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Abstract. Autonomous driving research faces challenges in generating
corner case data, which is crucial yet costly. While current methods
like diffusion models and Neural Radiance Field (NeRF) have effectively
generated visual-level corner cases, they fall short in creating planning-
level scenarios. To address this, we propose HumanSim, a Human-
Like Multi-Agent Novel simulator that leverages large language models
(LLMs) to simulate human-like driving behaviors. This approach offers
exceptional adaptability, granularity, and situational awareness, enhanc-
ing the realism of simulations. HumanSim facilitates the construction
of complex corner cases, such as swerving driving or emergency aircraft
landing, and balances transparency with efficiency in decision-making.
The experiments show its effectiveness in replicating human driving,
and the integration of LLMs brings convenience for humans to under-
stand decisions of agents and construct corner cases. HumanSim pro-
vides a comprehensive platform for testing and refining next-generation
autonomous driving technologies. Visit our website for more details:
https://humansim.github.io/.
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1 Introduction

Autonomous driving technologies have advanced significantly, with sensors and
processors now handling perception, decision-making, and control across various
scenarios like highway driving and automated parking. While autonomous driv-
ing companies have accumulated extensive data, corner cases, rare and difficult-
to-encounter scenarios, remain scarce due to the high cost and difficulty of col-
lecting such data in the real world.

To address this, many studies have focused on generating corner case data,
which offers a cost-effective alternative to real-world data collection. Approaches
leveraging diffusion models [25, 45] and Neural Radiance Field (NeRF) tech-
niques [35,46,56] enable the accurate generation of specific scenarios. The Vision-
Language benchmark released by Chen et al . [31] further promotes progress in
self-driving corner case generation.
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(a) (b)

Navigation 🎯 Information: Your goal is not to follow the 
navigation normally, but to do everything possible to prevent 
the 105 from entering the on-ramp normally by changing lanes 
aggressively, slowing down aggressively, etc. The distance 
between you and vehicle 105 is the smaller the better.

Mad 😠 Character: You are driving a vehicle on the road and I
want you to play as an aggressive car driver. You will need to
mimic the behavior of a crazy driver. You tend to accelerate
and decelerate frequently …

Fig. 1: Our HumanSim presents a novel multi-agent simulation featuring
human-like behaviors. (a) HumanSim integrates large language models (LLMs) to
help agents plan the trajectory, which emulates human-like driving styles and is inter-
pretable to humans. (b) There are two ways to conveniently generate corner cases at
will in HumanSim (See Sec. 3.2), setting driving characters or navigation information.
We achieve the situation that vehicle 104 swerves on the road in either way. Modifying
characters is a more reasonable strategy, while navigation information can guide the
behaviors more concisely.

However, most of these studies focus on visual-level corner cases, with limited
attention to planning-level scenarios. Autonomous driving simulators, such as
SUMMIT [9], have made progress, but their agents are typically based on simple
control models, lacking the complexity and adaptability of human driving. The
absence of human-like behavior in these agents restricts the customization and
flexibility needed for advancing simulation-based research.

In response to these identified limitations, we propose HumanSim, a Human-
Like Multi-Agent Novel simulator capable of simulating human-like driving be-
haviors and facilitating the construction of corner cases. As shown in Fig. 1, the
distinctive feature of HumanSim is its incorporation of large language models
(LLMs) as agents. This innovative integration endows the simulator with ex-
ceptional adaptability, granularity, and situational awareness. Agents within the
HumanSim framework are able to consider numerous factors, ranging from driv-
ing styles and personality traits to dynamic elements such as sudden unexpected
situations. We argue that HumanSim can closely mimic real-world scenarios and
offer a realistic simulation experience. Moreover, this LLM-powered platform
strikes an ideal balance between transparency and efficiency in decision-making
and planning modules. As LLMs participate in the decision-making process, the
agents’ decision-making results can also be easily understood by humans through
natural language explanations. Additionally, HumanSim is highly conducive to
the construction of corner cases. We have developed several scenarios, such as
swerving driving (Fig. 1 (b)) and emergency aircraft landing, to demonstrate
HumanSim’s convenience and effectiveness. Consequently, HumanSim improves



HumanSim 3

the fidelity and analytical rigor of autonomous driving simulations, pushing the
boundaries of our ability to replicate real-world driving corner cases.

