

.3
16

.2
18

.1
20

.0

0.01
0.51
1.01
1.51
2.01

2.5
3.0
3.5
4.0
4.5
5.0

NLC

1.02.94.86.78.610
.5
12

.4
14

.3
16

.2
18

.1
20

.0

0.01
0.51
1.01
1.51
2.01

2.5
3.0
3.5
4.0
4.5
5.0

PNLC

1.02.94.86.78.610
.5
12

.4
14

.3
16

.2
18

.1
20

.0

0.01
0.51
1.01
1.51
2.01

2.5
3.0
3.5
4.0
4.5
5.0

RARL

500

1000

1500

2000

(h) Cart Pole

0.10.1
7
0.2

4
0.3

1
0.3

8
0.4

5
0.5

2
0.5

9
0.6

6
0.7

30.8

length of pole

1.0
4.9
8.8

12.7
16.6
20.5
24.4
28.3
32.2
36.1
40.0

ac
ce

le
ra

tio
n

of
 g

ra
vi

ty ARNLC

0.10.1
7
0.2

4
0.3

1
0.3

8
0.4

5
0.5

2
0.5

9
0.6

6
0.7

30.8

1.0
4.9
8.8

12.7
16.6
20.5
24.4
28.3
32.2
36.1
40.0

NLC

0.10.1
7
0.2

4
0.3

1
0.3

8
0.4

5
0.5

2
0.5

9
0.6

6
0.7

30.8

1.0
4.9
8.8

12.7
16.6
20.5
24.4
28.3
32.2
36.1
40.0

PNLC

0.10.1
7
0.2

4
0.3

1
0.3

8
0.4

5
0.5

2
0.5

9
0.6

6
0.7

30.8

1.0
4.9
8.8

12.7
16.6
20.5
24.4
28.3
32.2
36.1
40.0

RARL

500

1000

1500

2000

(i) Cart Pole

0.10.1
7
0.2

4
0.3

1
0.3

8
0.4

5
0.5

2
0.5

9
0.6

6
0.7

30.8

length of pole

0.1
0.59
1.08
1.57
2.06
2.55
3.04
3.53
4.02
4.51

5.0

m
as

s o
f c

ar
t

ARNLC

0.10.1
7
0.2

4
0.3

1
0.3

8
0.4

5
0.5

2
0.5

9
0.6

6
0.7

30.8

0.1
0.59
1.08
1.57
2.06
2.55
3.04
3.53
4.02
4.51

5.0

NLC

0.10.1
7
0.2

4
0.3

1
0.3

8
0.4

5
0.5

2
0.5

9
0.6

6
0.7

30.8

0.1
0.59
1.08
1.57
2.06
2.55
3.04
3.53
4.02
4.51

5.0

PNLC

0.10.1
7
0.2

4
0.3

1
0.3

8
0.4

5
0.5

2
0.5

9
0.6

6
0.7

30.8

0.1
0.59
1.08
1.57
2.06
2.55
3.04
3.53
4.02
4.51

5.0

RARL

500

1000

1500

2000

(j) Cart Pole

(k) Inverted Pendulum (l) Inverted Pendulum

Figure A-20: Heatmap of averaged controller’s reward for Pendulum, Cart Pole and Inverted Pen-
dulum.

31

Under review as a conference paper at ICLR 2023

A.5.3 IMPACT OF CONTROL INTERVALS

We evaluate the impact of different control intervals (0.01s, 0.1s, 0.005s and 0.001s) to our ARNLC
on Pendulum with perturbation types (Length of Pole, Mass of Ball, Friction Coefficient, Acceler-
ation of Gravity) different from the results presented in the main text. The resulting control curves
obtained for Pendulum under uniform perturbations are shown in Figs. A-16(a)-A-16(d) and Fig.
A-21. And the control curves under perturbation of learned adversary are shown in Figs. A-17(a)-A-
17(d) and Fig. A-22. The resulting percentile plots obtained for Pendulum under uniform perturba-
tions are shown in Figs. A-18(a)-A-18(e) and Fig. A-23. And the percentile plots under perturbation
of learned adversary are shown in Figs. A-19(a)-A-19(e) and Fig. A-24. The results demonstrate
that our ARNLC is robust to different control intervals.

