
TinyVLM: Scaling Down Vision-Language Models for the Edge

Anonymous ACL submission

Abstract001

In this paper, we introduce TinyVLM, a com-002
pact and efficient Vision Language Model003
(VLM) designed for edge devices, which can004
be trained end-to-end in 106 A100 GPU hours005
or $1591. We introduce multiple adaptations to006
the classic ViT-LLM style VLMs, by introduc-007
ing a convolution token pooler to reduce the008
number of visual tokens passed into the LLM009
by 4×, a cross-attention mechanism to fuse010
spatial features from a masked auto-encoder011
CNN model improving spatial understanding012
in tasks such as OCR, a patch zooming tech-013
nique to capture fine-grained image details and014
a carefully curated fine-tuning dataset. Our fi-015
nal model has 0.6 B parameters and achieves016
a throughput of 18 toks/sec on a 8-core CPU017
machine, making it highly suitable for resource-018
constrained environments. TinyVLM achieves019
a good balance between performance and re-020
source demands, advancing the capabilities of021
VLMs on the edge. We open source our com-022
plete training data, fully reproducible code and023
model weights for the community.024

1 Introduction025

Vision-Language Models (VLMs) have signifi-026

cantly advanced multimodal AI by enabling the027

joint understanding of visual and textual informa-028

tion, unlocking applications ranging from image029

captioning (Vinyals et al., 2015) to medical di-030

agnostics (Rajpurkar et al., 2022; Yildirim et al.,031

2024). Pioneering architectures like CLIP (Radford032

et al., 2021) have demonstrated the effectiveness033

of aligning vision and language representations034

at scale. However, large-scale VLMs—such as035

LLaVA (Liu et al., 2023), BLIP (Li et al., 2023a)036

and Flamingo (Alayrac et al., 2022)—have also037

introduced significant computational bottlenecks,038

limiting their practicality for real-world deploy-039

ment.040

1Assuming A100 hour = 1.5$

Despite their impressive performance, state-of- 041

the-art VLMs face a few fundamental challenges. 042

Training billion-parameter models demands mas- 043

sive computational resources, often consuming 044

GPU hours equivalent to dozens of transatlantic 045

flights in CO2 emissions (Strubell et al., 2020). 046

Even after training, inference remains expensive: 047

running a 7B-parameter VLM requires 16GB+ 048

VRAM, far exceeding the constraints of consumer 049

GPUs and edge devices. Even after applying quan- 050

tization techniques (Dettmers et al., 2022; Lin et al., 051

2024a), their latency and power consumption often 052

exceed the constraints of real-world applications, 053

such as assistive robotics and augmented reality. 054

Vision Transformers (ViTs) (Dosovitskiy et al., 055

2020), which serve as the primary vision encoders 056

in most VLMs, excel at capturing global context 057

but struggle with fine-grained spatial details. This 058

limitation is particularly evident in tasks requiring 059

pixel-level precision. Additionally, high-resolution 060

image processing exacerbates computational in- 061

efficiency: a 448×448px image segmented into 062

14×14 patches produces 1,024 tokens, leading to 063

quadratic complexity in self-attention (Touvron 064

et al., 2021). Lastly, compact VLMs trained on 065

web-crawled multimodal datasets (e.g., LAION 066

(Schuhmann et al., 2022), CC3M (Changpinyo 067

et al., 2021), WebLI (Chen et al., 2022)) suffer 068

from high validation loss due to noisy labels and 069

sparsity, reducing generalization ability. 070

This paper addresses these challenges by propos- 071

ing a tiny yet powerful VLM, designed to strike a 072

balance between performance and efficiency. Our 073

approach introduces several contributions includ- 074

ing: 075

Visual Feature Enrichment. To enhance the fea- 076

ture representation of ViT-based CLIP embeddings, 077

we integrate a pre-trained Convolutional Neural 078

Network (CNN) into the final stage of training. 079

Using a cross-attention mechanism, we fuse CNN- 080

extracted local details with ViT-based global em- 081
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beddings, enhancing fine-grained feature represen-082