HumanSim goes beyond simple mechanical evaluations, offering a compre-
hensive analytical platform that includes the efficiency, safety and comfort di-
mensions of driving behavior. This encompasses cultural practices like yielding
at intersections and the complex mechanics of lane-merging in heavy-traffic sit-
uations—areas often overlooked in current simulation models. Using a closed-
loop architecture, HumanSim facilitates the study of multi-agent interactions
with high accuracy. HumanSim utilizes LLMs to emulate human-like driving
behaviors and offers explanations easy for humans to understand, specifi-
cally aimed at examining rare but crucial driving corner cases typically excluded
from existing frameworks, which is convenient for humans to construct. Our
HumanSim is validated through empirical evaluations involving both single and
multiple agents, proving its effectiveness in replicating human driving under con-
ditions that closely mirror real-world scenarios. In summary, we are developing
an innovative simulator for human-like, planning-centric driving simulations fo-
cused on corner case generation, providing a testing playground for the next
generation of autonomous driving technologies.

2 Related Work

2.1 Agents in Autonomous Driving Simulation

Developing agents in high-fidelity autonomous driving (AD) simulators [3, 9,
14, 28, 29, 33] is both challenging and promising. Current methodologies can be
categorized into two paradigms [36, 58]: 1) Model-Based, which uses manually
crafted rules, heuristics, or algorithms, and 2) Data-Driven, which replicates
real traffic via trajectory data. Both approaches have strengths and limitations,
necessitating more advanced methods for human-like agent behavior.

Model-Based Simulation Heuristic-based simulations rely on predefined be-
havioral models [7,47,48,62], while optimization techniques [20,24,34,38] model
game-theoretic interactions. Search-based approaches, such as Monte Carlo Tree
Search (MCTS) [10, 30, 49], improve efficiency by sampling action spaces. How-
ever, these methods struggle with scalability and adaptability due to their de-
pendence on handcrafted heuristics.

Data-Driven Simulation Learning-based simulations extract driving policies
from real-world trajectories [11, 15, 23, 26, 32, 42, 54, 61]. These methods [12, 52,
57] train agents from driving datasets, while deep learning [16, 40, 41, 58] and
reinforcement learning [1, 2, 13, 55] enhance decision-making adaptability. De-
spite these advances, such techniques often lack variability, flexibility, multi-
agent interactions, and explicit intention modeling, and they remain highly data-
dependent [43].
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Table 1: Comparisons on Agent Construction Between Our Simulator (HumanSim)
and Existing Simulation Platforms.

Simulation Method
Data Intervention Training Human-like Corner Case

Agnostic Free Free Driving At Will

Model-Based
Tree Search ✓ ✗ ✓ ✗ ✗

Expert System ✓ ✗ ✓ ✗ ✗

Game Theory ✓ ✓ ✓ ✗ ✗

Data-Driven
Straight Forward ✗ ✓ ✓ ✓ ✗

Deep Learning ✗ ✓ ✗ ✓ ✗

Reinforcement Learning ✗ ✓ ✗ ✓ ✗

HumanSim Large Language Models ✓ ✓ ✓ ✓ ✓

Our proposed algorithm, HumanSim, surpasses existing techniques by lever-
aging large language models (LLMs) to dynamically simulate driving decision-
making. HumanSim autonomously generates a variety of agents, enhancing the
simulation’s capability, diversity, flexibility, and interpretability. A detailed com-
parison with existing solutions is provided in Tab. 1. HumanSim is free from data
collection, which is important for deep learning, reinforcement learning, etc. Hu-
manSim also requires little intervention and manual design, and is training-free
while maintaining human-like driving styles. Most importantly, HumanSim is
able to construct corner cases at will.

2.2 Corner Case Generation of Autonomous Driving

To mitigate the long tail effect, researchers have been exploring efficient methods
to generate corner cases for both perception and planning systems in autonomous
vehicles.

Corner Case Generation for Vehicle Perception Recent works focus on
generating various scenarios, including corner cases. DriveDreamer [45] enables
controllable video generation that captures real-world traffic scenes. Other re-
search leverages diffusion models, such as GAIA-1 [25] and MagicDrive [22], while
Neural Radiance Field (NeRF) based approaches [5,6,35,44] replicate static back-
grounds and vehicles. Notable works include UniSim [56] and MARS [53], with
ChatSim [46] offering automatic simulation editing via language commands.

