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Abstract

Text-to-Image (T2I) models have recently001
achieved remarkable success in generating im-002
ages from textual descriptions. However, chal-003
lenges still persist in accurately rendering com-004
plex scenes where actions and interactions form005
the primary semantic focus. Our key observa-006
tion in this work is that T2I models frequently007
struggle to capture nuanced and often implicit008
attributes inherent in action depiction, lead-009
ing to generating images that lack key contex-010
tual details. To enable systematic evaluation,011
we introduce AcT2I, a benchmark designed012
to evaluate the performance of T2I models in013
generating images from action-centric prompts.014
We experimentally validate that leading T2I015
models do not fare well on AcT2I. We fur-016
ther hypothesize that this shortcoming arises017
from the incomplete representation of the in-018
herent attributes and contextual dependencies019
in the training corpora of existing T2I models.020
We build upon this by developing a training-021
free, knowledge distillation technique utilizing022
Large Language Models to address this limi-023
tation. Specifically, we enhance prompts by024
incorporating dense information across three025
dimensions, observing that injecting prompts026
with temporal details significantly improves im-027
age generation accuracy, with our best model028
achieving an increase of 72%. Our findings029
highlight the limitations of current T2I meth-030
ods in generating images that require complex031
reasoning and demonstrate that integrating lin-032
guistic knowledge in a systematic way can no-033
tably advance the generation of nuanced and034
contextually accurate images.035

1 Introduction036

Text-to-Image (T2I) models have advanced rapidly,037

evolving from simple image generation systems038

to producing intricate, photorealistic scenes (Kar-039

ras et al., 2019; Rombach et al., 2022; Esser et al.,040

2024). There has been a consistent growth in the041
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Figure 1: Action Depiction Performance of SOTA Text-
to-Image Models. Each generated image was evaluated
by three reviewers, resulting in a binary acceptance
(yes/no). The acceptance rate represents the average
agreement among reviewers on each model’s acceptabil-
ity of action depiction.

performance of T2I models in their ability to per- 042

form compositional tasks such as object placement 043

and attribute binding, as evidenced by their per- 044

formance on benchmarks such as T2I-CompBench 045

(Huang et al., 2023) and GenEval (Ghosh et al., 046

2024). 047

However, these benchmarks aim to capture 1- 048

hop capabilities of T2I models, i.e. evaluating 049

abilities that does not require nuanced reasoning 050

while generating an image. For example, to gener- 051

ate a "blue apple", the model has to follow 2 steps: 052

1. generating an apple followed by, 2. coloring it 053

blue. While being important, these setups fail to 054

accurately evaluate T2I models in generating com- 055

plex scenarios which require multiple iterations of 056

reasoning. Furthermore, with the rapid develop- 057

ment of state of the art T2I models, it is imperative 058

to develop stringent benchmarks. 059

To address this gap, we develop the AcT2I 060
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Figure 2: LLM-Transformed prompts unlock richer and accurate action depiction. Compared to baseline prompts
that lack dense details, LLM-guided transformation into Emotional, Spatial, and Temporal dimensions generates
images exhibiting more compelling action dynamics, finer expressive details, and improved subject placement
accuracy. (See Appendix B for an extended qualitative analysis.)

benchmark, to evaluate Text-to-Image models in061

their ability to generate images of action-centric062

scenarios. To the best of our knowledge, action063

depiction has not been studied for T2I models. In064

this work, we aim to define this problem statement,065

benchmark existing models and develop baseline066

methods, with the ultimate goal of aligning T2I067

models with human interpretation of actions, which068

are inherently complex. For example, depicting “a069

viper coiling around a duck” involves more than070

just object placement and spatial composition; it re-071

quires understanding of relative object proportions,072

temporal dynamics and appropriate emotional ex-073

pressions.074

We develop the AcT2I evaluation benchmark075

by sampling a total of 20 actions from the Ani-076

mal Kingdom (Ng et al., 2022) dataset, covering077

100 animals, developing a total of 125 prompts.078

With this evaluation suite, we perform a compre-079

hensive human evaluation, across 5 state of the art080

T2I models. Our key finding is that - existing T2I081

models struggle to generate images that accurately082

depict realistic actions based on textual prompts.083

These models tend to overfit to conventional ac-084

tions associated with specific animals and fail to085

capture the nuanced details necessary to convey a086

given action effectively. Our next observation is087

that providing dense information in the text prompt088

improves performance in action generation by a089

significant margin. Therefore, we propose a test- 090

time Large Language Model (LLM) (Touvron et al., 091

2023; OpenAI et al., 2024) guided knowledge distil- 092

lation pipeline that enhances the text prompt across 093

multiple dimensions, leading to upto 3x gains in 094

performance, as shown in Figure 2. 095

To summarize, our contributions are as follows: 096

• We develop the AcT2I benchmark to evaluate 097

the ability of T2I models to generate images 098

from textual prompts that describe actions. 099

We evaluate a total of 25 actions across 100 100

animals, sampled from the Animal Kingdom 101

(Ng et al., 2022) dataset. 102

• Our findings, based on an extensive evaluation 103

of 5 state-of-the-art T2I models, reveal a sig- 104

nificant limitation in their ability to generate 105

accurate and realistic action depictions. 106

• We develop a training-free LLM-guided 107

knowledge distillation technique that injects 108

dense descriptions into prompts across 3 di- 109

mensions - spatial, temporal and emotional; 110

and find large gains in performance, such as 111

a 73% improvement in the performance of 112

Stable Diffusion 3.5 Large. 113
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2 Related Works114

