
Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Boyu Gou * 1 Zanming Huang * 1 Yuting Ning * 1 Yu Gu 1 Michael Lin 1 Weijian Qi 1 Andrei Kopanev 1

Botao Yu 1 Bernal Jiménez Gutiérrez 1 Yiheng Shu 1 Chan Hee Song 1 Jiaman Wu 1 Shijie Chen 1

Hanane Nour Moussa 1 Tianshu Zhang 1 Jian Xie 1 Yifei Li 1 Tianci Xue 1 Zeyi Liao 1 Kai Zhang 1

Boyuan Zheng 1 Zhaowei Cai 2 Viktor Rozgic 2 Morteza Ziyadi 2 Huan Sun 1 Yu Su 1

Abstract

Agentic search such as Deep Research sys-
tems—where agents autonomously browse the
web, synthesize information, and return com-
prehensive citation-backed answers—represents
a major shift in how users interact with web-
scale information. While promising greater ef-
ficiency and cognitive offloading, the growing
complexity and open-endedness of agentic search
have outpaced existing evaluation benchmarks
and methodologies, which largely assume short
search horizons and static answers. In this paper,
we introduce Mind2Web 2, a benchmark of 130
realistic, high-quality, and long-horizon tasks that
require real-time web browsing and extensive in-
formation synthesis, constructed with over 1000
hours of human labor. To address the challenge
of evaluating time-varying and complex answers,
we propose a novel Agent-as-a-Judge framework.
Our method constructs task-specific judge agents
based on a tree-structured rubric design to au-
tomatically assess both answer correctness and
source attribution. We conduct a comprehensive
evaluation of nine frontier agentic search systems
and human performance, along with a detailed
error analysis to draw insights for future develop-
ment. The best-performing system, OpenAI Deep
Research, can already achieve 50-70% of human
performance while spending half the time, high-
lighting its great potential. Altogether, Mind2Web
2 provides a rigorous foundation for developing
and benchmarking the next generation of agentic
search systems.

*Equal contribution 1The Ohio State University, Colum-
bus, OH, USA 2Amazon AGI, USA. Correspondence
to: Boyu Gou <gou.43@osu.edu>, Zanming Huang
<huang.5758@osu.edu>, Yuting Ning <ning.151@osu.edu>,
Huan Sun <sun.397@osu.edu>, Yu Su <su.809@osu.edu>.

Workshop on Computer-use Agents @ ICML 2025, Vancouver,
Canada. Copyright 2025 by the author(s).

1. Introduction
Web search has long been the gateway to the world’s knowl-
edge, underpinning everything from everyday fact-checking
to frontier scientific discovery. The core techniques sup-
porting web search have undergone constant evolution in
the past decades, from TF-IDF (Salton et al., 1975) for
term statistics to PageRank (Brin & Page, 1998) for net-
work analysis and learning to rank (Liu et al., 2009; Burges
et al., 2005) for supervised learning. Yet the core interaction
model has remained essentially unchanged: users issue a
query, receive a ranked list of URLs, and must manually
open, read, and synthesize multiple webpages to answer
complex questions. Current web search is inherently user-
driven: it retrieves pieces of information but relies on users
to interpret and assemble those pieces. That places a signifi-
cant cognitive load on users, especially as the complexity of
the digital world grows.

Recent advances in large language models (LLMs) have
sparked the development of agentic search systems. Rather
than taking keyword queries and returning lists of links,
agentic search systems decompose and plan for complex
queries, iteratively search the web and interact with dy-
namic websites, and synthesize information into a citation-
backed response. In recent years, agentic search has quickly
progressed from search-augmented LLMs (e.g., ChatGPT
and Perplexity Search) to LLM-based autonomous web
agents (Nakano et al., 2021; Deng et al., 2023; Zhou et al.,
2024; Zheng et al., 2024; Anthropic, 2024; OpenAI, 2025b)
and recent Deep Research systems (Google, 2025; OpenAI,
2025a) specifically optimized for long-horizon browsing
and search behavior. By offloading many low-level tasks,
such as query decomposition and reformulation, web brows-
ing, and basic analytics, to a tireless AI agent, agentic search
promises to empower human users to focus their cognitive
capacity on more important matters like oversight and criti-
cal decisions, improving both search efficiency and quality.

However, the rapidly growing complexity of agentic search
systems and their tasks is leading to an evaluation crisis:
how to evaluate the result of a long-horizon task that an AI
agent or human produces after taking possibly an hour and

1

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

…
My	budget	is	$200-$600	and	I	need	a	bed	frame,	a	
desk,	 a	 chair,	 a	 floor	 lamp,	 and	 a	 two-door	
wardrobe	 from	 IKEA.	 	Make	 sure	all	 the	 furniture	
in	the	shopping	list	is	white.	

Below	is	a	selection	of	five	IKEA	furniture	
items	that	together	come	to	about	$334:
- Bed	Frame:	white,	Twin–$99.00	[1]
- Desk:	black,	28¾×19⅝″–$59.99	[2]

Realistic	Long-Horizon	Tasks

Agent-as-a-Judge	Evaluation

Citation-Backed	Answers

Judge	Agent

Diverse	Domains

White? Price	information	correct?

Bed	Frame	check	pass?

From	IKEA?
White?

Total	price	within	range?

Price	information	correct?

Desk	check	pass?

From	IKEA?

Task	completed	correctly?

. . .

Lifestyle	&	Leisure	(26%)

Entertainment	(22%)

Science	
&	Research	(18%)

Career	&	Education	(8%)

Travel	&	Transport	(7%)

Misc.	(19%)

Agentic	Search

…

[1] [2]
Time-Varying
Multi-Source

Answer	Correctness
Source	AttributionTask

Answer Evaluation	Result:	Failure

Webpages

Partial	Completion:	0.4

Figure 1: Mind2Web 2 features realistic and diverse long-horizon tasks and a novel Agent-as-a-Judge framework based on
rubric trees to evaluate complex, time-varying, and citation-based answers.

hundreds of actions across dozens of websites? Meanwhile,
automated and reliable evaluation has proven crucial for the
iterative development of AI technologies, especially in the
early stages (Hendrycks et al., 2021; Chiang et al., 2024;
Yue et al., 2024). For agentic search, evaluation is also crit-
ical for establishing its trustworthiness––while traditional
search requires the user to read original documents and ver-
ify information, an agent that synthesizes answers must be
relied on to be correct and unbiased. Automated evaluation
serves as the first line of defense to detect whether an agent
is just hallucinating plausible-sounding answers or the cited
sources verifiably back them.

Existing benchmarks and evaluation methodologies struggle
to keep up with the growing complexity of agentic search.
Many benchmarks have been proposed for autonomous web
agents (Deng et al., 2023; Yao et al., 2022; Zhou et al., 2024;
Lu et al., 2024; Xue et al., 2025) but they primarily focus
on tasks of a moderate horizon (e.g., up to 10 actions) that
can be completed on a single website. Several benchmarks
cover cross-website search tasks (Mialon et al., 2023; Yoran
et al., 2024; Song et al., 2025), including most recently
BrowseComp (Wei et al., 2025) from OpenAI. However, to
facilitate automated evaluation, a common compromise was
made: they focus on tasks with predefined, time-invariant
answers, oftentimes just a single answer string. While these
benchmarks still provide valuable signals for evaluating
certain aspects of agentic search systems, they are far from
the full spectrum of tasks that current and future systems are
facing. Consider an everyday task already within reach of
current Deep Research systems, shown in Figure 1. It does
not have a predefined answer but requires interacting with
live websites to get real-time information. A corresponding

agent trajectory may span dozens to hundreds of actions on
the IKEA website, let alone more complex tasks that span
many websites. We need new evaluation methodologies and
benchmarks for such long-horizon, time-varying tasks.

In response to these challenges, we propose Mind2Web 2,
a new benchmark designed to rigorously evaluate agentic
search systems on realistic and long-horizon tasks involving
real-time web search and browsing. It consists of 130 high-
quality tasks across diverse practical domains. Each task
has undergone multiple stages and hours of expert labor for
polishing and validation to ensure its realism, complexity,
and verifiability. Approximately, at least 1000 hours of
human labor are spent to construct the benchmark, including
the tasks and their evaluation scripts.

Agentic search systems typically produce lengthy, time-
varying answers (e.g., the product catalog of a shopping
website constantly changes) ranging from hundreds to thou-
sands of words on these tasks. The complexity is far beyond
what conventional LLM-as-a-Judge (Zheng et al., 2023)
methods are used for. Therefore, we propose a novel Agent-
as-a-Judge framework to automatically yet reliably eval-
uate such complex answers. The key insight behind our
evaluation methodology lies in the generation-verification
asymmetry: while the generated answers can vary substan-
tially across agents, search strategies, or query times, we
know a priori what each task is looking for and can de-
sign a task-specific rubric to specify the evaluation logic.
At a high level, a rubric evaluates two main aspects of an
answer: correctness (i.e., whether the answer satisfies all
the requirements of the task) and attribution (i.e., whether
every statement in the answer can be attributed to the cited

2

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

sources). At the operational level, a rubric is structured
as a tree that breaks down the evaluation into hierarchical
evaluation nodes, where each leaf node conforms to a binary
judgment and the internal nodes aggregate and propagate
the results toward the root following various aggregation
logic. Given a task, we develop a task-specific judge agent,
an agentic workflow interleaving LLM-based information
extraction, LLM-as-a-Judge, and tool calls following our
unified rubric design, to automatically evaluate complex
answers from agentic search systems (see Figure 1 for il-
lustration). Due to the complexity of our tasks, the rubric
trees are also highly complex, with an average of 50 nodes
and a max of 603 nodes (Table 2 (a)). Yet, rigorous human
evaluation of our judge agents shows a 99% correctness rate,
demonstrating their exceptional reliability (Appendix E).

We evaluate nine frontier agentic search systems on
Mind2Web 2 and also compare them with human perfor-
mance. Overall, the results show a clear advantage of Deep
Research systems over search-augmented LLMs and web
agents like Operator, owing to their ability to effectively
leverage advanced tools and stay focused over a long hori-
zon. Our results also reveal that current systems still struggle
with time-varying tasks that require real-time information
and highlight the need for agentic search systems to inte-
grate the ability to interact with live websites. Finally, even
though current systems still underperform humans, the best-
performing system, OpenAI Deep Research, can already
achieve 50-70% of human performance while spending half
the time. It also outperforms humans on some tasks requir-
ing great attention to detail and exhaustiveness in the search.
After all, humans are subject to cognitive fatigue and a lim-
ited working memory. Agentic search presents a substantial
potential in augmenting human cognition by automating leg-
work and allowing us to focus our limited cognitive capacity
on things that matter more, such as critical decisions and
oversight.

2. Related Work
Agentic Search. We define agentic search as systems that
iteratively and autonomously tackle complex search tasks
using a combination of tools (e.g., search APIs, retrievers,
or web browsing). The autonomy is typically powered by
LLMs that decompose the initial search task, dynamically
reason and plan based on the accumulating information,
or interact with live websites. Early systems like Mind-
Search (Chen et al., 2024b), ChatGPT and Perplexity Search
augment LLMs with search APIs to iteratively search for
up-to-date information. However, solely relying on con-
ventional web search inherits its limitations. For example,
many websites dynamically render information not indexed
by search engines based on user interaction. Autonomous
web agents (Nakano et al., 2021; Deng et al., 2023; Yao et al.,

2022; Zhou et al., 2024), especially those with visual percep-
tion of the web (Zheng et al., 2024; Koh et al., 2024; Gou
et al., 2025; Qin et al., 2025), have emerged to browse the
real-time web as humans do. OpenAI’s Operator (OpenAI,
2025b), with specialized reinforcement learning training,
represents the current frontier (Xue et al., 2025). Recent
advances in reasoning models (Jaech et al., 2024; Guo et al.,
2025) have enabled the development of Deep Research sys-
tems (OpenAI, 2025a; Google, 2025; Hugging Face, 2025)
that leverage a suite of advanced tools, including search
APIs and web browsing, to conduct substantially longer-
horizon and deeper research on complex topics. However,
there is yet a benchmark designed to simultaneously eval-
uate this broad spectrum of agentic search systems, a gap
that our work aims to bridge.

Benchmarks and Evaluation Methodologies. Most exist-
ing benchmarks for web agents focus on evaluating whether
an agent can autonomously perform certain processes on a
single website (Deng et al., 2023; Yao et al., 2022; Zhou
et al., 2024; Lu et al., 2024; He et al., 2024; Xue et al.,
2025; Koh et al., 2024). The tasks tend to be short (e.g.,
less than 10 actions) and transactional (e.g., purchasing a
flight ticket). Therefore, they can be useful for evaluating
the web browsing aspect of agentic search but not the whole
system. Several recent benchmarks have a stronger focus
on search over the open web (Mialon et al., 2023; Yoran
et al., 2024; Wu et al., 2025; Song et al., 2025; Wei et al.,
2025). However, for the feasibility of automated evalua-
tion, these benchmarks have made a common compromise:
they limit the benchmark to tasks with predefined, time-
invariant answers, oftentimes just a single answer string.
The BrowseComp benchmark (Wei et al., 2025) from Ope-
nAI, a concurrent work to ours, is representative of this
evaluation methodology. Similar to ours, it also leverages
the generation-verification asymmetry. It specifically targets
tasks that are hard to solve but easy to verify (e.g., the an-
swer is often a unique, unambiguous string but may require
combing through hundreds of webpages to find it). This
strategy is adopted to sidestep the challenge of automatically
evaluating complex, time-varying answers, but at the cost
of systematically deviating from the true user query distri-
bution. In contrast, we take this challenge head-on with
a novel Agent-as-a-Judge methodology. That allows our
benchmark to include more realistic and complex tasks that
require a comprehensive answer with real-time information.

LLM-as-a-Judge (Zheng et al., 2023) has been widely used
in evaluating complex tasks, including for web agents (Pan
et al., 2024a; He et al., 2024; Xue et al., 2025). However,
the complexity of agentic search is far beyond what a few
LLM calls can evaluate, necessitating an Agent-as-a-Judge
approach (Zhuge et al., 2024; Starace et al., 2025). Paper-
Bench (Starace et al., 2025) (a concurrent work) is most
related to ours in that it also adopts a tree-structured rubric,

3

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

though it is manually written by human experts and used
to evaluate the replication of AI research. Our work goes
further by largely automating the generation of rubrics. We
also have more sophisticated score aggregation methods be-
yond simple weighted averaging due to the diversity of our
tasks. Finally, our attribution evaluation is also related to
the attribution literature (Yue et al., 2023; Gao et al., 2023;
Li et al., 2024; Liu et al., 2023).

3. Mind2Web 2
3.1. Overview

We introduce Mind2Web 2, a novel benchmark designed to
rigorously evaluate agentic search systems on realistic and
complex information-gathering tasks involving real-time
web search and browsing. There are two main challenges in
constructing such a benchmark:

• How to collect sufficiently complex yet realistic tasks?

