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Abstract

Self-supervised learning of deep neural networks has become a prevalent paradigm for
learning representations that transfer to a variety of downstream tasks. Similar to proposed
models of the ventral stream of biological vision, it is observed that these networks lead to a
separation of category manifolds in the representations of the penultimate layer. Although
this observation matches the manifold hypothesis of representation learning, current self-
supervised approaches are limited in their ability to explicitly model this manifold. Indeed,
current approaches often only apply a pre-specified set of augmentations for “positive pairs”
during learning. In this work, we propose a contrastive learning approach that directly models
the latent manifold using Lie group operators parameterized by coefficients with a sparsity-
promoting prior. A variational distribution over these coefficients provides a generative model
of the manifold, with samples which provide feature augmentations applicable both during
contrastive training and downstream tasks. Additionally, learned coefficient distributions
provide a quantification of which transformations are most likely at each point on the manifold
while preserving identity. We demonstrate benefits in self-supervised benchmarks for image
datasets, as well as a downstream semi-supervised task. In the former case, we demonstrate
that the proposed methods can effectively apply manifold feature augmentations and improve
learning both with and without a projection head. In the latter case, we demonstrate that
feature augmentations sampled from learned Lie group operators can improve classification
performance when using few labels 1.

1 Introduction

Deep learning systems have made remarkable progress in decision-making tasks by leveraging large-scale,
unlabeled datasets to learn neural representations. These representations, such as the activations at the
penultimate layer of a deep neural network (DNN), have demonstrated efficacy in object recognition tasks with
limited labels (Chen et al., 2020b), as well as the capability to generalize performance to several downstream
tasks (Chen et al., 2020a; Caron et al., 2021). To effectively learn, DNNs must extract salient features, such
as the natural variations of a category of data, from high-dimensional inputs into low-dimensional latent
representations. Among geometric descriptions of this desired property, manifold models offer a natural
explanation to how data existing in high dimensions can be parameterized by fewer degrees of freedom.

This explicit use of manifold models to represent visual invariances is also central to hypotheses underlying
the ability of biological visual systems to achieve performance that generalizes across multiple tasks. For

1Code available at https://github.com/kfallah/manifold-contrastive.
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Figure 1: Proposed ManifoldCLR system for incorporating Lie group operators into the feature space of a
contrastive learner. Given encoded features from a positive pair, manifold feature augmentations TΨ(c̃i) are
applied before computing the contrastive objective. Here, zj denote the set of negative pairs in the feature
space. We apply the conditional VAE framework to learn coefficient distributions for manifold displacement
between two points (encoder network qϕ(c | zi, z′

i)) and identity-preserving augmentations from a single point
(prior network pθ(c | zi)).

example, the ventral stream of the primate primary visual cortex has been suggested to produce linearly
separable category manifolds which are robust to pose change (DiCarlo & Cox, 2007; DiCarlo et al., 2012;
Majaj et al., 2015). Unfortunately, the computational mechanisms underlying this performance are not
understood, and a large gap still exists between such systems and their deep learning counterparts. Indeed,
deep learning methods are often expected to implicitly learn invariances from large-scale datasets (Moskalev
et al., 2022), but often fail in distinguishing task-relevant and irrelevant changes to the input (Jacobsen et al.,
2019). In the context of contrastive learning, part of this gap may be stated as the lack of explicit manifold
modeling, limiting the number of unique views of an instance the model sees during training. Rather than
contrast potential views from some general manifold structure in the dataset, these methods often rely on a
set of pre-specified augmentations in the data space (Chen et al., 2020a; Cubuk et al., 2020).

In this work, we take a step towards closing this gap by proposing ManifoldCLR, a system for incorporating
manifold structure describing natural data variations within the latent representations of a DNN while con-
currently enriching such representations by sampling novel views along the manifold as feature augmentations
during training. The proposed manifold model is parameterized by coefficients with a sparsity-promoting
prior (Culpepper & Olshausen, 2009; Olshausen & Field, 1996), with learned distributions that can find
both manifold paths between a pair of points, as well as identity-preserving feature augmentations from a
single point. To make such sampling possible, we propose the variational Lie group operator (VLGO) model
built upon recent advances in a variational sparse coding (Barello et al., 2018; Tonolini et al., 2020; Fallah &
Rozell, 2022). With added block-diagonal structure on the learned operators, we are able to reduce memory
usage of the model with minimal impact to downstream performance. We demonstrate the efficacy of our
approach on self-supervised and semi-supervised benchmarks with image datasets (Krizhevsky, 2009; Coates
et al., 2011; Deng et al., 2009).

2 Background

2.1 Manifold Learning

Manifold models have gained interest in the machine learning community for their geometric description
of how data collected in high ambient dimension (e.g., pixels in an image) can vary with a few degrees
of freedom. In the context of representation learning, this idea is formalized by the manifold hypothesis
(Fefferman et al., 2016), which suggests that instances from a category lie near a low-dimensional manifold,
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with low probability regions separating categories of data (Bengio et al., 2013). This hypothesis has been
validated on many real-world datasets of interest (Pope et al., 2021), with theoretical implications on the
sample complexity of learning underlying data distributions (Narayanan & Mitter, 2010). As such, manifolds
have been incorporated into learned representations to disentangle factors of variation (Bouchacourt et al.,
2021; Connor et al., 2023), provide equivariance to model outputs (Cohen & Welling, 2016), or give additional
context when learning with limited labels (Belkin & Niyogi, 2002; Belkin et al., 2005). Many classical methods
seek non-linear embeddings of data (Saul et al.; Tenenbaum, 2000; Belkin & Niyogi, 2001) or tangent plane
approximations (Bengio & Monperrus, 2004; Rifai et al., 2011), but both are limited in their ability to
interpolate or generate new points on the manifold.

In this work, we build upon a class of methods which provide a generative model of the manifold (Rao &
Ruderman, 1998; Miao & Rao, 2007; Culpepper & Olshausen, 2009; Sohl-Dickstein et al., 2017) by learning
the basis of a Lie algebra (Hall, 2015). Once passed through the matrix exponential, a point in this algebra
provides a linear representation of a generator of a Lie group, denoting a displacement along a manifold. As
an example, let T be a family of operators that forms a generic group. This means that (1) there exists
a function f : T × T → T that maps pairs of transformations to another transformation such that f is
associative, (2) there exists a unique identity transformation ∃t ∈ T t(x) = x, and (3) each transformation
t ∈ T is invertible (Rao & Ruderman, 1998). Furthermore, restricting T to form a Lie group means that
it applies continuous transformations parameterized by a vector of real numbers. In the context of this
work, this parameterization comes from inferred coefficients that are used to take a linear combination of
the learned operators. Although Lie groups form a subset of all differentiable manifolds, they have a long
history of use as models of images (Rao & Ruderman, 1998) and visual perception (Dodwell, 1983). For a
more comprehensive background, we refer readers to Hall (2015).

