TinyVLM: Scaling Down Vision-Language Models for the Edge

Anonymous ACL submission

Abstract

In this paper, we introduce TinyVLM, a com-
pact and efficient Vision Language Model
(VLM) designed for edge devices, which can
be trained end-to-end in 106 A100 GPU hours
or $159'. We introduce multiple adaptations to
the classic ViT-LLM style VLMs, by introduc-
ing a convolution token pooler to reduce the
number of visual tokens passed into the LLM
by 4%, a cross-attention mechanism to fuse
spatial features from a masked auto-encoder
CNN model improving spatial understanding
in tasks such as OCR, a patch zooming tech-
nique to capture fine-grained image details and
a carefully curated fine-tuning dataset. Our fi-
nal model has 0.6 B parameters and achieves
a throughput of 18 toks/sec on a 8-core CPU
machine, making it highly suitable for resource-
constrained environments. Tiny VLM achieves
a good balance between performance and re-
source demands, advancing the capabilities of
VLMs on the edge. We open source our com-
plete training data, fully reproducible code and
model weights for the community.

1 Introduction

Vision-Language Models (VLMs) have signifi-
cantly advanced multimodal Al by enabling the
joint understanding of visual and textual informa-
tion, unlocking applications ranging from image
captioning (Vinyals et al., 2015) to medical di-
agnostics (Rajpurkar et al., 2022; Yildirim et al.,
2024). Pioneering architectures like CLIP (Radford
et al., 2021) have demonstrated the effectiveness
of aligning vision and language representations
at scale. However, large-scale VLMs—such as
LLaVA (Liu et al., 2023), BLIP (Li et al., 2023a)
and Flamingo (Alayrac et al., 2022)—have also
introduced significant computational bottlenecks,
limiting their practicality for real-world deploy-
ment.

' Assuming A100 hour = 1.5$

Despite their impressive performance, state-of-
the-art VLMs face a few fundamental challenges.
Training billion-parameter models demands mas-
sive computational resources, often consuming
GPU hours equivalent to dozens of transatlantic
flights in CO, emissions (Strubell et al., 2020).
Even after training, inference remains expensive:
running a 7B-parameter VLM requires 16GB+
VRAM, far exceeding the constraints of consumer
GPUs and edge devices. Even after applying quan-
tization techniques (Dettmers et al., 2022; Lin et al.,
2024a), their latency and power consumption often
exceed the constraints of real-world applications,
such as assistive robotics and augmented reality.

Vision Transformers (ViTs) (Dosovitskiy et al.,
2020), which serve as the primary vision encoders
in most VLMs, excel at capturing global context
but struggle with fine-grained spatial details. This
limitation is particularly evident in tasks requiring
pixel-level precision. Additionally, high-resolution
image processing exacerbates computational in-
efficiency: a 448x448px image segmented into
14 x 14 patches produces 1,024 tokens, leading to
quadratic complexity in self-attention (Touvron
et al., 2021). Lastly, compact VLMs trained on
web-crawled multimodal datasets (e.g., LAION
(Schuhmann et al., 2022), CC3M (Changpinyo
et al., 2021), WebLI (Chen et al., 2022)) suffer
from high validation loss due to noisy labels and
sparsity, reducing generalization ability.

This paper addresses these challenges by propos-
ing a tiny yet powerful VLM, designed to strike a
balance between performance and efficiency. Our
approach introduces several contributions includ-
ing:

Visual Feature Enrichment. To enhance the fea-
ture representation of ViT-based CLIP embeddings,
we integrate a pre-trained Convolutional Neural
Network (CNN) into the final stage of training.
Using a cross-attention mechanism, we fuse CNN-
extracted local details with ViT-based global em-

beddings, enhancing fine-grained feature represen-
tation.

CNN-Guided Token Pooling. Extending the
tile-based preprocessing introduced in Dragonfly
(Thapa et al., 2024), we develop a CNN-guided
token pooling mechanism to address the challenge
of excessive visual tokens generated by the mul-
tiple high-resolution image patches. This pooling
mechanism exploits local spatial redundancy in ViT
embeddings, reducing computational overhead by
4x while preserving critical features.

Curated Multi-Modal Dataset for Tiny VLMs.
To improve data efficiency, we construct a special-
ized multimodal dataset optimized for small-scale
VLM training. This dataset mitigates overfitting
and improves generalization, ensuring robust per-
formance even with reduced model capacity.

We successfully train a 600M-parameter VLM
that achieves comparable performance to much
larger models while maintaining significantly lower
computational costs. Our full training pipeline re-
quires 106.3 A100 GPU hours, making it one of
the most resource-efficient methods for training
compact VLMs.

2 Related Work

Visual Language Model Architectures. VLMs
follow an encoder-decoder framework, integrating
a vision backbone (e.g., ViT or CNN) with a Large
Language Model (LLM). These components are
connected via a connector that aligns visual and
textual modalities.