2.1 Text-to-Image Models115

Early Text-to-Image (T2I) models focused on gen-116

erating simple, often low-resolution images directly117

from textual prompts. This changed with Stable118

Diffusion (Rombach et al., 2022), which pioneered119

latent-space processing using VQGAN (Esser et al.,120

2021), enabling scalable, high-fidelity image gen-121

eration. Subsequent efforts, such as Latent Consis-122

tency Models (Luo et al., 2023) and InstaFlow (Liu123

et al., 2023), have further optimized aspects like124

generation speed and image quality. Recently, mod-125

els including FLUX.1-dev (Labs, 2024) and Stable126

Diffusion 3 (Esser et al., 2024) have pushed the127

boundaries of compositional accuracy and realism.128

However, despite these advancements, current T2I129

models often struggle with capturing intricate rela-130

tionships and complex interactions, motivating the131

need for additional techniques to enhance semantic132

understanding.133

2.2 Knowledge Distillation from Large134

Language Models135

Descriptive captions have proven to improve image136

generation in text-to-image models (Betker et al.,137

2023). Knowledge Distillation (KD) provides a138

pathway to improve T2I models by transferring139

semantic and contextual knowledge from Large140

Language Models (LLMs) without additional full-141

scale retraining. For instance, KD-DLGAN (Cui142

et al., 2023) leverages generative distillation to143

enhance image diversity and quality even under144

limited data conditions. Beyond improving visual145

realism, KD can bridge the gap between textual146

semantics and visual representations, facilitating147

tasks like visual question answering and image148

captioning. Augmenting models like CLIP (Rad-149

ford et al., 2021) with LLM-derived knowledge has150

shown promise in improving vision-language align-151

ment (Dai et al., 2022). Nevertheless, current KD152

approaches often assume static relationships (Feng153

et al., 2024; Wu et al., 2024; Datta et al., 2023;154

Zhong et al., 2023) and lack the ability to handle155

dynamic, action-centric scenarios. This limitation156

underscores the need to adapt KD techniques for157

more sophisticated tasks where temporal and rela-158

tional dynamics play a critical role.159

2.3 Relational Understanding in Generative 160

Models 161

While T2I models now excel at producing photo- 162

realistic images, they remain limited in their ca- 163

pacity to generate coherent relational scenes. Ex- 164

isting SOTA models—such as Stable Diffusion 165

3.5 Large, DALL-E 3 (Betker et al., 2023), and 166

FLUX.1-dev—often fail to correctly depict scenar- 167

ios like “a cat chasing a mouse under a table,” yield- 168

ing images that lack logical spatial arrangements or 169

contextual correctness (Chatterjee et al., 2024; Con- 170

well and Ullman, 2022; Lian et al., 2023). The core 171

challenge is that these models typically do not cap- 172

ture fine-grained relational cues, making it difficult 173

to represent dynamic interactions or hierarchical 174

relationships (Fu et al., 2024). Benchmarks like 175

the Textual-Visual Logic Challenge (Xiong et al., 176

2025) highlight these shortcomings, focusing on 177

compositional and logical consistency rather than 178

isolated attributes. 179

In this work, we develop a benchmark that re- 180

quires relational reasoning of a complex form – 181

generating the correct action between two entities. 182

We empirically establish that this is indeed a hard 183

problem for existing T2I models and develop a sim- 184

ple baseline method to improve upon this existing 185

shortcoming. 186

3 Benchmarking T2I Models on AcT2I 187

3.1 Experimental Setup 188

We evaluate 5 T2I models — Stable Diffusion 3.5 189

Large (Esser et al., 2024), AuraFlow1, FLUX.1-dev 190

(Labs, 2024), Playground v2.5 (Li et al., 2024), and 191

PixArt-Σ (Chen et al., 2024); with these models 192

varying across their pre-training data, diffusion ar- 193

chitecture and text encoders. We sample 4 images 194

per prompt to maintain consistency. All image gen- 195

erations were performed using publicly available 196

model checkpoints with parameter settings, unless 197

otherwise specified. All experiments were run on a 198

NVIDIA A100 GPUs. 199

3.2 Prompt Generation 200

All our prompts consist of 2 entities and 1 action 201

relationship; example prompts are enumerated in 202

Table 1. Our entities and actions are sourced from 203

the Animal Kingdom Dataset (Ng et al., 2022). We 204

choose this setup because it enables to evaluate an- 205

imals from diverse taxonomies (for example, mam- 206

mals and reptiles) and sample actions of varying 207

1https://huggingface.co/fal/AuraFlow-v0.2
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A B Action Text

Goose Turkey competing for dominance with A goose competing for dominance with a turkey
Boar Giraffe retaliating against A boar retaliating against a giraffe
Weasel Snake fleeing from A weasel fleeing from a snake
Duck Duck fighting A duck fighting a duck
Gorilla Dog grooming A gorilla grooming a duck