In this work, we describe this basis as a dictionary of M operators Ψm ∈ RD×D. Given a point on the
manifold xi ∈ RD, the Lie group operators model an infinitesimal transformation as a weighted sum of the
learned dictionary

ẋi =
(

M∑
m=1

Ψmcm

)
xi, (1)

where c ∈ RM is modeled with a sparse, factorial prior p(c) =
∏M

m p(cm) (Culpepper & Olshausen, 2009;
Olshausen & Field, 1996). Given a batch of point pairs sampled nearby on the manifold (xi, x′

i), the dictionary
of operators can be learned through an alternating minimization scheme where coefficients c are first inferred
with fixed operators (e.g., using a sparse inference procedure (Olshausen & Field, 1996)), followed by a
gradient step with fixed coefficients to minimize the loss with respect to the operators (Culpepper & Olshausen,
2009):

Lm(xi, x′
i, c) = ∥x′

i −TΨ(c)xi∥2
2, (2)

TΨ(c) = expm
(

M∑
m=1

Ψmcm

)
. (3)

Learning these operators directly in the data space is often impractical due to dimensionality. As such, later
work has extended this model to learning the operators after applying non-linear dimensionality reduction,
zi = fθ(xi) ∈ Rd, where d≪ D (Connor & Rozell, 2020; Connor et al., 2021; Bouchacourt et al., 2021; Connor
et al., 2023; Cosentino et al., 2022a). Note that in this setting, the operators describe transformations between
latent points and have dimensionality Rd×d. Most of these systems rely on an auto-encoding objective to
prevent collapse to a trivial manifold (e.g., projecting every input data to a constant value allows one to learn
all operators as identity), but are often limited by the fidelity of the decoder network in their ability to apply
manifold transformations.

Furthermore, performing exact sparse inference c at each training step becomes overly prohibitive as
dimensionality d increases. Although fast first-order optimization algorithms have been proposed (Beck &
Teboulle, 2009; Connor et al., 2023), such methods are not practical in deep learning systems that require
upwards of hundreds of thousands of training iterations. Hence, alternative inference methods are necessary
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when incorporating the operators into high-dimensional feature spaces (e.g., the penultimate layer of a ResNet
backbone (He et al., 2016)).

2.2 Variational Inference

When dealing with probabilistic models with computationally infeasible inference procedures, variational
inference has emerged as an effective approach (Zhang et al., 2018). For example, let pΨ(xi) be some arbitrary
likelihood of input xi parameterized by Ψ. When maximizing this likelihood, marginalized over a latent
variable c, one may apply the evidence lower bound (ELBO) (Jordan et al., 1998) with a learned variational
posterior qϕ(c | xi):

log pΨ(xi) = logEp(c) [pΨ(xi | c)]

= logEp(c)

[
qϕ(c | xi)
qϕ(c | xi)

pΨ(xi | c)
]

≥ Eqϕ
[log pΨ(xi | c)]−DKL (qϕ(c | xi) || p(c)).

In practice, maximizing this lower bound is often presented as minimizing the negative lower bound. The
rest of this work will use this presentation.

Recent methods have learned this variational posterior with a DNN employing the “reparameterization trick”
(Kingma & Welling, 2014; Rezende et al., 2014), allowing one to simplify inference procedures as a single
forward pass. Variational sparse coding approaches extend this procedure by encouraging sparsity in the latent
variables c sampled from the variational posterior network. These approaches either use sparsity promoting
priors (Barello et al., 2018), approximations to discrete variables (Tonolini et al., 2020), or straight-through
estimations of soft-thresholding (Fallah & Rozell, 2022) to achieve the desired sparsity. In each of these
previous works, inference is performed from a single input xi, with a Gaussian likelihood computed either
using a linear dictionary or DNN decoder. In this work, we are interested in applying variational sparse
coding to the Lie group operator model, using pairs of points for inference.

2.3 Self-Supervised Learning

Self-supervised learning (SSL) has emerged as an effective paradigm of leveraging unlabeled data to learn
deep representations that transfer to several downstream tasks (He et al., 2020), such as learning with limited
labels (Chen et al., 2020b). For example, contrastive learning (Hadsell et al., 2006) learns representations by
encouraging similarity between representations of “positive pair”, while encouraging dissimilarity between
representations of “negative pairs”. Different approaches have been proposed for selecting negative pairs, such
as nearest neighbor instances (Dwibedi et al., 2021), memory banks of features (He et al., 2020; Chen et al.,
2020c), or other instances within a batch (Chen et al., 2020a). Besides contrastive methods, negative-free
approaches have emerged that either apply regularization to learned features (Ermolov et al., 2021; Bardes
et al., 2022) or utilize teacher networks/stop-grad operations to prevent collapse to a trivial point (Grill et al.,
2020; Chen & He, 2021; Caron et al., 2021).

To implement the contrastive learning objective, the InfoNCE loss (Oord et al., 2019) is often employed.
First, DNN backbone feature pairs (zi, z′

i) = (fθ(xi), fθ(x′
i)) corresponding to two views of an image instance

(xi, x′
i) are found by randomly sampling from a set of image space augmentations (Chen et al., 2020a; Sohn

et al., 2020). Then, the temperature normalized InfoNCE objective is computed (Chen et al., 2020a):

Lctt(zi, z′
i) = − log

exp
(
−∥hθ(zi)− hθ(z′

i)∥2
2/τ
)

∑
j∈N exp

(
−∥hθ(zi)− hθ(zj)∥2

2/τ
)

+ exp
(
−∥hθ(zi)− hθ(z′

i)∥2
2/τ
) , (4)

where N denotes the set of negative pairs and τ is a temperature hyper-parameter. Here, hθ is an additional
normalized, non-linear projection from the backbone features. Recent work has argued that this projection
learns a noisy estimate of the data manifold, encouraging backbone invariance to non-salient image features
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Algorithm 1 Variational Sparse Coding
Input: Input positive pair zi and z′

i, whether to use a SoftThreshold, threshold hyper-parameter ζ, number
of samples J .
(µi, bi)← gϕ(sg [zi ⊕ z′

i])
for j = 1 to J do

ϵj
i ∼ U(− 1

2 , 1
2 )

sj
i ← µi + bi ◦ sign(ϵj

i ) ln
(

1− 2 | ϵj
i |
)

if SoftThreshold then
cj

i ← sj
i + sg

[
Tζ

(
sj

i

)
− sj

i

]
else

cj
i ← sj

i

end if
Lj

m ← Lm(zi, z′
i, cj

i )
end for
ci ← arg minj Lj

m

(Cosentino et al., 2022b). Oddly, this non-linear projection is often discarded after training, with backbone
features zi used instead for downstream tasks.