tation.083

CNN-Guided Token Pooling. Extending the084

tile-based preprocessing introduced in Dragonfly085

(Thapa et al., 2024), we develop a CNN-guided086

token pooling mechanism to address the challenge087

of excessive visual tokens generated by the mul-088

tiple high-resolution image patches. This pooling089

mechanism exploits local spatial redundancy in ViT090

embeddings, reducing computational overhead by091

4× while preserving critical features.092

Curated Multi-Modal Dataset for Tiny VLMs.093

To improve data efficiency, we construct a special-094

ized multimodal dataset optimized for small-scale095

VLM training. This dataset mitigates overfitting096

and improves generalization, ensuring robust per-097

formance even with reduced model capacity.098

We successfully train a 600M-parameter VLM099

that achieves comparable performance to much100

larger models while maintaining significantly lower101

computational costs. Our full training pipeline re-102

quires 106.3 A100 GPU hours, making it one of103

the most resource-efficient methods for training104

compact VLMs.105

2 Related Work106

Visual Language Model Architectures. VLMs107

follow an encoder-decoder framework, integrating108

a vision backbone (e.g., ViT or CNN) with a Large109

Language Model (LLM). These components are110

connected via a connector that aligns visual and111

textual modalities.112

Early architectures such as LLaVA (Liu et al.,113

2023) and its successors (LLaVA-1.5 (Liu et al.,114

2024a), LLaVA-NeXT (Liu et al., 2024b)) employ115

lightweight MLP-based connectors to project flat-116

tened ViT embeddings into the LLM’s embedding117

space. However, this approach results in a large118

number of visual tokens being stored in the LLM’s119

KV Cache, significantly increasing memory con-120

sumption. This effect becomes even more pro-121

nounced with higher image resolutions, where the122

number of tokens scales quadratically with image123

size. Dragonfly (Thapa et al., 2024) introduces a124

tile-based pre-processing approach, where images125

are split into smaller patches. However, this does126

not reduce the total token count; rather, Dragonfly’s127

novelty lies in its three-tiered resolution strategy128

combined with a similarity-based patch selection129

mechanism, enabling fine-grained high resolution130

feature learning.131

In contrast, transformer-based connectors—used 132

in models such as BLIP-2 (Li et al., 2023a) and 133

Flamingo (Alayrac et al., 2022)—apply cross- 134

attention or perceiver-style mechanisms to com- 135

press visual tokens before passing them to the 136

LLM. For instance, Flamingo employs gated cross- 137

attention layers, dynamically fusing image and text 138

features to significantly reduce token count while 139

maintaining strong performance and BLIP-2 uti- 140

lizes a Q-Former which outputs a fixed and signifi- 141

cantly smaller number of learned query vectors as 142

tokens. 143

Beyond connectors, post-processing strategies 144

also impact efficiency. LLaVA directly feeds 145

projected tokens into the LLM’s decoder, whereas 146

Flamingo interleaves cross-attention within the 147

LLM itself, allowing tighter modality fusion 148

and improved visual-textual interactions. More 149

recently, compact VLMs such as MobileVLM 150

(Chu et al., 2023, 2024), DeepSeek-VL (Lu et al., 151

2024), and NanoLLaVA2 have demonstrated the 152

feasibility of small-scale architectures, offering a 153

trade-off between performance and computational 154

efficiency. 155

156

Data and Training Strategies. Training 157

pipelines for VLMs typically follow a two-stage 158

paradigm. The first stage focuses on aligning visual 159

and textual embeddings, typically using datasets 160

such as COCO Captions (Chen et al., 2015), CC3M 161

(Changpinyo et al., 2021), LAION (Schuhmann 162

et al., 2022), LLaVA-Pretrain (Liu et al., 2023) 163

and OBELICS (Laurençon et al., 2023). During 164

this phase, the connector is trained while freezing 165

both the vision encoder and the LLM to establish 166

a shared representation space between images and 167

text. The second stage involves instruction fine- 168

tuning using datasets such as LLaVA-Instruct (Liu 169

et al., 2023), often augmented with synthetic data 170

generated by GPT-4 (Achiam et al., 2023). This 171

phase allows the model to adapt to real-world mul- 172

timodal interactions, improving its ability to handle 173

diverse instructions. 174

Certain models introduce enhanced training 175

methodologies. For instance, IDEFICS-3 (Lau- 176

rençon et al., 2024) employs a curriculum learn- 177

ing strategy, progressively training the model on 178

captioning, question-answering (QA), and com- 179

plex reasoning tasks. This structured learning ap- 180

proach enables VLMs to balance broad general- 181

2https://huggingface.co/qnguyen3/nanoLLaVA
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ization with task-specific adaptation, improving182

