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Abstract

With thousand years of history, calligraphy001
serve as one of the representative symbols of002
Chinese culture. Increasing works try to digi-003
tize calligraphy by recognizing the context of004
calligraphy for better preservation and propa-005
gation. However, previous works stick to iso-006
lated single character recognition, not only re-007
quires unpractical manual splitting into char-008
acters, but also abandon the enriched con-009
text information that could be supplemen-010
tary. To this end, we construct the pioneering011
end-to-end calligraphy recognition benchmark012
dataset, this dataset is challenging due to both013
the visual variations such as different writing014
styles, and the textual understanding such as015
the domain shift in semantics. We further pro-016
pose CalligraphicOCR (COCR) equipped with017
calligraphic image augmentation and action-018
based corrector targeted at the challenging root019
of this setting. Experiments demonstrate the020
advantage of our proposed model over cutting-021
edge baselines, underscoring the necessity of022
introducing this new setting, thereby facilitat-023
ing a solid precondition for protecting and024
propagating the already scarce resources.025

1 Introduction026

The history of Chinese calligraphy is extensive,027

from its earliest carrier on silk, bamboo, and tex-028

tile scrolls to later works on paper and stone steles,029

calligraphers have created numerous works in di-030

verse writing styles, among which exist heirloom031

classic works such as Lantingji Xu (兰亭集序) and032

Eulogy for My Nephew (祭侄文稿). These cal-033

ligraphic masterpieces hold profound significance034

in shaping Chinese people cultural identity (Wang035

et al., 2020) and nature (Su et al., 2022).036

However, while many people enjoy and practice037

calligraphy, very few have digitized it, putting it in038

a low-resource situation. Previous efforts include039

recognitions rely on CNN architecture (Huang040

et al., 2022), transformers (Dan et al., 2022) or041

(Long absent, I miss you deeply. Summer is serene, how
fare you? Summoned by duty in old age, I cannot stay. A
humble gift of rice conveys my regard. Take care.)

米芾《清和贴》

Mi Fu, On Pleasant Harmony, Song Dynasty, 1103 A.D.

Input: Calligraphy Image

Output: Recognized Context
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Figure 1: Illustration of calligraphy recognition.

the unique characteristics of Chinese (Chen et al., 042

2021). Despite their effectiveness, previous works’ 043

modelings are inapplicable to calligraphy because 044

of their sticking to isolated character recogni- 045

tion (Carlson et al., 2024), requiring expensive 046

manual splitting the calligraphy into single char- 047

acters (Liu et al., 2013; Peng et al., 2022), also dis- 048

card the contextual semantic information that is no 049

less important than the visual shapes. 050

In this paper, we propose a new task: end-to- 051

end calligraphy recognition, as shown in Figure 1, 052

the input of our new setting is the complete cal- 053

ligraphy image and the output is the contexts in 054

the calligraphy. Our task aims to guide practi- 055

cal modeling methods for digitizing calligraphy 056

works, thereby furthering the preservation of an- 057

cient calligraphy and supporting the construction 058

of traditional Chinese cultural symbols. 059

To effectively benchmarking this task, we con- 060

struct a dataset named Chinese Calligraphy Recog- 061
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nition (CCR). On the basis of classic calligraphy062