2.4 Related Work

Other work has considered unsupervised feature learning using manifold models. The sparse manifold
transform (SMT) applies slow feature analysis after a linear sparse coding step to obtain a generative manifold
embedding (Chen et al., 2018), with extensions to learning unsupervised “white-box” representations (Chen
et al., 2023). In this work, rather than applying linear sparse coding to a single point, we infer coefficients
to find non-linear manifold paths between a pair of points. Applying slow feature analysis to the sparse
coefficients of the Lie group operators is an interesting direction that we leave to future work. Likewise, other
work has considered manifold SSL by encouraging maximum manifold capacity under an elliptical manifold
model (Yerxa et al., 2023). The model proposed in this work has the advantage of learning an arbitrary
manifold structure coinciding with a Lie group.

In a similar work, Ibrahim et al. (2022) apply Lie group operators for robustness to unseen views in SSL.
However, our work differs in two key ways: (1) we propose a variational framework for coefficients rather than
a deterministic estimate, allowing one to sample coefficients, and (2) we incorporate feature augmentations
from Lie group operators into contrastive learning, providing significant improvements in performance and
allowing us to quantify coefficient distributions which preserve identity. Both of these changes are critical for
the goal of this work, which is to incorporate manifold feature augmentations into the contrastive learning
process. Indeed, a deterministic encoder precludes the ability to sample coefficients, with the encoder in
Ibrahim et al. (2022) requiring information regarding the transformation applied between the point pair as
input (see Equation 4 of Ibrahim et al. (2022)), making it impossible to get coefficients from a single input.

3 Methods

3.1 Variational Lie Group Operator Model

To effectively learn and apply the Lie group operators, one needs a method to perform quick coefficient
inference at each training step. The quality of the learned operators is completely dictated by how effective
inferred coefficients transport from an initial to a target point on the manifold. Furthermore, not every
manifold augmentation can be applied with the same magnitude at every point on the manifold. This means
that incorporating feature augmentations requires knowledge of which operators can be applied for a given
input point and the extent to which they can be applied. To address these requirements for quick inference
and learned coefficient distributions from which one can sample, we build upon advances in variational
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(a) CIFAR10 (b) STL10

Figure 2: Nearest neighbor visualization of feature augmentations sampled from the learned prior. For each
row, the first column denotes the input to the prior. Each subsequent column is found by taking a random
sample from the prior, applying an operator augmentation, and visualizing the image corresponding to the
nearest feature in the dataset. It can be qualitatively seen that the prior network learns coefficient statistics
that result in augmentations that preserve class-identity.

sparse coding (Fallah & Rozell, 2022; Tonolini et al., 2020; Barello et al., 2018). Given features close on the
manifold (zi, z′

i), we sample sparse coefficients by reparameterizing distribution parameters encoded by a
recognition network c ∼ qϕ(c | zi, z′

i)1 (Kingma & Welling, 2014; Rezende et al., 2014). We summarize the
reparameterization procedure in Algorithm 1, with the option to incorporate soft-thresholding and take J
best-of-many samples for effective machine-precision sparsity (Fallah & Rozell, 2022; Bhattacharyya et al.,
2018).

After applying the variational lower bound, we obtain the following variational Lie group operator objective,
which includes a weighted KL divergence term (Higgins et al., 2017):

Lm (zi, z′
i, c) + βLkl (zi, z′

i, c) (5)

In this framework, one can either fix prior distribution parameters pθ(c | zi) as in standard variational
inference, or encode them with a separate DNN as in the conditional variational autoencoder (CVAE)
framework (Sohn et al., 2015). During training, samples are drawn from the encoder network to concurrently
train the operators Ψm with encoder weights ϕ (and backbone/prior weights θ when applicable).

Like the CVAE (Sohn et al., 2015), the encoder qϕ and prior pθ encode distributions to solve different tasks.
The encoder outputs coefficient statistics for reconstruction of z′

i, analogous to class labels in the CVAE
framework. On the other hand, the prior network solves a predictive task in encoding statistics to generate
other points on the manifold from an initial zi. Learning the prior network provides several advantages. First,
it provides flexibility for the encoder network to deviate from fixed statistics when certain operators are more
or less likely to be used for an initial point zi. Second, it allows one to sample feature augmentations along
the manifold to apply both as a synthetic positive pair on the feature manifold during SSL pretraining, or as
strong feature augmentation during tasks like semi-supervised learning (Kuo et al., 2020; Sohn et al., 2020).
In Section 4.2, we demonstrate that learning the prior leads to better identity-preservation than naively
sampling from a fixed prior.

3.2 ManifoldCLR: Manifold Contrastive Learning

Given the variational Lie group operator framework, one can learn a manifold describing the natural variations
present in a dataset within the representations of a DNN (while also regularizing such representations to
match the data manifold). This is done by sampling coefficients from the encoder network c ∼ qϕ(c | zi, z′

i)
to minimize the manifold loss Lm. Furthermore, one can directly sample transformations along the manifold
to enrich the number of views that are applied during instance discrimination. To do this, one may sample

1Features are detached, concatenated, and fed through a multi-layer perceptron followed by a linear projection for each
distribution parameter.
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coefficients c̃ ∼ pθ(c | zi) from the learned prior network, apply manifold feature augmentations to obtain a
synthetic view z̃i = TΨ(c̃), and contrast the positive pair (z̃i, z′

i).

This allows one to both enrich the novel views of an instance, as well as learn coefficient statistics in the prior
network that preserve identity. We hypothesize that this latter outcome is a result of negative samples in the
contrastive loss, which encourages prior augmentations to remain on the object manifold, visualized on the
right in Figure 1. We note that previous approaches for learning identity-preserving manifold transformations
have required labels (Connor et al., 2023), whereas the methods proposed here are entirely unsupervised.