efficiency while maintaining robust performance183

across a wide range of multimodal tasks.184

3 Building VLM185

3.1 Model Architecture186

Vision Encoder: We adopt SigLIP-base-patch16-187

384 (Zhai et al., 2023) as the primary visual back-188

bone. Compared to the standard 224-resolution189

encoders, the 384-resolution variant improves190

fine-grained text recognition (e.g., +12.8% on191

TextVQA, Table 1) while maintaining manage-192

able computational costs. We did not see mas-193

sive improvements in performance upon using 512-194

resolution variant while the number visual tokens195

increased almost 2× as shown in Table 1. We196

explain later in this section on the importance of197

having lower number of visual tokens for better198

efficiency.199

To incorporate localized feature extraction, we200

fuse features from a masked auto-encoder model -201

ConvNeXt-Tiny, leveraging the inductive biases of202

self-supervised pre-trained CNNs. These features203

are fused using a cross-attention mechanism with204

the CLIP-based fine-tuned vision tokens in the final205

phase of training. Our hybrid design introduces206

only 49 additional visual tokens but outperforms207

pure transformer-based baselines, particularly in208

dense-text scenarios such as TextVQA.209

Language Model: Qwen2.5-0.5B-Instruct210

(Yang et al., 2024) serves as the text decoder,211

balancing inference speed and reasoning capabili-212

ties. It’s instruction-tuning aligns with multimodal213

prompts, enabling zero-shot task generalization.214

Connector: A lightweight 2-layer MLP with215

GeLU aligns the clip-based visual embeddings216

with the LLM embeddings. Compared to Q-Former217

(Li et al., 2023a) or Perceiver resamplers (Jaegle218

et al., 2021; Alayrac et al., 2022; Bai et al., 2023;219

Laurençon et al., 2024), this design reduces pa-220

rameters substantially. Recent works have shown221

that MLP-based connectors are more parameter-222

efficient while being equally representative of the223

visual to language transformation of the tokens.224

Using a simple linear projector forces the LLM to225

learn more and leads to better generalization (Lin226

et al., 2024b).227

The final fine-tuning stage of our pipeline in-228

volves leveraging a pre-trained CNN to inject spa-229

tial features into the learning process and refine spa-230

tial understanding in tasks such as text understand-231

ing. To do this, we generate visual tokens from 232

a CNN architecture and perform attention-guided 233

token refinement using the ViT based fine-tuned 234

tokens. These final tokens are passed directly into 235

the LLM. This approach allows new spatial-aware 236

feature infusion into the VLM while ensuring no 237

massive performance drop due to the introduction 238

of a new module in between the fine-tuning pro- 239

cess. We define Eg ∈ RN×D, Ecnn ∈ RM×D as 240

the global visual tokens from fine-tuned ViT model 241

and spatial tokens from the CNN model respec- 242

tively. Our selected ViT and CNN models share the 243

same embedding dimension D, ensuring compati- 244

bility for feature fusion. We project Eg and Ecnn 245

using linear layers and then perform cross-attention 246

using CNN-based queries and ViT-based key-value 247

vectors. 248

Qcnn = Ecnn ×Wq, KVg = Eg ×Wkv, (1) 249

where Wq ∈ RD×d,Wkv ∈ RD×d are learned pro- 250

jection matrices for the queries and key-value pairs 251

respectively; and d denotes the embedding dimen- 252

sion of the chosen LLM. To enhance spatial cor- 253

respondence, we incorporate positional encodings 254

(PE) into both queries and key-value representa- 255

tions before computing the attention matrix: 256

A = Softmax
(
(Qcnn + PE(Qcnn))