images, we build the dataset by hiring naive speak-063

ers to annotate the sentences in the image, which064

include the calligraphy works written by 91 callig-065

raphers, with a time span of 10 dynasties from Wei066

(魏) to Ming (明), across 1,500 years. Our anno-067

tation is designed to cover corner cases as many068

as possible, the perspectives include the variations069

of different writing styles from neat (i.e., Slim Jin070

瘦金体) to scribble (i.e., Huang黄庭坚), the top-071

ics from government documents to love letters, for-072

mations from poems to diaries, and even with the073

stamps that could disturb the recognition. Thereby074

our CCR can facilitate the exhaustive benchmark075

of calligraphy recognition task.076

However, it is challenging to recognize calligra-077

phy image. As shown in Figure 2, the first chal-078

lenge arises from the visual modality, encompass-079

ing: 1) Diverse writing styles stemming from in-080

dividual habits, such as the Slim Jin (瘦金体) is081

famous for its neatness but Huang (黄庭坚) is082

scribble, having characters naturally joined-up and083

overlapped. 2) Absence of segmentation in cal-084

ligraphy, leading to the missing of punctuations085

and random line breaks, having characters being086

written in an unsegmented, continuous manner. 3)087

Noise artifacts which could include seals (印章)088

and inscription (落款) that could seriously disturb089

the recognition. Additionally, the shift from iso-090

lated character to complete context introduces the091

second challenge: how to utilizing the textual con-092

text semantics to reinforce the recognition under093

the serious 4) Domain shift, where the language094

expression in calligraphy may changes over thou-095

sand years of evolution while current language096

models are not familiar with it.097

In this study, we address the above challenges098

with the proposed CalligraphicOCR (COCR). As099

shown in Figure 4, our approach combines calli-100

graphic image augmentation and an action-based101

corrector. The former gradually refines the train-102

ing images to closely resemble real calligra-103

phy works through three augmentation strategies,104

while the latter contains a concise set of editing ac-105

tions simulate the human correction process and a106

novel alignment method to maximize the effective-107

ness of corrections, finally revised the output sen-108

tence with contextual semantics and distinguish109

our model from previous pure-visual recognitions.110

We finally benchmark our dataset with our111

COCR and a set of representative baselines. The112

empirical experiments highlight the advantage of 113

our COCR in recognizing calligraphic images and 114

validate our motivation of proposing this new task 115

for furthering the preservation and propagation of 116

Chinese calligraphy. 117

2 Related Work 118

2.1 Chinese Calligraphy Recognition 119

Optical Character Recognition (OCR) aims to con- 120

vert text in images into an editable format. OCR 121

models can generally be categorized into two ap- 122

proaches: Traditional OCR (Liao et al., 2022, 123

2016; Liu et al., 2019), which is composed of mul- 124

tiple expert modules, and VLM-driven OCR (Bai 125

et al., 2023; Liu et al., 2024; Chen et al., 2024b), 126

whose capabilities are derived from CLIP-style 127

modules (Radford et al., 2021). However, the ma- 128

jority of them are focused on scene text or docu- 129

ment recognition, the sparse works on calligraphy 130

somehow trend to focus on single character recog- 131

nition (Liu et al., 2013; Peng et al., 2022; Xu et al., 132

2019), such isolated recognitions are unpractical 133

as they require unaffordable labor cost of manu- 134

ally splitting the calligraphy into characters, not to 135

mention reforming them into readable sentences. 136

Unlike previous works, our benchmark and 137

model stand out as the first to focus on the prac- 138

tical setting of end-to-end calligraphy recognition, 139

thereby guiding the holistic optimization on this 140

real-world challenges. 141

2.2 Post-correction for OCR 142

Post-correction for OCR has been extensively 143

studied in high-resource languages, started from 144

lexical techniques and weighted finite-state mod- 145

els (Schulz and Kuhn, 2017) to generations: Rijh- 146

wani et al. (2020) use a BiLSTM for historical En- 147

glish text, and Dong and Smith (2018) propose a 148

multi-source model combining first-pass OCR out- 149

puts from duplicate English documents. 150

In contrast, research on lower-resource lan- 151

guages is limited. Anastasopoulos and Chiang 152

(2018) leverage high-resource translations to im- 153

prove low-resource speech transcription. Krishna 154

et al. (2018) demonstrate OCR improvements for 155

Romanized Sanskrit; Rijhwani et al. (2020) fo- 156

cus on endangered languages Yakkha and Nepali; 157

Drobac et al. (2017) focus on Finnish. 158

Despite their effectiveness, our work distin- 159

guishes itself by being the first to concentrate on 160

Chinese calligraphy recognition, thereby building 161
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韩世忠《高义贴》
南宋，约公元1150年

颜真卿《湖州贴》
唐朝，公元772年

a) Diverse Writing Styles b) Absence of Segmentation

蔡襄《扈从贴》
北宋，公元1052年

王献之《新妇地黄汤帖》
东晋，约公元370年

c) Noise Artifacts 

Seals Annotation

Wang Xianzhi , Xinwu Di Huang Tang Post
Jin Dynasty, circa 370 AD

Cai Xiang, Hu Cong Post
Song Dynasty, 1052 A.D.

Yan Zhengqing, Hu Zhou Post Han Shizhong, Gao Yi Post
Song Dynasty, circa 1150 AD
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Figure 2: Illustration of visual challenges.

Train Dev Test
#Samples 2500 227 200

#Chars / Samples 86.18 83.92 102.01
#Punctuations / Samples 14.30 14.77 15.65

#Authors 469 58 91
#Samples / Authors 5.33 3.91 2.19

#Dynasties 13 9 10
#Authors / Dynasties 36.07 6.44 9.10

Table 1: Statistics of our CCR dataset.