Early architectures such as LLaVA (Liu et al.,
2023) and its successors (LLaVA-1.5 (Liu et al.,
2024a), LLaVA-NeXT (Liu et al., 2024b)) employ
lightweight MLP-based connectors to project flat-
tened ViT embeddings into the LLM’s embedding
space. However, this approach results in a large
number of visual tokens being stored in the LLM’s
KV Cache, significantly increasing memory con-
sumption. This effect becomes even more pro-
nounced with higher image resolutions, where the
number of tokens scales quadratically with image
size. Dragonfly (Thapa et al., 2024) introduces a
tile-based pre-processing approach, where images
are split into smaller patches. However, this does
not reduce the total token count; rather, Dragonfly’s
novelty lies in its three-tiered resolution strategy
combined with a similarity-based patch selection
mechanism, enabling fine-grained high resolution
feature learning.

In contrast, transformer-based connectors—used
in models such as BLIP-2 (Li et al., 2023a) and
Flamingo (Alayrac et al., 2022)—apply cross-
attention or perceiver-style mechanisms to com-
press visual tokens before passing them to the
LLM. For instance, Flamingo employs gated cross-
attention layers, dynamically fusing image and text
features to significantly reduce token count while
maintaining strong performance and BLIP-2 uti-
lizes a Q-Former which outputs a fixed and signifi-
cantly smaller number of learned query vectors as
tokens.

Beyond connectors, post-processing strategies
also impact efficiency. LLaVA directly feeds
projected tokens into the LLM’s decoder, whereas
Flamingo interleaves cross-attention within the
LLM itself, allowing tighter modality fusion
and improved visual-textual interactions. More
recently, compact VLMs such as MobileVLM
(Chu et al., 2023, 2024), DeepSeek-VL (Lu et al.,
2024), and NanoLLaVA? have demonstrated the
feasibility of small-scale architectures, offering a
trade-off between performance and computational
efficiency.

Data and Training Strategies. Training
pipelines for VLMs typically follow a two-stage
paradigm. The first stage focuses on aligning visual
and textual embeddings, typically using datasets
such as COCO Captions (Chen et al., 2015), CC3M
(Changpinyo et al., 2021), LAION (Schuhmann
et al., 2022), LLaVA-Pretrain (Liu et al., 2023)
and OBELICS (Laurencon et al., 2023). During
this phase, the connector is trained while freezing
both the vision encoder and the LLM to establish
a shared representation space between images and
text. The second stage involves instruction fine-
tuning using datasets such as LLaVA-Instruct (Liu
et al., 2023), often augmented with synthetic data
generated by GPT-4 (Achiam et al., 2023). This
phase allows the model to adapt to real-world mul-
timodal interactions, improving its ability to handle
diverse instructions.

Certain models introduce enhanced training
methodologies. For instance, IDEFICS-3 (Lau-
rencon et al., 2024) employs a curriculum learn-
ing strategy, progressively training the model on
captioning, question-answering (QA), and com-
plex reasoning tasks. This structured learning ap-
proach enables VLMs to balance broad general-

2https://huggingface.co/gnguyen3/nanolLLaVA

https://huggingface.co/qnguyen3/nanoLLaVA

ization with task-specific adaptation, improving
efficiency while maintaining robust performance
across a wide range of multimodal tasks.

3 Building VLM

3.1 Model Architecture

Vision Encoder: We adopt SigL.IP-base-patch16-
384 (Zhai et al., 2023) as the primary visual back-
bone. Compared to the standard 224-resolution
encoders, the 384-resolution variant improves
fine-grained text recognition (e.g., +12.8% on
TextVQA, Table 1) while maintaining manage-
able computational costs. We did not see mas-
sive improvements in performance upon using 512-
resolution variant while the number visual tokens
increased almost 2x as shown in Table 1. We
explain later in this section on the importance of
having lower number of visual tokens for better
efficiency.

To incorporate localized feature extraction, we
fuse features from a masked auto-encoder model -
ConvNeXt-Tiny, leveraging the inductive biases of
self-supervised pre-trained CNNs. These features
are fused using a cross-attention mechanism with
the CLIP-based fine-tuned vision tokens in the final
phase of training. Our hybrid design introduces
only 49 additional visual tokens but outperforms
pure transformer-based baselines, particularly in
dense-text scenarios such as TextVQA.

Language Model: Qwen2.5-0.5B-Instruct
(Yang et al., 2024) serves as the text decoder,
balancing inference speed and reasoning capabili-
ties. It’s instruction-tuning aligns with multimodal
prompts, enabling zero-shot task generalization.

Connector: A lightweight 2-layer MLP with
GeLU aligns the clip-based visual embeddings
with the LLM embeddings. Compared to Q-Former
(Li et al., 2023a) or Perceiver resamplers (Jaegle
et al., 2021; Alayrac et al., 2022; Bai et al., 2023;
Laurencon et al., 2024), this design reduces pa-
rameters substantially. Recent works have shown
that MLP-based connectors are more parameter-
efficient while being equally representative of the
visual to language transformation of the tokens.
Using a simple linear projector forces the LLM to
learn more and leads to better generalization (Lin
et al., 2024b).