× (KVg + PE(KVg))
⊤
)
, Â ∈ RM×N

(2) 257

Finally, we project the output using KVg sharing 258

the same set of vectors for key as well as value in 259

the cross attention mechanism. 260

Êcnn = A×KVg, Êcnn ∈ RM×d (3) 261

This fusion strategy enables the pre-trained CNN 262

features to be enriched by fine-tuned ViT-based 263

embeddings, capturing both localized spatial 264

details and high-level semantic representations. 265

ConvNeXt-Tiny (Woo et al., 2023) outputs a total 266

of M = 49 tokens which is fairly small as com- 267

pared to N = 576 tokens from the ViT, limiting 268

the computational overhead introduced by Êcnn. 269

Patch Zooming Strategy: Inspired by recent 270

works on image processing for VLMs (Liu et al., 271

2024a; Thapa et al., 2024), we resize images to 272

two resolutions: 384 × 384 and 768 × 768 de- 273

noted by Ig and Il respectively. Il is further 274

broken down into four non-overlapping patches 275

Il = {Il1, Il2, Il3, Il4},where Il1 , Il2 , Il3 , and Il4 276
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Prompt: 
How many ears are 
visible in the image?

Figure 1: Schematic representation demonstrating the working of different components of TinyVLM. The original
image is zoomed and split into 4 sub-images which are then fed into the ViT. Post which they are processed by the
ConvPooler and connector in order to get the final ViT-based input tokens to the LLM. The global image is also
passed into the CNN in parallel and the spatial CNN tokens undergo cross attention with the global tokens generated
by ViT to get the final CNN-based input tokens to the LLM. We finally concatenate the CNN tokens, ViT tokens
and prompt tokens as the final input to the LLM.

correspond to the top-left, top-right, bottom-left,277

and bottom-right regions of Il , each with a res-278

olution of 384 × 384 . During both pre-training279

and fine-tuning, we process the global image Ig280

alongside the four local patches Ili in parallel, gen-281

erating a total of 5× 576 visual tokens. This multi-282

resolution strategy allows our model to capture fine-283

grained, high-resolution features while preserving284

global context. All extracted tokens are then passed285

through the ConvPooler for further processing.286

Visual Token Pooler: Recent work has shown287

that high-resolution images with token downsam-288

pling work better than low-resolution images (Lin289

et al., 2024b). A single 384-resolution image pro-290

cessed by the ViT generates 576 visual tokens.291

For high-resolution processing, multiple patches292

of the image are used, concatenating their re-293

spective visual tokens before passing them into294

the LLM. However, simple high-resolution ap-295

proaches—such as splitting an image into four 296

patches significantly increase the number of vi- 297

sual tokens (Table 2), leading to higher pre-filling 298

latency and KV Cache size expansion. 299

Our visual token pooler is based off a simple 300

fact that spatially local tokens exhibit high simi- 301

larity, while distant tokens have lower correlation. 302

This motivated the design of a spatial visual token 303

pooler, which applies a convolution layer to pool 304

a 2 × 2 grid of visual tokens into a single visual 305

token: 306

Epooled
g = ConvPool(Eg) (4) 307

308

E
pooled
l = ConvPool(El) (5) 309

Our visual token pooler is implemented as a sin- 310

gle convolutional layer with kernel size = stride 311

= 2, allowing it to capture locally important spa- 312

tial features while reducing the number of visual 313

tokens by 4×. We initialize the kernel weights to 314
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0.25, mimicking an average pooling operation at315

