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Abstract

Abundant records now link organizational contexts, actions, and outcomes. Evolutionary
Surrogate-Assisted Prescription (ESP) converts such data into trustworthy policies through
a two-stage neuro-symbolic pipeline: a neural network Predictor surrogate is trained first
using supervised learning, after which an interpretable Prescriptor is evolved against it
using the EVOTER rule grammar. Decoupling prediction from prescription yields high
sample-efficiency, low on-line risk, and explicit regularization, while the resulting rule sets
remain compact and auditable. Across diverse, safety-critical domains, ESP attains ac-
curacy on par with—or exceeding—neural network models, yet retains full transparency,
establishing a robust platform for large-scale, trustworthy decision optimization.

1. Introduction
Outcomes

O

C
Context

A
ActionsPrescribe

Pr
ed

ic
t

Figure 1: Elements of ESP. A
neural network Predictor maps con-
text–action pairs to outcomes, allow-
ing sample-efficient evolution of an in-
terpretable Prescriptor.

Deep networks excel at accuracy but obscure their rea-
soning— which is unacceptable in regulated areas such
as health, finance, and law. Post-hoc methods such as
LIME (Ribeiro et al., 2016) and SHAP (Lundberg and
Lee, 2017) offer only local or approximate insight and
can mislead (Linardatos et al., 2020; Lage et al., 2019).
ESP (Francon et al., 2020) takes an alternative route: first
learn an accurate neural network surrogate of the environ-
ment, then evolve a fully symbolic, transparent policy, re-
solving the accuracy–interpretability tension highlighted
by Doshi-Velez and Kim (2017).

2. ESP

Figure 1 summarises the two-stage workflow.

Stage 1: Learning the Predictor. Given data D = {(xi, ai, yi)} a function f̂(x, a)≈y
is learned e.g. with gradient-boosted trees or neural networks.

Stage 2: Evolving the Prescriptor. An evolutionary algorithm searches a symbolic
space Π of rule sets, maximising expected surrogate outcome Ex[f̂(x, π(x))] while respecting
safety or cost constraints. The EVOTER grammar (Section 3) ensures each individual is a
compact, auditable policy.

Such an offline optimization approach lets ESP enforce fairness and budget constraints
during search, achieving trust by construction rather than by post-hoc explanation.
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3. EVOTER: The Symbolic Backbone of ESP

EVOTER (Figure 2; Shahrzad et al., 2025) evolves intrinsically interpretable rule sets
through a flat, list-based grammar enriched with time-lag operators, feature–feature com-
parisons, and nonlinear transformations. This design simplifies variation operators, miti-
gates bloat, and captures relational and temporal patterns essential in applications, such as
early sepsis detection and reinforcement learning.

< rules > ::= < rule > |< rule >OR< rules >

< rule > ::= < conditions > −→ [< certainty >]< action >

< conditions > ::= < condition > |< condition >AND< conditions >

< condition > ::= < leading >< operator >< trailing >

< leading > ::= < coefficient > ∗< feature >[<power>][(lag)]

< coefficient > ::= 0.[0− 9]+

< feature > ::= (input feature)

< power > ::= [1− 3]

< lag > ::= [0− 9]

< operator > ::= = | ̸= | < | ≤ | > | ≥
< trailing > ::= < leading > |< value >

< value > ::= (scalar)

< certainty > ::= < coefficient >

< action > ::= (class or action)

(a) BNF grammar of EVOTER rules (b) Example EVOTER rule

Figure 2: Rule-set representation in EVOTER. (a) BNF with time lags, feature comparisons, and expo-
nents. (b) Colour-coded example rule. A rule set contains multiple such rules, a default fallback, and usage
counters.

4. Experimental Evaluation

Time-Series Prescription. On a blood-pressure time-series benchmark for early sepsis
detection (Hemberg et al., 2014), ESP evolved a two-clause rule IF (BP mean t-2 < 60)

& (HR/BP mean > 1.2) THEN Alert that lowered the false-negative rate by 8.2% relative
to a clinically tuned baseline while remaining immediately interpretable to medical staff.

Diabetes Treatment Insights. On the Diabetes10Y dataset (Strack et al., 2014), ESP
evolved a Pareto set of treatment rules; the top policy achieved 99 % “no-readmission” and
“sent-home” outcomes (vs. 60 % / 78 % historically) and exposed a race-conditioned clause
that clinicians could audit or remove.

Transparent vs. Opaque Prescriptors. On heart-failure (Chicco and Jurman, 2020)
and two-objective diabetes (Shahrzad et al., 2025) benchmarks, rule sets scored within 0.1
% of neural networks (non-significant for heart failure, marginal for diabetes), indicating
that ESP’s transparency comes at virtually no accuracy cost.

5. Conclusion

ESP couples a neural network Predictor with an rule-set Prescriptor, delivering perfor-
mance similar to neural networks while staying transparent and editable. The prescriptor
can first be evolved as a neural network for speed, then distilled into concise rules for de-
ployment. Ongoing work on GPU-scale evolution and continual retraining will extend ESP
to larger datasets and non-stationary environments, further broadening its industrial reach.
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