Neat: 26%
Avg Edit Distance: 0.6235

Scribble: 29%
Avg Edit Distance: 0.9534Medium: 45%

Avg Edit Distance: 0.8832

Figure 3: Statistics of neatness levels in our testset.

a solid foundation for the downstream study on162

this low-resource language.163

3 Task and Dataset164

3.1 End-to-End Calligraphy Recognition165

As shown in Figure 1, we first define the input is166

the complete calligraphy image solely without any167

text. The output will be the context in the calligra-168

phy, seals, inscriptions and notes are not included169

in our target. The output should be readable and170

segmented sentence. Our task is then formulated171

as extracting a sequence of text elements172

T = [t1, t2, . . . , tm] (1)173

from an input image I , where each t is a character174

identified in the image.175

3.2 Dataset Collection and Annotation176

We construct a new dataset called Chinese177

Calligraphy Recognition (CCR) for benchmark-178

ing. CCR focuses on one of the most challeng-179

ing and practical cases of end-to-end calligraphy180

recognition, thereby facilitating the solid bench- 181

marking for downstream evaluation. 182

For the train and dev set, we collect the context 183

of 2,727 classic Chinese literary works and sample 184

2,500 for the train set, the remained 227 works for 185

the dev set. We build the input images by printing 186

each sample into an image of 1024 × 1024 with 187

the font of Song(宋), composing of the characters’ 188

pixel maps that are concatenated with a common 189

classic Chinese writing order: from up to bottom 190

and starting a new line on the left of current one. 191

For the testset, we collect 200 calligraphy. 192

Specifically, we hired native speakers to collect 193

calligraphy samples from calligraphy space (书法 194

空间)1. To simulate practical scenarios, we ensure 195

annotation quality by applying the following stan- 196

dards: 1) Each sample must contain a minimum 197

of 20 and a maximum of 200 characters. 2) Only 198

complete, single-image calligraphy pieces are ac- 199

cepted; partial or cropped images are excluded. 3) 200

Only calligraphy works from the dynasties span- 201

ning from Wei (魏) to Ming (明) are included. 202

Works from earlier or later periods are excluded 203

due to being either too ancient or modern. 204

3.3 Dataset Statistic and Analysis 205

We show detailed statistics of our CCR data in Ta- 206

ble 1. We can tell that there are average around 207

15 punctuations per sample, which are missed in 208

the calligraphy image and post a hard challenge 209

for the recognition system to recover the punctua- 210

tions properly. Besides, we also ensure the diver- 211

sity of writing styles by extending the author and 212

dynasties pool as large as possible, especially in 213

the testset where only around 2 works per author. 214

To quantitatively measure the difficulty of 215

recognition, we further divide our testset into 216

1http://www.9610.com/index1.htm
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Figure 4: The illustration of our COCR.