The final fine-tuning stage of our pipeline in-
volves leveraging a pre-trained CNN to inject spa-
tial features into the learning process and refine spa-
tial understanding in tasks such as text understand-

ing. To do this, we generate visual tokens from
a CNN architecture and perform attention-guided
token refinement using the ViT based fine-tuned
tokens. These final tokens are passed directly into
the LLM. This approach allows new spatial-aware
feature infusion into the VLM while ensuring no
massive performance drop due to the introduction
of a new module in between the fine-tuning pro-
cess. We define I, < RNXD B € RMXD a5
the global visual tokens from fine-tuned ViT model
and spatial tokens from the CNN model respec-
tively. Our selected ViT and CNN models share the
same embedding dimension D, ensuring compati-
bility for feature fusion. We project £, and E,,
using linear layers and then perform cross-attention
using CNN-based queries and ViT-based key-value
vectors.

ann =

where W, € RP*d 1y, € RP*4 are learned pro-
jection matrices for the queries and key-value pairs
respectively; and d denotes the embedding dimen-
sion of the chosen LLM. To enhance spatial cor-
respondence, we incorporate positional encodings
(PE) into both queries and key-value representa-
tions before computing the attention matrix:

cnn X Wq> K‘/g = Eg X Wk’va (1)

A= Softmax((ann + PE(ann))

R 2

x (KV, + PE(KV,))") A e RMxN
Finally, we project the output using KV, sharing
the same set of vectors for key as well as value in
the cross attention mechanism.

Ecnn =AX KVg7 Ecnn € RMXd (3)

This fusion strategy enables the pre-trained CNN
features to be enriched by fine-tuned ViT-based
embeddings, capturing both localized spatial
details and high-level semantic representations.
ConvNeXt-Tiny (Woo et al., 2023) outputs a total
of M = 49 tokens which is fairly small as com-
pared to N = 576 tokens from the ViT, limiting
the computational overhead introduced by E’mn.
Patch Zooming Strategy: Inspired by recent
works on image processing for VLMs (Liu et al.,
2024a; Thapa et al., 2024), we resize images to
two resolutions: 384 x 384 and 768 x 768 de-
noted by I, and I; respectively. I; is further
broken down into four non-overlapping patches
Iy = {In, Iz, I3, I14 } ,where Iy , 13, I;3, and Ij4

_) ConvPooler _) |:|

‘> |FC GeLU FC| >

LLM

: D : v
: : Howmany ears are _y,
. . visible in the image?

1 X [=1 8

Figure 1: Schematic representation demonstrating the working of different components of TinyVLM. The original
image is zoomed and split into 4 sub-images which are then fed into the ViT. Post which they are processed by the
ConvPooler and connector in order to get the final ViT-based input tokens to the LLM. The global image is also
passed into the CNN in parallel and the spatial CNN tokens undergo cross attention with the global tokens generated
by ViT to get the final CNN-based input tokens to the LLM. We finally concatenate the CNN tokens, ViT tokens

and prompt tokens as the final input to the LLM.

correspond to the top-left, top-right, bottom-left,
and bottom-right regions of I; , each with a res-
olution of 384 x 384 . During both pre-training
and fine-tuning, we process the global image I,
alongside the four local patches I; in parallel, gen-
erating a total of 5 x 576 visual tokens. This multi-
resolution strategy allows our model to capture fine-
grained, high-resolution features while preserving
global context. All extracted tokens are then passed
through the ConvPooler for further processing.

Visual Token Pooler: Recent work has shown
that high-resolution images with token downsam-
pling work better than low-resolution images (Lin
et al., 2024b). A single 384-resolution image pro-
cessed by the ViT generates 576 visual tokens.
For high-resolution processing, multiple patches
of the image are used, concatenating their re-
spective visual tokens before passing them into
the LLM. However, simple high-resolution ap-

proaches—such as splitting an image into four
patches significantly increase the number of vi-
sual tokens (Table 2), leading to higher pre-filling
latency and KV Cache size expansion.

Our visual token pooler is based off a simple
fact that spatially local tokens exhibit high simi-
larity, while distant tokens have lower correlation.
This motivated the design of a spatial visual token
pooler, which applies a convolution layer to pool
a 2 x 2 grid of visual tokens into a single visual
token:

EPooled = ConvPool(E,) 4)

E}mOled = ConvPool(E)) 5)

Our visual token pooler is implemented as a sin-
gle convolutional layer with kernel size = stride
= 2, allowing it to capture locally important spa-
tial features while reducing the number of visual
tokens by 4x. We initialize the kernel weights to

0.25, mimicking an average pooling operation at
initialization, and allow the model to learn the opti-
mal kernel values during training. ConvNeXt out-
puts are excluded from pooling, as their 49 tokens
(7x7 grid) already represent condensed spatial hi-
erarchies. We process both global as well as local
tokens using the token pooler reducing the number
of tokens from 5 x 576 to 5 x 144.