Corner Case Generation for Vehicle Planning Corner case generation for
vehicle planning has also gained attention. Techniques such as importance sam-
pling [59, 60] generate critical test cases, while optimization and reinforcement
learning [17, 18] further refine scenario evaluation. Feng et al . [19] developed a
framework for adversarial driving environments, and Sun et al . [39] introduced
methods for generating corner cases in complex traffic simulations. SUMMIT [9]
simulates dense urban traffic, yet none of these agents sufficiently mimic real-
world human behavior. In contrast, the agents proposed in HumanSim exhibit
realistic driving styles, improving the fidelity of simulations.
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Table 2: Sample Contextual Information for Prompting LLMs.

Info Example

Brief Description
You are driving on a road with 2 lanes in your direction,
and you are currently driving in the number 2 lane from the left.

Road Constraint
The length of the current lane is 262.554 m.
The limit speed of the current lane is 13.89 m/s.

Next Lane
The type of next road is junction with a traffic light.
The stop line at the junction is 28.91 meters ahead of you.

Current State
Your current position is (399.805, 212.049), speed is 12.122 m/s,
acceleration is -0.136 m/s2, and lane position is 85.685 m.

Past State
Past yaw angles are [-3.136, -3.136, -3.136],
the lanes where the vehicle used to be are [’-E5_0’, ’-E5_0’, ’-E5_0’].

Nearby Vehicle
Vehicle ’256’ is driving on your left lane and is behind of you.
The position of it is (438.637, 208.574), speed is 7.409 m/s, acceleration is 1.295 m/s2,
and lane position is 46.876 m. The distance between you and vehicle ’256’ is 38.81 m.

Table 3: Predefined Available Actions and Descriptions.

Action Description
Turn-left Change lane to the left of the current lane
Turn-right Change lane to the right of the current lane
IDLE Remain in the current lane with current speed
Acceleration Accelerate the vehicle in the current lane
Deceleration Decelerate the vehicle in the current lane

3 Human-Like Driving Leveraging LLMs

In this section, we introduce HumanSim, an advanced framework designed to
improve agents decision-making in autonomous driving simulations. This frame-
work integrates SUMO [33], CARLA [14], and LimSim [48] for realistic traffic
and visual representation. In the architecture we designed, LLMs can control
agents at a finer granularity. LLM-based controllers in most simulators can only
select an action and cannot control agents at their will, while our framework
enables agents controlled by LLMs to be more in line with the character de-
signed by the user and achieve an effect close to the real world. Additionally, the
decision-making and planning module for each agent generates diverse driving
trajectories, ensuring a wide range of behaviors.

3.1 Depicting the Driving State in Natural Language

Our goal is to contextualize the driving environment for large language models
(LLMs) by describing the driving context in a way that LLMs can comprehend
the current state. Utilizing natural language is crucial for conveying complex
information necessary for decision-making in dynamic driving situations.

Table 2 provides a detailed list of situational parameters, including a brief
description, road constraints, next lane information, current and past states, and
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the presence of nearby vehicles. Next lane information is to help LLMs prepare
in advance for the intersection, and nearby vehicles will affect the behavior of
agents, such as keeping a safe distance from the front vehicles or change lanes
earlier to reduce risks of collision. Past states are especially important for agents
to keep the movements consistent, avoiding other actions during a lane turning
for instance. These parameters enable LLMs to choose the most appropriate ac-
tion from a predefined set, as outlined in Tab. 3. The actions are categorized into
five main types, focusing primarily on speed adjustments and lane-changing ma-
neuvers. Then, LLMs are required to return ranges of acceleration and steering
angle based on the chosen action. The prompts are as follows:

– Provide an acceleration range within [-5, 10] m/s2, where positive values
indicate acceleration and negative values indicate deceleration. Ensure the
vehicle remains in its lane unless a lane change is planned. If a turn is an-
ticipated in the near future, adjust the deceleration to ensure the vehicle
can safely reach the turning point. The response MUST be in the format
acc:[min, max] (positive for acceleration, negative for deceleration). Note
that your maximum deceleration is 5 m/s2, so you need to be prepared in
advance in case your maximum deceleration is not enough to slow down to
a stop and have a collision.

– Please provide a specific steering angle range within [-40, 40] degrees for a
vehicle. The angle should be in the format: ang:[min,max], where -40 rep-
resents a full left turn, 0 represents going straight, and 40 represents a full
right turn. REMEMBER that the range of angles you select cannot cross 0
and the size of the range should not exceed 20.