three levels of neatness based on the average min-217

imum edit distance per character between Pad-218

dleOCR (Du et al., 2021) output and ground truth.219

The calligraphy ≥ 0.9 are classified as scribbled,220

0.9 to 0.7 are the medium, and ≤ 0.7 are the neat.221

As shown in Figure 3, 58 samples are classified222

into scribbled as the hardest level for recognition,223

89 into medium, and 53 into neat. We will analyze224

the performance across three different levels in the225

experiment section.226

3.4 Challenges227

The challenges of our task lay in the two modali-228

ties towards the recognition, the first is the visual229

variations, includes three aspects:230

• Diverse writing styles: As shown in Figure 2231

a), the right style features neat, clear typogra-232

phy, while the left is wild, with varying word233

sizes and overlapping characters. We show the234

widely used PaddleOCR (Du et al., 2021) strug-235

gles with this task.236

• Absence of Segmentation: This leads to two237

key recognition challenges: the absence of238

punctuation and random line breaks. As illus-239

trated in Figure 2 b), the second column shows240

an confusing blank space between 蒙 and 惠241

that belong to the same clause.242

• Noise artifacts: Besides from being blurred due243

to poor storage, there are noises are added de-244

liberately by the depositories or authors such as245

the name seals (姓名章) and annotation shown 246

in Figure 2 c). 247

The second challenge arises due to the shift 248

from isolated character to complete calligraphy 249

recognition, where the contextual semantics be- 250

come available. The challenging point here can 251

be summarized as: 252

• Domain Shift: The modern and classic Chi- 253

nese could have significant difference on the 254

expressions, for instance: 255

“予除右丞相兼枢密使” 256

(I was appointed as the Right Chancellor and 257

Minister of the Imperial Secretariat.) 258

the meaning of the word “除” (appoint) is dif- 259

ferent from its meaning of remove in modern 260

Chinese. Such a domain shift could hinder the 261

application of contextual semantics. 262

4 CalligraphicOCR 263

4.1 Basic Workflow 264

In this study, we propose a novel CalligraphicOCR 265

(COCR). As shown in Figure 4, we follow the 266

typical workflow of large vision-language models: 267

when provided with calligraphy image and instruc- 268

tion, the LLM processes the vision encoder’s out- 269

put and concated it with the text as the input, the 270

output target would be segmented sentence recog- 271

nized. We then address the challenges by intro- 272

duced two key components: Calligraphic Image 273

Augmentation works on the input end, followed 274

by Action-based Corrector at the output end. 275
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春搜馳駿骨，
總轡俯長河。
霞處流縈錦，
風前漾捲羅。
水花翻照樹，
蘭堤倒插波。
豈必汾陰曲，
秋雲髮棹歌。

a) Font Augmentation b) Random Wrap

蘭

Erasing
Punctuations

Random 
Line Warp

c) Noise Injection
Seals

Annotations

Inscriptions

Character

Punctuation

Figure 5: The illustration of our Calligraphic Image Augmentation.

4.2 Calligraphic Image Augmentation276

As shown in Figure 5, we propose three strategies277

to augment the input image in the train set in a278

pipeline manner to come close to the real calli-279

graphic image step by step, each of them corre-280

sponds to one aspect of visual variations.281

Font Augmentation282

We first deal with different writing styles. Current283

pretrained vision-language models unable to cope284

the various writing styles because it has only been285

exposed to the standard fonts such as Song(宋体),286

which although covers the clear character structure287

but significantly lack the generalization towards288

scribble characters. We thus propose Font Aug-289

mentation method using two font sets. As shown290

in Figure 5 a), the first set consists of neat fonts,291

like Song (宋体), representing standard characters.292

The second set includes calligraphic fonts, such as293

Huang (黄庭坚), capturing writing styles beyond294

neat fonts. Each training image is re-rendered with295

one font from each set to improve the model’s gen-296

eralization to varied writing styles.297

Random Wrap298

We subsequently address the absence of segmenta-299

tion, which leads to two difficulties: The missing300

of punctuations and random line breaks. We thus301

mock these writing habits by our random wrap to302

make sure as close as possible to the test images.303

Specifically, we render training images by re-304

moving all punctuation while preserving the orig-305

inal word order and applying random line warp-306

ing, where the next character is randomly placed307

either on the same line or on a new line to the left.308

This ensures that line breaks in the image do not309

indicate real segmentation and requires the model310

applying semantically compliant segmentation.311

Substitute
[較→駿]

馳 較 骨 緩 轡 ， 棹 歌 。…

Equal
[馳]

Delete
[,]

Equal
[骨]

Substitute
[緩→總]

Equal
[轡]

Insert
[,]

Equal
[歌]

Matched Mismatched

Equal
[。]

Equal
[。]

Recognized Sentence from VLM

馳 駿 骨 ， 總 轡 … 棹 歌 。

Direct Concat

Corrected Sentence

Corrector LLM

…

…

Figure 6: Our action-based corrector.

Noise Injection 312

We then move to the challenge of noise artifacts. 313

Different from the common recognition (Liao 314

et al., 2022) where all the text in the image are the 315

target, there are texts in the calligraphy are consid- 316

ered as noise such as seals and annotations. We 317

thus inject the noise into the image in our train set 318

to enhance its robustness towards the noise. 319

Particularly, three types of noise are injected, in- 320

clude 1) Seals inserted with Seal Script (篆体) that 321

randomly appear at any position in the image; 2) 322

Annotations are generated by LLM with a prompt 323

instructed to introduce the calligraphy, with a de- 324

liberate different font to distinguish from the au- 325

thor’s scripts; 3) Inscriptions are generated similar 326

to previous one, but printed in the same font. 327

4.3 Action-based Corrector 328

Shifting from single-character to full-text recog- 329

nition brings the bonus of contextual semantics, 330

which are often wasted in purely visual models, 331

they can misrecognize characters that are totally 332

incoherent with the context. We thus are motivated 333

to explore a new way that can correct these errors 334

with contextual information. We design an Action- 335

based Corrector with a set of edit actions that emu- 336

late the how human editor act with the errors in the 337

sentence. We then finetuned a generative LLM to 338

generate the Correct Action Sequence on the basis 339

of the recognized sentence and finally apply the ac- 340
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tions on the sentence with our Action Alignment.341