The overall pipeline is presented in Figure 1.
Finally we use EEOO]ed, E? o0led and Epny as inputs
to the LLM.

3.2 Data Preparation

Pretraining Data. We curated a dataset by com-
bining the LAION subset of ALLaVA (Chen
et al., 2024a) and the LLaVA-pretrain subset of
ShareGPT4V-PT (Chen et al., 2024b), resulting
in a total of 1.03 million image-text pairs. Both
datasets contain synthetically generated captions,
providing higher-quality descriptions. Given that
TinyVLM is a compact model, training on smaller
datasets with shorter captions led to unstable con-
vergence and poor generalization. By selecting
a balanced dataset with both diversity and high-
quality captions, we ensured effective learning of
vision-language representations.

Finetuning Data. For fine-tuning, we cu-
rated a dataset by selecting specific sections from
The Cauldron (Laurencon et al., 2024), LNQAS,
ShareGPT40*, and Docmatix (Laurencon et al.,
2024), resulting in 2.70 million image-text pairs.
Each dataset contributes a unique aspect to the
model’s training: The Cauldron is a large collec-
tion of 50 vision-language datasets used in Idefics2
and Idefics3, covering science, mathematics, doc-
uments, charts, and tables. Docmatix focuses on
OCR and document understanding, enhancing text
extraction capabilities. LNQA provides real-world
environmental knowledge, improving generaliza-
tion. ShareGPT4o is a smaller dataset with high-
quality, detailed captions that refine captioning abil-
ity.

This diverse dataset enables Tiny VLM to acquire
broad multimodal capabilities while maintaining
a compact architecture. To ensure the model re-
tains the ability to generate coherent text, we also
included OpenHermes(Teknium, 2023) and Math-
Instruct (Xiang Yue, 2023), which are text-only
datasets.

3https://huggingface.co/datasets/vikhyatk/1nqa
4https://huggingface.co/datasets/OpenGVLab/
ShareGPT-40

Captions (34%)

Real World VQA (27%)

Science and Reasoning (9%)

Tables and Chart (10%)
Documents and Text (20%)

Figure 2: Category wise distribution of the fine-tuning
dataset. Note that this data is sampled from the Cauldron
(Laurencon et al., 2024), LNQAS, ShareGPT40°, and
Docmatix (Laurencon et al., 2024)

3.3 Training Setup

The training of TinyVLM is conducted in three se-
quential stages: pre-training, fine-tuning, and CNN-
augmented fine-tuning. Each stage is designed to
progressively enhance the model’s ability to pro-
cess and generate responses based on both visual
and textual inputs.

Stage 1 - Pre-training. In the pre-training phase,
the model is trained on 1.03 million image-caption
pairs sourced from two synthetically generated
caption datasets. The architecture of TinyVLM
comprises four primary components: vision en-
coders, connectors, ConvPoolers, and LLM. Dur-
ing pre-training, only the connector and Con-
vPooler weights are updated, while the rest of the
model remains frozen. Note that the CNN and it’s
cross-attention connector is not introduced in the
pre-training phase at all.

The model is optimized using the next-token
prediction objective to generate coherent captions
and responses based on image embeddings. This
stage is crucial for establishing a foundational un-
derstanding of vision-language relationships. The
pre-training phase required 14.8 A100 GPU hours.

Stage 2 - Fine-tuning. Following pre-training,
the model undergoes instruction fine-tuning on
a diverse dataset of 2.7 million image-text pairs
derived from multiple instruction datasets. Un-
like pre-training, all model weights are updated in
this phase, allowing the model to fully adapt to
instruction-based interactions.

To maintain strong instruction-following and
reasoning capabilities, the model is periodically
trained on text-only data. Specifically, we in-
corporate OpenHermes and Mathlnstruct, two
instruction-tuning datasets, every 25 and 100 it-
erations, respectively. This ensures that the LLM
retains its ability to perform structured reasoning

https://huggingface.co/datasets/vikhyatk/lnqa
https://huggingface.co/datasets/OpenGVLab/ShareGPT-4o
https://huggingface.co/datasets/OpenGVLab/ShareGPT-4o

Resolution # Visual Tokens KYV Size MB) TTFT (ms) MMMU TVQA POPE RWQA Avg.
224 49 x 5 3.0 24.6 342 22.3 78.2 41.6 44.1
384 144 x 5 8.8 28.1 32.8 35.1 82.6 414 48.0
512 256 x 5 15.7 33.9 33.2 34.2 81.1 42.2 47.7

Table 1: Comparison of different resolutions and their effect on memory usage, model performance and efficiency.
Note that the ViT patch size is 16 across these experiments. TTFT denotes the Time to First Token and KV Size
denotes the per sample KV Cache size contributed by the visual tokens.