Finally, the resultant learning objective can be written as:

min
Ψ,θ,ϕ

Lctt(z̃i, z′
i) + λLm (zi, z′

i, c) + βLkl (zi, z′
i, c) (6)

where Ψ are manifold operator parameters, θ are DNN backbone and prior network parameters, ϕ are
coefficient network parameters, and λ and β are loss scaling hyper-parameters. All terms and parameters
are learned concurrently, end-to-end from random weight initialization. We note that this is a simplified
training procedure in comparison to previous works with Lie group operators that use multiple training
phases (Connor & Rozell, 2020; Connor et al., 2023) or pretrained backbone models (Connor et al., 2023;
Ibrahim et al., 2022).

3.2.1 Modified Manifold Objective

Learning the Lie group operators can be impractical in cases where d is large due to memory constraints in
computing the matrix exponential. To solve this, we propose additional block-diagonal constraints onto the
learned operators. We do this by breaking up the features of our point pair into segments of length b. Rather
than constrain the operators to be block-diagonal at each training step, they are initialized as d/b separate
dictionaries Ψj of shape Rb×b. After inferring coefficients for each pair of features, we compute the objective
for each segment separately3:

Lm (z, z′, c) =
d/b−1∑

j=0

∥∥∥∥∥sg
(

z′[jb : (j + 1)b]
)
−TΨj (c)z[jb : (j + 1)b]

∥∥∥∥∥
2

2

. (7)

Furthermore, we find that including the stop-grad operation, written sg and indicating no gradient computed
through the term, on z′ helps prevent feature collapse. This technique has been previously applied in systems
such as SimSiam (Chen & He, 2021). Under this approach, the number of parameters needed to learn a
dictionary of 128 operators in a 512 dimensional ResNet-18 (He et al., 2016) backbone is reduced from 33.6M
parameters to 4.2M parameters. This leads to a significant reduction in memory use during training with
minimal impact to downstream performance. We ablate the impact of these choices in Section 4.2.3.

4 Experiments

4.1 Synthetic Dataset

To measure the effectiveness and speed-up of the VLGO model, we first evaluate on a synthetic dataset,
comparing to the training procedure proposed in Culpepper & Olshausen (2009). We train on 5000 points
generated on a Swiss roll manifold, using the fast iterative shrinkage-thresholding (FISTA) algorithm (Beck &
Teboulle, 2009) for exact sparse inference as a baseline. At each iteration, we select 500 points and randomly
sample the point pair from the 20th to 60th nearest neighbors. In total, we train for 1000 epochs and measure
three key metrics, (1) the mean-squared error between transported point pairs Lm, (2) the cumulative runtime,
and (3) the ℓ1 loss of inferred coefficients to measure sparsity. For hyper-parameters, we set M = 6, the
weight of the ℓ1 penalty as 0.6, and the weight of the F-norm penalty on the operators as 1e−3.

We compare to the VLGO using both a standard Laplacian prior (Barello et al., 2018) and thresholded
samples from a Laplacian (Fallah & Rozell, 2022), evaluating at different sample counts J . We use the same

3We use [a : b] as in array notation to denote the subset of dimensions from a to b from the feature vector.
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(a) (b) (c)

(e) (f)

Figure 3: Comparison of Lie group operators trained with exact and variational sparse inference on synthetic
Swiss roll dataset. For each method, we plot (a) mean-squared error, (b) cumulative runtime, and (c) ℓ1
penalty of coefficients. (e,f) Extrapolated paths of the two operators learned by VLGO. Black dots indicate
starting point xi, with subsequent path found by applying Lie group operators TΨ(ci)xi with coefficients
from a range with fixed step size ci = [−Nc, . . . , Nc].

hyper-parameters as the FISTA baseline with a fixed prior and β = 5e−3. The results are shown in Figure 3,
where three main conclusions can be drawn: (1) as the number of samples drawn from the encoder increases,
variational methods match FISTA in MSE, (2) when using more samples, thresholding gives the same MSE as
a standard Laplacian with much lower ℓ1 loss, (3) variational methods are approximately 15x faster in training
time than FISTA. We note that FISTA and the thresholded Laplacian result in two non-zero operators after
training, whereas the standard Laplacian results in three non-zero operators. We attribute this to exact
sparsity, allowing weight decay to shrink unused operators in the FISTA and thresholded Laplacian models.

4.2 Image Datasets

4.2.1 Experimental Setup

Next, we compare the performance of the ManifoldCLR system equipped with VLGO to standard contrastive
learning, as well as other baselines for training without a projection head or incorporating feature augmenta-
tions into the learning process. For the main results, we train each method using the SimCLR framework for
selecting positive and negative pairs (Chen et al., 2020a), only adding additional feature augmentations on our
positive pair when relevant. Specifically, let (ti, t′

i) ∼ T be two augmentations sampled from those presented
in SimCLR (described in Appendix 6.2.1). For each input image in a batch xi, we use (xi, x′

i) = (ti(xi), t′
i(xi))

as the input point pair for each evaluated method. Although we use this framework to measure the relative
benefits of proposed methods, we note that they are compatible with other contrastive learning systems
that use the InfoNCE loss (Chen et al., 2020c). For example, we compare to NNCLR (Dwibedi et al., 2021)
by selecting nearest neighbors as our point pairs in Table 2. We leave methods for incorporating manifold
feature augmentations into other self-supervised frameworks to future work.
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We evaluate both using the standard linear readout protocol (Chen et al., 2020a), shown in Table 1, and a
modified semi-supervised objective, shown in Figure 4. We test on a variety of datasets, including CIFAR10
(Krizhevsky, 2009), STL10 (Coates et al., 2011), and TinyImageNet (Deng et al., 2009). We build on the
experimental setup of Ermolov et al. (2021), training a ResNet-18 (He et al., 2016) with a batch size of
512 for 1000 epochs across all experiments. For methods that use a projection head, we normalize the
projected features before computing the InfoNCE loss. When training without a projection head, we find
that using MSE in the InfoNCE provides superior performance (ablated in Table 7). We train all methods
with a single NVIDIA A100 GPU, with an approximate runtime of 9 hours for baselines and 24 hours for
ManifoldCLR on TinyImageNet. Additional analysis on the computational and memory complexity can be
found in Appendix 6.1.1. Full details on the experimental setup and evaluation is included in Appendix 6.2.1.
Before discussing the results, we introduce each of the baselines for feature augmentations.