• How to automatically and reliably evaluate the com-
plex answers generated by different agentic search sys-
tems?

In §3.2, we discuss how we propose, refine, and validate
tasks, where we spend hours of expert labor on each task
to ensure validity, realism, and verifiability. To tackle the
significant evaluation challenge, we propose a novel Agent-
as-a-Judge framework that evaluates both the correctness
(i.e., whether the answer satisfies all the requirements of
the task) and attribution (i.e., whether each statement in the
answer can be attributed to the cited sources). Specifically,
we describe our rubric design in §3.3 and the development
of judge agents in §3.4, with benchmark statistics in §3.5.

3.2. Task Collection

The tasks in Mind2Web 2 shall have the following character-
istics: (1) Realistic and diverse. Tasks must reflect practical
user needs in diverse domains, providing substantial real-
world value when solved. (2) Long-horizon and laborious.
Tasks require substantial human effort due to an extended
length and breadth of the required searches. (3) Objective
and verifiable. Each task must have clearly defined evalua-
tion criteria that are verifiable by checking the answer text
in addition to the cited source webpages. (4) Time-varying.
We encourage time-varying tasks with answers that could
change over time, although it is not a requirement for every
task.

Our task collection team consists of three groups of an-
notators (all are experienced computer science students or
professionals): task proposers, refinement experts, and vali-
dation experts, who lead different stages of the procedure.
First, task proposers freely generate task ideas based on their
authentic search needs or inspirations from our provided do-

main guidelines, ensuring initial alignment with the realism
and laboriousness desiderata. Second, trained refinement
experts, collaborating closely with the task proposers, iter-
atively revise or filter tasks to enforce strong alignment to
our task principles. Finally, experienced validation experts
manually attempt and verify each refined task, focusing on
task feasibility, potential subtle issues, and practicability of
the evaluation. Only tasks independently validated by at
least two validation experts are included in Mind2Web 2.

3.3. Rubric Tree

To support reliable, scalable and automated evaluation of the
tasks in Mind2Web 2, we design a unified tree-structured
rubric formulation. Each leaf node represents a criterion
that can be assessed through straightforward verification,
yielding a binary score of 0 or 1. These binary scores are
then aggregated iteratively by parent nodes to determine the
scores for higher-level criteria.

Specifically, a rubric may include two types of nodes. Each
node is either a critical node, representing an essential cri-
terion whose failure immediately fails its parent node (e.g.,
the budget evaluation node (a) or any child node of (b) in
Figure 2), or a non-critical node, allowing partial scoring
at its parent node (e.g., we independently assess each of the
five requested furniture and give partial credit in Figure 2).
Additionally, some nodes may be marked as sequential,
reflecting a logical dependency among their child nodes,
where a failure at an earlier node short-circuits all subse-
quent nodes. For example, if a task requires finding a certain
paper and subsequently the email of its first author, failing
to find the correct paper makes it pointless to evaluate the
email node.1

Intuitively, the score aggregation employs a gate-then-
average strategy: critical nodes serve as gating conditions
when paired with non-critical nodes. In practice, critical
nodes often represent basic and essential constraints rather
than incremental progress, thus their scores do not directly
contribute to the averaging process for partial scoring, but
instead function solely to warrant the meaningfulness of
aggregating scores from non-critical nodes. Finally, if a
node only contains critical child nodes, which indicates that
each child represents a necessary condition for the parent
criterion, the score of the parent node directly depends on
the passing of all these critical child nodes (e.g., in Figure 2,
the wardrobe node (b) gets a score 1 only if all the child
nodes pass; otherwise 0).

Formally, let v be a node in the rubric tree with child nodes
C(v). We partition child nodes into critical nodes K(v) ⊆
C(v) and non-critical nodes N(v) = C(v) \ K(v). The

1This sequential logic is sufficient for our current tasks, though
future work can explore other logic.

4

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

1 0 0 1 1 1

0.6

Decompose

evaluation into

more granular

criteria checks
(a)

Propagate scores from leaf

nodes to parent nodes

Answer

Webpage

(b)

1

(b1)

1

(b2)

1

(b3)

1

(b4)

(b)	 Is the wardrobe qualified?

critical node

From IKEA?(b1)	

Price accurate?(b2)	

Is white?(b3)	

Has 2 doors?(b4)	

(a)	 Is total price within $200 - $600?

Figure 2: Example of tree-structured rubrics. Top-down, task goals are decomposed into a tree structure; bottom-up, binary
scores from leaf nodes are aggregated into the overall task score. The leaf nodes are verification of low-level criteria,
implemented by various functions of judge agents (e.g., simple verify: verify a simple factual or logical statement;
verify by url: verify whether a statement in the answer is backed by a cited webpage). See more discussion in §3.3 and
§3.4.

score s(v) ∈ [0, 1] of v is recursively defined as:

s(v) =


0, if ∃u ∈ K(v), s(u) < 1,

1
|N(v)|

∑
u∈N(v) s(u), if ∀u ∈ K(v), s(u) = 1 and |N(v)| > 0,

1, otherwise.

We define two metrics based on the final aggregated score
at the root node: (1) Partial Completion, the average root
node scores across all tasks, reflecting the partial satisfaction
based on the fine-grained evaluation, and (2) Success Rate,
the percentage of tasks achieving a perfect root node score of
1, indicating full task completion with all criteria satisfied.

3.4. Rubric-based Judge Agent

Following the rubric design in §3.3, each task in Mind2Web
2 is evaluated by a dedicated judge agent, which is a task-
specific agentic workflow that implements the rubric-style
evaluation wrapped in a Python script. A judge agent takes
the answer text (including the source citations) as input,
evaluates each fine-grained criterion (i.e., the leaf nodes of
the rubric tree), and calculates the final score by aggregating
scores upwards to the root node.

The judge agents primarily leverage two LLM-based tools:
(1) Extractor that parses answer text to extract structured
information (e.g., item names, prices, and URLs), and (2)
Verifier that applies verification.2 Take the leaf node (b3)
in Figure 2 as an example, the Extractor extracts the cor-
responding bits of information from the answer, and the
Verifier examines the extracted text and the screenshot of
the corresponding webpage to determine if the statement is
indeed true.

Manually crafting such judge-agent scripts from scratch is
prohibitively demanding due to the complexity and gran-
ularity of the evaluation criteria. Thus, we first develop
a modular Python toolkit encapsulating reusable rubric-
management utilities and standardized Extractor and Ver-

2We use OpenAI o4-mini as the LLM in both tools.

ifier modules. This toolkit substantially reduces coding
overhead, allowing annotators to focus primarily on rubric
design rather than code details. Nonetheless, script creation
remains demanding even with this toolkit. To further facili-
tate the development, we build an LLM-based agentic code
generation pipeline that produces an initial version of the
scripts. The generated scripts undergo iterative autonomous
refinements (including self-debug (Chen et al., 2024a) and
self-reflection (Shinn et al., 2023; Madaan et al., 2023)) to
auto-correct minor or common errors. Finally, scripts are
rigorously validated through a two-stage human refinement
process, which ensures correctness and enhances generaliz-
ability across all possible answers. We also conduct a human
evaluation of our rubrics and judge agents in Appendix E.
Further details about rubrics and script development are
provided in Appendix C. An exemplar script is provided in
Appendix G.

3.5. Benchmark Statistics

Through the pipeline described in §3.2-§3.4, we collect a
total of 130 carefully curated tasks, each accompanied by
a carefully developed judge-agent script. Task distribution
across domains is shown in Figure 1 and Appendix B.1. In
total, the construction of this benchmark (including both
task collection and judge-agent development) involves at
least 1000 hours of human labor.

The statistics of the rubric trees in Table 2 (a) show the com-
plexity of our tasks, with rubric trees having up to 6 layers
and 603 evaluation nodes. To further quantify the complex-
ity of our benchmark, we conduct a human performance
study on a randomly selected subset of 30 tasks (Subset-30).
Seven participants are asked to manually complete these
tasks (each task by three different participants), allowing
us to observe human behaviors and measure human effort
associated with the tasks. Results in Table 2 (b) show that
our tasks are indeed highly time-consuming for humans: It
can take up to one hour and humans need to visit as many

5

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Table 1: Comparison with existing benchmarks for web browsing or search on live websites. Horizon: the average number
of required actions per task, grouped into Short (< 10), Medium (10−50), Long (> 50). Time-Varying: whether the answer
can change over time.

Horizon # of Tasks Time-Varying Evaluation

Online-Mind2Web (Xue et al., 2025) Short 300 ✓ LLM-as-a-Judge
WebVoyager (He et al., 2024) Short 643 ✓ LLM-as-a-Judge
Mind2Web-Live (Pan et al., 2024b) Short 542 ✓ Rule
BEARCUBS (Song et al., 2025) Short 111 ✗ Manual Evaluation
WebWalkerQA (Yoran et al., 2024) Short 680 ✗ Answer Match
GAIA (Mialon et al., 2023) Medium 466 ✗ Answer Match
AssistantBench (Yoran et al., 2024) Medium 214 ✗ Answer Match
BrowseComp (Wei et al., 2025) Long 1266 ✗ Answer Match

Mind2Web 2 Long 130 ✓ Agent-as-a-Judge

Table 2: Benchmark statistics.

(a) Rubric complexity.

Avg Min Max

Leaf nodes 34 3 357
Total nodes 50 4 603
Depth 4 2 6

(b) Human effort required per task (Subset-30).

Avg Min Max

Time (min) 18 8 44
Websites 8 3 31
Webpages 110 38 375

as 31 websites and 375 webpages to get the answer. Note
that these numbers are underestimated, as participants may
make mistakes or omit steps, and are allowed to stop after
one hour or if unable to find clear paths to complete the task.

Table 1 shows the comparison of Mind2Web 2 to other
related benchmarks. As discussed in §2, Mind2Web 2 is
the only agentic search benchmark to date focusing on long-
horizon, time-varying tasks, and is made possible due to our
advanced Agent-as-a-Judge evaluation methodology. It is
worth noting that even though there are only 130 tasks, each
task contains dozens to hundreds of fine-grained evaluation
nodes, thus still providing sufficient differentiation power.

To reduce the risk of data contamination and our judge
agents being abused as reward models for reinforcement
learning, we split our benchmark into a public development
set (10 tasks), which includes both the task descriptions
and evaluation scripts, and a private test set (120 tasks),
that only includes the task descriptions. We will maintain a
leaderboard, where participants are required to submit their
answers to get them evaluated by us.

4. Experiments
4.1. Experimental Setup

We evaluate agentic search systems of various types on
Mind2Web 2. Given the complexity of our tasks, we focus
on frontier systems capable of yielding meaningful results,
namely, those exhibit sufficient long-horizon search capa-
bility and can consistently provide source attributions. We
report two primary metrics: Partial Completion and Suc-
cess Rate, as defined in §3.3. We run and evaluate each sys-
tem independently over three runs per task, and we present
the averaged metrics along with their standard deviations.
Additionally, we introduce Pass@3, indicating whether at
least one of the three attempts for a task is successful. To
further contextualize system performance, we also report be-
havioral aspects influencing user experience, including the
average task completion time and average answer length.3

We report results on the private test set, reserving the public
development set for unrestricted exploration.4

We include two prominent commercial search products,
ChatGPT Search (OpenAI, 2024) and Perplexity Pro Search
(Perplexity AI, 2024), which augment LLMs with search ca-
pabilities, delivering rapid responses with a limited number
of agentic search steps. Additionally, we evaluate a suite
of Deep Research systems (Hugging Face, 2025; Perplexity
AI, 2024; xAI, 2025; Google, 2025; OpenAI, 2025a), which
are explicitly optimized for extensive information gather-
ing and comprehensive report generation, many of which
can sustain continuous running for extended periods (e.g.,
beyond 30 minutes per query). Lastly, we assess OpenAI
Operator (OpenAI, 2025b), one of the most advanced web
agents currently available, which performs tasks through
direct browser interactions. Hugging Face Open Deep Re-

3We use the self-reported completion time whenever avail-
able; otherwise, we manually record the completion time. Manual
recording is limited to Subset-30 to reduce human workload.

4Note that Subset-30 is guaranteed to be a subset of the private
test set.

6

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

search (Hugging Face, 2025) is the only open-source system
that we find to yield reasonable results at the time of this
evaluation; all the other sufficiently capable systems are
closed-source.

To provide deeper insights into the practical values of these
systems, we further include a human performance study
(previously detailed in §3.5), wherein human participants
undertake tasks in Subset-30 under fair settings (further
elaborated in Appendix D).

4.2. Main Results

As shown in Table 3, while most tasks in Mind2Web 2 are
conceptually straightforward, their tedious nature poses sub-
stantial challenges not only for the agent systems but also
for human participants, resulting in low success rates (up to
28% for agents and 54% for humans). Moreover, the sub-
stantial gap between partial completions and success rates
highlights that current systems often demonstrate initial
competence but struggle to fully complete tasks accurately.

Comparison Between Agent Types. Unsurprisingly, Chat-
GPT Search and Perplexity Pro Search emerge as the weak-
est systems, primarily limited by their restricted search hori-
zon and relatively shallow information synthesis abilities
inherent to LLMs. In contrast, most Deep Research systems
achieve superior performance. These systems are explic-
itly designed, trained, or prompted for extensive informa-
tion gathering and sophisticated synthesis tasks, enabling
sustained, detailed task engagement. Additionally, several
Deep Research systems integrate capabilities of text-only or
multimodal web browsing (clicking, scrolling), alongside
coding tools (e.g., dedicated virtual environments, Python
interpreters), enabling real-time search on live websites as
well as advanced reasoning and information synthesis. Oper-
ator exhibits notably lower performance compared to Deep
Research systems. Compared to agents primarily leveraging
search APIs, web agents navigate more complex and noisier
environments, manage complex action spaces, and handle
substantially longer and more intricate context. These pose
substantial challenges to robust long-term reasoning, plan-
ning, and memory management, and these challenges are
especially amplified and highlighted by the extensive, long-
horizon tasks included in Mind2Web 2. Moreover, unlike
web agents that sequentially interact with browsers, recent
search agents have begun leveraging parallelized retrieval
strategies, offering clear advantages in locating information
from the vast online content landscape.

Test-Time Scaling. As illustrated in Figure 3, we observe
clear performance improvements resulting from increased
inference time. The benefit is especially evident when com-
paring systems within the same family (e.g., Grok and Per-
plexity), given that they presumably share the same under-
lying models. This observation aligns intuitively with the

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pa
rti

al
 C

om
pl

et
io

n

ChatGPT Search
Perplexity Pro Search OpenAI

Operator
HF Open
Deep Research

Perplexity Deep Research
Grok
DeepSearch

Grok DeeperSearch
Gemini Deep Research

OpenAI Deep Research

Human

Figure 3: Average Partial Completion against average task
completion time.

complexity of our tasks, which inherently demands pro-
longed searches and sophisticated synthesis: extending in-
ference time enables agents to more thoroughly retrieve,
process, and integrate the necessary information. Addi-
tionally, performing multiple independent trials for each
system substantially enhances the likelihood of task suc-
cess, as indicated by the improved Pass@3 scores. This
further underscores the potential of current agentic search
systems to benefit from increased computational resources
and inference attempts.