Method # Visual Tokens KV Size (MB) TTFT (ms)
Single image 576 7.0 253
+ 4 zoom-images 2880 353 40.4
+ ConvPooler 720 8.8 28.1

Table 2: Compute comparison of Single image and our
ConvPooler. ConvPooler successfully models zoomed
images while limiting the total number of visual tokens
substantially.

Pooler AParam MMMU TVQA POPE RWQA
Mean Pooling 0 32.4 45.9 85.4 459
ConvPooler 24M 344 44.81 85.7 46.8

Table 3: Comparison of ConvPooler with the baseline
Mean Pooling.

and general instruction following.

A key modification in this stage is that the loss
is computed only on answer tokens, ensuring the
model prioritizes generating high-quality responses
rather than replicating the entire input structure.
Additionally, NEFTune (Jain et al., 2023) is ap-
plied to the language model embeddings, introduc-
ing controlled noise to enhance generalization and
robustness. The fine-tuning phase required 77.5
A100 GPU hours.

Stage 3 - CNN-Augmented Fine-tuning. In
the final stage, a masked auto-encoder model -
ConvNeXT-Tiny (Woo et al., 2023) is integrated
into the model architecture to enhance spatial fea-
ture extraction. We wanted to leverage spatial fea-
tures learned through self-supervised learning and
hence choose this 28M CNN based masked auto-
encoder model. This CNN-based component gen-
erates 49 spatial visual tokens, which are processed
through the cross-attention connector alongside the
already fine-tuned ViT’s output (acting as keys and
values). The resulting tokens are then appended to
the original image tokens, enabling the model to
capture fine-grained visual details more effectively.

During this phase, the model is fine-tuned on
400K image-text pairs, refining its performance
with this enhanced vision-text representation. This
stage required 14 A100 GPU hours.

Total Training Cost: The complete training

process takes 106.3 A100 hours and $159 making
our proposed pipeline one of the most efficient
approaches for training compact VLMs.

4 Evaluation

We evaluate the multimodal capabilities of VLMs
on five datasets: POPE (Li et al., 2023b), which de-
tects object hallucinations; TextVQA (Singh et al.,
2019), which assesses the ability to read and reason
about text in images; MMMU (Yue et al., 2024),
which tests college-level subject knowledge and de-
liberate reasoning across six core disciplines—Art
& Design, Business, Science, Health & Medicine,
Humanities & Social Science, and Tech & Engi-
neering; RealWorldQA, a benchmark designed for
real-world understanding; and VQAv2 (Goyal et al.,
2017), which requires a combination of vision, lan-
guage, and commonsense knowledge to generate
accurate answers.

Image Resolution. Input image resolution plays
a crucial role in balancing fine-grained feature
learning and inference latency. Table 1 presents the
performance of our method across three different
resolutions. In order to efficiently study multiple
paradigms of our proposed model, we limit the
fine-tuning steps to 25K out of a total of 169K for
Table 1. We qualitatively observed that 25K steps
are a good proxy for the final fine-tuned model and
hence sufficient to make decisions regarding the
model architecture. Note that we pre-train all the
models with the same number of steps and only use
a proxy for the fine-tuning stage.

The x5 factor in the visual token count accounts
for both global and local tokens, resulting from
our zooming strategy. We observe that the 384-
resolution model significantly outperforms the 224-
resolution variant, while further scaling to 512
resolution provides only marginal improvements.
Higher resolutions are particularly beneficial for
fine-grained tasks such as text recognition, as evi-
denced by the performance gains in TextVQA.

However, the increased number of visual tokens
at higher resolutions negatively impacts model ef-

TTFT (ms) KV Size MB) MMMU TVQA POPE RWQA VQAv2 Average

8.8
9.4

344
34.7

without CNN
with CNN

28.1
353

46.8
47.4

66.36
69.74

52.94
56.80

44.8
47.7

85.7
84.5

Table 4: Effect of visual feature enrichment by a CNN. With minimal rise in KV Size, CNN improves performance

by upto 4%.
Model Parameters TTFT (ms) MMMU TVQA POPE RWQA VQAv2 Average
DeepseekVL 20B 30.1 322 - 87.6 - - -
MobileVLM 1.7B 27.3 30.3 41.5 84.5 429 68.1 534
MobileVLM-V2 1.7B 25.5 30.7 52.1 84.3 46.3 73.0 57.3
NanoLLaVA 1.1B 71.9 304 46.7 84.1 44.0 70.8 55.2
Ours 0.6B 353 34.7 47.7 84.5 474 69.7 56.8

Table 5: Comparison with existing compact VLMs. Tiny VLM achieves performance comparable to state-of-the-art
models while maintaining a significantly smaller parameter footprint.

ficiency. To mitigate this, our visual token pooler
effectively reduces the number of tokens passed to
the LLM. As shown in Table 1, at 384 resolution,
rather than processing 576 tokens per image, we
utilize only 144 pooled tokens per image, signifi-
cantly reducing computational overhead.