ManifoldMixupCLR uses the common linear interpolation strategy for feature augmentation proposed in
Manifold Mixup (Verma et al., 2019a). For each positive and negative pair, a random interpolation constant
is sampled λi ∼ U(0, 1), and applied to form a feature augmentation z̃i = λizi + (1− λi)z′

i.

ManifoldCLR uses the VLGO model to sample coefficients from a learned prior network c̃ ∼ pθ(c | zi) that
is used to apply manifold feature augmentations z̃i = TΨ(c̃)zi. This is done concurrently with learning the
Lie group operators by minimizing Lm with coefficients from the encoder network. We set β = 1e−5 for each
method and λ = 10 and λ = 1 with and without a projection head, respectively. Furthermore, we set the
dictionary size M = (16, 64, 128) for datasets (CIFAR10, STL10, TinyImageNet). Finally, we set the block
size of our operators b = 64 for each experiment.

DirectCLR (Jing et al., 2022) contrasts only the first b components of the backbone features when training
without a projection head. We apply it as a baseline method that improves upon contrastive learning without
a projection head.

ManifoldDirectCLR combines ManifoldCLR and DirectCLR by applying the manifold loss only to the
first b = 64 feature components. Furthermore, augmentations and contrasting is only performed on these first
few feature components.

Table 1 shows that when trained with a projection head, ManifoldCLR provides an improvement in all datasets
over SimCLR. Without a projection head, ManifoldCLR performs the best among feature augmentation
methods. Performance benefits over ManifoldMixupCLR indicate the importance in identifying non-linear
paths in the latent space for feature augmentations. Notably, we find that the benefits of ManifoldCLR and
DirectCLR are complementary and that combining the two gives a higher performance than SimCLR with a
projection head. We find this result satisfying, since it affirms the purpose of the projection head as a means
to estimate the data manifold (Cosentino et al., 2022b). ManifoldCLR is capable of estimating this manifold
structure directly in the backbone with VLGO, removing redundant model weights from the training process
while also providing a generative model of the manifold.

To test the applicability of the ManifoldCLR framework to different strategies for selecting point pairs, we also
compare to NNCLR (Dwibedi et al., 2021) in Table 2. For this experiment, we follow a methodology similar
to Table 5 in Dwibedi et al. (2021), where we contrast nearest neighbor point pairs with only random cropping
applied as the augmentations (i.e., no color jitter or grayscale). We present our results with a projection
head on CIFAR10 taken over three random trials. Although these experiments have lower separability than
the SimCLR augmentations, this is to be expected, based on the results presented in Table 5 in Dwibedi
et al. (2021). We deviate from NNCLR in a few ways for these experiments. First, to increase the stability of
training, we follow the methodology of Connor et al. (2023) and pre-compute all the point pairs using an
auxiliary feature space (DINO model (Caron et al., 2020) pretrained on ImageNet). We note that this leads
to a significant benefit (approximately +40%) for both the NNCLR baseline and ManifoldCLR. Furthermore,
for simplicity, we do not include the additional prediction head used in NNCLR. This, however, has very
minimal impact (approximately 0.4%), as shown in Table 7f in Dwibedi et al. (2021).
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Table 1: Linear probe accuracy on various image datasets with different methods for contrasting point pairs
with our without a projection head. Results averaged over three trials. We underline the best performing
method(s) overall and bold the best method(s) without a projection head. See Section 4.2 for details on
methods used.

Method Projection Head CIFAR10 STL-10 TinyImageNet
SimCLR-MLP ✓ 89.04% 86.68% 39.74%

SimCLR-Linear ✓ 87.78% 85.18% 36.88%
ManifoldCLR-MLP ✓ 90.03% 87.33% 42.77%

SimCLR-None ✗ 88.58% 84.53% 36.26%
ManifoldMixupCLR ✗ 86.52% 83.02% 38.33%

ManifoldCLR ✗ 88.89% 84.99% 38.68%
DirectCLR ✗ 88.46% 84.46% 36.20%

ManifoldDirectCLR ✗ 89.73% 87.47% 42.22%

Table 2: Linear probe accuracy compared between NNCLR and ManifoldCLR using nearest neighbor point
pairs. The images are only augmented with a random crop, as described in Appendix 6.2.1. Both approaches
use an MLP projection head. Results averaged over three random trials.

Method CIFAR10
NNCLR-MLP 66.13± 0.20%

ManifoldCLR-MLP 69.43± 0.17%

4.2.2 Semi-supervised Learning with Manifold Feature Augmentations

To highlight the benefits of generating manifold feature augmentations for down-stream tasks, we evaluate on
a semi-supervised task using five labels per class and consistency regularization (Sohn et al., 2020) in Figure 4.
For each dataset, we freeze the weights of the best performing backbone network from Table 1 and train a
single hidden-layer MLP with different methods for feature augmentations. We train under this protocol since
fine-tuning the backbone weights would result in a deviation from the manifold learned during contrastive
pre-training. We have had preliminary success in fine-tuning while including the ManifoldCLR objective
(hence adapting the manifold to the classification task), but we leave such experiments for future work.
Here, we aim to demonstrate that the VLGO can provide feature augmentations that improve classification
performance with limited labels. Given labeled features (zl

i, yl) and unlabeled features zu
i , we train a classifier

rθ using the following loss:

min
θ

1
Bl

Bl∑
i=1

H
(

ql
i, yl

i

)
+ 1

Nu

Bu∑
b=1

1 [qu
b ≥ τ ] H

(
q̃u

b , ŷu
b

)
.

Here, Bl and Bu are the batch size of the labeled and unlabeled dataset, respectively. ql
i = rθ(zl

i) and
qu

b = rθ(zu
b ) are the normalized logits from the classifier corresponding to class probabilities for the labeled

and unlabeled features, respectively. Nu =
∑Bu

b=1 1 [qu
b ≥ τ ] is the number of unlabeled examples with

confidence above τ and H(·) is the cross-entropy loss. We follow the methodology of Sohn et al. (2020) and
use the class predictions of unlabeled data of which the classifier is sufficiently confident as pseudo-labels
ŷu

b = arg max qu
b for predictions on augmented examples q̃u

b = rθ(z̃u
b ). To get augmentations, we apply Lie

group transformations z̃u
b = TΨ(c̃b)zu

b using coefficients sampled from the learned prior c̃b ∼ pθ(c | zu
b ). We

focus our comparison to other methods for incorporating feature augmentations.