Furthermore, LLMs need to provide explanations to clarify their decision-
making process, which greatly improves the rationality and interpretability of
agents’ decisions in HumanSim.

3.2 Driving by Prompting Large Language Models

After encoding situational information in natural language, the next phase in-
volves defining human-like driving styles to introduce variability in driving be-
haviors. Unlike conventional heuristic or data-driven approaches, where agents
depend on pre-scripted behaviors or state machines for environmental interac-
tions, LLMs in HumanSim dynamically adjust their actions based on the current
context, thereby improving the realism of policy-centric simulations.

We introduce two ways to achieve the human-like characteristics of agents and
to create corner cases in HumanSim: driver characters and navigation strategies.
Modifying driver characters is the most direct and user-friendly way to realize
different human-like driving styles by directly describing the agent’s personality
traits. However, writing character prompts still requires some skills. We have im-
plemented 8 and conducted experimental verification on them (See Sec. 4.2) to
ensure that the characters we designed have distinctive characteristics. Figure 2
presents an extensive array of driver characters, which are elaborate prompts
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I want you to act as an
experienced driver. You need
to mimic a driver who has
quick yet accurate reactions,
foresight in anticipating road
conditions, and strict
adherence to traffic rules.
You always keep a safe
distance and speed based on
current conditions.

I want you to play the role of a
rushed car driver. Your decisions
need to mimic the behavior of a
rushed driver and drive faster than
usual. You're in a hurry, so your
task is to drive as fast as you can
and possibly use more
acceleration and steering while
staying safe, not crashing and
following Navigation instructions.

You are a driver in a state of
driving anger, and your driving
decisions tend to favour higher
speeds and speed limit
violations, and accelerate faster
in both the longitudinal and
lateral directions; however, your
decisions still need to adhere to
vehicle kinematics constraints.

You are a very patient
driver, you tend to keep
a large distance between
you and the car in front
of you when following a
car, while controlling
acceleration and
deceleration with
smoother acceleration
(except in emergencies).

You are driving a vehicle on the road and I want
you to play as an aggressive car driver. You will
need to mimic the behavior of a crazy driver. You
tend to accelerate and decelerate frequently and
are always more inclined to change lanes than
stay in your current lane. Your goal is to make
your passengers feel uncomfortable. You are
currently driving in an urban environment, but
you still need to comply with Navigation
instructions and vehicle dynamics.

You are driving a
car and I want you
to play the role of
an excited car
driver in an urban
environment. You
tend to change
lanes frequently.

You are an inexperienced male motorist, and
there is a certain probability that you will
ignore some of the information in the
provided SCENARIO DESCRIPTION and as
a result, make more reckless decision-making
choices, such as changing lanes to overtake
when the distance is narrow, or accelerating
at an intersection when the signal is about to
turn red.

You are an inexperienced female
motorist, you have a certain
probability of ignoring some of the
information in the provided
SCENARIO DESCRIPTION and are
therefore more susceptible to a
COLLISION due to an error in visual
searching at the intersection prior to a
left turn.

Experienced😎 Hurry 😤 Mad😠 Patient😊

Angry🤬 Excited🥳 Novice Male🙋 Novice Female🙋

Fig. 2: Our HumanSim accommodates a wide spectrum of driving personas,
including but not limited to Experienced, Hurry, Mad, Patient, Angry, Ex-
cited, Novice Male, and Novice Female. These characters embody unique driving
behaviors, strategies, and reactions, precisely modeled within a simulated environment.
Customizing these characters is both practical and simple, facilitating their adaptation
to specific research or application requirements. Moreover, our framework accommo-
dates a wide range of character profiles, thereby enhancing the simulation’s realism
and applicability.

providing behavior-specific instructions. These characters assist LLMs in exe-
cuting diverse driving styles through tailored prompts. With specially designed
characters, HumanSim is able to replicate real-world scenarios with nearly real
drivers. Therefore corner cases can be easily constructed, for example, by chang-
ing the driver character to Angry or Mad.

Moreover, by utilizing navigation strategies, we achieve behavior-level con-
trol of vehicle movements. For instance, as shown in Fig. 1 (b), in a congested
two-way, four-lane road network scenario designed to test the ego car’s control
algorithm during a cut-in incident, we can define navigation for vehicles in the
area of interest (AOI). These vehicles, guided by the navigation prompts, au-
tonomously determine actions such as lane changing and deceleration to interfere
with the ego car, creating a hazardous corner case.