Based on these findings, we fix 384 as the default
input resolution across all our experiments.
Visual Token Pooler. As described in the previ-
ous section, limiting the number of visual tokens
is an important factor in building VLMs. Table 2
shows that adding zoomed images into the pipeline
substantially increases the number of visual to-
kens. Additionally, processing all 2880 tokens from
the original and zoomed-in sub-images leads to a
quadratic increase in TTFT and results in a very
large context size for a small language model.

To address this, we explore two simple pooling
strategies, with results presented in Table 3. Con-
vPooler improves upon a simple 2 x 2 mean pooling
approach by learning an optimized token pooling
convolutional kernel. This allows TinyVLM to ag-
gregate high-resolution features while maintaining
a reasonable token count, thereby reducing TTFT
and KV cache size substantially.

Visual Feature Enrichment. While ViTs excel at
capturing global context, they often struggle with
fine-grained spatial details due to the absence of
localized inductive biases. In contrast, CNNSs inher-
ently model spatial hierarchies through locality and
translation equivariance, making them an effective
complement to ViTs. To leverage these advantages,
we integrate ConvNeXt-Tiny as an auxiliary feature
extractor, generating 49 additional tokens. These
tokens enrich the model’s visual representation by
capturing fine-grained spatial information and rein-
forcing structured visual patterns, effectively com-

Token Attention Distribution Across Layers

—— Global ViT Tokens

Local ViT Tokens 1
—— Local ViT Tokens 2
—— Local ViT Tokens 3

—— Local ViT Tokens 4
—— CNN Tokens

Average Attention
o
°
&

0.01

Layer

Figure 3: Average attention across layers and token
types computed with respect to the answer tokens.

plementing transformer-based global features.

Table 4 demonstrates the substantial perfor-
mance improvements achieved by incorporating
a CNN alongside a ViT as the vision encoder. This
enhancement is particularly beneficial for text un-
derstanding tasks. However, adding a small CNN
introduces a slight increase in hallucinations, as
indicated by the POPE score.

We analyze the average attention distribution
across different types of visual tokens during the
decoding of answer tokens. As illustrated in Figure
3, the CNN-generated tokens receive significantly
higher attention. This indicates that the CNN to-
kens play a more influential role in shaping the
model’s generated responses.

Finally, Table 5 compares our model with ex-
isting compact vision-language models, including
DeepSeek-VL (Lu et al., 2024), MobileVLM (Chu
et al., 2023), MobileVLM V2 (Chu et al., 2023),
and NanoLLaVA. our model achieves competi-
tive performance while maintaining a significantly
smaller footprint. It outperforms NanoLLaVA and
MobileVLM substantially while being nearly half
its size, demonstrating a strong balance between
accuracy and efficiency. Compared to larger mod-

Precision MMMU TVQA POPE RWQA VQAv2 Average
WI16A16 34.7 47.7 84.5 474 69.7 56.8
W4A16 335 46.2 85.1 472 69.3 56.3
W4A8 31.1 39.2 83.7 40.1 66.4 52.1

Table 6: TinyVLM is compatible with existing quanti-
zation algorithms while retaining performance at high
precision.

Device TTFT Throughput (toks/s)
NVIDIA A100 353 ms 1880.1
Intel Xeon - § Core CPU 3.5 18.0

Table 7: Latency and Througput of TinyVLM on A100
GPU machine and 8-core CPU machine.

els like MobileVLM-V2 and DeepSeek-VL, our
approach offers improved feasibility for real-world
deployment, particularly in resource-constrained
environments.

Deployment on the Edge. Deploying VLMs on
edge devices presents significant challenges due
to limited compute power, memory constraints,
and latency requirements. TinyVLM is designed
with efficiency in mind, enabling deployment on
resource-constrained platforms while maintaining
strong performance.

We benchmark inference latency on both a high-
performance A100 GPU and an Intel Xeon 8-core
CPU Machine with Platinum 8370C CPU. As
shown in Table 7, Tiny VLM achieves low-latency
inference on the CPU machine, making it a prac-
tical solution for real-time applications such as
robotics, assistive technologies, and mobile Al sys-
tems. TinyVLM runs at 18 tokens/sec on a CPU-
only system enabling real world visual-language
applications on edge hardware. Note that these
numbers are presented for a fp16 model and quan-
tization can further improve the same.

To assess its feasibility for edge deployment
and compatibility with existing quantization meth-
ods, we quantize Tiny VLM using AWQ (Lin et al.,
2024a) and QoQ (Lin et al., 2024c) for W4A16 and
W4AS8 precision respectively. Table 6 compares
these quantizations with the baseline model, show-
ing that while W4A8 quantization introduce some
performance degradation, W4A16 maintains com-
petitive accuracy while significantly reducing com-
putational overhead. At 4-bit precision, TinyVLM
takes a mere 300 MB memory, enabling efficient
edge deployment.