0 1 2 3 4 5
time(s)

1

0

1

2

3

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Friction Coefficient
ARNLC
NLC
PNLC
RARL

(a) 0.1s U

0 1 2 3 4 5
time(s)

0.0

0.5

1.0

1.5

2.0

2.5

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Acceleration of Gravity
ARNLC
NLC
PNLC
RARL

(b) 0.1s U

0 1 2 3 4 5
time(s)

4

2

0

2

4

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Mass of Ball
ARNLC
NLC
PNLC
RARL

(c) 0.1s U

0 1 2 3 4 5
time(s)

1

0

1

2

3

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Length of Pole
ARNLC
NLC
PNLC
RARL

(d) 0.1s U

0 1 2 3 4 5
time(s)

5

4

3

2

1

0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Friction Coefficient

ARNLC
NLC
PNLC
RARL

(e) 0.005s U

0 1 2 3 4 5
time(s)

4

3

2

1

0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Acceleration of Gravity

ARNLC
NLC
PNLC
RARL

(f) 0.005s U

0 1 2 3 4 5
time(s)

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
pe

nd
ul

um
 a

ng
ul

ar
 p

os
iti

on
 (r

ad
) Mass of Ball

ARNLC
NLC
PNLC
RARL

(g) 0.005s U

0 1 2 3 4 5
time(s)

3

2

1

0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Length of Pole

ARNLC
NLC
PNLC
RARL

(h) 0.005s U

0 1 2 3 4 5
time(s)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Friction Coefficient

ARNLC
NLC
PNLC
RARL

(i) 0.001s U

0 1 2 3 4 5
time(s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Acceleration of Gravity

ARNLC
NLC
PNLC
RARL

(j) 0.001s U

0 1 2 3 4 5
time(s)

5

4

3

2

1

0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Mass of Ball

ARNLC
NLC
PNLC
RARL

(k) 0.001s U

0 1 2 3 4 5
time(s)

2.5

2.0

1.5

1.0

0.5

0.0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Length of Pole

ARNLC
NLC
PNLC
RARL

(l) 0.001s U

Figure A-21: Control curves of Pendulum under uniform (U) perturbations in testing with control
interval set to 0.1s, 0.005s and 0.001s, respectively.

32

Under review as a conference paper at ICLR 2023

0 1 2 3 4 5
time(s)

6

4

2

0

2

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Friction Coefficient

ARNLC
NLC
PNLC
RARL

(a) 0.1s W

0 1 2 3 4 5
time(s)

0.0

0.5

1.0

1.5

2.0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Acceleration of Gravity
ARNLC
NLC
PNLC
RARL

(b) 0.1s W

0 1 2 3 4 5
time(s)

3

2

1

0

1

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Mass of Ball

ARNLC
NLC
PNLC
RARL

(c) 0.1s W

0 1 2 3 4 5
time(s)

3

2

1

0

1

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Length of Pole

ARNLC
NLC
PNLC
RARL

(d) 0.1s W

0 1 2 3 4 5
time(s)

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Friction Coefficient
ARNLC
NLC
PNLC
RARL

(e) 0.005s W

0 1 2 3 4 5
time(s)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Acceleration of Gravity

ARNLC
NLC
PNLC
RARL

(f) 0.005s W

0 1 2 3 4 5
time(s)

0.0

0.5

1.0

1.5

2.0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Mass of Ball
ARNLC
NLC
PNLC
RARL

(g) 0.005s W

0 1 2 3 4 5
time(s)

1.5

1.0

0.5

0.0

0.5

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Length of Pole

ARNLC
NLC
PNLC
RARL

(h) 0.005s W

0 1 2 3 4 5
time(s)

2.5

2.0

1.5

1.0

0.5

0.0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Friction Coefficient

ARNLC
NLC
PNLC
RARL

(i) 0.001s W

0 1 2 3 4 5
time(s)

0.0

0.5

1.0

1.5

2.0

2.5

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Acceleration of Gravity

ARNLC
NLC
PNLC
RARL

(j) 0.001s W

0 1 2 3 4 5
time(s)

5

4

3

2

1

0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Mass of Ball

ARNLC
NLC
PNLC
RARL

(k) 0.001s W

0 1 2 3 4 5
time(s)

2.5

2.0

1.5

1.0

0.5

0.0

pe
nd

ul
um

 a
ng

ul
ar

 p
os

iti
on

 (r
ad

) Length of Pole

ARNLC
NLC
PNLC
RARL

(l) 0.001s W

Figure A-22: Control curves of Pendulum under learned adversary’s worst-case (W) perturbations
in testing with control interval set to 0.1s, 0.005s and 0.001s, respectively.