Table 1: Examples of text inputs from the AcT2I dataset
for a pair of animals (A, B) and an action between them.

kinds. Furthermore, unlike human image gener-208

ation (More details in Appendix A), T2I models209

do not exhibit issues such as disfigurement when210

generating animal images. This allows us to fo-211

cus exclusively on evaluating their ability to depict212

actions accurately.213

We cover 25 actions, generating 5214

prompts/action, each instantiated with a unique215

animal-animal combination, leading to a total of216

125 prompts. Our prompts cover both actions217

naturally associated with a given animal and218

those that are less typical, ensuring coverage219

of both in-distribution and out-of-distribution220

scenarios. Overall, our benchmark ensures a221

broad coverage of action types, evaluating the222

models’ compositional reasoning, and facilitate a223

meaningful assessment of their ability to depict224

nuanced animal interactions.225

3.3 Annotation Setup226

A total of 25 annotators, hired via Amazon Me-227

chanical Turk where each image was independently228

rated by 3 annotators. Each annotator was in-229

structed to answer "Yes" or "No" to the question:230

"Does the image accurately depict the action de-231

scribed in the prompt?". We define the acceptance232

rate as the proportion of images receiving a “Yes”233

from a majority of annotators. This binary evalua-234

tion helps isolate whether models can convey the235

intended action rather than focusing on nuanced236

aesthetic qualities. More details are presented in237

Appendix E.238

3.4 Benchmarking Results239

Overall Performance: As shown in Figure 1, Sta-240

ble Diffusion 3.5 Large achieves the highest accep-241

tance rate (48%), followed by FLUX.1-dev (45%)242

and AuraFlow (44%). In contrast, PixArt-Σ and243

Playground v2.5 lag behind at 29% and 27%, re-244

spectively. These results indicate a considerable245

performance gap, with no model surpassing a 50%246

acceptance rate across challenging action-centric247

prompts, indicating that none of the models get248

majority of the images correct.249

Category-Specific Trends: In Figure 3 we elab- 250

orate upon the acceptance rate across 2 dimen- 251

sions, 1. Animal Class vs Model Performance, 252

and 2. Animal Class vs Action: Figure 3(1a) 253

breaks down acceptance rates by animal class com- 254

binations. We find that birds generally yielded 255

the most accurate depictions, followed by mam- 256

mals, while models struggled at generating im- 257

ages containing reptiles. FLUX.1-dev excelled in 258

Bird-Bird prompts, reaching a 72% acceptance rate, 259

and Stable Diffusion 3.5 Large performed best un- 260

der Mammal-Mammal scenarios (52%). However, 261

both struggled with reptile-related prompts. We 262

find that Playground v2.5—despite its low over- 263

all acceptance—performed comparatively well on 264

Reptile-Reptile prompts (46%), surpassing even 265

top-performing models in this category. This sug- 266

gests that some models may have niche strengths 267

or training biases that favor certain animal classes 268

or interactions. 269

These findings underscore the complexity of 270

action-centric generation tasks. Although certain 271

models achieve moderate success in specific do- 272

mains (e.g., birds), consistently depicting complex 273

interactions across diverse species remains a signif- 274

icant challenge. 275

3.5 Quantitative Analysis 276

Although T2I models have advanced considerably, 277

our evaluations reveal persistent difficulties in ac- 278

curately depicting complex, action-centric scenes. 279

Figure 3(2a) details acceptance rates across vari- 280

ous animal classes and actions, illustrating several 281

recurring issues: 282

1. Incomplete Depictions: We find that a lot 283

of images lack essential elements of the prompt. 284

For instance, “coiling around” actions often pro- 285

duced headless snakes (Mammal-Reptile accep- 286

tance: 17.5%; Reptile-Reptile: 20.8%), and “[an- 287

imal] fleeing from a cobra” frequently omits the 288

cobra entirely. In multiple scenarios, an animal is 289

entirely replaced by another or completely skipped, 290

indicating that models struggle to maintain multiple 291

distinct entities simultaneously. 292

2. Hybridization of Animals: Models occasion- 293

ally fuse features of different species, yielding un- 294

natural hybrids (e.g., a viper with a duck’s head). 295

For actions such as “pecking at”, "fleeing from", 296

and "calling to" in the Bird-Mammal prompts, the 297

low acceptance rate of 3/10 suggests difficulty dif- 298

ferentiating species. Cross-class prompts like “a 299

swan pecking at a crocodile” often produces visual 300
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Figure 3: Heatmaps of acceptance rates for baseline and knowledge-distilled prompts. (1a) Baseline acceptance
rates by model, (1b) Knowledge-distilled acceptance rates by model, (2a) Baseline acceptance rates by action, and
(2b) Knowledge-distilled acceptance rates by action. Comparisons are shown across models, actions, and animal
class combinations.