Chatgpt Search

Perplexity Pro

Openai Operator

Hf Open Deep Research

Perplexity Deep Research

Grok Deep Search

Gemini Deep Research

Grok Deeper Search

Openai Deep Research
Human

0.0

0.2

0.4

0.6

0.8

1.0

Pa
rti

al
 C

om
pl

et
io

n

Explicitly Time-varying Tasks
Other Tasks

Figure 4: Average Partial Completion on explicitly time-
varying tasks compared to other tasks.

Struggle with Time-Varying Tasks. We hypothesize that
agentic search systems equipped with no or only limited
browsing features might perform worse on time-varying
tasks compared to time-invariant tasks. Many of those tasks
inherently require live web interactions, for instance, ver-
ifying hotel room availability on a specific date. Without
real-time browsing, agents often provide outdated or hallu-
cinated information. We identify 57 tasks that are explicitly
time-varying (i.e., tasks explicitly associated with relative
dates/times, or requiring information like product prices that
frequently changes over time). As shown in Figure 4, most
of the evaluated systems perform worse on this subset than
on the remaining tasks, which supports our hypothesis. In-

7

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Table 3: Main evaluation results. We report the partial completion score, full-task success rate, Pass@3, average time (in
minutes), average answer length (in words), and their standard deviation. *: To reduce human workload, the human study is
conducted on Subset-30 as described in §3.5.

Partial Completion Success Rate Pass@3 Time (min) Answer Length

ChatGPT Search 0.26±0.01 0.06±0.01 0.11 < 1 314±4

Perplexity Pro Search 0.28±0.02 0.08±0.01 0.12 < 1 408±13

OpenAI Operator 0.26±0.01 0.10±0.01 0.17 9.74±0.21 160±1

HF Open Deep Research 0.26±0.01 0.11±0.01 0.18 13.65±0.07 209±3

Grok DeepSearch 0.40±0.04 0.18±0.02 0.36 2.58±0.14 1428±16

Perplexity Deep Research 0.42±0.03 0.15±0.03 0.26 5.67±0.13 585±13

Gemini Deep Research 0.45±0.03 0.18±0.02 0.30 7.38±0.58 3357±49

Grok DeeperSearch 0.52±0.02 0.27±0.03 0.40 5.72±0.27 1362±24

OpenAI Deep Research 0.54±0.04 0.28±0.04 0.40 8.40±0.71 559±19

Human* 0.79±0.01 0.54±0.07 0.83 18.40±1.61 186±27

terestingly, OpenAI Operator and human participants, both
excelling at interacting with live websites, achieve relatively
on-par or superior performance on time-varying tasks. In
addition to real-time information, some tasks, such as those
requiring advanced filters or visual understanding, also favor
browser interaction over search APIs. These collectively
highlight the importance of integrating web browsing into
agentic search systems, likely contributing substantially to
OpenAI Deep Research’s superior performance over the
other Deep Research systems.

Promises of Agentic Search. Despite current limitations,
our evaluation already demonstrates early promise of agen-
tic search systems. The best-performing system, OpenAI
Deep Research, already achieves 50-70% of human perfor-
mance while spending less than half the time. Humans are
not perfect at many of such complex tasks because we are
subject to cognitive fatigue and limited working memory.
For instance, in a task that requires retrieval of news articles
with nuanced constraints, all the human participants exhibit
various forms of oversight or carelessness regarding subtle
details or overall task requirements, resulting in task failures.
In contrast, most agent systems accurately interpret the task
and articles and achieve better performance. Agentic search
has substantial potential to augment human cognition by
automating away the legwork and allowing us to focus our
limited cognitive capacity on things that matter more, such
as critical decisions and active oversight.

4.3. Further Analysis and Insights

To further understand the strengths and weaknesses of cur-
rent agentic search systems, we conduct further error anal-
yses as well as a rigorous human evaluation for the judge
agents (see Appendix E and Appendix F for full details):

Error Analysis. Our systematic error analysis reveals
common error patterns across systems. Notably, hallucina-

tion—particularly invalid and unsupported attributions—is
prevalent even in state-of-the-art systems, with the best sys-
tem (OpenAI Deep Research) still hallucinating in 23% of
the tasks. Interestingly, humans, despite superior overall per-
formance, make frequent mistakes due to cognitive fatigue
and oversight on fine details. We also present additional
case studies in Appendix F.2.

Human Evaluation of Judge Agents. Given the complex-
ity of our evaluation methodology, we conduct rigorous
human evaluations of our Agent-as-a-Judge framework. Re-
sults show a remarkable reliability, achieving a 99% correct-
ness rate in fine-grained rubric judgments. This strongly
validates our rubric-based automated evaluation method,
significantly outperforming previous automated evaluation
approaches for simpler tasks.

5. Conclusions
In this work, we introduced Mind2Web 2, a novel bench-
mark specifically designed for comprehensively evaluat-
ing agentic search systems on long-horizon information-
gathering tasks and time-varying answers. We proposed
a scalable, automated, and reliable evaluation framework
based on Agents-as-a-Judge that systematically assesses
agent performance on open-ended long-horizon search tasks.
By leveraging carefully constructed judge agents, our evalu-
ation method achieves exceptional reliability, substantially
exceeding existing LLM-as-a-Judge approaches.

Our comprehensive empirical analysis, spanning AI-based
search engines, Deep Research systems, and web agents, re-
veals both their potential and current limitations. Mind2Web
2 serves as a valuable resource and rigorous assessment plat-
form for better advancing agentic search systems.

Collectively, Mind2Web 2 provides a rigorous and realistic
benchmark, with valuable insights to guide the advancement
of next-generation agentic search technologies.

8

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Impact Statement
In this section, we discuss broader impacts from two inter-
connected perspectives: the broader implications of agentic
search systems, and the impacts associated with the release
and use of the Mind2Web 2 benchmark.

Agentic Search Systems. Advanced agentic search systems
promise a transformation in how users interact with the web,
shifting from manual, multi-step information gathering to
streamlined, automated information synthesis. This change
could significantly reduce cognitive load, improve efficiency,
democratize sophisticated search capabilities, and support
informed decision-making across diverse fields including
education, healthcare, commerce, and policy-making.

Despite benefits, enhanced agentic search systems may ex-
acerbate misinformation by generating seemingly credible
yet incorrect or unsupported information. Malicious actors
could exploit such systems for large-scale disinformation
or unauthorized data extraction. Additionally, agentic sys-
tems risk perpetuating existing biases found in web content,
raising fairness concerns and potentially leading to discrimi-
natory outcomes without careful oversight and transparency.
Reliable and scalable evaluation serves as the first line of
defense to detect and mitigate such issues.

Mind2Web 2 Benchmark. By emphasizing rigorous eval-
uation through structured rubrics and explicit verification
of source attribution, Mind2Web 2 facilitates the develop-
ment of transparent and accountable agentic search systems.
Establishing standardized, robust evaluation practices helps
accelerate trustworthy system development and promotes
clarity in capability assessments across the research and
industry communities.

However, wide adoption of our rubric-based evaluation
could lead to automated mass production of training data
via reinforcement learning, particularly by resourceful or-
ganizations. While this may improve agent capabilities, it
also risks overfitting to benchmark-specific tasks and am-
plifying biases inherent in rubrics or evaluation methods.
Consequently, agents might perform poorly in broader, un-
structured real-world scenarios or inadvertently introduce
systematic biases. To mitigate this, we maintain a private
test set and keep the rubric and evaluation script of the test
tasks as well as the script generation pipeline hidden.

Acknowledgments
The authors would like to thank colleagues from the OSU
NLP group and Amazon AGI for constructive discussions
and generous help, Zishuo Zheng for his exploration of
developing long-horizon agentic search agents, Akshay
Anand and Scott Salisbury for their help on benchmark con-
struction, the Hugging Face team (Amir Mahla, Aymeric

Roucher, Aksel Joonas Reedi, and Thomas Wolf) for their
assistance with the evaluation of Hugging Face Open Deep
Research as well as covering the inference costs, the Grok
team (Piaoyang Cui, Hexiang Hu) for their assistance with
the evaluation of Grok DeepResearch and DeeperResearch,
and the Amazon AGI team for their valuable feedback and
contribution to task collection. This research is sponsored in
part by a gift from Amazon, ARL W911NF2220144, NSF
CAREER #1942980, and NSF OAC 2112606. The views
and conclusions contained herein are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. govern-
ment. The U.S. government is authorized to reproduce and
distribute reprints for government purposes notwithstanding
any copyright notice herein.

References
Anthropic. Claude computer use.

https://www.anthropic.com/news/
3-5-models-and-computer-use, 2024. Accessed:
2025-05-08.

Brin, S. and Page, L. The anatomy of a large-scale hypertex-
tual web search engine. Computer networks and ISDN
systems, 30(1-7):107–117, 1998.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds,
M., Hamilton, N., and Hullender, G. Learning to rank
using gradient descent. In Proceedings of the 22nd
international conference on Machine learning, pp. 89–96,
2005.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug. In The Twelfth
International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=
KuPixIqPiq.

Chen, Z., Liu, K., Wang, Q., Liu, J., Zhang, W., Chen,
K., and Zhao, F. Mindsearch: Mimicking human minds
elicits deep ai searcher. arXiv preprint arXiv:2407.20183,
2024b.

Chiang, W.-L., Zheng, L., Sheng, Y., Angelopoulos, A. N.,
Li, T., Li, D., Zhu, B., Zhang, H., Jordan, M., Gonzalez,
J. E., et al. Chatbot arena: An open platform for evaluat-
ing llms by human preference. In Forty-first International
Conference on Machine Learning, 2024.

Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang,
B., Sun, H., and Su, Y. Mind2web: Towards a general-
ist agent for the web. Advances in Neural Information
Processing Systems, 36:28091–28114, 2023.

Gao, T., Yen, H., Yu, J., and Chen, D. Enabling
large language models to generate text with citations.

9

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 6465–
6488, 2023.

Google. Gemini deep research. https://gemini.google/
overview/deep-research/, 2025. Accessed: 2025-05-
08.

Gou, B., Wang, R., Zheng, B., Xie, Y., Chang, C., Shu,
Y., Sun, H., and Su, Y. Navigating the digital world as
humans do: Universal visual grounding for GUI agents.
In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=kxnoqaisCT.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

He, H., Yao, W., Ma, K., Yu, W., Dai, Y., Zhang, H., Lan,
Z., and Yu, D. Webvoyager: Building an end-to-end web
agent with large multimodal models. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
6864–6890, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In International Conference on
Learning Representations, 2021.

Hugging Face. Open deep research. https://
huggingface.co/blog/open-deep-research, 2025.
Accessed: 2025-05-08.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Koh, J. Y., Lo, R., Jang, L., Duvvur, V., Lim, M. C.,
Huang, P.-Y., Neubig, G., Zhou, S., Salakhutdinov, R.,
and Fried, D. Visualwebarena: Evaluating multimodal
agents on realistic visual web tasks. arXiv preprint
arXiv:2401.13649, 2024.

Li, Y., Yue, X., Liao, Z., and Sun, H. Attributionbench: How
hard is automatic attribution evaluation? In Findings
of the Association for Computational Linguistics ACL
2024, pp. 14919–14935, 2024.

Liu, N. F., Zhang, T., and Liang, P. Evaluating verifiability in
generative search engines. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pp. 7001–
7025, 2023.

Liu, T.-Y. et al. Learning to rank for information retrieval.
Foundations and Trends® in Information Retrieval, 3(3):
225–331, 2009.

Lu, X. H., Kasner, Z., and Reddy, S. Weblinx: Real-
world website navigation with multi-turn dialogue. In
International Conference on Machine Learning, pp.
33007–33056. PMLR, 2024.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing
Systems, 36:46534–46594, 2023.

Mialon, G., Fourrier, C., Wolf, T., LeCun, Y., and
Scialom, T. Gaia: a benchmark for general ai assistants.
In The Twelfth International Conference on Learning
Representations, 2023.

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L.,
Kim, C., Hesse, C., Jain, S., Kosaraju, V., Saunders,
W., Jiang, X., Cobbe, K., Eloundou, T., Krueger, G.,
Button, K., Knight, M., Chess, B., and Schulman, J.
Webgpt: Browser-assisted question-answering with hu-
man feedback. CoRR, abs/2112.09332, 2021. URL
https://arxiv.org/abs/2112.09332.

OpenAI. Introducing ChatGPT search. https://openai.
com/index/introducing-chatgpt-search/, 2024.

OpenAI. Deep research system card. Technical report,
OpenAI, February 2025a. URL https://cdn.openai.
com/deep-research-system-card.pdf.

OpenAI. Operator system card. Technical report, Ope-
nAI, January 2025b. URL https://cdn.openai.com/
operator system card.pdf.

Pan, J., Zhang, Y., Tomlin, N., Zhou, Y., Levine, S., and
Suhr, A. Autonomous evaluation and refinement of dig-
ital agents. In First Conference on Language Modeling,
2024a.

Pan, Y., Kong, D., Zhou, S., Cui, C., Leng, Y., Jiang, B.,
Liu, H., Shang, Y., Zhou, S., Wu, T., et al. Webcanvas:
Benchmarking web agents in online environments. arXiv
preprint arXiv:2406.12373, 2024b.

Perplexity AI. Perplexity ai. https://www.perplexity.
ai/, 2024. Accessed: 2025-05-08.

Qin, Y., Ye, Y., Fang, J., Wang, H., Liang, S., Tian, S.,
Zhang, J., Li, J., Li, Y., Huang, S., et al. Ui-tars: Pioneer-
ing automated gui interaction with native agents. arXiv
preprint arXiv:2501.12326, 2025.

10

https://gemini.google/overview/deep-research/
https://gemini.google/overview/deep-research/
https://openreview.net/forum?id=kxnoqaisCT
https://openreview.net/forum?id=kxnoqaisCT
https://huggingface.co/blog/open-deep-research
https://huggingface.co/blog/open-deep-research
https://arxiv.org/abs/2112.09332
https://openai.com/index/introducing-chatgpt-search/
https://openai.com/index/introducing-chatgpt-search/
https://cdn.openai.com/deep-research-system-card.pdf
https://cdn.openai.com/deep-research-system-card.pdf
https://cdn.openai.com/operator_system_card.pdf
https://cdn.openai.com/operator_system_card.pdf
https://www.perplexity.ai/
https://www.perplexity.ai/

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Salton, G., Wong, A., and Yang, C.-S. A vector space model
for automatic indexing. Communications of the ACM,
18(11):613–620, 1975.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36:8634–8652, 2023.