We train each dataset and method with Bl = 32, Bu = 480 randomly sampled examples at each iteration,
using a single hidden-layer MLP with 2048 hidden units. We train with the AdamW optimizer (Loshchilov &
Hutter, 2019) with a fixed learning rate and weight decay of 5e−4. For CIFAR10 and STL10, we set τ = 0.95.
For TinyImageNet, we set τ = 0.7. Furthermore, we evaluate using an exponential moving average (EMA) of
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Table 3: Average percent improvement in semi-supervised accuracy over baseline over 50 splits with varying
datasets and methods for incorporating feature augmentations using 5 labels/class. Best method(s) for each
dataset are bolded.

Method CIFAR10 STL-10 TinyImageNet
Pseudo-labeling 3.99± 1.88% 0.34± 4.90% 1.25± 0.28%

Manifold Mixup ICT −1.46± 0.48% −3.26± 1.11% -0.01± 0.11%
FeatMatch 5.08± 1.20% 1.35± 0.50% 0.26± 0.15%

Variational Lie Group Operators 8.61± 2.57% 5.47± 2.37% 1.58± 0.30%

(a) CIFAR10 (b) STL10

Figure 4: Semi-supervised experiments using a frozen backbone and learned, single hidden layer MLP.
Comparison methods leverage unlabeled data to encourage consistency in classifier output after applying
feature augmentations. Taken over 50 data splits used for each method.

(a) (b)

Figure 5: (a) Identity-preservation of prior measured by linear classifier accuracy on frozen features after
sampling augmentations. Standard error is below 0.21% for each method. (b) Average, normalized coeffi-
cients per class sampled from learned prior on STL10 dataset. Coefficients can be used to analyze which
transformations are more or less likely for different input points and classes.

our classifier weights at each training step with weight 0.999. We train each method for 5, 000 iterations,
except FeatMatch (Kuo et al., 2020) which we train for 10, 000 iterations to give the attention head sufficient
iterations to learn meaningful augmentations.

To account for high variance in trial performance (e.g., certain splits of five labels per class are more challenging
than others), we present the result with respect to percent improvement over a baseline that only uses a
standard cross-entropy loss on labeled features in Table 3. We note that VLGO provides the highest accuracy
across almost every data split (plotted in Figure 7). Furthermore, we include paired t-tests in Table 9,
showing that accuracy improvements from the Lie group augmentations are statistically significant at the
group level. We compare to pseudo-labeling without augmentations (Lee, 2013), FeatMatch (Kuo et al., 2020),
and Manifold Mixup interpolation consistency training (MMICT) (Verma et al., 2019b). For FeatMatch, we
use all the labeled data as the prototypes for the attention-based feature augmentation module with four
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Table 4: Linear probe accuracy and manifold fit on TinyImageNet without a projection head ablating various
components from the ManifoldCLR system. Results averaged over three trials. See Section 4.2.3 for details
on each system.

System Stop-grad Lie Group Manifold Loss Learned Linear Probe
on z′ Augmentations Lm Prior Acc

S0 ✓ ✓ ✓ ✓ 38.68
S1 ✗ ✓ ✓ ✓ 31.97
S2 ✓ ✗ ✓ ✓ 37.37
S3 ✓ ✓ ✗ ✓ 36.57
S4 ✓ ✓ ✓ ✗ 36.85

attention heads. For MMICT, we apply a random linear interpolation sampled from U(0, 1) between two
randomly sampled unlabeled points and apply an MSE loss between the mixup of logits predicted by the
EMA model and the logits of the interpolated features. We note that this differs from the methodology of
Verma et al. (2019b) in that we interpolate features rather than the input data. This method is meant to
compare the benefit of learning non-linear paths with the Lie group operators. Among these methods, it
can be seen that VLGO provides the most benefit in Figure 4. We include experiments using more labels in
Appendix 6.2.2, where the trial variance is reduced while the relative benefit of VLGO is also minimized.

To better understand the types of augmentations encoded by the prior, we visualize the nearest neighbor
image to several feature augmentations in Figure 2. To quantify the degree of identity-preservation, we classify
augmented features from our validation set under a linear probe classifier in Figure 5(a). Here, it can be seen
that a learned prior has significantly superior identity-preservation over a fixed prior, with the gap widening
as the dataset complexity increases. Furthermore, by analyzing the normalized encoded coefficients, averaged
per class, from the prior network in Figure 5(b), one can draw insight on the magnitude of transformations
that can be applied per class, as well as which transformations are shared between classes. For example,
operator 52 is most likely for ’horse’ and ’deer’, operator 55 for ’dog’ and ’cat’, and operator 56 for ’truck’,
’car’, and ’airplane’. We emphasize that previous work with Lie group operators required all class labels
to learn identity-preserving coefficient distributions (Connor et al., 2023), as opposed to the unsupervised
approach in this work.

4.2.3 Ablations

Next, we ablate several components in the proposed system (S0) and measure the impact to linear readout
accuracy on TinyImageNet trained without a projection head in Table 4. First, we observe the impact of
removing the stop-grad operation in Equation 7 as S1. Next, we test removing the prior augmentations from
the contrastive loss in Equation 4 and removing the manifold loss (i.e., λ = 0 in Equation 6) in systems S2
and S3, respectively. We note similar degradation of performance when using coefficients sampled from the
encoder network as augmentations in the contrastive loss. Finally, we measure the impact of replacing the
learned prior with a fixed prior for contrastive loss augmentations in S4.

To evaluate the effect of hyper-parameters on the ManifoldCLR system, we measure linear probe accuracy
while varying different hyper-parameters on the TinyImageNet dataset with a projection head in Figure 6.
First, it can be seen that dictionary size follows an inverted U-shape, with too few dictionary entries causing
underfitting and too many causing overfitting. We find that this is the hyper-parameter that is most critical to
tune. On the other hand, we see that changing the weight λ of the manifold loss Lm provides little difference
on downstream performance. Lastly, we see that imposing a block diagonal constraint on operators has little
impact on linear probe performance above a block size of 64 (with significant benefits in computational and
memory costs). As one may expect, however, we find that reducing the block size leads to a reduction of the
effective rank (Roy & Vetterli, 2007) of backbone features. We report these values in Table 8.