blends, undermining species boundaries.301

3. Contextual Misrepresentation: A key chal-302

lenge lies in accurately rendering the intended re-303

lationships and roles specified in a prompt. For304

example, cross-species interactions frequently ex-305

hibit taxonomic bias, with mammalian traits dis-306

proportionately emphasized over reptilian ones, re-307

gardless of the intended narrative. Consider, for in-308

stance, the act of "a Snake coiling around a Gecko".309

While the physical action of coiling may be rep-310

resented, images often neglect the gecko’s strug-311

gle and portrays it as willingly entangled (25%312

Mammal-Reptile). It is also overfitted as a nega-313

tive action instead of neutral. The same taxonomic314

dominance is given more credence than physical315

dominance, with small animals able to attack big316

animals in a spatial area; failing to convey subtle317

power dynamics (43.8% Mammal-Mammal; 50.3% 318

Bird-Bird). 319

4. Spatial and Positional Inaccuracy: Scenar- 320

ios requiring careful scaling and depth cues are 321

mishandled. “A bird landing on an elephant” often 322

showed disproportionate sizes, while “perched atop 323

a tall giraffe” lacked proper perspective. Such mis- 324

alignments indicate a struggle to represent realistic 325

spatial relationships. 326

5. Emotional and Expressive Inaccuracy: 327

Prompts implying aggression or social nuance fre- 328

quently produced incorrect images. For exam- 329

ple, “retaliating against” in Bird-Mammal contexts 330

reached only 46.7% acceptance, rarely capturing 331

the intended hostility. Similarly, “grooming” in- 332

teractions (35.6% Mammal-Mammal) lacked the 333

gentle or intimate postures expected. 334
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6. Temporal Dynamics and Action Timing: Ac-335

tions involving movement, such as “chasing,” were336

often rendered statically. With only 38.7% accep-337

tance in Mammal-Mammal combinations, dynamic338

sequences appeared frozen in a single frame, lack-339

ing the temporal cues necessary to convey motion340

and directionality.341

Collectively, these challenges underscore that342

current T2I models struggle with tasks demanding343

nuanced relational, spatial, emotional, and tempo-344

ral understanding. Such deficiencies motivate our345

subsequent efforts to enrich prompts with semantic346

guidance to improve action depiction.347

4 Improving Action Generation with348

LLM-guided Knowledge Distillation349

To address the persistent challenges in T2I gener-350

ation identified earlier, we propose a training-free351

prompt enrichment strategy that leverages Large352

Language Models (LLMs). Specifically, we use353

GPT-4 (OpenAI et al., 2024) to infuse additional se-354

mantic guidance into prompts. Rather than opting355

for retraining T2I models or modifying their archi-356

tectures, we focus on enhancing the textual inputs357

directly. This approach is a lightweight and flexible358

intervention, aiming to provide clearer instructions359

that help models better capture relational, emo-360

tional, and temporal nuances (see Appendix D.4361

for few-shot results and Appendix D.5 for the open-362

vs. closed-source LLM comparison).363

4.1 Dimensions for Prompt Expansion364

We systematically enrich prompts along three key365

dimensions: spatial, emotional, and temporal. Spa-366

tial guidance clarifies relative positioning, size, and367

depth; emotional cues emphasize behavioral ex-368

pressions and postures; and temporal hints convey369

motion and sequential dynamics. By isolating these370

aspects, we can precisely target common failure371

modes in T2I generation.372

4.2 Methodology373

For each original prompt, we instruct GPT-4 to374

add semantic depth tailored to one of the three di-375

mensions. This involves specifying the animals’376

relative positions, emotional states, or motion cues377

more explicitly. The enriched prompts thus serve378

as more detailed “blueprints” for the T2I model, po-379

tentially reducing ambiguity and guiding it toward380

more accurate renderings.381

We provide illustrative templates for each di-382

mension in Appendix D.2. These templates demon-383
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Figure 4: Aggregated user preferences (%) for image
generation models across compositional dimensions.
Win rates show how often users preferred a dimension
over others. Skip rates represent cases where no dimen-
sions adequately captured action-related elements.

strate how a prompt can be transformed to high- 384

light specific spatial, emotional, or temporal as- 385

pects without fundamentally altering the underly- 386

ing scenario. Importantly, these transformations 387

are prompt-specific: each prompt’s enrichment de- 388

pends on its initial wording and context. By apply- 389

ing the template guidelines flexibly, we can adapt 390

the semantic enrichment process to a wide range 391

of action-centric scenes, ensuring that the result- 392

ing prompts remain coherent, contextually relevant, 393

and aligned with the desired narrative. 394

4.3 Evaluation of Distillation Techniques 395

Knowledge distillation significantly enhances the 396

performance of T2I models, particularly in cap- 397

turing temporal, emotional, and spatial nuances. 398

Figure 4 illustrates the win rate of each model 399

across various dimensions. Stable Diffusion 3.5 400

Large, Flux.1-dev, and AuraFlow demonstrate no- 401

table user preference for LLM-guided enriched 402

prompts. Temporal Distillation emerges as the 403

most preferred option across all models, followed 404

by Emotional and Spatial Distillation. Conversely, 405

PixArt-Σ and Playground v2.5 exhibit limited effi- 406

cacy in utilizing descriptive prompts. Subsequent 407

paragraphs provide an in-depth analysis of each 408

dimension’s performance across different animal 409

class pairs and actions. Our word cloud analysis 410

(Figure 5) reveals the most frequent terms in our 411

enriched prompt database across dimensions. Emo- 412

tionally Distilled prompts feature a high frequency 413

of expressive terms, effectively capturing subject 414

6



Emotional Spatial Temporal

Figure 5: Word clouds summarizing key semantic elements enriched in prompts for each dimension: Emotional
(left), Spatial (center), and Temporal (right).