Song, Y., Thai, K., Pham, C. M., Chang, Y., Nadaf, M., and
Iyyer, M. Bearcubs: A benchmark for computer-using
web agents. arXiv preprint arXiv:2503.07919, 2025.

Starace, G., Jaffe, O., Sherburn, D., Aung, J., Chan, J. S.,
Maksin, L., Dias, R., Mays, E., Kinsella, B., Thompson,
W., et al. Paperbench: Evaluating ai’s ability to replicate
ai research. arXiv preprint arXiv:2504.01848, 2025.

Wei, J., Sun, Z., Papay, S., McKinney, S., Han, J., Fulford,
I., Chung, H. W., Passos, A. T., Fedus, W., and Glaese,
A. Browsecomp: A simple yet challenging benchmark
for browsing agents. arXiv preprint arXiv:2504.12516,
2025.

Wu, J., Yin, W., Jiang, Y., Wang, Z., Xi, Z., Fang, R.,
Zhang, L., He, Y., Zhou, D., Xie, P., et al. Webwalker:
Benchmarking llms in web traversal. arXiv preprint
arXiv:2501.07572, 2025.

xAI. Grok 3 beta — the age of reasoning agents. https:
//x.ai/blog/grok-3, 2025. Accessed: 2025-05-08.

Xue, T., Qi, W., Shi, T., Song, C. H., Gou, B., Song,
D., Sun, H., and Su, Y. An illusion of progress? as-
sessing the current state of web agents. arXiv preprint
arXiv:2504.01382, 2025.

Yao, S., Chen, H., Yang, J., and Narasimhan, K.
Webshop: Towards scalable real-world web inter-
action with grounded language agents. Advances
in Neural Information Processing Systems, 35:20744–
20757, 2022.

Yoran, O., Amouyal, S. J., Malaviya, C., Bogin, B., Press,
O., and Berant, J. AssistantBench: Can web agents solve
realistic and time-consuming tasks?, 2024. URL https:
//arxiv.org/abs/2407.15711.

Yue, X., Wang, B., Chen, Z., Zhang, K., Su, Y., and
Sun, H. Automatic evaluation of attribution by large
language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 4615–
4635, 2023.

Yue, X., Ni, Y., Zhang, K., Zheng, T., Liu, R., Zhang, G.,
Stevens, S., Jiang, D., Ren, W., Sun, Y., et al. Mmmu:
A massive multi-discipline multimodal understanding
and reasoning benchmark for expert agi. In Proceedings

of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9556–9567, 2024.

Zheng, B., Gou, B., Kil, J., Sun, H., and Su, Y.
GPT-4V(ision) is a generalist web agent, if grounded.
In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/
forum?id=piecKJ2DlB.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu,
Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.
Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36:
46595–46623, 2023.

Zhou, S., Xu, F. F., Zhu, H., Zhou, X., Lo, R., Sridhar, A.,
Cheng, X., Bisk, Y., Fried, D., Alon, U., et al. Webarena:
A realistic web environment for building autonomous
agents. ICLR, 2024.

Zhuge, M., Zhao, C., Ashley, D., Wang, W., Khizbullin, D.,
Xiong, Y., Liu, Z., Chang, E., Krishnamoorthi, R., Tian,
Y., et al. Agent-as-a-judge: Evaluate agents with agents.
arXiv preprint arXiv:2410.10934, 2024.

11

https://x.ai/blog/grok-3
https://x.ai/blog/grok-3
https://arxiv.org/abs/2407.15711
https://arxiv.org/abs/2407.15711
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

A. Limitations
We acknowledge and discuss several limitations in our benchmark design and evaluation methodology:

Task Coverage and Scope. While Mind2Web 2 comprises 130 carefully curated tasks spanning diverse practical domains,
it cannot encompass all possible real-world information-seeking scenarios. Certain task categories (e.g., vague or highly
subjective queries) are excluded due to our focus on realistic, tedious information-gathering tasks and practical considerations
for evaluation. Nevertheless, the extensive diversity of included domains, websites, and realistic scenarios still ensures
reasonable coverage. Thus, we believe these exclusions do not significantly diminish the benchmark’s utility for evaluating
and advancing agentic search systems.

Evaluation Framework Assumptions. Our evaluation framework relies on URL-based attribution, presupposing that cited
URLs provide truthful and credible information, despite potential misinformation on the web. Evaluating the credibility and
truthfulness of individual sources is beyond the scope of this work. Additionally, our evaluation and task design assume
critical information can be attributed to individual webpages, which may not always hold true for all possible tasks. However,
this constraint has not prevented us from developing a large, diverse, and meaningful benchmark.

Reliance on LLM-based Judgments. Our evaluation employs LLM-based extractions and verifications. While powerful,
LLMs may occasionally introduce extraction errors or incorrect judgments. Empirically, we find the base model (OpenAI
o4-mini) sufficiently capable for the extraction and verification tasks in this benchmark. Moreover, to mitigate potential
inaccuracies and maintain evaluation reliability, we employ multi-stage validation processes, including rigorous human
validation and refinements of evaluation scripts. We further conduct human evaluations of judge-agent outputs, systematically
assessing and confirming the overall reliability of LLM-based judgments.

Limited Analysis on Black-Box Systems. Our benchmark primarily evaluates state-of-the-art commercial and research-
grade agentic search systems. To ensure informative comparisons, we exclude weak systems incapable of meaningful
performance, consequently focusing mainly on proprietary or closed-source solutions. This limits our ability to fully
interpret performance differences or estimate precise inference costs (e.g., token usage). Nonetheless, our answer-based
evaluation framework effectively assesses the capabilities and common failure modes (e.g., pervasive hallucinations) of
these black-box systems, offering valuable insights. To partially compensate for limited access, we report metrics such as
task completion time and generated answer length, providing relative references for practical efficiency.

B. Details of Task Collection
B.1. Domain Distribution

During task collection, proposers are provided an initial set of fine-grained domains derived from prior work (Deng et al.,
2023) and further expanded using GPT-4o. Proposers categorize each new task into the most suitable domain, adding new
domains as needed. In the subsequent refinement and validation stages, domain assignments are reviewed and adjusted by
expert annotators to ensure accuracy and minimize redundancy. Finally, after collecting all 130 tasks, we further refine and
consolidate domain categorizations to minimize overlap and redundancy, resulting in the final domain structure presented
in Figure 5.

B.2. Design Principles of Tasks

To ensure tasks align with the goals of our benchmark and are compatible with our rubric-based evaluation framework, we
define and follow these task-design principles:

Realism. Tasks should represent authentic and practical user needs. Each task must have clear real-world applicability,
avoiding artificial combinations of unrelated steps just for complexity or to challenge AI systems.

Tediousness (Long-Horizon). Tasks must require sustained effort due to extensive web search, exploration, and information
synthesis. Simple tasks solvable within a few queries are explicitly avoided. Human annotators validate tediousness by
confirming each task requires at least five minutes of human effort. Note that it is just the minimum; most tasks in Mind2Web
2 take humans much longer to complete (see statistics in Table 2).

Clarity and Objectivity. Task descriptions must be explicit, precise, grammatically correct, and unambiguous. Answer
criteria must be clearly stated, avoiding vague or subjective terms (e.g., “good,” “effective,” or “better”). When domain-
specific knowledge is required, it must be clearly defined or explained in the task description. To ensure clarity, tasks

12

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Lifestyle & Leisure
(34)

Entertainment
(28)

Misc.
(25)

Science & Research
(23)

Career & Education

(11)

Travel & Transportation(9)

Shopping (10)

Fo
od

 & Coo
kin

g (
6)

Sp
or

ts
 &

 F
itn

es
s
(6

)

H
ea

lth
 &

 M
ed

ic
in

e
(4

)

Pe
ts

 &
 A

ni
m

al
 W

el
fa

re
 (

4)

Fa
sh

io
n

&
 B

ea
ut

y
(3

)

H
obbies &

 D
IY (1)

Films & TV Shows (12)

Gaming & Virtual W
orlds (8)

Live Shows & Performances (4)
Music (2)

Books & Reading (2)

General Info. (13)

News (4)

Le
ga

l &
 G

ov
er

nm
en

t S
er

vic
es

 (3
)

Re
al
 E

st
at

e
(3

)

Fi
na

nc
e

&
In

ve
st

m
en

t (
2)

Research & Academia (14)

Technology &
 Science (9)

Education & Learning (6)

Jobs & Career (5)

Travel & Accommodation (7)

Outdoor & Recreation (1)

Ticketed Activities (1)

Figure 5: Mind2Web 2 contains 130 diverse tasks covering 6 broad domains and 24 sub-domains.

undergo ambiguity checks via both manual and LLM-assisted inspection.

Verifiability. Tasks must have clearly defined and practically verifiable criteria. The criteria should be verifiable primarily
through the answer text itself as well as the expected URL-based provenance. Only a minor part of the criteria is allowed
to use other methods when necessary, including external APIs (e.g., Google Maps for distance measurement) and fixed
ground-truth answers (or ground-truth answers from fixed URLs).

Additional Constraints and Exclusions. To ensure practicality and our focus on web search instead of other intelligent
capabilities as well as the reliability of evaluation, the following constraints apply:

• Tasks involving video understanding or non-English websites are excluded from this study.

• Tasks explicitly requiring complex reasoning (e.g., summarize a complex research paper) or external tools (e.g., Python
interpreters or calculators) are avoided. However, we do not constrain the evaluated systems on how they complete the
tasks. They can use whatever tools deemed necessary or helpful.

• Tasks whose answers constantly change (e.g., currency exchange rates which change within a very short period) are
excluded to ensure stable evaluation.

13

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

• Tasks should avoid reliance on global or overly general qualifiers (e.g., “cheapest,” “list all,” or “top-k”) unless these
conditions are verifiable (e.g., by a fixed set of URL sources or fixed ground-truth answers).

• We currently assume each verification of attribution can be conducted on a single webpage. Tasks requiring simultaneous
verification across multiple webpages, where verification cannot be decomposed into independent single-page validations,
are beyond the scope of this benchmark.

These principles are documented and illustrated with concrete examples, serving as guidelines for human annotators.
Detailed instructions are provided in Appendix H. Each task is carefully validated and iteratively refined by initial proposers,
refiner experts and validation experts to ensure full compliance before final inclusion into Mind2Web 2.

B.3. Task Collection Pipeline

We collect and refine tasks for Mind2Web 2 under a three-stage pipeline: Proposal, Refinement, and Validation, ensuring
adherence to the task principles as well as evaluation practicability.

Task Proposal. Initial task proposers independently generate task ideas aligned with the defined principles. At this stage,
proposers conduct self-checks covering major task principles (e.g., realism, tediousness, clarity, verifiability) as well as
minor aspects such as grammatical correctness and clarity. Proposers also provide initial draft answers or relevant URLs to
facilitate the following refinement and validation phases.

Task Refinement. Expert annotators further review and iteratively refine each proposed task together with the initial
proposers. During refinement, experts carefully evaluate tasks for practicality, clarity, and adherence to the defined principles,
suggesting necessary adjustments to task descriptions, verification criteria, or expected answers. Refinement ensures that
tasks remain realistic and challenging yet clearly defined and objectively verifiable.

Task Validation. Finally, each task undergoes validation by two more independent annotators. Validators verify task
feasibility by fully completing the task as well as carefully checking for potential ambiguities, overlooked edge cases, or any
violations of the URL-based evaluation assumptions. Tasks failing validation criteria (e.g., too ambiguous, infeasible, or
impractical to verify) are further revised or rejected. Only tasks successfully passing validation from at least two validators
are included in the final benchmark.

B.4. Future Maintenance of the Benchmark

Similar to previous benchmarks that rely on live web environments (Pan et al., 2024b; Xue et al., 2025), tasks in Mind2Web
2 may be affected by changes or updates to websites over time. However, unlike prior works that explicitly tie tasks to
specific websites or action sequences, our benchmark primarily involves broad information-seeking goals, allowing flexibility
for agents in selecting sources. Moreover, our evaluation focuses exclusively on verifying the final retrieved information
rather than intermediate web interactions, and our Agent-as-a-Judge evaluation can reliably evaluate time-varying answers.
Collectively, these designs substantially reduce our sensitivity to website changes compared to prior benchmarks.

Nevertheless, we commit to long-term maintenance of our benchmark. We will periodically review tasks and actively
solicit feedback from benchmark users. If substantial website changes or unavailability significantly alter task difficulty or
solvability, we will update affected tasks or replace them with new ones of similar complexity and scope, thereby maintaining
the integrity and intended challenge level of our benchmark.

C. Details on Rubrics and Judge Agents
C.1. Rubric Design

Our primary objective in designing the tree-structured rubric-based evaluation framework is to create a unified, scalable,
and practical scoring method applicable across all tasks for Mind2Web 2, as well as potential future tasks. We emphasize
practicality in verification processes and a meaningful assignment of partial scores, intended to clearly reflect incremental
progress and practical utility to users. Moreover, we emphasize: (1) Partial scoring is permitted only when it meaningfully
represents incremental progress and offers genuine utility. For example, in tasks involving the identification of items meeting
several criteria, partial satisfaction typically yields no practical benefit to the user, hence such cases receive no partial
score. (2) For attribution verification, if it is reasonable and practical to expect URL-based source citations for a statement,
the corresponding verification node must be set as critical rather than optional. This ensures strict adherence to proper

14

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

attribution standards, thus reinforcing trustworthiness and factual accuracy.

Through these principles, we aim to ensure the rubrics are both rigorous and practically useful, providing reliable and
meaningful evaluations across varied and complex agentic search tasks.

C.2. Details for Judge Agents

To build judge agents aligned with our rubric design, we first develop a comprehensive and reusable codebase. This
codebase includes implementations of rubric tree structures, scoring mechanisms, Verifier, Extractor, and necessary auxiliary
components. Leveraging this carefully constructed codebase, judge-agent development primarily focuses on designing rubric
tree structures, extraction pipelines, and leaf-node verification processes (including prompts when LLM-based verification is
involved). Each of these components has corresponding helper functions and classes, enabling convenient implementation.

Additionally, during judge-agent evaluation, we employ a default short-circuit mechanism for evaluation efficiency in terms
of inference time as well as the cost. Specifically, verification at any given node is skipped if it is blocked by any critical
node failure, or a preceding node failure within a sequential parent node. However, when conducting human evaluation of
the judge agents, we disable this short-circuit mechanism to ensure all nodes are evaluated comprehensively, facilitating a
complete comparison against human annotations.

To provide further understanding for the Extractor and Verifier, we present below the main prompts used by these components
in our judge agents. Additional implementation details and complete code are available in our open-source repository.

Prompt for Extractor

You are responsible for extracting specific information of interest from the provided answer text for a task. For context, we
are evaluating the correctness of an answer to a web information-gathering task. This extraction step helps us identify relevant
information for subsequent validation. You must carefully follow the provided extraction instructions to accurately extract
information from the answer.