0 20 40 60 80 100
Percentile

25

20

15

10

5

0

Re
wa

rd

Friction Coefficient

ARNLC
NLC
PNLC
RARL

(a) 0.1s U

0 20 40 60 80 100
Percentile

20

15

10

5

0

Re
wa

rd

Acceleration of Gravity
ARNLC
NLC
PNLC
RARL

(b) 0.1s U

0 20 40 60 80 100
Percentile

160
140
120
100

80
60
40
20

0

Re
wa

rd

Mass of Ball

ARNLC
NLC
PNLC
RARL

(c) 0.1s U

0 20 40 60 80 100
Percentile

50

40

30

20

10

0

Re
wa

rd

Length of Pole

ARNLC
NLC
PNLC
RARL

(d) 0.1s U

0 20 40 60 80 100
Percentile

250

200

150

100

50

0

Re
wa

rd

Friction Coefficient
ARNLC
NLC
PNLC
RARL

(e) 0.005s U

0 20 40 60 80 100
Percentile

250

200

150

100

50

0

Re
wa

rd

Acceleration of Gravity
ARNLC
NLC
PNLC
RARL

(f) 0.005s U

0 20 40 60 80 100
Percentile

250

200

150

100

50

0

Re
wa

rd

Mass of Ball
ARNLC
NLC
PNLC
RARL

(g) 0.005s U

0 20 40 60 80 100
Percentile

350

300

250

200

150

100

50

0

Re
wa

rd

Length of Pole
ARNLC
NLC
PNLC
RARL

(h) 0.005s U

0 20 40 60 80 100
Percentile

40000

30000

20000

10000

0

Re
wa

rd

Friction Coefficient

ARNLC
NLC
PNLC
RARL

(i) 0.001s U

0 20 40 60 80 100
Percentile

40000

30000

20000

10000

0

Re
wa

rd

Acceleration of Gravity

ARNLC
NLC
PNLC
RARL

(j) 0.001s U

0 20 40 60 80 100
Percentile

40000

30000

20000

10000

0

Re
wa

rd

Mass of Ball

ARNLC
NLC
PNLC
RARL

(k) 0.001s U

0 20 40 60 80 100
Percentile

40000
35000
30000
25000
20000
15000
10000

5000
0

Re
wa

rd

Length of Pole

ARNLC
NLC
PNLC
RARL

(l) 0.001s U

Figure A-23: Percentile plots of Pendulum under uniform (U) perturbations in testing with control
interval set to 0.1s, 0.005s and 0.001s, respectively.

33

Under review as a conference paper at ICLR 2023

0 20 40 60 80 100
Percentile

30

25

20

15

10

5

0

Re
wa

rd

Friction Coefficient
ARNLC
NLC
PNLC
RARL

(a) 0.1s W

0 20 40 60 80 100
Percentile

20

15

10

5

0

Re
wa

rd

Acceleration of Gravity
ARNLC
NLC
PNLC
RARL

(b) 0.1s W

0 20 40 60 80 100
Percentile

200

150

100

50

0

Re
wa

rd

Mass of Ball

ARNLC
NLC
PNLC
RARL

(c) 0.1s W

0 20 40 60 80 100
Percentile

100

80

60

40

20

0

Re
wa

rd

Length of Pole

ARNLC
NLC
PNLC
RARL

(d) 0.1s W

0 20 40 60 80 100
Percentile

500

400

300

200

100

0

Re
wa

rd

Friction Coefficient
ARNLC
NLC
PNLC
RARL

(e) 0.005s W

0 20 40 60 80 100
Percentile

250

200

150

100

50

0

Re
wa

rd

Acceleration of Gravity
ARNLC
NLC
PNLC
RARL

(f) 0.005s W

0 20 40 60 80 100
Percentile

250

200

150

100

50

0

Re
wa

rd

Mass of Ball
ARNLC
NLC
PNLC
RARL

(g) 0.005s W

0 20 40 60 80 100
Percentile

600

500

400

300

200

100

0

Re
wa

rd

Length of Pole
ARNLC
NLC
PNLC
RARL

(h) 0.005s W

0 20 40 60 80 100
Percentile

40000

30000

20000

10000

0

Re
wa

rd

Friction Coefficient

ARNLC
NLC
PNLC
RARL

(i) 0.001s W

0 20 40 60 80 100
Percentile

40000

30000

20000

10000

0

Re
wa

rd

Acceleration of Gravity

ARNLC
NLC
PNLC
RARL

(j) 0.001s W

0 20 40 60 80 100
Percentile

40000

30000

20000

10000

0

Re
wa

rd

Mass of Ball

ARNLC
NLC
PNLC
RARL

(k) 0.001s W

0 20 40 60 80 100
Percentile

40000

30000

20000

10000

0

Re
wa

rd

Length of Pole

ARNLC
NLC
PNLC
RARL

(l) 0.001s W

Figure A-24: Percentile plots of Pendulum under learned adversary’s worst-case (W) perturbations
in testing with control interval set to 0.1s, 0.005s and 0.001s, respectively.

34

	Introduction
	Related Work
	Preliminaries and Background
	Stability Guarantee with Lyapunov Functions
	Neural Lyapunov Control

	Adversarially Robust Neural Lyapunov Control
	Perturbed Controller Learning
	Adversary Learning
	Adversarially Robust Controller Learning

	Experiment
	Control of Perturbed Nonlinear Systems
	Generalization in Perturbation Space
	Impact of Control Intervals

	Conclusions and Future Work
	Appendix
	Controller Learning for Discrete-Time Control
	ARNLC for Known System Dynamics
	Details of Experimental Settings
	System Dynamics

	Additional Experimental Results with Known System Dynamics Scenarios
	Control of Perturbed Nonlinear Systems
	Generalization in Perturbation Space
	Impact of Control Intervals

	Additional Experimental Results with Unknown System Dynamics Scenarios
	Control of Perturbed Nonlinear Systems
	Generalization in Perturbation Space
	Impact of Control Intervals