emotions and moods. Spatially Distilled prompts415

emphasize precise locational descriptors, ensuring416

accurate spatial relationships. Temporal Distilla-417

tion incorporates temporal markers, enhancing the418

depiction of dynamic sequences. Additionally, we419

conduct a POS Analysis, detailed in Appendix D.3.420

Temporal Distillation: We find that temporal en-421

richment causes the largest improvement in perfor-422

mance. For example, competitive actions, which423

often involve nuanced sequences of dominance and424

retaliation, see a +274% improvement with tem-425

poral prompts. Bird-Bird interactions, known for426

intricate hierarchical displays, achieve a +365%427

gain. Specific actions like “hissing at” and “re-428

taliating against” improve by +431% and +363%,429

respectively, highlighting the critical role of action430

timing and motion cues in disambiguating complex431

behaviors.432

Emotional Distillation: Emotional guidance re-433

fines subtle behavioral and expressive details, sub-434

stantially boosting fidelity in close-range or tension-435

filled scenarios. Feeding actions, which depend436

on accurately depicting predatory and defensive437

postures, benefit by +223%, while “chasing” and438

“coiling around” improve by +397% and +382%, re-439

spectively. In reptile-reptile interactions, emotional440

cues lead to a +891% improvement, underscoring441

how clear affective states help models represent442

inherently less familiar or visually subtle animal443

dynamics.444

Spatial Distillation: Spatial enrichment ensures445

correct positional relationships and size contrasts.446

While its impact is modest in dynamic scenarios,447

it still provides meaningful gains for actions re-448

liant on correct vantage points. For example, “call-449

ing to” improves by +307%, and “hissing at” sees450

a +292% gain under spatial prompts. These en-451

hancements confirm that clearly specifying spa-452

tial arrangements can complement temporal and453

emotional cues, particularly for stationary or less454

overtly dynamic interactions.455

Baseline and Category Dependencies: Interest- 456

ingly, certain categories remain challenging, with 457

social actions showing relatively modest gains 458

(+37%), and baseline prompts outperforming en- 459

riched ones in some aggressive and social scenar- 460

ios. Bird-Reptile interactions stand out at baseline 461

(0.278), indicating that even without enrichment, 462

some combinations are inherently easier. 463

Overall, these quantitative insights validate the 464

qualitative claims. Temporal cues best tackle dy- 465

namic and abstract actions, emotional details help 466

articulate close-range or expressive interactions, 467

and spatial guidance refines positional accuracy. 468

While no single technique solves all shortcomings, 469

dimension-specific enrichment—particularly tem- 470

poral—offers a significant step toward more nu- 471

anced, contextually accurate T2I image generation. 472

4.4 What about automated metrics? 473

We explore CLIPScore (Hessel et al., 2021) and 474

a DINOv2(Oquab et al., 2023) based metric 475

(DinoScore) to automatically evaluate the gener- 476

ated images. The objective was to assess whether 477

automated metrics are reliable for evaluating action 478

generation in images. CLIPScore is a reference- 479

free evaluation metric that leverages the capabil- 480

ities of the CLIP model to assess semantic align- 481

ment between textual descriptions and images. The 482

DINOv2-based pipeline has 2 steps : 1 Extract- 483

ing the most relevant frame from Animal Kingdom 484

videos for a given action (using CLIPScore), and 485

2 comparing the DINOv2 features of the extracted 486

frame and the generated image of the T2I mod- 487

els. As shown in Figure 6, automated metrics ex- 488

hibit minimal differentiation between dimensions 489

and fail to correlate with human evaluations on the 490

AcT2I benchmark. Although the means in Figure 6 491

appear almost identical, this reflects a shared insen- 492

sitivity to fine-grained action cues rather than gen- 493

uine agreement; a targeted probe (Appendix C.2) 494

shows that both metrics assign nearly the same 495
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scores to correct and mismatched captions. This496