GENERAL RULES:
1. Do not add, omit, or invent any information. Extract only information explicitly mentioned in the provided answer exactly as it
appears.
2. If any required information is missing from the answer, explicitly return null as the JSON value.
3. You will also receive the original task description as context. Understand it clearly, as it provides essential background for the
extraction. You may apply common-sense reasoning to assist your extraction, but your final result must be accurately extracted
from the answer text provided.
4. Occasionally, additional instructions might be provided to aid your extraction. Carefully follow those instructions when
available.

SPECIAL RULES FOR URL EXTRACTION:
These rules apply only when URL fields are required in the extraction.
1. Extract only URLs explicitly present in the answer text. Do not create or infer any URLs.
2. Extract only valid URLs. Ignore obviously invalid or malformed URLs.
3. If a URL is missing a protocol (http // or https //), prepend http //.

Instruction for Extraction:

{extraction prompt}

Original Task Description:

{task description}

Complete Answer to the Task:

{answer}

Additional Instructions (if any):

{additional instruction}

15

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Prompt for Verifier (Simple Verification)

You are responsible for verifying whether a given claim or simple statement is correct and accurate. Typically, this verification
involves straightforward factual judgments or logical checks (e.g., ”1+1=2”, or verifying if a given name matches exactly another
given name). For context, we are evaluating the correctness of an answer to a web information-gathering task. This verification
step helps us determine part of the answer’s accuracy. Your task is to provide a binary judgment (”Correct” or ”Incorrect”) along
with clear and detailed reasoning supporting your decision.

To assist your judgment, you will receive:

• The original task description (as context).

• The complete answer to the task (as context).

• Additional instructions (occasionally provided to guide your verification).

GENERAL RULES:
1. Carefully examine the provided claim or statement. Use logic, basic factual knowledge, or simple reasoning to determine its
accuracy.
2. Clearly understand the provided task description and complete answer, as they offer important context and may influence your
decision.
3. Your reasoning must be explicit, concise, and directly support your binary judgment.
4. Carefully follow any additional instructions provided. If none are provided, you may ignore this.

Original Task Description:

{task description}

Complete Answer to the Task:

{answer}

Additional Instructions (if any):

{additional instruction}

Claim or Statement to Verify:

{claim}

Prompt for Verifier (URL-based Verification)

You are responsible for verifying whether a given claim or ”fact” is fully supported by the actual content of a specified webpage
(or a PDF file from a PDF webpage). For context, we are examining the correctness of an answer to a web information-gathering
task. Typically, the claim or ”fact” is extracted directly from the answer, and the webpage provided is the URL source referenced
in the answer. This verification step helps us determine whether the claim or ”fact” in the answer is accurate or hallucinated, a
common issue in LLM-based systems. You will receive both the text content and a screenshot of the webpage for examination.
Your task is to provide a binary judgment (i.e., supported or not supported) along with clear and detailed reasoning for your
decision.

GENERAL RULES:
1. The provided webpage content may be lengthy. Carefully examine the relevant sections of both the webpage text and the
screenshot. Determine clearly whether the claim or ”fact” exactly matches or is explicitly supported by the webpage content. If
the information appears to be not able to find from the text, but more likely from the screenshot, please check the screenshot
carefully.
2. You will also receive the original task description and the complete answer as context. Understand them clearly, as they
provide essential background for evaluating the claim. You may apply common-sense reasoning (e.g., fuzzy matching for names
differing only in letter casing or minor spelling variations) to assist your judgment, but your final decision must primarily rely on
explicit evidence from the webpage content provided.
3. If the provided webpage (the URL source mentioned in the answer) is entirely irrelevant, invalid, or inaccessible, you must
conclude that the claim or ”fact” is not supported.
4. Occasionally, additional instructions might be provided to aid your judgment. Carefully follow those instructions when
available.

Original Task Description:

16

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

{task description}

Complete Answer to the Task:

{answer}

Claim or Fact to Verify:

{claim}

Additional Instructions (if any):

{additional instruction}

Webpage URL:

{url}

Extracted Webpage Text (truncated if too long):

{web text}

Rendered Screenshots (to provide non-textual context):

{screenshots}

C.3. Rubric and Judge Agent Generation

Given the complexity of our tasks and rubrics, manually developing rubric-based judge agents from scratch would be both
time-consuming and cognitively demanding. Therefore, we employ an automated generation pipeline leveraging frontier
LLMs (Claude-3.7-Sonnet) to produce the initial version of the judge-agent scripts.

Specifically, we input the following content to the code LLM: the task description, along with detailed instructions covering
our benchmark’s overall goals, rubric design principles, evaluation strategies, and core evaluation toolkit functionalities
(such as Extractor and Verifier functions as well as rubric tree management utilities). We also include examples of common
mistakes and tips to guide the LLM towards producing practical and well-structured scripts.

To further improve code generation quality, we implement two autonomous debugging strategies:

Self-Debug with System Feedback: After script generation, the code is automatically executed, capturing runtime errors or
execution issues. We by default use the answer from OpenAI Deep Research for providing information to the extractors,
while omitting all the verification steps (returning all True) to detect bugs in the code. System feedback (i.e., error messages)
is then iteratively fed back into the model for script correction until there are no runtime errors.

Self-Debug with Self-Reflection: The scripts undergo another stage of autonomous review, which involves multiple rounds
of self-reflection, guided by explicit quality checklists. The LLM reflects on script correctness, logical coherence, rubric
completeness, and potentially overlooked edge cases.

Empirically, we observe these iterative debugging and self-reflection stages to be indispensable and highly useful, as the
initial scripts produced by LLMs often require multiple refinement rounds to achieve the desired level of correctness and
completeness.

C.4. Two-Stage Validation of Judge Agents

We conduct a two-stage manual validation process to ensure the quality and robustness of the generated judge-agent scripts.

In the first stage, trained annotators independently inspect each generated judge-agent script. Annotators verify the rubric’s
correctness, completeness, and practical feasibility, ensuring that the rubric and prompts accurately reflect task criteria
with reasonable scoring. Particularly complex rubrics, involving intricate combinations of sequential and parallel criteria,
typically require careful manual adjustments beyond initial automated generation.

In the second stage, scripts undergo practical validation against real answers collected from various agent systems. Specifi-
cally, for each task, we randomly select a single answer from each of six randomly chosen agent systems after the initial

17

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Figure 6: A screenshot of the GUI tool for visualizing agent answers, pre-cached webpages, rubrics, and judge-agent
evaluation outcomes.

evaluation runs. Annotators review the evaluation outcomes from these answers to identify subtle issues or edge cases. To
maintain generalizability, annotators are instructed to adjust only critical errors or omissions, refining scripts with targeted
logic or additional prompts without overfitting to specific answers. The remaining answers are held out as an additional set
to further verify the generalization of the finalized evaluation scripts, as used in the human agreement study. Empirically, we
often find necessary adjustments to the prompts of the Extractor and the Verifier, as well as making necessary changes to
allow reasonable edge cases.

To facilitate the validation processes, we also develop a GUI tool that enables human annotators to easily visualize answers,
rubrics and evaluation outcomes from the judge agents, as illustrated in Figure 6.

C.5. Human Evaluation of Judge Agents

Empirically we have found o4-mini capable of serving as the Extractor and Verifier. In addition, for each judge agent, we
have done a two-stage careful validation and refinement. Nonetheless, to further validate the reliability of our judge agents,
we conduct this human evaluation study. We involve one human evaluator, who is familiar with our tasks but has never
reviewed the judge agents, to conduct a human evaluation of judge agents with 15 sampled tasks. The evaluator has engaged
in the error analysis, and gained abundant knowledge and experience with the criteria of the tasks. Specifically, the human
evaluator first conducts a rubric-level assessment about the overall rubrics of these judge agents, confirming whether they
agree with the overall rubrics. It’s possible that the evaluator may have different understanding about the optimal rubric for a
task. Then, the human evaluator conducts a node-level assessment, manually assigning binary scores to leaf nodes (i.e., the
fine-grained judgments.) We include the full instructions to the human evaluator in Appendix H.4.

D. Experimental Details
D.1. System Selection and Settings

System Selection. We aim to evaluate a broad spectrum of agentic search systems, encompassing systems based on search
APIs, web agents interacting directly with browsers, hybrid systems integrating both paradigms, and potentially agents of
some other forms.

We exclude systems incapable of reliably providing source attribution, as accurate attribution is integral to our evaluation.

18

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Additionally, we omit weak systems that are unlikely to demonstrate meaningful performance within our benchmark context.

Settings. To test the variability in outputs, we independently run and evaluate each agent system three times per task. Except
for Hugging Face Open Deep Research, we run the systems on their web UI and collect the answers manually. We also
record the completion time whenever available from the UI. As certain agent systems (namely, Perplexity Pro Deep Research
and Gemini Deep Research) do not report the completion time, we manually measure their completion time. To save human
workload, for those requiring manual timing, we only record and report their time on the Subset-30.

We note that many of these systems are continuously improving. Therefore, to clarify, all answers in this study are collected
between April and June, 2025. We will also include time stamps for future results on the leaderboard. Additionally, for
Hugging Face Open Deep Research, we use OpenAI’s o3 model as its base model.

Prompts. For most of the agents we evaluate, we use a unified prompt as follows (mainly to emphasize the inclusion of
source attribution):

System Prompt for Agent Inference

You are an expert assistant specializing in solving information-seeking tasks.

IMPORTANT:
1. Do not ask for additional information or follow-up questions. All necessary requirements are provided in the task description
— please strictly adhere to it to complete the task.
2. To solve the task, you should search the web for online sources and use them to support all your claims and the information in
your final answer. Do not provide critical information without actual searching.
3. Every claim and piece of information you provide must be supported by a source. In your answer, please include relevant links
for each claim and piece of information.

Empirically, we find OpenAI Operator and Gemini Deep Research occasionally neglect the requirements to provide sources
for all information retrieved. Therefore, we slightly modify the prompts for them to mitigate this issue:

System Prompt for OpenAI Operator

You are an expert assistant specializing in solving information-seeking tasks.

IMPORTANT:
1. Do not ask for additional information or follow-up questions. All necessary requirements are provided in the task descrip-
tion—please strictly adhere to it to complete the task.
2. To solve the task, you should search the web for online sources and use them to support all your claims and the information in
your final answer. Do not provide critical information without actual searching.
3. Every claim and piece of information you provide must be supported by a source. In your answer, please include relevant links
for each claim and piece of information. If the task requires a list of items (e.g., names, emails, affiliations, products), each item
in the list must be supported by its own unique source URL that directly confirms the item.

System Prompt for Gemini Deep Research

You are an expert assistant specializing in solving information-seeking tasks.

IMPORTANT:
1. Do not ask for additional information or follow-up questions. All necessary requirements are provided in the task descrip-
tion—please strictly adhere to it to complete the task.
2. To solve the task, you should search the web for online sources and use them to support all your claims and the information in
your final answer. Do not provide critical information without actual searching.
3. Every claim and piece of information you provide must be supported by a source. In your answer, please include relevant links
for each claim and piece of information. Even if the task explicitly requests some specific links, you must still provide URL
sources for all the other information included.

19

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

D.2. Webpage Pre-caching for Evaluation

The verification of attribution is critical for our evaluation. However, loading webpages on-the-fly during evaluation can
introduce significant overhead. To ensure stability and efficiency, we pre-fetch and cache webpage contents referenced in
agent-generated answers.5 This caching provides quick, consistent and reliable access to webpage screenshots and text for
verification. We apply this strategy to all tasks prior to evaluation.

Webpage Loading and Caching. For each task, we first aggregate the URLs from agent answers. We load and cache
webpage content of each unique URL using Playwright. Additionally, our script distinguishes and supports handling PDF
documents besides normal webpages.

Given that webpage contents may evolve, especially for time-varying tasks (e.g., fluctuating product prices), this caching
step is essential for establishing a stable reference for evaluation, reflecting the exact state of online sources at the time
answers are generated.

Manual Intervention for Blocked Webpages. A small number of websites block automated visits, preventing automatic
content retrieval. Since attribution is crucial for verification, we provide an additional manual review and replacement tool.
Human annotators can use this tool to manually access blocked websites with a single click, manually complete human
verification steps when necessary, and replace incorrectly cached pages with correct webpage content.

D.3. Human Performance on Subset-30

To establish a clear reference point for evaluating agent performance, we conduct a study on human performance using
Subset-30. Human completers are tasked to independently complete each assigned task by searching and browsing relevant
websites, providing answers with explicit URL-based sources for each claim or statement. The detailed instruction for
humans is provided in Appendix H.2.

Each task is assigned to three completers without prior knowledge of the task (excluding creators or reviewers). We involve
a total of seven completers at the end. Completers are instructed not to give up on a task unless they still have not landed on
a clear path to the solution after 30 minutes. Some tasks may be easy to find a path to solution but exceedingly tedious to
execute on that path (e.g., it may require visiting hundreds of different webpages to collect information). Completers are
allowed to give up after continuing efforts exceeding one hour.

During task completion, completers utilize an open-source Chrome extension to log time and webpages visited,6 exporting
these records for subsequent analysis. This data collection provides critical benchmark statistics regarding task complexity
and human effort.

To ensure the quality of human performance, completers first undertake two simplified trial tasks from Mind2Web 2. Only
completers who have successfully followed instructions and met quality expectations in these trials can participate in the
formal human study.

E. Human Evaluation of Judge Agents
Empirically, we have validated the reliability of our judge agents through validation processes. Nonetheless, it remains
possible that some evaluation inaccuracies persist. Therefore, to rigorously assess the reliability of our judge agents, we
conducted an additional human evaluation for the judge agents. We involve a human evaluator who has no prior experience
in judge-agent development but possesses a deep understanding of the task criteria gained from participating in error analysis,
thus ensuring unbiased and accurate assessments.

Specifically, this evaluation consists of three phases on 15 randomly sampled tasks. For each task, we involve evaluation
results of two held-out answers from two different agent systems.7 Further details are provided in Appendix C.5.

In the Rubric-Level Assessment, the evaluator assesses the overall rubrics of judge agents independently (without viewing
answers or automated evaluation results), rating their validity and comprehensiveness using a three-point scale (Strongly
Agree, Agree with Reservations, Disagree). In the subsequent Node-Level Assessment, the evaluator acts as the Verifier,

5All related scripts will be included in the codebase release.
6Web Activity Time Tracker: https://github.com/Stigmatoz/web-activity-time-tracker.
7During sampling, we exclude trivial total-failure cases to enhance informativeness.

20

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

manually annotating the leaf-node binary judgments, which are then compared against automated judge-agent results
to identify discrepancies. To further validate and confirm accuracy, we subsequently perform a Validation of Human
Annotation, wherein an experienced judge-agent developer examines all identified discrepancies from the Node-Level
Assessment and communicates directly with the evaluator to confirm potential human errors.