12



Published in Transactions on Machine Learning Research (02/2024)

5 Discussion & Limitations

In this work, we demonstrate that incorporating novel views via manifold feature augmentations improves the
performance of contrastive learning across several image datasets. To learn the manifold structure of data in
a way that is amicable to sampling, we propose VLGO, a variational framework for the Lie group operator
model. This allows one to quickly infer coefficients describing the manifold displacement between a pair of
points, while also learning identity-preserving transformations to be applied to a single point in the feature
space. We demonstrate that this model can be used in contrastive learning to improve performance with and
without a projection head, potentially obviating the need for a projection head completely. After contrastive
pre-training, we also demonstrate that feature augmentations from the prior can be used for improvement in
semi-supervised learning.

One limitation of the proposed model is memory usage from the lack of fp16 support in current implementations
of the matrix exponential (Bader et al., 2019; Paszke et al., 2019). Here, we address this constraint by
imposing block-diagonal structure in the learned Lie group operators. Development of new numerical methods
for the matrix exponential is future work that can dramatically improve the applicability of VLGO to larger
scale models. Furthermore, although our work focuses on the benefits in contrastive learning, interesting
future directions may consider evaluation in other self-supervised frameworks.
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6 Appendix

6.1 Appendix A: Training Variational Lie Group Operators

When training the VLGO, there are several metrics of success we use to evaluate the model. For a given
point pair (xi, x′

i) and coefficients ci, the most important metric is the distance improvement (DI) from the
operators:

DI = ∥x
′
i −TΨ(c)xi∥2

2
∥x′

i − xi∥2
2

. (8)

This metric indicates how effective the operators/coefficient inference strategy is in transporting from xi to
x′

i. When training the VLGO in the feature space of a model, this metric is especially important to ensure
that the model is not minimizing Lm by trivially collapsing the features. It is important to also measure the
average magnitude of non-zero coefficients and the average Frobenius norm of the Lie group operators to
ensure they are not increasing without bound. To help ensure stability, we apply gradient clipping to both the
Lie group operators and the weights of the coefficient encoder and prior at each training step. Additionally,
we clamp the estimated distribution parameters from the encoder and prior network. It is critical to not set
the clipping/clamping values too high, as it can harm performance.

It is also important to learn operators that are approximately stable, with almost entirely imaginary eigenvalues
(i.e., real components near zero) defining cyclic paths. This is important to prevent applied augmentations
from causing an unbounded growth in the magnitude of the features (see appendix of Connor et al. (2023)).
We have found that the initialization of the Lie group operators affect the spectra of the final learned operators.
As such, we initialize each operator in the dictionary with the following block-diagonal form:

αm
1 βm

1 . . . 0 0
−βm

1 αm
1 . . . 0 0

0 0
. . . 0 0

...
... 0 αm

d/2 βm
d/2

0 . . . 0 −βm
d/2 αm

d/2

 ,

where αm
i and βm

i denote the real and imaginary component of the ith and i+1th eigenvalue, respectively. Note
that imaginary eigenvalues come in conjugate pairs. For the ManifoldCLR experiments, we set αm

i = 1.0e−4
and βm

i = 6.0.

Finally, in the case when we learn the prior, we apply a warmup of the estimated prior distribution parameters.
For the first 5000 iterations of training, we apply a linear warm-up from the encoded prior parameters and
fixed prior parameters. Let (µi, bi) = gθ(zi) be prior Laplacian parameters for input zi and κ ∈ [0, 1] be a
warm-up scalar. In the first 5000 iterations, we set the prior parameters as:

(µi, bi) =
(

κµi + (1− κ)µ0, κbi + (1− κ)b0

)
,

where µ0 and b0 are initial, fixed prior parameters. We use initial prior distribution parameters in our
evaluation in Figure 5(a).

6.1.1 Computational and Memory Complexity of Lie Group Operators

In this work, we take three steps to improve computational complexity: (1) variational inference to avoid the
need for an iterative optimization procedure at each training step, (2) block diagonal structure on the learned
operators, and (3) reducing the magnitude of the coefficients via the scale parameter of the prior distribution
or additional ℓ2 regularization. For the matrix exponential, we use an optimized Taylor series polynomial
(Bader et al., 2019) with computational complexity O(KN3), where K is a term that depends on the norm
of the matrix, as described in Equation 7 of Bader et al. (2019). Hence, reducing the magnitude of the
coefficients leads to a decrease in matrix norm in Equation 3 of our manuscript, and hence the computational
complexity.
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Table 5: Comparison of memory usage and average iteration time between SimCLR and ManifoldCLR on
TinyImageNet with a batch size of 512 using an Nvidia A100 GPU

Method GPU Memory (GB) Avg Time per Iter (sec)
SimCLR 13.4 0.0902

ManifoldCLR 15.2 0.4284

Table 6: Comparing the effect of block dimension of ManifoldCLR on memory usage and average iteration
time on TinyImageNet with a batch size of 512 using four Nvidia RTX 6000 GPUs

Block Dimension GPU Memory (GB) Avg Time per Iter (sec)
32 25.80 0.4735
256 52.42 0.5279
512 70.68 0.9051

We include an additional experiment comparing the empirical computational and memory complexity of
different methods on the TinyImagenet dataset. From Table 5, it can be seen that ManifoldCLR incurs
only a slight memory overhead compared to SimCLR, with the previously stated limitation of a higher
computational complexity. This comes with the advantage of learned operators that can be applied for
downstream tasks. Fortunately, Table 6 suggests that imposing a block diagonal constraint significantly
reduces computational complexity. We caution against comparison between Table 5 and Table 6 since they
use different GPU architectures and Table 6 requires storing the model on each GPU.

6.2 Appendix B: Image Experiments

6.2.1 Experimental Setup

For each dataset, we train a ResNet-18 (He et al., 2016) with the AdamW optimizer (Loshchilov & Hutter,
2019) for 1000 epochs using a batch size of 512. We set the backbone and projection head learning rate to
3.0e−3 for CIFAR10 and 2.0e−3 for STL10 and TinyImageNet. For every model, we set the learning rate of
the Lie group operators and coefficient encoder to 1.0e−3 and 1.0e−4, respectively. We set the weight decay
equal to 1.0e−5 for the backbone, projection head, and coefficient encoder and equal to 1.0e−3 for the Lie
group operators. We use a cosine annealing scheduler with a 10 warm-up epochs and a minimum learning
rate of 1.0e−5 for all parameters.