initialization, and allow the model to learn the opti-316

mal kernel values during training. ConvNeXt out-317

puts are excluded from pooling, as their 49 tokens318

(7×7 grid) already represent condensed spatial hi-319

erarchies. We process both global as well as local320

tokens using the token pooler reducing the number321

of tokens from 5× 576 to 5× 144.322

The overall pipeline is presented in Figure 1.323

Finally we use E
pooled
g , E

pooled
l and Êcnn as inputs324

to the LLM.325

3.2 Data Preparation326

Pretraining Data. We curated a dataset by com-327

bining the LAION subset of ALLaVA (Chen328

et al., 2024a) and the LLaVA-pretrain subset of329

ShareGPT4V-PT (Chen et al., 2024b), resulting330

in a total of 1.03 million image-text pairs. Both331

datasets contain synthetically generated captions,332

providing higher-quality descriptions. Given that333

TinyVLM is a compact model, training on smaller334

datasets with shorter captions led to unstable con-335

vergence and poor generalization. By selecting336

a balanced dataset with both diversity and high-337

quality captions, we ensured effective learning of338

vision-language representations.339

Finetuning Data. For fine-tuning, we cu-340

rated a dataset by selecting specific sections from341

The Cauldron (Laurençon et al., 2024), LNQA3,342

ShareGPT4o4, and Docmatix (Laurençon et al.,343

2024), resulting in 2.70 million image-text pairs.344

Each dataset contributes a unique aspect to the345

model’s training: The Cauldron is a large collec-346

tion of 50 vision-language datasets used in Idefics2347

and Idefics3, covering science, mathematics, doc-348

uments, charts, and tables. Docmatix focuses on349

OCR and document understanding, enhancing text350

extraction capabilities. LNQA provides real-world351

environmental knowledge, improving generaliza-352

tion. ShareGPT4o is a smaller dataset with high-353

quality, detailed captions that refine captioning abil-354

ity.355

This diverse dataset enables TinyVLM to acquire356

broad multimodal capabilities while maintaining357

a compact architecture. To ensure the model re-358

tains the ability to generate coherent text, we also359

included OpenHermes(Teknium, 2023) and Math-360

Instruct (Xiang Yue, 2023), which are text-only361

datasets.362

3https://huggingface.co/datasets/vikhyatk/lnqa
4https://huggingface.co/datasets/OpenGVLab/

ShareGPT-4o

Figure 2: Category wise distribution of the fine-tuning
dataset. Note that this data is sampled from the Cauldron
(Laurençon et al., 2024), LNQA5, ShareGPT4o6, and
Docmatix (Laurençon et al., 2024)

3.3 Training Setup 363

The training of TinyVLM is conducted in three se- 364

quential stages: pre-training, fine-tuning, and CNN- 365

augmented fine-tuning. Each stage is designed to 366

progressively enhance the model’s ability to pro- 367

cess and generate responses based on both visual 368

and textual inputs. 369

Stage 1 - Pre-training. In the pre-training phase, 370

the model is trained on 1.03 million image-caption 371

pairs sourced from two synthetically generated 372

caption datasets. The architecture of TinyVLM 373

comprises four primary components: vision en- 374

coders, connectors, ConvPoolers, and LLM. Dur- 375

ing pre-training, only the connector and Con- 376

vPooler weights are updated, while the rest of the 377

model remains frozen. Note that the CNN and it’s 378

cross-attention connector is not introduced in the 379

pre-training phase at all. 380

The model is optimized using the next-token 381

prediction objective to generate coherent captions 382

and responses based on image embeddings. This 383

stage is crucial for establishing a foundational un- 384

derstanding of vision-language relationships. The 385

pre-training phase required 14.8 A100 GPU hours. 386

Stage 2 - Fine-tuning. Following pre-training, 387

the model undergoes instruction fine-tuning on 388

a diverse dataset of 2.7 million image-text pairs 389

derived from multiple instruction datasets. Un- 390

like pre-training, all model weights are updated in 391

this phase, allowing the model to fully adapt to 392

instruction-based interactions. 393

To maintain strong instruction-following and 394

reasoning capabilities, the model is periodically 395

trained on text-only data. Specifically, we in- 396

corporate OpenHermes and MathInstruct, two 397

instruction-tuning datasets, every 25 and 100 it- 398

erations, respectively. This ensures that the LLM 399

retains its ability to perform structured reasoning 400
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Resolution # Visual Tokens KV Size (MB) TTFT (ms) MMMU TVQA POPE RWQA Avg.
224 49× 5 3.0 24.6 34.2 22.3 78.2 41.6 44.1
384 144× 5 8.8 28.1 32.8 35.1 82.6 41.4 48.0
512 256× 5 15.7 33.9 33.2 34.2 81.1 42.2 47.7

Table 1: Comparison of different resolutions and their effect on memory usage, model performance and efficiency.
Note that the ViT patch size is 16 across these experiments. TTFT denotes the Time to First Token and KV Size
denotes the per sample KV Cache size contributed by the visual tokens.

Method # Visual Tokens KV Size (MB) TTFT (ms)
Single image 576 7.0 25.3
+ 4 zoom-images 2880 35.3 40.4
+ ConvPooler 720 8.8 28.1

Table 2: Compute comparison of Single image and our
ConvPooler. ConvPooler successfully models zoomed
images while limiting the total number of visual tokens
substantially.