discrepancy underscores the need for more sophis-497

ticated metrics that better align with human percep-498

tual judgment. We discuss this in more depth in499

Appendix C.1.500

Note on multimodal LLM evaluators. A501

pilot study with the VQA-capable model502

llava-v1.6-vicuna-13b-hf is discussed in503

Appendix C.3. Its limited accuracy (≈70 %504

overall, 62 % on semantic queries) suggests current505

multimodal LLMs still struggle with interpreting506

fine-grained action semantics.507

5 Conclusion508

Despite significant advancements in Text-to-Image509

(T2I) synthesis, current models exhibit limitations510

in accurately representing nuanced actions, high-511

lighting a gap between model capabilities and real-512

world expectations. Our evaluation reveals that513

state-of-the-art models achieve only a 48% accep-514

tance rate, underscoring the difficulty in capturing515

the implicit visual cues crucial for representing dy-516

namic scenarios.517

To address this challenge, we introduced518

knowledge-distilled techniques targeting three key519

dimensions: temporal dynamics, emotional expres-520

siveness, and spatial relationships. Temporal distil-521

lation emerged as the most impactful, significantly522

enhancing the depiction of dynamic actions. Emo-523

tional and spatial distillations complemented this524

by refining subtle behavioral and positional ele-525

ments, respectively.526

While automated metrics like CLIPScore and527

DinoScore offer valuable insights, they fall short528

in capturing the nuanced improvements achieved529

through our techniques. Human evaluations remain530

the gold standard for assessing semantic fidelity531

and realism in complex T2I outputs.532

Future research should focus on enhancing rela-533

tional and temporal grounding in vision-language534

(VL) models to better capture the implicit visual535

cues critical for nuanced action representation. Fur-536

thermore, the development of robust automated537

metrics capable of accurately evaluating complex538

T2I outputs remains a crucial area for future explo-539

ration, ensuring that progress in this field can be540

effectively measured and validated.541

6 Limitations542

While this study demonstrates the efficacy of543

training-free semantic enrichment, two primary544

limitations merit consideration. First, the observed 545

performance gains are contingent upon the under- 546

lying Text-to-Image (T2I) model’s capacity to ef- 547

fectively leverage densely enriched prompts. The 548

extent of this capacity may vary depending on the 549

initial prompt complexity and the quality of the 550

Large Language Model (LLM)-generated output. 551

Second, the evaluation methodology relies heavily 552

on human assessment due to the inherent limita- 553

tions of current automated metrics, which are often 554

inadequate for capturing subtle semantic nuances 555

comprehensively. While our findings indicate sig- 556

nificant improvements in contextual understanding 557

for T2I models, they also raise potential societal 558

concerns, including the potential misuse of more 559

realistic imagery and the propagation of inherent 560

biases present within the training data. Future re- 561

search must address these ethical considerations to 562

ensure responsible applications of these techniques 563

and mitigate potential negative consequences. 564
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Appendix796

A Addressing Generalization Limitations797

To evaluate action depiction, we aimed to assess798

T2I models’ ability to generate images where all799

subjects were accurately represented. Additionally,800

our choice of subjects prioritized those with high801

affordance, capable of performing a diverse set of802

actions and assuming unique roles with distinct803

mappings. However, the current capabilities of T2I804

models, when tasked to generate all subjects cor-805

rectly, introduce more issues. We found that gener-806

ating images of humans remains a challenge, with807

common errors including incomplete depictions808

and subject disfigurement. These errors directly809

impact evaluation because we can only thoroughly810

critique semantic inaccuracies after the subjects811

themselves are rendered correctly. We share exam-812

ples of such errors in Action depiction with two813

Human subjects using Stable Diffusion 3.5 Large814

in Figure 7a. We additionally also share the gener-815

alization capabilities of our knowledge distillation816

techniques to improve upon semantic details rep-817

resented through each action across dimensions818

(spatial, emotional, and temporal) in Figure 7b.819

Likewise, prompts involving abstract concepts are820

problematic because their many visual interpreta-821

tions make objective evaluation much harder, lead-822

ing us to focus on more grounded scenarios. Due823

to their inherent characteristics, animals provide an824

ideal test case for evaluating the generalization per-825

formance of T2I models, making them our primary826

choice for this study.827

B Qualitative Evidence of Semantic828

Enrichment829

Figure 8 presents eight representative generations830

produced with our LLM-guided prompt enrich-831

ment. The images are grouped into two categories:832

Semantically Enriched & Visually Complete833

(left block, four examples) — spatial layouts, emo-834

tional expressions, and temporal framing all align835

with the target action, yielding high-fidelity results836

(e.g., “a sheep attacking a boar”).837

Semantically Enriched but Visually Flawed838

(right block, four examples) — the same seman-839

tic cues are present, yet the base T2I model intro-840

duces pixel-level errors such as missing subjects841

or anatomical distortions (e.g., “a weasel fleeing842

from a bear”).843

Model Name CLIPScore DinoScore

Auraflow 0.30 0.20
FLUX.1-dev 0.38 0.30
PixArt-Σ 0.38 0.24
Playground v2.5 0.56 0.35
SD 3.5 large 0.38 0.24

Table 2: Alignment evaluation of Automated metrics
with Human preferences, where 1 indicates full align-
ment, and 0 indicates no alignment.

Across both groups, three high-level dimensions 844

are consistently evident: 845

• Spatial relationships: correct relative place- 846

ment and orientation of agents. 847

• Emotional cues: facial expressions or body 848

posture that match the action context. 849

• Temporal framing: a frame that captures the 850

peak moment of the action. 851

The persistence of these cues in visually flawed 852

outputs indicates that semantic enrichment oper- 853

ates independently of pixel-level rendering quality, 854

complementing the quantitative gains reported in 855

Section 4. 856

C More results on Automated Metric 857

C.1 DinoScore Evaluation 858

We collect human annotation preferences and de- 859

rive a consensus from the three reviews for each 860

sample. The preferred dimension is then compared 861

to the highest CLIPScore and DinoScore, respec- 862

tively. Table 2 presents the alignment of these two 863

automated evaluation metrics with human prefer- 864

ences. Given four possible choices, the baseline 865

alignment is 0.25. The highest alignment observed 866

among the top three models is 0.38 for CLIPScore 867

and 0.30 for DinoScore. These results indicate that 868

while there is some overlap, the metrics exhibit 869

significant limitations in capturing subtle semantic 870

improvements. 871

C.2 Action-specific probe for metric 872

granularity 873

We generated an image with Stable Diffusion 3.5 874

for the prompt “a cat chasing a mouse”. Table 3 875

lists CLIPScore and DinoScore for three candidate 876

captions— chasing (correct), observing from afar, 877
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(b) Semantic improvements achieved through knowledge distillation.