For all datasets, we modify the first convolutional layer of the ResNet-18 to have a 3x3 kernel size with a
stride and padding of 1 and no bias term. For CIFAR10, we also remove the max pool layer. We use images
of size 32x32 for CIFAR10 and 64x64 for STL10 and TinyImageNet. When applicable, we use a single hidden
layer projection head with 1024 hidden units, BatchNorm1d, and an output dimension of 128. To augment
the images, we first apply a random color jitter with brightness, contrast, and saturation set to 0.4 and hue
set to 0.1 with probability 0.8. We then apply a random grayscale with probability 0.1. Afterwards, we apply
a random resize/crop with scale between 0.2 and 1.0 and ratio between 0.75 and 1.33. Finally, we apply a
random horizontal flip with probability 0.5 and normalize the image using the standard mean and standard
deviation value for each dataset.

For our coefficient encoder architecture, we use a two-hidden-layer MLP with a leaky ReLU non-linearity.
The encoder takes concatenated, detached features as input (dimension equal to 1024) with hidden layers
with 2048 units. The output of the MLP is 512, after which a single linear layer is used to estimate log scale
and shift for each coefficient component. Our prior network uses a similar architecture, except with an input
dimension 512 and the second hidden layer of the MLP with 1024 units. Due to memory constraints from
taking multiple samples, we use a standard Laplacian prior for all ManifoldCLR experiments except CIFAR10
with a projection head. In that case, we apply a threshold ζ = 0.01 with J = 20 samples. For all methods,
we set the initial prior shift equal to 0.05 and scale equal to 0.01.
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(a) (b) (c)

Figure 6: Linear probe accuracy on a TinyImageNet model trained with a projection head while varying
different components of the ManifoldCLR system. These include the (a) dictionary size M , (b) weight on the
manifold loss term λ, and (c) block size b for the block-diagonal constraint on operators.

Table 7: Linear probe accuracy for DirectCLR (Jing et al., 2022) and DirectCLR+ManifoldCLR (named
ManifoldDirectCLR). Evaluated using an InfoNCE loss with normalized features (i.e., cosine similarity) and
without normalized features (i.e., MSE). All methods trained without a projection head. Best method(s) for
each dataset are bolded.

Method Normalized CIFAR10 STL-10 TinyImageNet
SimCLR-None ✓ 80.49% 78.29% 24.47%

DirectCLR ✓ 85.55% 82.99% 33.29%
SimCLR-None ✗ 88.58% 84.53% 36.26%

DirectCLR ✗ 88.46% 84.46% 36.20%
ManifoldCLR ✗ 88.89% 84.99% 38.68%

ManifoldDirectCLR ✗ 89.73% 87.47% 42.22%

To perform the linear probe evaluation, we freeze the backbone and encode features of the entire dataset
without augmentations. We then train a single linear layer for 500 epochs using the Adam optimizer. We use
an exponential decay on our learning rate at the end of each epoch, starting at 1.0e−2 and ending at 1.0e−5.

6.2.2 Additional Results

Table 8: Comparison of effective rank of backbone features between SimCLR and ManifoldCLR with different
block sizes in the Lie group operators. All methods trained on TinyImageNet with a projection head. Block
size of 512 indicates no block-diagonal structure in the operators.

Method Block Size Effective Rank
SimCLR – 6.01

ManifoldCLR 512 5.87
ManifoldCLR 256 5.75
ManifoldCLR 128 5.37
ManifoldCLR 64 5.25
ManifoldCLR 32 4.23
ManifoldCLR 16 3.32
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Table 9: Paired t-test p-values between variational Lie group operators and every other method over 50 random
data splits on semi-supervised experiment using 5 labels/class from main text. Alternative hypothesis is
that mean of VLGO accuracy is greater than each method.

Method CIFAR10 STL-10 TinyImageNet
Baseline 1.33e−28 1.29e−21 7.40e−38

Pseudo-labeling 3.58e−16 5.85e−10 6.10e−13
Manifold Mixup ICT 4.91e−32 2.48e−27 9.63e−40

FeatMatch 1.25e−14 2.42e−18 3.48e−35

(a) CIFAR10 (b) STL10 (c) TinyImageNet

Figure 7: Per trial performance, sorted by baseline performance, of semi-supervised experiments with 5
labels/class taken over 50 data splits. For almost every split, VLGO provides the highest accuracy.

(a) CIFAR10 (b) STL10 (c) TinyImageNet

Figure 8: Semi-supervised experiments using a frozen backbone and learned, single hidden layer MLP with 5
labels/class, taken over 50 data splits. Best viewed zoomed in.

(a) CIFAR10 (b) STL10 (c) TinyImageNet

Figure 9: Semi-supervised experiments using a frozen backbone and learned, single hidden layer MLP with
50 labels/class, taken over 50 data splits. Best viewed zoomed in.
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Table 10: Average percent improvement in semi-supervised accuracy over baseline over 50 splits with varying
datasets and methods for incorporating feature augmentations using 50 labels/class. Best method(s) for
each dataset are bolded.

Method CIFAR10 STL-10 TinyImageNet
Pseudo-labeling 0.59± 0.12% 0.62± 0.21% 0.16± 0.11%

Manifold Mixup ICT 0.02± 0.07% 0.02± 0.09% -0.06± 0.21%
FeatMatch 0.10± 0.08% 0.08± 0.08% 0.10± 0.21%

Variational Lie Group Operators 1.42± 0.37% 0.85± 0.30% 0.22± 0.12%

Table 11: Average percent improvement in semi-supervised accuracy over baseline over 50 splits with varying
datasets and methods for incorporating feature augmentations using 100 labels/class. Best method(s) for
each dataset are bolded.

Method CIFAR10 STL-10 TinyImageNet
Pseudo-labeling 0.30± 0.09% 0.31± 0.13% 0.11± 0.09%

Manifold Mixup ICT 0.02± 0.08% 0.02± 0.08% 0.00± 0.22%
FeatMatch 0.01± 0.07% 0.02± 0.10% 0.66± 0.25%

Variational Lie Group Operators 0.82± 0.19% 0.46± 0.19% 0.14± 0.10%

(a) CIFAR10 (b) STL10 (c) TinyImageNet

Figure 10: Semi-supervised experiments using a frozen backbone and learned, single hidden layer MLP with
100 labels/class, taken over 50 data splits. Best viewed zoomed in.
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