Limitations

Despite the efficiency and competitive performance
of TinyVLM, several limitations remain. First,
while our model employs a CNN-based feature
extractor and visual token pooling to reduce com-
putational overhead, it still relies on a Vision Trans-
former (ViT) backbone, which can be resource-
intensive for extremely low-power edge devices.
Although quantization techniques such as W4A16
and W4AS (Table 6) mitigate this to some extent,
further exploration of distillation-based approaches
or hardware-aware optimizations could improve
deployment feasibility on constrained hardware.

Second, our visual token compression strategy
effectively reduces the number of tokens fed into
the LLM, improving inference efficiency. How-
ever, aggressive token reduction may lead to a loss
of fine-grained spatial details, particularly in tasks
that require precise text recognition or dense visual
reasoning. While our CNN-guided token pooling
retains critical features, further refinements in adap-
tive token selection strategies could help balance
efficiency and spatial fidelity.

Third, our pretraining dataset, sourced from
web-scale multimodal corpora, introduces inher-
ent biases present in synthetically generated cap-
tions and internet-scraped image-text pairs. This
may affect model robustness, particularly in spe-
cialized domains such as medical imaging, scien-
tific document understanding, or low-resource lan-
guages. Addressing this requires better dataset cu-
ration, domain-adaptive training techniques, and
controlled synthetic data generation to reduce spu-
rious correlations.

Finally, while TinyVLM performs well on
vision-language benchmarks, it has not been ex-
tensively tested on long-form reasoning tasks,
instruction-following in low-data regimes, or few-
shot generalization scenarios. Future work could
explore in-context learning adaptations, retrieval-
augmented generation (RAG), or meta-learning
techniques to improve performance in settings
where labeled multimodal data is scarce.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in neural
information processing systems, 35:23716-23736.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile
vision-language model for understanding, localiza-
tion, text reading, and beyond. arXiv preprint
arXiv:2308.12966, 1(2):3.

Soravit Changpinyo, Piyush Sharma, Nan Ding, and
Radu Soricut. 2021. Conceptual 12m: Pushing web-
scale image-text pre-training to recognize long-tail
visual concepts. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 3558-3568.

Guiming Hardy Chen, Shunian Chen, Ruifei Zhang,
Junying Chen, Xiangbo Wu, Zhiyi Zhang, Zhihong
Chen, Jianquan Li, Xiang Wan, and Benyou Wang.
2024a. Allava: Harnessing gptdv-synthesized data
for a lite vision-language model. arXiv preprint
arXiv:2402.11684.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Con-
ghui He, Jiagi Wang, Feng Zhao, and Dahua Lin.
2024b. Sharegptd4v: Improving large multi-modal
models with better captions. In European Confer-
ence on Computer Vision, pages 370-387. Springer.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Pier-
giovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas
Beyer, et al. 2022. Pali: A jointly-scaled mul-
tilingual language-image model. arXiv preprint
arXiv:2209.06794.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollér, and
C Lawrence Zitnick. 2015. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint
arXiv:1504.00325.

Xiangxiang Chu, Limeng Qiao, Xinyang Lin, Shuang
Xu, Yang Yang, Yiming Hu, Fei Wei, Xinyu
Zhang, Bo Zhang, Xiaolin Wei, et al. 2023. Mo-
bilevim: A fast, reproducible and strong vision lan-
guage assistant for mobile devices. arXiv preprint
arXiv:2312.16886.

Xiangxiang Chu, Limeng Qiao, Xinyu Zhang, Shuang
Xu, Fei Wei, Yang Yang, Xiaofei Sun, Yiming Hu,
Xinyang Lin, Bo Zhang, et al. 2024. Mobilevim
v2: Faster and stronger baseline for vision language
model. arXiv preprint arXiv:2402.03766.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems, 35:30318—
30332.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words. arXiv preprint
arXiv:2010.11929, 7.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in vqa
matter: Elevating the role of image understanding
in visual question answering. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 6904—6913.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol
Vinyals, Andrew Zisserman, and Joao Carreira. 2021.
Perceiver: General perception with iterative atten-
tion. In International conference on machine learn-
ing, pages 4651-4664. PMLR.

Neel Jain, Ping-yeh Chiang, Yuxin Wen, John Kirchen-
bauer, Hong-Min Chu, Gowthami Somepalli, Brian R
Bartoldson, Bhavya Kailkhura, Avi Schwarzschild,
Aniruddha Saha, et al. 2023. Neftune: Noisy embed-
dings improve instruction finetuning. arXiv preprint
arXiv:2310.05914.

Hugo Laurengon, Andrés Marafioti, Victor Sanh, and
Léo Tronchon. 2024. Building and better understand-
ing vision-language models: insights and future direc-
tions. In Workshop on Responsibly Building the Next
Generation of Multimodal Foundational Models.