By leveraging the capabilities of LLMs, we can dynamically adjust driving
behaviors in response to the current context, enhancing the realism of the sim-
ulations and generating corner cases with ease.

3.3 Translating Decision into Drivable Trajectory

After the LLM-driven agent makes a decision, the next stage involves using a
planning algorithm with a parallel architecture to convert these decisions into
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executable paths. HumanSim divides the output of LLMs into three parts: action
choice, acceleration, and steering angles.

To regulate the actions selected by LLMs and prevent the agent from exe-
cuting unusual driving maneuvers, we have defined an action space. This action
space is a set of actions filtered from Tab. 3 based on the current lane and other
environmental states of the vehicle. Using the scenario and surrounding scene
description prompts offered to LLMs in Sec. 3.1, LLMs will choose the optimal
action from the action space based on the character setting and navigation in-
formation (Sec. 3.2). While selecting actions from the action space, LLMs will
also provide explanations for current choices, enhancing the interpretability of
decisions made by the LLM-driven agent.

Given that LLMs are not very precise with actual numerical values, we will
only have LLMs return the range of acceleration and steering angles, and em-
ploy the Intelligent Driver Model (IDM) [27] to calculate the most suitable values
within these ranges. Compared to directly selecting actions, this approach allows
LLMs to control the agent’s behavior with finer granularity while avoiding sig-
nificant issues caused by extreme outlier values.

Intelligent Driver Model (IDM) [27] is a mathematical model used to simu-
late and predict driving behavior. It is mainly applied in traffic flow simulation
and autonomous vehicle behavior control. IDM determines the acceleration of
the driving vehicle by considering factors such as the distance to the vehicle
in front, speed difference, and desired speed. We use IDM to calculate the fi-
nal acceleration value, ensuring that the vehicle’s acceleration aligns with the
scenario requirements and remains within reasonable bounds. Specifically, IDM
calculates vehicle acceleration using the following equations:

v̇ = a[1− (
v

v0
)δ − (

s∗(v,∆v)

s
)2]

s∗(v,∆v) = s0 +max(0, vT +
v∆v

2
√
ab

)

(1)

where v̇ is the acceleration of the vehicle, v is the current speed, v0 is the desired
speed in this lane, s is the actual distance to the vehicle in front of current vehicle,
s0 is the minimum safe distance to the vehicle in front, δ is the acceleration
index, a is the maximum acceleration capability of the vehicle when there is
no interference from the vehicle in front and b is the maximum comfortable
deceleration in case of an emergency. We employ the maximum value of the
acceleration interval as a and the minimum value of the acceleration interval as
b, incorporating the acceleration range decided by the LLMs into the acceleration
calculation. And the final steering angle will be determined by first verifying the
legality of the steering direction within the action space, and then averaging the
provided steering angle range.

After obtaining the desired acceleration and steering angle, combined with
the action selected by the LLM, the trajectory planner will generate the trajec-
tory for the upcoming ∆T time, where ∆T is the time interval for LLMs decisions
and is a user-defined hyperparameter. Contrasting with prior approaches [47,48]
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that consider a broad spectrum of paths, HumanSim selectively focuses on a
constrained set of trajectories, enhancing decision-making speed and ensuring
planning aligns closely with LLMs decisions. For Acceleration, Deceleration, and
IDLE actions listed in Tab. 3 along the current lane, the planner first calculates
the initial and final state points of the path based on the acceleration and steer-
ing angle. HumanSim then uses the Frenet Optimal Planner [50] inherited from
LimSim [48] to generate the optimal trajectory by evaluating several costs in-
cluding smoothness, guidance, velocity, lane change, etc.

For lane-changing actions like Turn-left and Turn-right according Tab. 3,
we first determine the initial state point of the path based on acceleration and
steering angle. We then identify the final state point considering vehicles in the
target lane and generate the optimal trajectory by sampling quintic polynomials
and Frenet Optimal Planner to ensure the lowest cost and adherence to non-
holonomic constraints.