Results and Analysis. The evaluator fully agrees with all the 15 rubrics. However, for two rubrics, the evaluator offers
minor suggestions regarding the strictness of partial scoring. For example, in one case, the evaluator recommends removing
partial scoring from a particular node to enforce stricter evaluation, although acknowledging that the existing partial scoring
remains reasonable. At the leaf-node level, we identify a total of 35 discrepancies out of 720 verifications. Upon further
validation, we discover that 27 of the discrepancies arise from human evaluator errors; the original judgments are correct.
This highlights the high complexity and cognitive demand involved in accurately evaluating claims within lengthy answers
from agentic search, and reaffirms the reliability of our automated judge agents relative to even well-informed human
evaluators.

Of the remaining eight discrepancies, we find:

• Three cases result from mistakes by the Verifier, due to overly strict or lenient judgments.

• Four cases occur because critical information for attribution evaluation is hidden within collapsed content sections of
webpages, making it inaccessible during automated retrieval—a known limitation that we have sought to avoid during
task validation.

• One case is due to inconsistent information across multiple sources. Specifically, the agent provides two sources for a
year number (2016), where one source shows ‘2016’ while the other one shows ‘2017’. The human evaluator bases
their judgment on the incorrect year and deems the response incorrect. Meanwhile, under our current assumption, it
suffices to have at least one valid supporting source.

Excluding human mistakes and the source inconsistency case, only 7 out of 720 nodes reflect actual Verifier errors, achieving
an exceptional correctness rate of 99.03%. This demonstrates remarkable reliability, particularly when compared to recent
automated evaluation approaches for relatively simpler web tasks (Xue et al., 2025), where reported correctness rates of the
automated evaluation methods typically fall below 90%. We attribute this success to our tree-structured rubric design that
cleanly decomposes the complex evaluation, the agentic code generation pipeline for generating judge agents, as well as the
rigorous human refinement process.

F. Error Analysis and Additional Case Studies

Error Analysis

Correctness Check

Complete and Satisfactory

 Completeness Check Incompleteness
Sub-Type 1: Information Not Found

Sub-Type 2: Partial Missing

 Criteria Check Criteria Violation

 Attribution Check

Supported Answer

Invalid Attribution

Missing Attribution

Unsupported Answer Link Source Check
Sub-Type 1: Synthesis Error

Sub-Type 2: Retrieval Error

Figure 7: Workflow of categorizing errors in error analysis.

F.1. Error Analysis

To gain deeper insights into the failure modes of both agent systems and human performance, we perform an error analysis
using the Subset-30. We first categorize common failure patterns along two dimensions, correctness and attribution:

Correctness. We evaluate the textual correctness of an answer based on the following aspects:

21

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Info. Not Found
Partial Missing

Criteria Violation
Invalid Attr.

Missing Attr.
Synthesis Error

Retrieval Error0
10
20
30
40
50
60

Ta
sk

 P
er

ce
nt

ag
e

ChatGPT Search
Perplexity Pro Search
OpenAI Operator
OpenAI Deep Research
HF Open Deep Research
Human

Figure 8: Errors across agents and humans. The bars indicate the percentage of tasks exhibiting each error type. We include
results from five agentic search systems and humans.

• Incompleteness: The answer fails to fully satisfy the task needs, with two subcategories: (1) Information Not Found
(Ex. 9): The agent explicitly states it cannot find the requested information. (2) Partial Missing (Ex. 10): The answer
contains fewer items or steps than explicitly requested by the task.

• Criteria Violation (Ex. 11): The answer explicitly contradicts the clearly stated task criteria or provides incorrect factual
information, identifiable directly from the answer text itself. Examples include providing an item priced higher than the
user-given threshold or incorrectly identifying the user-specified research paper.

Attribution. Independently of the correctness criterion based on the answer text, we verify whether the provided URL
sources support the key information stated in the answer. Attribution errors are often related to hallucinations in LLM-based
agent systems.

• Invalid Attribution (Ex. 12): URLs provided by the agent are expired, incorrectly formatted, or fabricated.

• Missing Attribution (Ex. 13): No URL is provided to support the claims made.

• Unsupported Answer: URLs do not support the claims. This category can be further divided into: (1) Synthesis Error
(Ex. 15): The URL contains useful information required for the task, but the agent misrepresents or incorrectly extracts
this information from the URL in the generated text. (2) Retrieval Error (Ex. 14): The provided URLs are irrelevant to the
task and thus do not match the claims made in the answer.

Then, human annotators examine answers from five representative agent systems (ChatGPT Search, Perplexity Pro Search,
HF Open Deep Research, OpenAI Deep Research, and OpenAI Operator), as well as human answers. For each task, we
randomly select one answer per system. As shown in Figure 7, we provide a workflow figure to help human annotators
categorize and identify errors. Results are shown in Figure 8, noting that a single answer may contain multiple types of error.

Incompleteness: We observe a notable gap between human and agent performance regarding task completion. We further
divide the errors into two subtypes: (1) Info. Not Found (Ex. 9), i.e., the agent explicitly states failure in retrieving the
requested information. (2) Partial Missing (Ex. 10), i.e., the agent provides fewer items or fewer procedural steps than
explicitly required by the task. On the one hand, systems not optimized for ‘Deep Research’ often exhibit early termination
behaviors, showing a degree of laziness. On the other hand, they inherently lack sufficient capabilities to complete these
long-horizon tasks. For example, ChatGPT Search executes only limited search steps and applies simple information
synthesis by LLMs without using advanced tools (e.g., Python interpreters in many Deep Research systems), making it
challenging for it to find and integrate all necessary information. Systems such as HF Open Deep Research and Operator
frequently exhibit total failures at some tasks. Upon closer examination, we find many issues of HF Open Deep Research
regarding system errors (e.g., failures in adhering to system prompts to generate valid code to invoke the search tool), which
may also apply to other open-source agent systems that simply leverage off-the-shelf models to build deep research systems
without post-training the underlying models.

Criteria Violation (Ex. 11): We identify explicit violations of task criteria or factually wrong statements directly identifiable
from the answer text. Such errors are prevalent among all the evaluated systems, including humans. Notably, this is the
most common error type for humans, primarily due to the tedious and demanding nature of the tasks, where humans appear
to struggle to remain patient and careful. For instance, one annotator mistakenly lists the University of Waterloo as a U.S.

22

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

institution. Interestingly, Deep Research systems (e.g., OpenAI Deep Research) have already surpassed humans in this
regard, as they are designed to perform exhaustive searches and analyses to meet users’ requirements.

Invalid Attribution (Ex. 12): We often observe expired and fabricated URLs from the answers. One potential reason could
be that agents generate URLs directly without actually accessing the webpages. For instance, in a task requiring an Amazon
purchase link, HF Open Deep Research directly fabricates a link without accessing Amazon. Surprisingly, Operator also has
a high percentage of this error type, even though it actually accesses websites as humans do. From the trajectories, we find
that it often mistakenly reports incorrect URLs in its final responses even though it has successfully accessed the correct
webpages, which may be partially due to the challenge of generating answers grounded in a long context. For example, in a
fellowship identification task, Operator navigates correctly to the correct page but ultimately reports a link that differs by a
few words from the correct link.

Missing Attribution (Ex. 13): Claims made in the responses often lack source attribution. Web agents are usually designed
or trained on web navigation or citation-free information-seeking tasks. Therefore, in contrast to AI search systems, Operator
struggles to follow our instructions to provide attribution. Moreover, LLMs with massive parametric memory sometimes
tend to directly produce or hallucinate information without conducting actual searches, even though most of our tasks do
require them to search online in order to provide up-to-date information and attribution.

Unsupported Answer: The information in the answer may differ from the sources even when valid attribution is provided.
We further divide this issue into two subtypes: (1) Synthesis Error (Ex. 15), i.e., the agent synthesizes information incorrectly
from correct webpages (e.g., distorting the price listed on a product page). (2) Retrieval Error (Ex. 14), i.e., the provided
source is totally irrelevant. Synthesis errors are pronounced in ChatGPT Search and Perplexity Pro Search, which struggle
to accurately synthesize from extensive sources without advanced tools (e.g., Python interpreters). Humans also sometimes
commit synthesis errors due to carelessness when overwhelmed by large volumes of information. Retrieval errors can result
from failing to retrieve relevant information. For example, an agent may retrieve webpages similar but not precisely aligned
with the task requirements, subsequently causing the agent to hallucinate seemingly relevant but unsupported details.

Figure 9: An example of Information Not Found, where Perplexity Pro Search explicitly states that it cannot retrieve the
requested information, thus failing to fully address the task.

23

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Figure 10: An example of Partial Missing, where ChatGPT Search provides the Nobel Prize winners’ information only for a
subset of the requested years (2004–2014), failing to fully complete the task (2004–2024).

Figure 11: An example of Criteria Violation, where OpenAI Operator explicitly violates the specified budget constraint
($200–$600) by providing a shopping list totaling $1277.97.

24

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Figure 12: An example of Invalid Attribution, where OpenAI Operator fabricates three links that mimic the URL patterns of
Federal Reserve official speech pages and Reuters articles, resulting in an entirely hallucinated response.

25

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Figure 13: An example of Missing Attribution, where OpenAI Operator provides birthplace details for Nobel Prize winners
without supplying URLs or sources to support these claims.

26

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Figure 14: An example of Retrieval Error, where the provided URL from ChatGPT Search contains irrelevant information
and cannot support the claims about characters’ abilities in the answer.

27

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Figure 15: An example of Synthesis Error, where inaccurate details in answers provided by Perplexity Pro Search ultimately
lead to incorrect responses.

28

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

F.2. Additional Case Studies

We have presented some error examples in Appendix F.1. Here, we further include a few cases of common patterns in
different systems, and include several case studies below.

Pervasive Hallucination Across All Systems. Hallucination plays a significant role in the errors across all agent systems.
Specifically, two error types can be attributed exclusively to hallucination: Invalid Attribution and Unsupported Answer,
while other error types may arise from other issues such as instruction-following failures. Accordingly, we calculate a
hallucination rate, defined as the proportion of tasks exhibiting either Invalid Attribution or Unsupported Answer. Even
OpenAI Deep Research, the best-performing system on Mind2Web 2, reaches a hallucination rate of 23%. Other systems
exhibit a hallucination rate of at least 50%. For example, Figure 12, Figure 15 and Figure 14 illustrate specific cases where
hallucination manifests as invalid attribution, synthesis error, and retrieval error, respectively. Note that the hallucination
rate here is likely an underestimate, as it only accounts for the two error types, and hallucination may also contribute to
other errors.

Human Mistakes due to Carelessness. Tasks in Mind2Web 2 are intentionally designed to be tedious while ensuring
complete feasibility for human participants. Intuitively and empirically, we find that humans indeed have no issue with
completeness: all human answers fully fulfill task requirements without omission, and without hallucinations of webpage
URLs. These errors include, but are not limited to: overlooking the overall or detailed constraints explicitly stated in the
task description; misreading or incorrectly extracting information from webpages; significant spelling mistakes; and errors
related to common-sense knowledge. Notably, some of these human mistakes are unlikely to occur in answers from capable
agents. We include two examples in Figure 16 and Figure 17.

System Errors from Hugging Face Open Deep Research. In our error analysis, we observed a substantial number
of Information Not Found errors from the Hugging Face Open Deep Research. Upon closely examining its execution
trajectories and logs, we discover that many of these errors result from improper tool usage (e.g., incorrect input formats) or
mistakes in generated code. Such mistakes prematurely terminated the agent’s execution, leading it to incorrectly conclude
the requested information was unattainable. We include an example in Figure 18. Notably, Hugging Face Open Deep
Research is the only open-source solution included in our experiments. It entirely relies on off-the-shelf models connected
mainly through prompting, without further fine-tuning. This likely contributes substantially to the frequent occurrence of
these system errors, which may also apply to other open-source agents that utilize current off-the-shelf models. Overall,
these suggest that directly leveraging current off-the-shelf models without additional tailoring or training may not suffice for
developing robust, reliable deep research systems.

Different Behaviors of Deep Research. We observe two distinct behaviors among Deep Research systems in terms of their
response style and output length. The first type, exemplified by OpenAI’s and Hugging Face’s systems, produces relatively
concise and precise answers similar to those of conventional LLM-based search products, occasionally accompanied
by supplementary contextual information. In contrast, other systems such as Gemini and Grok consistently generate
substantially longer responses organized into structured sections (e.g., introduction, main findings, summary, conclusion),
frequently exceeding thousands of words. However, despite the apparent comprehensiveness of these reports, our evaluation
reveals that their increased length does not necessarily result in better task completion. Moreover, excessively lengthy
reports can be cognitively burdensome and suboptimal for users seeking concise and targeted information.

Web Agents for Long-Horizon Information Seeking. During our evaluation, Operator frequently exhibits poor per-
formance. Several challenges likely contributed to this issue, including insufficient long-term reasoning, planning, and
potential grounding failures. Notably, we also clearly observed that Operator is inadequately optimized for comprehen-
sive information-seeking tasks. In particular, it lacks optimized long-term memory mechanisms for managing retrieved
information and associated sources. We include an example in Figure 19.

We also include examples from OpenAI Deep Research (Figure 20), Perplexity Pro Search (Figure 21) and ChatGPT Search
(Figure 22) in this section.

29

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Figure 16: A case of a human annotator making a Criteria Violation by carelessly categorizing the University of Waterloo as
a U.S. university.

30

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Figure 17: A case of a human annotator making a Synthesis Error by carelessly misspelling the name of the most recent
Pritzker Prize winner.

31

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Figure 18: A case of HF Open Deep Research committing an Information Not Found error due to a system failure to properly
follow the system prompt to invoke the search tool.

32

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Figure 19: A case where the OpenAI Operator reports an invalid attribution, differing by a few words from the actual website
URL, despite having visited the correct source.

33

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Figure 20: A case where OpenAI Deep Research presents claims without verifiable attribution, likely resulting from direct
generation rather than conducting a real-time search.

34

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Figure 21: A case where Perplexity Pro Search fails to find the required information within limited search steps, despite the
known ground-truth answer being available and discoverable.

35

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Figure 22: A case where ChatGPT Search retrieves several relevant webpages but fails to synthesize a correct answer with
accurate attribution in a task requiring extensive information across 20 years.

36

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

G. Example of Judge-Agent Scripts
We provide a script of a task in the public development set, where the full task description can be find in the script below.

1 import asyncio
2 import logging
3 from typing import Optional , List , Dict , Any
4

5 from pydantic import BaseModel , Field
6

7 from mind2web2 import CacheClass , Evaluator , VerificationNode , AggregationStrategy
8

9 TASK_ID = "find_llava_commit"
10 TASK_DESCRIPTION = """
11 Identify the first commit on the main branch of the official Hugging Face transformers

repository that added support for the LLaVA model.
12 Please provide the following details about this commit: the short commit ID (first 7

characters), the date of the commit , a list of all contributors/authors involved
in this commit. For each author , include a link to their GitHub profile page and
the full real name displayed on their GitHub profile page.