Pooler ∆ Param MMMU TVQA POPE RWQA
Mean Pooling 0 32.4 45.9 85.4 45.9
ConvPooler 2.4 M 34.4 44.81 85.7 46.8

Table 3: Comparison of ConvPooler with the baseline
Mean Pooling.

and general instruction following.401

A key modification in this stage is that the loss402

is computed only on answer tokens, ensuring the403

model prioritizes generating high-quality responses404

rather than replicating the entire input structure.405

Additionally, NEFTune (Jain et al., 2023) is ap-406

plied to the language model embeddings, introduc-407

ing controlled noise to enhance generalization and408

robustness. The fine-tuning phase required 77.5409

A100 GPU hours.410

Stage 3 - CNN-Augmented Fine-tuning. In411

the final stage, a masked auto-encoder model -412

ConvNeXT-Tiny (Woo et al., 2023) is integrated413

into the model architecture to enhance spatial fea-414

ture extraction. We wanted to leverage spatial fea-415

tures learned through self-supervised learning and416

hence choose this 28M CNN based masked auto-417

encoder model. This CNN-based component gen-418

erates 49 spatial visual tokens, which are processed419

through the cross-attention connector alongside the420

already fine-tuned ViT’s output (acting as keys and421

values). The resulting tokens are then appended to422

the original image tokens, enabling the model to423

capture fine-grained visual details more effectively.424

During this phase, the model is fine-tuned on425

400K image-text pairs, refining its performance426

with this enhanced vision-text representation. This427

stage required 14 A100 GPU hours.428

Total Training Cost: The complete training429

process takes 106.3 A100 hours and $159 making 430

our proposed pipeline one of the most efficient 431

approaches for training compact VLMs. 432

4 Evaluation 433

We evaluate the multimodal capabilities of VLMs 434

on five datasets: POPE (Li et al., 2023b), which de- 435

tects object hallucinations; TextVQA (Singh et al., 436

2019), which assesses the ability to read and reason 437

about text in images; MMMU (Yue et al., 2024), 438

which tests college-level subject knowledge and de- 439

liberate reasoning across six core disciplines—Art 440

& Design, Business, Science, Health & Medicine, 441

Humanities & Social Science, and Tech & Engi- 442

neering; RealWorldQA, a benchmark designed for 443

real-world understanding; and VQAv2 (Goyal et al., 444

2017), which requires a combination of vision, lan- 445

guage, and commonsense knowledge to generate 446

accurate answers. 447

Image Resolution. Input image resolution plays 448

a crucial role in balancing fine-grained feature 449

learning and inference latency. Table 1 presents the 450

performance of our method across three different 451

resolutions. In order to efficiently study multiple 452

paradigms of our proposed model, we limit the 453

fine-tuning steps to 25K out of a total of 169K for 454

Table 1. We qualitatively observed that 25K steps 455

are a good proxy for the final fine-tuned model and 456

hence sufficient to make decisions regarding the 457

model architecture. Note that we pre-train all the 458

models with the same number of steps and only use 459

a proxy for the fine-tuning stage. 460

The ×5 factor in the visual token count accounts 461

for both global and local tokens, resulting from 462

our zooming strategy. We observe that the 384- 463

resolution model significantly outperforms the 224- 464

resolution variant, while further scaling to 512 465

resolution provides only marginal improvements. 466

Higher resolutions are particularly beneficial for 467

fine-grained tasks such as text recognition, as evi- 468

denced by the performance gains in TextVQA. 469

However, the increased number of visual tokens 470

at higher resolutions negatively impacts model ef- 471
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TTFT (ms) KV Size (MB) MMMU TVQA POPE RWQA VQAv2 Average
without CNN 28.1 8.8 34.4 44.8 85.7 46.8 66.36 52.94
with CNN 35.3 9.4 34.7 47.7 84.5 47.4 69.74 56.80

Table 4: Effect of visual feature enrichment by a CNN. With minimal rise in KV Size, CNN improves performance
by upto 4%.