Correct Actions342

As shown in Figure 6, we follow the edit action343

in Levenshtein Distance, design four edit actions344

to process the recognized sentence character by345

character, matching each character with an edit346

action, specifically include:347

348

Insertion(A) // Insert char A349

Deletion(A) // Delete char A350

Substitution(A,B) // Replace char A with B351

Equal(A) // Accept char A352

353

where the A and B indicating the parameter of the354

action. We then fine-tune an LLM to generate ac-355

tion sequences for recognized sentences, using the356

VLM’s output with possible errors as input. The357

output is organized based on minimal edit actions358

between the recognized sentence and the correct359

label, calculated in a dynamic programming ap-360

proach of Levenshtein Distance.361

Edit Action Alignment362

After generating the action sequence, we need an363

effective method to align the actions with corre-364

sponding characters, any mismatching will propa-365

gate and accumulate offsets in the following align-366

ments, making the edited sentence unreadable.367

As shown in Figure 6, we use an alignment368

method to maximize valid actions. The action se-369

quence A = [a1, a2, . . . , an] is matched to the370

text sequence T = [c1, c2, . . . , cm] as follows: For371

pairs of {[a0, c0], [a1, c2], ...}matched from A and372

T , the algorithm applies ai to cj one by one to373

iteratively update the corrected text T ′. This con-374

tinues until i > n, j > m, or an invalid action375

occurs. The corrected text T ′ is updated as:376

T ′← T ′ + apply(ai, cj) if ai is valid (2)377

where ai will be judged valid with cj and ζ =378

{Equal,Deletion, Substitution} by:379

f(ai, cj) =


Valid, if (ai ∈ ζ) ∧ (ai.p = cj)

Valid, if (ai /∈ ζ)

Invalid, otherwise
(3)380

where ai.p represent the parameter of action ai,381

Upon an invalid action at position j, T ′ is formed382

by concatenating the corrected characters up to383

j − 1 with the uncorrected characters from T :384

T ′← T ′[1 : j − 1] + T [j : m] (4)385

This alignment ensures T ′ is constructed by maxi- 386

mizing valid actions while handling mismatches. 387

5 Experiment 388

5.1 Dataset and Experiment Setting 389

We evaluate the performance of our COCR and 390

other baselines systems on the proposed datasets. 391

For our Vision-Language Model in our COCR, 392

we employ the pre-trained InternVL2.5-8B (Chen 393

et al., 2024a) and LoRA fine-tune the LLM adapter 394

parameters for 30 epochs. We adopt a LoRA fine- 395

tuned Qwen2.5-7B for our corrector. All the Chi- 396

nese characters in both the training images and 397

texts are in traditional formation. Experiments 398

were performed with four Nvidia A6000s. 399

We adopt commonly used metrics in OCR tasks, 400

include F1-score, Character Error Rate (CER), and 401

BLEU as previous works did (Wei et al., 2024a; 402

Yousef and Bishop, 2020). Among them, F1-score 403

is calculated over the recognized characters, focus- 404

ing only on each character’s recognition, not on 405

sentence; CER is calculated by the average mini- 406

mum edit distance per character and, together with 407

BLUE, measures both single-character and sen- 408

tence order recognition. 409

5.2 Main Result 410

In Table 2, we present a comprehensive compar- 411

ison with cutting edge baselines, include: tradi- 412

tional OCRs: 1) PaddleOCR (Du et al., 2021), 413

2) EasyOCR (JaidedAI), 3) EffOCR (Carlson 414

et al., 2024), VLM-driven OCRs, include off-the- 415

shelf 1)Deepseek-VL2 (Wu et al., 2024) 2) GPT- 416

4o (OpenAI, 2024); and LoRA finetuned 1) Qwen- 417

2-VL (Wang et al., 2024); 2) GOT-OCR2.0 (Wei 418

et al., 2024b); 3) Vary (Wei et al., 2023); 4) 419

InternLM-XComposer (Dong et al., 2024); 5) 420

InternVL2.5-7B (Chen et al., 2024a); 6) LLaVA- 421

1.5-7B (Liu et al., 2023). Besides, we also 422

have human-recognized result by hiring 10 native 423

speakers to manually recognize the testset, tasked 424

20 samples each person. 425

From Table 2 we can tell that all of the base- 426

lines show a noticeable low performance, indicat- 427

ing the difficulty of our task. Among the base- 428

lines, the VLM-driven OCRs such as InternVL2.5 429

outperform previous traditional OCRs, achieving a 430

level close to human, these results highlight the ef- 431

fectiveness of the unified generation architecture, 432

which can utilize the rich label semantics by en- 433

coding the natural language label into the output. 434

6



Method ↑ P. ↑ R. ↑ F1. ↓ CER ↑ BLEU
Human Baseline

Human 0.6642 0.5393 0.5952 0.6218 0.1160
Traditional OCR Baselines

PaddleOCR(off-the-shelf) (Du et al., 2021) 0.4579 0.3369 0.3740 0.9133 0.0035
EasyOCR(off-the-shelf) (JaidedAI) 0.4421 0.3016 0.3585 0.9218 0.0023
EffOCR (Carlson et al., 2024) 0.4072 0.4346 0.4204 0.8738 0.0513