13 """
14

15 EVAL_NOTES = ""
16 GROUND_TRUTH = {
17 "commit_id": "44b5506",
18 "date": "Dec 7, 2023",
19 "expected_authors": [
20 "Younes B",
21 "Arthur", # Or Arthur Zucker
22 "Shauray Singh",
23 "Lysandre Debut",
24 "Haotian Liu"
25]
26 }
27

28

29 class AuthorInfo(BaseModel):
30 """ Data model for individual author information."""
31 name: Optional[str] = Field(default=None , description="Author name as provided in

the answer")
32 profile_url: Optional[str] = Field(default=None , description="GitHub profile page

URL")
33 real_name_from_profile: Optional[str] = Field(default=None , description="Real name

extracted from profile page")
34

35

36 class CommitInfo(BaseModel):
37 """ Data model for extracted commit information."""
38 commit_id: Optional[str] = Field(default=None , description="Short commit ID (7

characters)")
39 date: Optional[str] = Field(default=None , description="Date of the commit")
40 source_urls: Optional[List[str]] = Field(default_factory=list , description="Source

URLs for commit verification")
41

42

43 class AuthorsInfo(BaseModel):
44 """ Data model for extracted authors information."""
45 authors: Optional[List[AuthorInfo]] = Field(default_factory=list ,
46 description="List of authors with

their profile info")
47

48

49 def prompt_extract_commit_info () -> str:
50 """
51 Extraction prompt for getting basic commit information from the answer.

37

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

52 """
53 return """
54 Extract the basic commit information for the LLaVA model support from the answer.
55

56 Look for:
57 - commit_id: The short commit ID (typically 7 characters)
58 - date: The date when the commit was made
59 - source_urls: Any URLs that contain or reference this commit information (e.g.,

GitHub commit URLs , repository links)
60

61 Extract the information exactly as it appears in the text.
62 If any field is not mentioned , set it to null or empty list.
63 """
64

65

66 def prompt_extract_authors_info () -> str:
67 """
68 Extraction prompt for getting authors information from the answer.
69 """
70 return """
71 Extract all author information mentioned in the answer related to the LLaVA commit.
72

73 For each author , extract:
74 - name: The author ’s name as mentioned in the answer
75 - profile_url: Their GitHub profile page URL if provided
76 - real_name_from_profile: Their real name as stated to appear on their profile page
77

78 Extract information exactly as it appears in the text.
79 If any field is not mentioned for an author , set it to null.
80 Include all authors mentioned , even if some information is incomplete.
81 """
82

83

84 async def verify_commit_info(
85 evaluator: Evaluator ,
86 parent_node: VerificationNode ,
87 commit_info: CommitInfo ,
88) -> None:
89 """
90 Verify commit information in sequential order.
91 This is the first node in the sequential chain.
92 """
93 # Create sequential node for commit verification steps
94 commit_verification = evaluator.add_sequential(
95 id_="commit_verification",
96 desc="Verify commit ID, date , and provenance in sequence",
97 parent=parent_node ,
98 critical=False # Non -critical to allow sequential partial scoring
99)

100

101 # Step 1: Verify commit ID exists and is correct
102 await verify_commit_id(evaluator , commit_verification , commit_info)
103

104 # Step 2: Verify commit date
105 await verify_commit_date(evaluator , commit_verification , commit_info)
106

107

108 async def verify_commit_id(
109 evaluator: Evaluator ,
110 parent_node: VerificationNode ,
111 commit_info: CommitInfo ,
112) -> None:
113 """
114 Verify commit ID existence , correctness and provenance.
115 """

38

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

116 # Create parallel node for commit ID checks
117 commit_id_node = evaluator.add_parallel(
118 id_="commit_id_verification",
119 desc="Verify commit ID existence , correctness and provenance",
120 parent=parent_node
121)
122

123 # Check if commit ID exists
124 id_exists = evaluator.add_custom_node(
125 result=bool(commit_info.commit_id and commit_info.commit_id.strip() and

commit_info.source_urls and commit_info.commit_id),
126 node_id="commit_id_exists",
127 description="Commit ID is provided in the answer",
128 parent=commit_id_node ,
129 critical=True , # Most critical - without ID, nothing else matters
130)
131

132 # Verify commit ID correctness
133 id_correctness = evaluator.add_leaf(
134 id_="commit_id_correctness",
135 desc="Commit ID matches the expected value (44 b5506)",
136 parent=commit_id_node ,
137 critical=True , # Critical - ID must be correct
138)
139

140 # Always perform verification - short -circuit logic will skip if existence failed
141 claim = f"This ID (a github commit id) ’{commit_info.commit_id or ’N/A’}’ matches

this ID ’{GROUND_TRUTH[’commit_id ’]}’"
142 await evaluator.verify(
143 claim=claim ,
144 node=id_correctness ,
145 sources=None , # Simple comparison , no URL needed
146 additional_instruction="Allow minor formatting differences or extra

descriptions but the core 7-character commit ID should exist and match
exactly. Expected: 44b5506."

147)
148

149 # Provenance check - verify the commit info is supported by sources
150 provenance_check = evaluator.add_leaf(
151 id_="commit_provenance",
152 desc="Commit information is supported by provided source URLs",
153 parent=commit_id_node ,
154 critical=True , # Critical - information must be substantiated
155)
156

157 # Always perform verification - short -circuit logic will skip if needed
158 # if commit_info.source_urls and commit_info.commit_id:
159 claim = f"This page shows or mentioned the github commit ID:

’{commit_info.commit_id}’. For example , if this is exactly the commit page"
160 await evaluator.verify(
161 claim=claim ,
162 node=provenance_check ,
163 sources=commit_info.source_urls ,
164)
165

166

167 async def verify_commit_date(
168 evaluator: Evaluator ,
169 parent_node: VerificationNode ,
170 commit_info: CommitInfo ,
171) -> None:
172 """
173 Verify commit date accuracy.
174 """
175 # Check if date exists

39

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

176 date_exists = evaluator.add_custom_node(
177 result=bool(commit_info.date and commit_info.date.strip()),
178 node_id="commit_date_exists",
179 description="Commit date is provided in the answer",
180 parent=parent_node ,
181 critical=True , # Critical - date is required
182)
183

184 # Verify date correctness
185 date_correctness = evaluator.add_leaf(
186 id_="commit_date_correctness",
187 desc="Commit date matches the expected value (Dec 7, 2023)",
188 parent=parent_node ,
189 critical=True , # Critical - date must be correct
190)
191

192 # Always perform verification - short -circuit logic will skip if existence failed
193 claim = f"The provided commit date ’{commit_info.date or ’N/A’}’ matches the

expected date ’{GROUND_TRUTH[’date ’]}’"
194 await evaluator.verify(
195 claim=claim ,
196 node=date_correctness ,
197 sources=commit_info.source_urls if commit_info.source_urls else None ,
198 additional_instruction="Allow reasonable date format variations (e.g., ’Dec 7,

2023’, ’December 7, 2023’, ’2023-12-07’) but the core date should match.
Expected: Dec 7, 2023."

199)
200

201

202 async def verify_authors_info(
203 evaluator: Evaluator ,
204 parent_node: VerificationNode ,
205 authors_info: AuthorsInfo ,
206) -> None:
207 """
208 Verify authors information in parallel.
209 This is the second node in the sequential chain.
210 """
211 # Create parallel node for authors verification
212 authors_verification = evaluator.add_parallel(
213 id_="authors_verification",
214 desc="Verify all authors information in parallel",
215 parent=parent_node ,
216 critical=False # Non -critical to allow partial scoring
217)
218

219 # Extract first 5 authors , pad with empty authors if needed
220 provided_authors = authors_info.authors [:5] if authors_info.authors else []
221

222 # Pad with empty AuthorInfo objects for missing authors
223 while len(provided_authors) < 5:
224 provided_authors.append(AuthorInfo ()) # Empty author info
225

226 # Create verification nodes for each author position
227 for i, author in enumerate(provided_authors):
228 await verify_single_author(evaluator , authors_verification , author , i + 1)
229

230

231 async def verify_single_author(
232 evaluator: Evaluator ,
233 parent_node: VerificationNode ,
234 author: AuthorInfo ,
235 author_number: int ,
236) -> None:
237 """

40

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

238 Verify a single author ’s information.
239 """
240 # Create parallel node for this author
241 author_node = evaluator.add_parallel(
242 id_=f"author_{author_number}",
243 desc=f"Author {author_number} information verification",
244 parent=parent_node ,
245 critical=False # Non -critical to allow partial scoring across authors
246)
247

248 # Check if author information exists
249 author_exists = evaluator.add_custom_node(
250 result=bool(author.name and author.name.strip()),
251 node_id=f"author_{author_number}_exists",
252 description=f"Author {author_number} name is provided",
253 parent=author_node ,
254 critical=True # Critical - if no name , this author slot is meaningless
255)
256

257 # Verify name matches expected contributors
258 name_match_node = evaluator.add_leaf(
259 id_=f"author_{author_number}_name_match",
260 desc=f"Author {author_number} name matches one of the expected contributors",
261 parent=author_node ,
262 critical=True , # Critical - must match an expected author
263)
264

265 # Always perform verification - short -circuit logic will skip if existence failed
266 expected_authors_str = ", ".join(GROUND_TRUTH[’expected_authors ’])
267 author_name = author.real_name_from_profile if author.real_name_from_profile else

author.name
268 claim = f"The name ’{author_name or ’N/A’}’ matches one of the names in the

following list: {expected_authors_str}"
269 await evaluator.verify(
270 claim=claim ,
271 node=name_match_node ,
272 sources=None , # Simple name matching
273 additional_instruction="Allow variations like ’Arthur ’ matching ’Arthur

Zucker ’, or reasonable name format differences. Expected authors: Younes
B, Arthur (or Arthur Zucker), Shauray Singh , Lysandre Debut , Haotian Liu."

274)
275

276 # Verify profile page is provided (non -critical)
277 profile_provided_node = evaluator.add_leaf(
278 id_=f"author_{author_number}_profile_provided",
279 desc=f"Author {author_number} GitHub profile page URL is provided",
280 parent=author_node ,
281 critical=False , # Non -critical - nice to have but not essential
282)
283

284 profile_claim = f"This is a GitHub profile page for ’{author.name or ’N/A’}’"
285 await evaluator.verify(
286 claim=profile_claim ,
287 node=profile_provided_node ,
288 sources=author.profile_url ,
289)
290

291

292 # Main evaluation entry point
293 async def evaluate_answer(
294 client , # LLMClient type not imported , use generic annotation
295 answer: str ,
296 agent_name: str ,
297 answer_name: str ,
298 cache: CacheClass ,

41

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

299 semaphore: asyncio.Semaphore ,
300 logger: logging.Logger ,
301 model: str = "o4-mini"
302) -> Dict[str , Any]:
303 """
304 Main evaluation function for the LLaVA commit finding task.
305

306 This function implements a sequential verification strategy:
307 1. First verify commit information (ID, date , provenance)
308 2. Then verify authors information (only if commit info is correct)
309

310 The sequential design ensures that if commit information is wrong ,
311 author verification is automatically skipped via short -circuit logic.
312 """
313

314 # -------- 1. Initialize evaluator ----------------------------- #
315 evaluator = Evaluator ()
316 root = evaluator.initialize(
317 task_id=TASK_ID ,
318 strategy=AggregationStrategy.SEQUENTIAL ,
319 agent_name=agent_name ,
320 answer_name=answer_name ,
321 client=client ,
322 task_description=TASK_DESCRIPTION ,
323 answer=answer ,
324 global_cache=cache ,
325 global_semaphore=semaphore ,
326 logger=logger ,
327 default_model=model ,
328)
329

330 # Record ground truth information
331 evaluator.add_ground_truth(GROUND_TRUTH , "expected_commit_and_authors_info")
332

333 # -------- 2. Extract structured information ------------------- #
334

335 # Extract basic commit information
336 commit_info = await evaluator.extract(
337 prompt=prompt_extract_commit_info (),
338 template_class=CommitInfo ,
339 extraction_name="commit_extraction",
340 source=None , # Extract from answer text
341)
342

343 # Extract authors information
344 authors_info = await evaluator.extract(
345 prompt=prompt_extract_authors_info (),
346 template_class=AuthorsInfo ,
347 extraction_name="authors_extraction",
348 source=None , # Extract from answer text
349)
350

351 # -------- 3. Build verification tree (Sequential) ------------- #
352

353 # Step 1: Verify commit information (non -critical for sequential scoring)
354 await verify_commit_info(evaluator , root , commit_info)
355

356 # Step 2: Verify authors information (will be skipped if commit info fails)
357 await verify_authors_info(evaluator , root , authors_info)
358

359 # -------- 4. Return evaluation results ------------------------ #
360 return evaluator.get_summary ()

42

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

H. Instructions for Human Annotators
H.1. Instructions for Task Collection

Task Proposal Instruction

{Introduction to this project}

Criteria for Task Proposals

• Tasks should:

– Be information-seeking.
– Be realistic, reflecting genuine scenarios or previously encountered problems.
– Be tedious and sufficiently complex, requiring multiple intermediate steps and taking at least five minutes for a human

to complete.
– Be verifiable. The agent’s response must include text and reference URLs or be verifiable through established ground

truth.
– Be single-round tasks (no user clarification required); all necessary information must be clearly included in the

description.

• Tasks to avoid:

– Tasks requiring user logins.
– Simple or quickly resolvable tasks.
– Tasks with global qualifiers (e.g., ”cheapest,” ”best”) that cannot be reliably verified.
– Tasks containing vague or subjective elements (e.g., ”nice restaurant”).

Task Refinement Instruction

We are conducting task refinement to ensure that all proposed tasks consistently meet our standards. We provide a structured
checklist to help you evaluate whether each task aligns with our specified criteria. Please thoroughly go through these checks to
assess, refine, or filter out the tasks accordingly.

Checklist

1. Realism

a. Verify the task reflects real-world scenarios. Imagine yourself or someone you know performing this task in real life.
b. Verify the task is not artificially combining many simple steps to increase complexity or tediousness.

Note:

• Certain subjectivity regarding the realism is acceptable here since people have different practical needs.

2. Clarity and Objectivity

a. Ensure the task description is typo-free and grammatically correct.
b. Verify that the description is clear and understandable.
c. Ensure the task explicitly states the necessary background knowledge needed to complete the task.
d. Make sure the task criteria are objective and unambiguous:

• Avoid subjective terms (e.g., “nice”, “good”).
• Avoid vague terms (e.g., “effective”, “better”) and use precise, measurable language instead.

e. Ensure there are no alternative interpretations of the task.

3. Tediousness and Feasibility

a. Confirm that the task takes more than 5 minutes to complete. Try performing the task, ensure it can’t be quickly solved
with only one or two simple searches.

b. Confirm that the task required information can be found on publicly accessible websites where no login or paywall is
required.

Note:

• Familiarity with the task might cause you to underestimate the actual completion time.