Model Parameters TTFT (ms) MMMU TVQA POPE RWQA VQAv2 Average
DeepseekVL 2.0 B 30.1 32.2 - 87.6 - - -
MobileVLM 1.7 B 27.3 30.3 41.5 84.5 42.9 68.1 53.4
MobileVLM-V2 1.7 B 25.5 30.7 52.1 84.3 46.3 73.0 57.3
NanoLLaVA 1.1 B 71.9 30.4 46.7 84.1 44.0 70.8 55.2
Ours 0.6 B 35.3 34.7 47.7 84.5 47.4 69.7 56.8

Table 5: Comparison with existing compact VLMs. TinyVLM achieves performance comparable to state-of-the-art
models while maintaining a significantly smaller parameter footprint.

ficiency. To mitigate this, our visual token pooler472

effectively reduces the number of tokens passed to473

the LLM. As shown in Table 1, at 384 resolution,474

rather than processing 576 tokens per image, we475

utilize only 144 pooled tokens per image, signifi-476

cantly reducing computational overhead.477

Based on these findings, we fix 384 as the default478

input resolution across all our experiments.479

Visual Token Pooler. As described in the previ-480

ous section, limiting the number of visual tokens481

is an important factor in building VLMs. Table 2482

shows that adding zoomed images into the pipeline483

substantially increases the number of visual to-484

kens. Additionally, processing all 2880 tokens from485

the original and zoomed-in sub-images leads to a486

quadratic increase in TTFT and results in a very487

large context size for a small language model.488

To address this, we explore two simple pooling489

strategies, with results presented in Table 3. Con-490

vPooler improves upon a simple 2×2 mean pooling491

approach by learning an optimized token pooling492

convolutional kernel. This allows TinyVLM to ag-493

gregate high-resolution features while maintaining494

a reasonable token count, thereby reducing TTFT495

and KV cache size substantially.496

Visual Feature Enrichment. While ViTs excel at497

capturing global context, they often struggle with498

fine-grained spatial details due to the absence of499

localized inductive biases. In contrast, CNNs inher-500

ently model spatial hierarchies through locality and501

translation equivariance, making them an effective502

complement to ViTs. To leverage these advantages,503

we integrate ConvNeXt-Tiny as an auxiliary feature504

extractor, generating 49 additional tokens. These505

tokens enrich the model’s visual representation by506

capturing fine-grained spatial information and rein-507

forcing structured visual patterns, effectively com-508

Figure 3: Average attention across layers and token
types computed with respect to the answer tokens.

plementing transformer-based global features. 509

Table 4 demonstrates the substantial perfor- 510

mance improvements achieved by incorporating 511

a CNN alongside a ViT as the vision encoder. This 512

enhancement is particularly beneficial for text un- 513

derstanding tasks. However, adding a small CNN 514

introduces a slight increase in hallucinations, as 515

indicated by the POPE score. 516

We analyze the average attention distribution 517

across different types of visual tokens during the 518

decoding of answer tokens. As illustrated in Figure 519

3, the CNN-generated tokens receive significantly 520

higher attention. This indicates that the CNN to- 521

kens play a more influential role in shaping the 522

model’s generated responses. 523

Finally, Table 5 compares our model with ex- 524

isting compact vision-language models, including 525

DeepSeek-VL (Lu et al., 2024), MobileVLM (Chu 526

et al., 2023), MobileVLM V2 (Chu et al., 2023), 527

and NanoLLaVA. our model achieves competi- 528

tive performance while maintaining a significantly 529

smaller footprint. It outperforms NanoLLaVA and 530

MobileVLM substantially while being nearly half 531

its size, demonstrating a strong balance between 532

accuracy and efficiency. Compared to larger mod- 533
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Precision MMMU TVQA POPE RWQA VQAv2 Average
W16A16 34.7 47.7 84.5 47.4 69.7 56.8
W4A16 33.5 46.2 85.1 47.2 69.3 56.3
W4A8 31.1 39.2 83.7 40.1 66.4 52.1

Table 6: TinyVLM is compatible with existing quanti-
zation algorithms while retaining performance at high
precision.