VLM-driven OCR Baselines
GPT-4o(off-the-shelf) (OpenAI, 2024) 0.6432 0.5410 0.5748 0.6718 0.0948
Deepseek-VL2(off-the-shelf) (Wu et al., 2024) 0.6175 0.5628 0.5888 0.6528 0.1031
GOT-OCR2.0 (Wei et al., 2024b) 0.4011 0.2111 0.2766 0.8767 0.0012
Vary (Wei et al., 2023) 0.4124 0.2466 0.3086 0.8918 0.0004
LLaVA-1.5-7B (Liu et al., 2023) 0.0113 0.0043 0.0063 0.9970 0.0001
Qwen2-VL-7B (Wang et al., 2024) 0.5134 0.5423 0.5274 0.6410 0.0422
Qwen2.5-VL-7B (Yang et al., 2024) 0.5323 0.5496 0.5408 0.6229 0.0537
InternLM-XComposer (Dong et al., 2024) 0.4967 0.5478 0.5210 0.7914 0.0337
InternVL2.5-8B (Chen et al., 2024a) 0.6959 0.5549 0.6174 0.6179 0.1076
Ours 0.7037 0.6421 0.6715 0.5318 0.1326

Table 2: Comparison with baselines.

Method ↑ F1. ↓ CER
Basic 0.6174 0.6179
Calligraphic Image Augmentation

+Font Augmentation 0.6384 0.5746
+Random Wrap 0.6226 0.6034
+Noise Injection 0.6179 0.6092
+All 0.6520 0.5549

Action-based Corrector
+Correct Actions 0.6278 0.6037
+Correct Actions, Actions Alignment 0.6209 0.5939

Ours 0.6715 0.5318

Table 3: The result of ablation study.

Furthermore, our proposed model demonstrates435

substantial improvements over all previous stud-436

ies (p < 0.05). This underscores the effective-437

ness of our COCR framework when applied to cal-438

ligraphic images. Particularly our model further439

surpasses the human result with a noticeable gap,440

validating our motivation to address the inherent441

challenges through the integration of augmenta-442

tion and correction. We further show our model443

is generalized to standard fonts in Appendix A.444

5.3 Ablation Study445

We then investigate the contribution of our calli-446

graphic image augmentation and action-based cor-447

rector. We use “Basic” to refer to the removing of448

two components, relying solely on the raw image.449

As depicted in Table 3, when using only raw im-450

ages, the performance is notably low, which is ex-451

cepted since the VLM is not pre-trained on callig-452

raphy image. Significantly improved performance453

is observed when the calligraphic image augmen-454

tation is included, we attribute this as it reinforces455

the robustness and generalization towards the cal- 456

ligraphic images. Furthermore, our action-based 457

corrector, which, instead of sticking to pure-visual 458

solution, aggregates context semantics into recog- 459

nition and redeems the semantically outrageous er- 460

rors, further enhancing the performance. 461

6 Analysis and Discussion 462

6.1 Impact of Fonts 463

We further investigate which type of font in our 464

font augmentation can benefit the recognition 465

more. Particularly, we train our COCR with two 466

sets of fonts for the trainset: 1) Neat fonts that 467

are more considered to be formal and standardized 468

such as Song (宋). 2) Scribbled fonts are close to 469

the calligraphy such as Huang (黄庭坚). 470

As shown in Table 4, performances within 471

each group are similar. Between the two groups, 472

neat fonts significantly outperform scribbled ones. 473

This aligns with real-world teaching practices, 474

where standard fonts are preferred for their clar- 475

ity to convey character structure, enhancing gen- 476

eralization to varied styles. In contrast, scribbled 477

fonts like Huang (黄庭坚) mainly help recognize 478

a specific style with limited generalization. How- 479

ever, combining Song (宋体) with scribbled fonts 480

further improves performance, supporting our hy- 481

pothesis that scribbled fonts complement corner 482

cases under the broad generalization of neat fonts. 483

6.2 Impact of Calligraphy Neatness 484

We further investigate our proposed COCR’s ef- 485

fects in different levels of neatness annotated. 486
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Font Type Illustration ↑ F1. ↓ CER
Song(宋体)

Neat
0.6522 0.5891

Kai(楷体) 0.6539 0.5857
Mi(米芾)

Scribbled

0.6421 0.5956
Huang(黄庭坚) 0.6341 0.6015
Masa(正风) 0.6451 0.5997
Song(宋体) + Mi(米芾)

Mixed
0.6638 0.5427

Song(宋体) + Huang(黄庭坚) 0.6672 0.5492

Table 4: Result of different fonts.