43

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

• Tasks don’t need to specifically challenge particular AI systems (e.g., Perplexity AI, ChatGPT Search, Deep Research).

4. Verifiability

a. Ensure task verifiability.
i. Draft an outline of the expected answer as a sanity check, as well as to assist future task validation. The outline should

include:
• All critical information explicitly required by the task, OR
• Information that, while not explicitly requested, should reasonably be included in the answer based on common

sense.
ii. Ensure that the information in the outline is sufficient to verify whether an answer satisfies the following principles by

using our verification and helper tools:
• Correctness: The answer meets all task requirements.
• Source Attribution: Each fact is supported by at least one URL source.

Verification and Helper Tools:

• Simple LLM-as-a-Judge:
– Use LLMs to perform a judgment on a statement by simple logic, common-sense reasoning, or universally known

facts.
• URL-based LLM-as-a-Judge:

– Given a statement and URL, use an LLM to confirm whether the statement is supported by the webpage content or a
screenshot.

• Google Maps API:
– Given an address, retrieve the city or sub-city name (Geocoding).
– Calculate travel time between two addresses (driving, walking, or public transit).
– Calculate travel distance between two addresses (driving, walking, or public transit).

• arXiv API:
– Search for academic papers by title and retrieve their arXiv ID.
– Retrieve detailed information about a paper using its arXiv ID or URL.

Note:

• Be cautious with tasks involving global qualifiers (e.g., “list all”, “top-k”), you must ensure such answers can be verified.
• Please be aware that our current URL-based LLM-as-a-Judge cannot obtain information from webpages that load content

dynamically with additional clicks or interactions. Please avoid tasks that depend on such information for verification.
• If verification seems involving additional tools for a specific task, please discuss it with us.

5. Additional Considerations

• Tasks involving video understanding or non-English websites are currently not supported.
• Avoid tasks with rapidly changing answers (e.g., stock prices, exchange rates).
• Avoid tasks requiring extensive reasoning, complex calculations, or external tools (e.g., Python, calculators). The current

focus is on information gathering via web browsing.
• If you find a task interesting but borderline according to these guidelines, discuss it with the team for further consideration.

Task Validation Instruction

We are conducting task validation to rigorously ensure that all proposed tasks consistently meet our quality standards and are
practically evaluable within our evaluation framework. During validation, please FULLY complete each task end-to-end
by yourself, paying particular attention to potential ambiguities, overlooked edge cases, and the verifiability of all required
information.
You should closely follow the structured checklist provided in the Task Refinement Instruction to evaluate realism, clarity,
tediousness, and overall feasibility. Additionally, please specifically pay attention to the following validation aspects:

Checklist Addendum for Validation

1. Full Completion and End-to-End Testing

• Fully perform the task yourself from start to finish. Ensure all or most critical information can be practically located and
verified from the URL sources.

2. Feasibility of URL-based Verification

44

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

• Verify that each URL provided as an information source uniquely and directly supports the expected statement.
• Avoid scenarios that are beyond our evaluation framework capabilities, such as:

– Tasks requiring simultaneous verification from multiple distinct webpages, where the verification cannot be decom-
posed into independent single-page validations.

– Tasks where the critical information is dynamically loaded, hidden, or collapsed on the webpage, making it inaccessible
from the static HTML or initial page rendering. In other words, tasks that require additional webpage interactions
beyond simple navigation (e.g., clicking one or multiple buttons, performing searches within the site, or scrolling to
trigger dynamic loading).

– Tasks where URLs provided are not unique or stable (e.g., search result URLs that frequently change).
– Tasks requiring login credentials (verify this using your browser’s incognito mode).

3. Explicit Ground Truth and Evaluation Notes

• Clearly document the related sources and information that can be helpful for understanding the task.
• If ground-truth information is necessary for certain criteria, note it down and carefully validate its correctness.
• Provide explicit notes for potentially tricky evaluation scenarios or subtleties that might be easily overlooked or incorrectly

handled during judge agent development.

If during validation you identify tasks that seem borderline or ambiguous with respect to our framework capabilities, promptly
discuss these tasks within the team to determine their suitability or necessary adjustments.

H.2. Instructions for Human Performance Study

We omit some examples from the instruction for clarity.

Human Performance Study Instruction

Objective
The goal of this stage is for humans to complete tasks and provide answers, enabling us to compare human performance with AI
agents. For each task, please search and browse relevant websites to gather the necessary information. Use Google Docs as a text
pad for your answer as you proceed, and include the URLs of your sources as provenance for each piece of information or claim
made. Each URL (webpage or PDF) should allow others to easily verify the attribution of your answer. Additionally, record
videos of your completion processes for review and potential publication purposes.

Setup Requirements

• A clean browser context only for this purpose

– Use a clean Chrome browser window (not incognito) without signing in, and avoid displaying sensitive personal
information.

– You can only use the browser during task completion.

• Chrome extension for timing: Web Activity Time Tracker

– This extension will track the websites you visit and the time you spend on them in the browser.
– Set Stop the tracker if there is no action for to 30 minutes in the extension settings.

Procedure for Each Task

1. Before you begin:

a. Understand the task clearly
i. Carefully read the task description and ensure you clearly understand what is asked (e.g., no language barriers or a

lack of domain-specific knowledge). It’s okay if you do not yet know how to solve the task; planning and figuring
this out are part of the task-solving.

ii. Please let us know if you have prior knowledge about the assigned task (e.g., you already know the answer without
searching) before starting to solve the task.

b. Reset time tracker
i. Clear previous data from the Web Activity Time Tracker extension. Specifically, go to Settings → Remove all

data. This ensures tracking statistics are only for the current task from now on.
c. Open a new Google Doc as a text pad for your answer

45

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

2. Solving the task:

a. Start recording
i. Begin screen recording before you start planning or researching for the task.

ii. Ensure all task-related activity is recorded, avoiding external screens.
b. Research and Answer

i. Search and browse to gather accurate and reliable information. DO NOT rely on prior knowledge; actively search to
verify all information.

ii. Clearly document your response, explicitly linking each critical piece of information to its source.
1. Our basic expectation for answers is: All critical points required by the task should be included, along with URLs

to verify them (i.e., the URL where you find each information). You do not need to summarize every web page
you visit.

2. You could also write some intermediate thoughts or the reasoning process on Google Docs for yourself when
completing the task, though only the critical information asked by the task is required for the final answer.

iii. For every piece of information or statement in your answer, insert the link as attribution.
1. Use either inline hyperlinks or numbered citations.
2. Ensure all URLs start with http or https.

3. After completing the task:

a. Export browsing data:
i. Export statistics from the time tracker extension to CSV immediately

ii. After exporting, you must stop gathering new information; only reformat your answer if you wish (e.g., if it is still
cluttered). (Imagine you no longer have access to the Internet other than the answer text pad after this step.)

b. Stop recording:
i. End your screen recording promptly after exporting data.

4. Upload your results:

a. Paste your final answer into the designated Answer column in the provided spreadsheet.
b. Convert your recording to MP4 using HandBrake (preset: Fast 1080p30) and upload to our OneDrive folder.
c. Rename the CSV as taskID-yourName.csv, upload it to OneDrive, and paste its URL into the spreadsheet’s corre-

sponding Time column.

Notes

• Notify us if any task takes less than 5 minutes or more than 1 hour.

• You should NOT give up on a task unless you still have not landed on a clear path to the solution after 30 minutes. However,
to conserve effort, you may stop working on tasks that exceed 60 minutes, even if a solution path is evident.

• AI tools (e.g., ChatGPT) are NOT allowed.

• Personal browser extensions and setups are permitted, but keep potential video publication in mind.

Trial Tasks
To make sure you’ve understood the task and to ensure the quality of our human performance, let’s start with two simple trial
tasks. We will go through your answers and provide feedback. When you pass the two trial tasks, we will start assigning real
tasks to you.

H.3. Instructions for Error Analysis

We omit some examples from the instruction for clarity.

Error Analysis Instruction

Please carefully read the workflow below(Figure 7). We start by evaluating the overall correctness of the agent’s entire response
based on its text, and then assess the attribution of each key information.

We randomly selected answers from the selected agents, and each answer is presented to you with a Google Doc along with an
annotation spreadsheet. Please follow these steps (Read, Evaluate, Comment, Collect) for error analysis:

46

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

1. Read the task and the agent’s answer carefully. Make sure you fully understand the task criteria, and discuss with us when
necessary.

2. Evaluate the response using the error categories detailed below.

3. Whenever you identify an error, leave a comment in the Google Doc directly on the problematic part. Your comment should
briefly explain what kind of error it is and why.

4. Collect all error types you identified, and check the corresponding labels in the annotation sheet.

Correctness Check
This section is concerned only with the agent’s full response based on the text.

1. Incompleteness: Our definition of Incompleteness here is limited to immediately noticeable, surface-level omissions: The
agent does not provide all content explicitly requested in the task. It does not cover more subtle or long-range reasoning
failures. We further define two subtypes. You may better understand our intended scope by reviewing the examples provided.

a. Information Not Found: The agent explicitly states it fails, such as:
• ‘‘I tried but failed to find....’’
• ‘‘I provide another ..., ... is not available.’’

b. Partial Completion: The agent provides fewer items or steps than explicitly requested by the task, such as:
• Requested 3 items but only 1 provided.
• Asked for 5 explicit steps but only completed 3 steps.

2. Criteria Violation: This label is used when the agent’s answer breaks explicit constraints mentioned in the task. These
constraints could be things like price ranges, required formats, word limits, or instructions such as “find all.” It also applies
when the task comes with a ground-truth reference — for example, when the prompt clearly expects a specific answer—and
the agent gives a different or incorrect one. Examples:

• ‘‘Find an item priced under $250.’’ → Answer provides an item of ‘‘$260’’.

• ‘‘Find the specific follow-up work of a paper (the ground-truth paper is given).’’ → The answer
gives a different, incorrect paper title.

Attribution Check
In this section, we examine each individual key information in the answer. Specifically, we verify 1) whether the attribution is
invalid or missing, 2) whether the cited page is relevant, and 3) whether it genuinely supports the agent’s claim. Specific types
include:

1. Invalid Attribution: URL is expired, incorrectly formatted, or obviously fabricated, such as

• The URL leads to a ‘‘page not found’’ error.

• The provided arXiv link for a research paper (https://arxiv.org/abs/1234.56789) is clearly fake.

2. Missing Attribution: No source URL is provided for the claim. For example, in the following answer, a missing source and a
valid one are presented.

• Totokaelo

– Address: 913 Western Avenue, Seattle, WA 98104 → Missing Attribution: no URLs (including the
following product page link) can substantiate the address information.

– Product Page: https://totokaelo.com/collections/acne-studios

• DNA 2050

– Address: 700 11th Avenue, Suite 160, The Bravern, Bellevue, WA 98004 [1] → Correct attribution:
the link provides the address.

– Product Page: https://www.dna2050.com/collections/acne-studios

3. Unsupported Answer: If a reachable attribution is provided, we need to examine whether it can support the claim. If not, there
are 2 subtypes of errors:

a. Retrieval Error: The provided sources are irrelevant to the task, such as:
• The task requests the list of K-pop songs in Just Dance, but the provided source is a
discussion page without a tracklist.

• The task requests a complete list of character abilities in Marvel Rivals, but the source
only contains team-up abilities, unable to support the hallucinated ability list.

47

https://arxiv.org/abs/1234.56789

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

b. Synthesis Error: The source contains useful information required by the task, but the answer misquotes or misinterprets
it. Examples:

• The provided product page shows a price of $220, while the answer incorrectly states $230.
• The source gives a correct tracklist of songs in Just Dance, but the answer identifies
incorrect K-pop songs.

Notes

• Please check our sample annotations to help you get started and use them as references during annotation.

• If you are unsure how to label an answer, please raise the issue in the group for discussion.

H.4. Instructions for Human Evaluation

Human Evaluation Instruction

Objective
The goal of this study is to validate the quality and reliability of the rubrics and judge agent implementations. Your task is to
independently evaluate them in two phases: rubric-level and node-level assessment.

Specifically, we have sampled 15 tasks and prepared their evaluation rubrics and evaluation results. In the rubric-level assessment
phase, you will review these evaluation rubrics structured as trees, and record your feedback. In the node-level assessment
phase, for tasks with rubrics agreed upon in the previous phase, you will independently score the leaf nodes of the rubric for two
sampled answers per task, without reference to the judge agents’ evaluation results.

Phase 1: Rubric-Level Assessment
For each task, you will be provided with an evaluation rubric in a tree structure. Each node in the tree includes an ID, a brief
description, and its settings (e.g., sequential or parallel; critical or non-critical). Please refer to §3.3 for a detailed explanation of
our rubric design.
Please read the task description carefully to understand the intended evaluation criteria, examine the rubric carefully, and use the
following scale to rate each rubric:

• Strongly Agree: The rubric is clear, comprehensive, practical, and fully aligns with task requirements.

• Agree with Reservations: The rubric is generally acceptable, but minor adjustments (e.g., stricter or clearer node criteria)
would enhance clarity or robustness.

• Disagree: The rubric is significantly flawed, impractical, or misaligned with the task criteria.

When reviewing rubrics, pay close attention to: node decomposition and ordering, prompt formulation, score aggregation
strategies, etc. If the tree structure alone is not sufficient for understanding, please refer to the evaluation script to review the
actual prompt wording and implementation details.

For each rubric you evaluate, you must provide a clear written justification for your rating.
Notes:

• A task may allow for multiple reasonable rubric trees. As long as the provided rubric is logically sound and aligns with the
task goals, it should be accepted.

• If you disagree with any rubric, please notify us ASAP.

Phase 2: Node-Level Assessment
Only rubrics that passed Phase 1 will proceed to this phase. For each task, you will be given two sampled agent answers. Your
goal is to independently evaluate each answer at the leaf node level, strictly following the rubric.
You will be provided with a JSON file for each task. This file contains the structured evaluation rubric tree, where all scores are
unset. Each leaf node will contain a score field set to “TODO”. Your task is to replace each “TODO” with a judgment:

• 1 if the answer satisfies the leaf node criterion, or

• 0 if it does not.

In other words, you are substituting your own judgment in place of the LLM-based verification in each leaf node. Please strictly
follow the rubric definitions when assigning scores. If anything is unclear, refer to the evaluation scripts.
Once you have completed all annotations for a task, upload your updated JSON file with all “TODO” values replaced.

48

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Please note that human judgment is not always perfect, especially when working with a rubric that contains hundreds of leaf
nodes. To help ensure the quality of this evaluation study, we will run a script that compares your annotations with the results
from the judge agent. This will generate a mismatch report highlighting all leaf nodes where your judgment differs. We will then
have another annotator to validate your results and discuss with you. You should also review all mismatches, be ready to discuss
with the validator and explain the rationale for your decision, and indicate whether the discrepancy may have resulted from an
oversight on your part.
Notes:

• Internal node scores will be automatically calculated based on leaf evaluations; you do not need to judge them.

49