Figure 7: Challenges in generating images of human actions with Stable Diffusion v3.5 Large. Panel (A) highlights
common errors— incomplete depictions (missing subjects or objects), disfigurement (physical anomalies), and
semantic inaccuracies (misrepresented actions). Despite these errors, panel (B) demonstrates the generalization
capabilities of our technique on human samples.

Candidate caption CLIP↑ DINO↑

Cat chasing a mouse 26.9 0.257
Cat observing from afar 25.9 0.286
Cat attacking a mouse 25.6 0.290

Table 3: CLIPScore and DinoScore for the probe image
(Figure 9). The small gaps between correct and mis-
matched captions illustrate each metric’s coarse granu-
larity.

and attacking. The correct caption scores highest in878

both metrics, yet the margin over incorrect captions879

is small (< 5 % for CLIPScore, < 0.04 absolute for880

DinoScore), confirming that the metrics capture881

high-level entity alignment but struggle with nu-882

anced action semantics.883

C.3 Multimodal LLM Evaluation884

We also explored using the multimodal LLM885

llava-v1.6-vicuna-13b-hf as a VQA-style886

evaluator. For each prompt, we automatically gen-887

erated ten tailored questions covering salient scene888

attributes. On a proof-of-concept (POC) set of eight889

prompts, LLaVA’s answers matched human anno-890

tations 70% of the time; accuracy dropped to 62%891

on questions probing nuanced semantic details (e.g.892

object–action relations). Given this modest perfor-893

mance and the cost of querying LLMs, we did not894

pursue this avenue further at scale.895

D Prompt based Analysis 896

D.1 Action Template Taxonomy 897

In Table 4, we share the action templates used to 898

generate prompts, categorized by their plausibility 899

tiers (Highly Plausible, Moderately Plausible, and 900

Less Plausible). These templates guided the selec- 901

tion of animals and actions to ensure a broad range 902

of complexity and contextual requirements. 903

D.2 Prompt Distillation Guidelines 904

Below are the guidelines we used to enrich prompts 905

with spatial, temporal, and emotional details with 906

an average token count of 47, 42, and 46, respec- 907

tively. These were applied using an LLM (GPT-4o) 908

to create enriched versions of the original prompts, 909

providing more explicit cues that aid T2I models in 910

generating contextually accurate images. Through 911

prompts, LLM was instructed to enhance prompts 912

for text-to-image tasks through knowledge distil- 913

lation in [dimension], followed by an explanation 914

of what was expected. Each instruction concluded 915

with a message of keeping the enhanced prompt 916

concise yet detailed and aiming for approximately 917

50-70 tokens while prioritizing clarity over length. 918

1. Spatial Relationships and Composition: 919

12



Seed 1Seed 0 Seed 2 Seed 3
Em

ot
io

na
l

Ba
se

lin
e

Sp
at

ia
l

Te
m

po
ra

l
Seed 1Seed 0 Seed 2 Seed 3

Semantically Enriched & Visually Complete Semantically Enriched but Visually Flawed

A sheep attacking a boar A weasel fleeing from a bear

Figure 8: Qualitative grid illustrating our LLM-guided prompt enrichment. Left block (“Semantically Enriched
& Visually Complete”): spatial layout, emotional cues, and temporal framing all align with the intended action.
Right block (“Semantically Enriched but Visually Flawed”): the same semantic cues are present, but pixel-level
errors such as missing subjects or distortions remain, highlighting that enrichment injects reliable semantics even
when rendering fidelity fails.

Figure 9: Stable Diffusion 3.5 image generated for “cat
chasing a mouse.”

Make implicit spatial details explicit to improve
the prompt, while keeping it concise and focused.
Pay attention to:
Positional Accuracy: Clearly specify how animals
are positioned relative to each other.
Depth and Perspective: Indicate scaling
and perspective for appropriate distance and
interaction.
Example: Instead of "a bird lands on an
elephant", say "a small bird gently lands atop a
towering elephant’s back, highlighting their size
difference".

920

2. Temporal Dynamics and Action Timing:921

Make implicit temporal and action details explicit
to improve the prompt, while keeping it concise
and focused. Emphasize:
Optimal Freeze-Frame Selection: Capture the most
expressive moment of the action.
Motion Representation: Use visual cues like dynamic
posture to imply movement.
Example: Instead of "a cheetah chases a gazelle",
say "a cheetah mid-stride with muscles tensed,
closely pursuing a gazelle in full sprint".