Input Calligraphy Image InternVL2.5-8B Ours Ground Truth

新婦服地黄湯來以�事。
壹或反謝生未還�進退。
不可解吾常未問迪。

新婦服地黄湯來，似减。
眠食尚未佳，憂懸
不去心。君等前所論事，
想必及。謝生未還，可爾。
進退不可解，吾當書問也。

新婦服地黄湯來，似减。
眠食尚未佳，憂懸
不去心。君等前所論事，
想必及。謝生未還，可爾。
進退不可解，吾當書問也。

靈堂永晝，來風長
石枕。竹簟生清光，
熱文園肺渴。
厭煩熱，更要夫君
在側，傍

虚堂永晝來風長，
石枕竹簟生清光。
文園肺渴厭煩熱，
更要夫君在側傍。

虚堂永晝來風長，
石枕竹簟生清光。
文園肺渴厭煩熱，
更要夫君在側傍。

Table 5: Cases studies.

Specifically, we compare our method’s perfor-487

mance with the strongest baseline across the three488

neatness levels in Figure 7.489

We find that the more scribbled the calligraphy490

is, the lower the performance, which is expected491

since the scribbles in calligraphy pose obstacles492

to recognition and hinder the final performance.493

Moreover, the more scribbled the calligraphy is,494

the larger advantage our model has, we attribute495

this to our font augmentation, which brings our496

COCR the superiority in the difficult cases.497

Additionally, we also analyze the impact of498

character formations in Appendix B.499

7 Case Study500

We launch case studies to make a more intuitive501

comparison between our COCR and the strongest502

baseline InternVL2.5-8B in Table 5.503

We show that our COCR can effectively han-504

dle the scribble recognition cases in the first exam-505

ple, where the baseline encounter tough situation,506

outputs mojibakes while our COCR successfully507

recognize the target. In the second example, we508

illustrate that our COCR also performs better in509

the neat cases: the baseline get errors in both the510

segmentation and characters, whereas our COCR511

successfully avoids the problems above and helps512

the final recognition. We add more cases in Ap-513

pendix C for more comprehensive illustration.514
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Figure 7: Results for different neatness levels. The top
one is measured by F1-score, higher is better, while the
bottom one is measured by CER, lower is better.

8 Conclusion 515

In this study, we highlight previous calligraphy 516

recognitions are inapplicable to real-world situa- 517

tion and thereby hinder the preservation of Chi- 518

nese calligraphy. We thus propose a novel task: 519

end-to-end calligraphy recognition that aims to 520

recognize readable segmented sentence from clas- 521

sic Chinese calligraphy work at one stop. We 522

further propose Chinese Calligraphy Recognition 523

dataset to fulfill the evaluation. With our cal- 524

ligraphic image augmentation and corrector, our 525

COCR builds a strong benchmark for our task and 526

effectively promote the preservation and dissemi- 527

nation of calligraphy. 528
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Limitation529

The limitations of our work can be stated from530

two perspectives. Firstly, the source of calligraphy531

works are limited, more sources such as bamboo532

slips(竹简), frottages(拓印), stele inscriptions(碑533

文) and oracles are still unexplored. Further explo-534

ration on more possible sources, especially com-535

bined with historic background could provide valu-536

able insights.537

Secondly, our focus has been primarily on a sin-538

gle language. While we have achieved promising539

results in this language, it is important to acknowl-540

edge that the generalizability of our approach is541

limited since other languages may not have the542

enough calligraphy work.543

Ethical Statement544

For the annotating our CCR dataset, we hired 10545

annotators and tasked 20 works each person, with546

a payment of 19 CNY for each calligraphy work.547

The work was down within 3 hours so their aver-548

age hourly wage was higher than 100 CNY; For549

the human recognition, we hired 10 annotators and550

tasked 20 works each person, with a payment of 3551

CNY for each calligraphy work. The work was552

down within 2 hours so their average hourly wage553

was higher than 30 CNY; Both payments were far554

higher than the local low hourly wage standard (19555

CNY per hour).556
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Method ↑ F1. ↓ CER ↑ BLEU
Traditional OCR Baselines