Hugo Laurencon, Lucile Saulnier, Léo Tronchon,
Stas Bekman, Amanpreet Singh, Anton Lozhkov,
Thomas Wang, Siddharth Karamcheti, Alexander
Rush, Douwe Kiela, et al. 2023. Obelics: An open
web-scale filtered dataset of interleaved image-text
documents. Advances in Neural Information Pro-
cessing Systems, 36:71683-71702.

Hugo Laurencon, Léo Tronchon, Matthieu Cord,
and Victor Sanh. 2024. What matters when
building vision-language models? Preprint,
arXiv:2405.02246.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023a. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In International conference on ma-
chine learning, pages 19730-19742. PMLR.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023b. Eval-
uating object hallucination in large vision-language
models. arXiv preprint arXiv:2305.10355.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024a.

https://arxiv.org/abs/2405.02246
https://arxiv.org/abs/2405.02246
https://arxiv.org/abs/2405.02246

Awq: Activation-aware weight quantization for on-
device llm compression and acceleration. Proceed-
ings of Machine Learning and Systems, 6:87-100.

Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mo-
hammad Shoeybi, and Song Han. 2024b. Vila: On
pre-training for visual language models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 26689-26699.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang,
Guangxuan Xiao, Chuang Gan, and Song Han.
2024c. Qserve: W4a8kv4 quantization and system
co-design for efficient llm serving. arXiv preprint
arXiv:2405.04532.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2024a. Improved baselines with visual instruc-
tion tuning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,

pages 26296-26306.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024b. Llava-
next: Improved reasoning, ocr, and world knowledge.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. Advances in
neural information processing systems, 36:34892—
34916.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu-
oshu Li, Hao Yang, et al. 2024. Deepseek-vl: towards
real-world vision-language understanding. arXiv
preprint arXiv:2403.05525.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748-8763. PMLR.

Pranav Rajpurkar, Emma Chen, Oishi Banerjee, and
Eric J Topol. 2022. Ai in health and medicine. Na-
ture medicine, 28(1):31-38.

Christoph Schuhmann, Romain Beaumont, Richard
Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis,
Mitchell Wortsman, et al. 2022. Laion-5b: An open
large-scale dataset for training next generation image-
text models. Advances in Neural Information Pro-
cessing Systems, 35:25278-25294.

Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang,
Xinlei Chen, Devi Parikh, and Marcus Rohrbach.
2019. Towards vga models that can read. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8317-8326.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2020. Energy and policy considerations for
modern deep learning research. In Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 34, pages 13693-13696.

10

Teknium. 2023. Openhermes 2.5: An open dataset of
synthetic data for generalist 1lm assistants.

Rahul Thapa, Kezhen Chen, lan Connick Covert, Rahul
Chalamala, Ben Athiwaratkun, Shuaiwen Leon Song,
and James Zou. 2024. Dragonfly: Multi-resolution
zoom-in encoding enhances vision-language models.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé Jé-
gou. 2021. Training data-efficient image transform-
ers & distillation through attention. In International
conference on machine learning, pages 10347-10357.
PMLR.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural image
caption generator. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,

pages 3156-3164.

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xin-
lei Chen, Zhuang Liu, In So Kweon, and Saining
Xie. 2023. Convnext v2: Co-designing and scaling
convnets with masked autoencoders. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16133-16142.

Ge Zhang Yao Fu Wenhao Huang Huan Sun Yu
Su Wenhu Chen Xiang Yue, Xingwei Qu. 2023.
Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen?2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Nur Yildirim, Hannah Richardson, Maria Teodora
Wetscherek, Junaid Bajwa, Joseph Jacob, Mark Ames
Pinnock, Stephen Harris, Daniel Coelho De Castro,
Shruthi Bannur, Stephanie Hyland, et al. 2024. Mul-
timodal healthcare ai: identifying and designing clin-
ically relevant vision-language applications for ra-
diology. In Proceedings of the CHI Conference on
Human Factors in Computing Systems, pages 1-22.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,
Ruogqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
Weiming Ren, Yuxuan Sun, et al. 2024. Mmmu: A
massive multi-discipline multimodal understanding
and reasoning benchmark for expert agi. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9556-9567.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,
and Lucas Beyer. 2023. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
11975-11986.

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5

Figure 4: Qualitative samples demonstrating wide abilities of the proposed TinyVLM.

Appendix

Stage 1 Stage 2 Stage 3
Number of Steps 16K 169K 25K
Learning rate (max, min) (1e=°,5e79) (1e75,0) (5¢~7,5e77)
LR Scheduler Linear Linear Constant
Batch Size 64 16 16
Train Vision Encoder X v v
Train Connector and Pooler v v v
Train Language Model X v v
Train CNN NA NA v
Data ALLaVA The Cauldron, LNQA, Subset of Stage 2

ShareGPT4V-PT Docmatix, ShareGPT40

Table 8: Training stages and their corresponding parameters and datasets.

11

	Introduction
	Related Work
	Building VLM
	Model Architecture
	Data Preparation
	Training Setup

	Evaluation