922

3. Emotional and Expressive Details: 923

Make implicit emotional details explicit to improve
the prompt, while keeping it concise and focused.
Include:
Facial Expressions: Depict emotions appropriate to
the action.
Body Language: Use posture and movement to enhance
emotional portrayal.
Example: Instead of "a puppy chases a kitten", say
"a playful puppy with a wagging tail chases a kitten
that’s glancing back with a mischievous grin".

924

D.3 POS Tag Analysis 925

Through POS tagging, we analyzed the prompts 926

to interpret the prompt distillation. We discovered 927

that all the enriched prompts reduced the usage 928

of proper nouns by 70%-80% while verbs and 929

nouns increased by 5x-6x and 10x-15x, respec- 930

tively, across all dimensions. Intra-dimensional 931

analysis revealed that adjectives were 1.5x-2x more 932

frequent in the Emotional dimension compared to 933
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Plausibility Level Action Templates

Highly Plausible Actions [reptile|mammal|bird] attacking [reptile|mammal|bird]
[mammal] chasing [mammal|bird|reptile]
[mammal|reptile] eating [mammal|bird|reptile]
[mammal|reptile|bird] fleeing from [mammal|bird|reptile]
[reptile|mammal|bird] competing with [reptile|mammal|bird]
[mammal] fighting [mammal|reptile]
[bird] fighting [bird]
[mammal|reptile|bird] disturbing [reptile|mammal|bird]
[reptile|mammal|bird] biting [reptile|mammal|bird]
[mammal] playing with [mammal]
[bird] competing for dominance with [bird]
[mammal|bird] grooming [mammal|bird]
[mammal] retaliating against [reptile|mammal|bird]

Moderately Plausible Actions [mammal] barking at [mammal|reptile]
[reptile] hissing at [mammal|bird]
[reptile|mammal] competing for dominance with [reptile|mammal]
[reptile] coiling around [mammal|bird|reptile]
[reptile] preying on [mammal|bird]
[bird|mammal] calling to [bird|mammal]
[bird|mammal] fleeing from [mammal|bird]
[reptile] camouflaging near [mammal|bird]

Less Plausible Actions [bird] pecking at [reptile|mammal]
[mammal|bird] fleeing from [reptile]
[reptile|mammal|bird] interacting with [mammal|bird|reptile]
[reptile|mammal] displaying defensive pose at [reptile|mammal|bird]

Table 4: Action templates grouped by plausibility. These templates guided prompt creation, ensuring diverse
scenarios from simple to highly complex and context-dependent.

other dimensions, while the Spatial dimension ex-934

hibited significantly higher usage of determiners,935

adposition, adverbs, and pronoun-particles. Over-936

all, the top 10 most frequently used adjectives and937

verbs across each dimension were found to be in938

alignment with the intended meaning of each.939

D.4 Few Shot Experiments940

We conducted a preliminary experiment employing941

the few-shot prompting technique using GPT 4o942

and Gemini 2.0 Flash, utilizing three instances of943

original enriched prompts. The results of a blind944

review comparison between images generated from945

original enriched prompts and few-shot outputs of946

both models indicated comparable performance.947

D.5 Open Source vs Closed Source LLMs948

The cost of LLM APIs remains a key con-949

cern for the practical utility of our tech-950

nique. To address this, we conducted a951

small-scale analysis comparing the closed-source 952

model GPT-4o with the open-source 953

meta-llama/Llama-3.3-70B-Instruct. A 954

blind review reveals that both models perform 955

comparably, thereby alleviating cost-related 956

concerns. 957

D.6 Additional Analysis 958

Figure 10 shows a diverged bar graph compar- 959

ing baseline prompts versus dimension-enriched 960

prompts across various action categories. This vi- 961

sualization illustrates how each enrichment dimen- 962

sion shifts performance relative to the baseline. 963

E Annotation Details 964

Annotator Instructions: 3 independent annota- 965

tors evaluated each generated image by answering: 966

“Does the image truly represent the action in the 967

prompt?” Annotators considered correctness of the 968

entities, plausibility of the depicted action, and sub- 969
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Figure 10: Diverged bar graph comparing win rates of baseline and dimension-enriched prompts across different
action categories.

tle cues like emotions, spatial arrangement, and970

implied motion. They were encouraged to look971

beyond surface-level accuracy and assess whether972

the scene convincingly captured the intended rela-973

tionships and dynamics.974

Annotator Details: We crowdsourced on Amazon975

Mechanical Turk, 25 annotators in total completed976

the blind review.977

Privacy and Ethics: Our dataset involves ani-978

mal subjects with no personal data. The Animal979

Kingdom dataset and generated images are free of980

sensitive human information, ensuring compliance981

with ethical research guidelines and no privacy con-982

cerns.983

F Implementation Details984

We used publicly available model checkpoints and985

default parameters for image generation. Each986

prompt was rendered with four random seeds per987

model. Hyperparameters such as guidance scale,988

sampling steps, and resolution were kept consistent989

across models and conditions.990

For enrichment, we employed GPT-4 with fixed991

temperature and token limits to ensure consistent992

output quality. Minor adjustments were made to993

each enriched prompt until it provided clear seman-994

tic guidance without altering the core meaning of995

the original prompt.996
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