PaddleOCR(off-the-shelf) 0.9172 0.0856 0.7962
EasyOCR(off-the-shelf) 0.8935 0.0921 0.7772
EffOCR 0.9363 0.0873 0.8071

VLM-driven OCR Baselines
GOT-OCR2.0 0.8745 0.1067 0.7314
Vary 0.8234 0.1678 0.6023
LLaVA-1.5-7B 0.7738 0.1743 0.5065
Qwen2-VL-7B 0.9423 0.0891 0.7529
Qwen2.5-VL-7B 0.9493 0.0699 0.7854
InternLM-XComposer 0.9147 0.0767 0.7731
InternVL2.5-8B 0.9544 0.0734 0.7945
Ours 0.9772 0.0509 0.8411

Table 6: Performance on standard font.

Formation ↑ F1. ↓ CERInput Image Output Target
Simplified Simplified 0.6174 0.6179
Simplified Traditional 0.6021 0.6343
Traditional Simplified 0.5934 0.6431
Traditional Traditional 0.6715 0.5318

Table 7: The impact of Chinese formations.

A Performance on Standard Font Image742

As our model is tested on historic calligraphy743

works, we further check if our model is effec-744

tive in standard font images, thereby provides a745

glimpse of our model’s ability to recognize com-746

mon OCR scenarios, where the characters are usu-747

ally in printed standard font. Specifically, we col-748

lect extra 300 images under the same criteria of749

building our CCR trainset, and use it as the testset750

to test model’s performance in standard fonts.751

From Table 6, we can tell that even on standard752

font images, our model still outperform the base-753

lines with a slight margin. This underscores our754

model not only specialize in calligraphy recogni-755

tion, but also generalize to common OCR situa-756

tions. Moreover, all the baselines perform rela-757

tively much better on standard font images than758

historic calligraphy, indicating that our end-to-end759

calligraphy recognition is a difficult task compared760

to the common OCR task.761

B Impact of Formations762

The formation of the input image and output target763

during training, whether traditional or simplified,764

could be vital to the final recognition. Although765

the traditional formation ensures the consistency766

throughout the entire training and inference pro-767

cess, it is not well-suited for language models, 768

which are primarily pretrained on corpora where 769

simplified Chinese is the dominant language. We 770

thus investigate the impact of formation on our 771

recognition task. 772

From Table 7 we can tell that, both the two con- 773

sistent pairs outperform the inconsistent, which 774

is excepted since the inconsistent formation will 775

cause a fissure in semantic understanding. On top 776

of that, among two consistent pairs, the traditional 777

Chinese surpass the simplified one, which gives 778

us the conclusion that the consistency of forma- 779

tion throughout the modeling is more crucial to the 780

recognition and the deficiency in semantic under- 781

standing can be remedied by downstream finetun- 782

ing. 783

C More Cases 784

To give a more intuitive illustration of our COCR, 785

we add more cases in Table 8. These cases demon- 786

strate the versatility of our model in adapting to 787

different input styles. Specifically, the first two ex- 788

amples highlight the model’s robustness in inter- 789

preting and processing freehand scribbles, while 790

the last three examples showcase its ability to pro- 791

duce high-quality outputs from cleaner and more 792

structured inputs. 793
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Input Calligraphy Image Ours Ground Truth

花氣薰人欲破禅，
唯將至實包中年。
年克森來忖思何似，
公節灘頭上水船。

花氣薰人欲破禅，
心情其實過中年。
春來詩思何所似，
八節灘頭上水船。

平生籌略妙天機，
二表忠垂日月輝,
鼎鼎峙山天已定，
河漢空不須論是。

平生籌略妙天機，
二表忠垂日月輝。
鼎峙山河天已定，
不須論是與論非。

松陰轉處琴書潤，
花片飛來枕簟凉。

松陰轉處琴書潤，
花片飛來枕簟凉。

余舊不多見晋卿詩，
不謂琢句精
仍能如是。
所謂亥欠唾成珠玉也。

余舊多不見晋卿詩，
不謂琢句精巧，
乃能如是，
所謂亥欠唾成珠玉也。

太子舍人王琰牒，
在職三載,家貧
仰希江觌所統小郡，
謹牒。

太子舍人王琰牒。
在職三載，家貧，
仰希江郢所統小郡，
謹牒。

Table 8: More Cases.
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