Device TTFT Throughput (toks/s)
NVIDIA A100 35.3 ms 1880.1
Intel Xeon - 8 Core CPU 3.5 s 18.0

Table 7: Latency and Througput of TinyVLM on A100
GPU machine and 8-core CPU machine.

els like MobileVLM-V2 and DeepSeek-VL, our534

approach offers improved feasibility for real-world535

deployment, particularly in resource-constrained536

environments.537

Deployment on the Edge. Deploying VLMs on538

edge devices presents significant challenges due539

to limited compute power, memory constraints,540

and latency requirements. TinyVLM is designed541

with efficiency in mind, enabling deployment on542

resource-constrained platforms while maintaining543

strong performance.544

We benchmark inference latency on both a high-545

performance A100 GPU and an Intel Xeon 8-core546

CPU Machine with Platinum 8370C CPU. As547

shown in Table 7, TinyVLM achieves low-latency548

inference on the CPU machine, making it a prac-549

tical solution for real-time applications such as550

robotics, assistive technologies, and mobile AI sys-551

tems. TinyVLM runs at 18 tokens/sec on a CPU-552

only system enabling real world visual-language553

applications on edge hardware. Note that these554

numbers are presented for a fp16 model and quan-555

tization can further improve the same.556

To assess its feasibility for edge deployment557

and compatibility with existing quantization meth-558

ods, we quantize TinyVLM using AWQ (Lin et al.,559

2024a) and QoQ (Lin et al., 2024c) for W4A16 and560

W4A8 precision respectively. Table 6 compares561

these quantizations with the baseline model, show-562

ing that while W4A8 quantization introduce some563

performance degradation, W4A16 maintains com-564

petitive accuracy while significantly reducing com-565

putational overhead. At 4-bit precision, TinyVLM566

takes a mere 300 MB memory, enabling efficient567

edge deployment.568

Limitations 569

Despite the efficiency and competitive performance 570

of TinyVLM, several limitations remain. First, 571

while our model employs a CNN-based feature 572

extractor and visual token pooling to reduce com- 573

putational overhead, it still relies on a Vision Trans- 574

former (ViT) backbone, which can be resource- 575

intensive for extremely low-power edge devices. 576

Although quantization techniques such as W4A16 577

and W4A8 (Table 6) mitigate this to some extent, 578

further exploration of distillation-based approaches 579

or hardware-aware optimizations could improve 580

deployment feasibility on constrained hardware. 581

Second, our visual token compression strategy 582

effectively reduces the number of tokens fed into 583

the LLM, improving inference efficiency. How- 584

ever, aggressive token reduction may lead to a loss 585

of fine-grained spatial details, particularly in tasks 586

that require precise text recognition or dense visual 587

reasoning. While our CNN-guided token pooling 588

retains critical features, further refinements in adap- 589

tive token selection strategies could help balance 590

efficiency and spatial fidelity. 591

Third, our pretraining dataset, sourced from 592

web-scale multimodal corpora, introduces inher- 593

ent biases present in synthetically generated cap- 594

tions and internet-scraped image-text pairs. This 595

may affect model robustness, particularly in spe- 596

cialized domains such as medical imaging, scien- 597

tific document understanding, or low-resource lan- 598

guages. Addressing this requires better dataset cu- 599

ration, domain-adaptive training techniques, and 600

controlled synthetic data generation to reduce spu- 601

rious correlations. 602

Finally, while TinyVLM performs well on 603

vision-language benchmarks, it has not been ex- 604

tensively tested on long-form reasoning tasks, 605

instruction-following in low-data regimes, or few- 606

shot generalization scenarios. Future work could 607

explore in-context learning adaptations, retrieval- 608

augmented generation (RAG), or meta-learning 609

techniques to improve performance in settings 610

where labeled multimodal data is scarce. 611
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Figure 4: Qualitative samples demonstrating wide abilities of the proposed TinyVLM.

Appendix 833

Stage 1 Stage 2 Stage 3
Number of Steps 16K 169K 25K
Learning rate (max, min) (1e−5, 5e−6) (1e−6, 0) (5e−7, 5e−7)

LR Scheduler Linear Linear Constant
Batch Size 64 16 16
Train Vision Encoder % ! !

Train Connector and Pooler ! ! !

Train Language Model % ! !

Train CNN NA NA !

Data
ALLaVA

ShareGPT4V-PT
The Cauldron, LNQA,

Docmatix, ShareGPT4o
Subset of Stage 2

Table 8: Training stages and their corresponding parameters and datasets.
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