4 Human-Like Corner Case Generation

We evaluate the performance of HumanSim across various scenarios, ranging
from human-like driving in urban traffic to corner cases generation using multi-
agent systems. We first outline our experimental design (Sec. 4.1), then assess
HumanSim’s ability to perform human-like driving in urban environments and
differentiate between different characters (Sec. 4.2). After that, we highlight Hu-
manSim’s capability to generate corner cases in human-like multi-agent driving
simulation(Sec. 4.3).

4.1 Experiment Setup

Our simulation framework leverages the capabilities of LimSim++ [21], an ad-
vanced platform that seamlessly integrates SUMO’s robust traffic flow model-
ing [33] with CARLA’s photorealistic rendering [14]. For human-like decision-
making, we employ Qwen-turbo [4] as agents with distinct driving characters.

We assess HumanSim’s human-like driving ability in busy urban settings
using the following behavioral metrics. We refer to Carla leaderboard metrics
and also inherit some from LimSim [48].

– Completion Percentage: The ratio of trips without deviations or colli-
sions.

– Driving Time: Time taken for a vehicle to reach its target in seconds.
– Comfort Score: The comfort score during vehicle operation, calculated as

as+ȧs+ad+ȧd

4 , with as as longitudinal acceleration of the vehicle, ad as lateral
acceleration and ȧ as jerk. It can capture effects of sudden speed changes on
passengers.

– Efficiency Score: Calculated as v̄
min(vlimit,v̄others)

, with v̄ as the average
speed of the ego car over 10 frames, vlimit as the speed limit in this lane and
v̄others as the minimum value of the average speed of surrounding vehicles
over 10 frames.
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(a) (b)

Fig. 3: We design three routes in urban driving scenario, and test various
characters on them to show the diversity and the human-like characteristic
of agents in HumanSim. (a) Bird’s eye view of Route A, B, and C, where Route A
is the simplest path, Route B tests intersections and turns, and Route C tests circular
paths and multiple intersections. (b) Performance varies across characters on route A,
B, and C, with the Experienced driver scoring highest on all routes, the Mad driver
scoring lowest on routes A and C, and the Excited driver scoring lowest on route B.

– Safety Score: Record the Time to Collision(TTC) between ego car and
other vehicles when driving. The minimum record of TTC is the safety score.

The final score is determined by summing the comfort score, efficiency score,
and safety score, with the penalties for red light violations, speed limit violations,
and collisions. The resulting value reflects both the performance and adherence
to traffic regulations. Table 4 also represents some metrics. Travel Distance refers
to the actual length traveled by the vehicle. Speed Limit is a penalty for speeding,
with the lower the number, the more severe the speeding.

4.2 Human-Like Driving Ability

LLMs as Competent Drivers To assess the effectiveness of HumanSim in
achieving human-like driving behavior, we designed three complex urban driving
scenarios shown in Fig. 3 (a) within CARLA’s Town05 [14]. We evaluated be-
haviors of agents including lane changes, car-following, traffic signal compliance,
etc. To ensure statistical validity, each test is repeated three times. Our results
confirm the effectiveness of LLMs in practical driving situations. As shown in
Tab. 4, the Experienced character achieves a 100% route completion rate while
adhering fully to traffic regulations. Speed Limit of the Experienced driver is per-
fect, and it finishes the tour in a reasonable time. The highest driving scores in
Fig. 3 (b) and the wonderful performance in Fig. 4 implies that the Experienced
character provides a solid base of human-like driving behaviors in HumanSim.

Customizable Driving Characters We tested different driving characters
on three urban routes. As shown in Fig. 3 (b), the LLM-driven driver with the
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Table 4: Performance of Varied Characters in Navigating Route C.

Character Travel Distance Completion Percentage Driving Time Speed Limit
Experienced 227.80 100% 41.6 1.00
Hurry 298.54 100% 28.1 0.57
Angry 317.26 74.06% 30.1 0.65
Mad 444.51 76.79% 39.5 0.68
Excited 448.17 100% 51.3 0.89
Patient 227.80 100% 58.6 1.00
Novice Male 384.23 100% 61.9 0.99
Novice Female 227.80 100% 51.9 0.98

Experienced character performed the best, achieving the highest scores across
all three routes. In contrast, the Mad, Hurry, and Excited characters exhibited
lower scores due to more frequent accidents and violations. Focusing on Tab. 4,
each character displays distinct and reasonable characteristics. We only presents
the results of Route C here because Route A is too simple to demonstrate ob-
vious differences while some characters like Angry or Mad struggle on Route B.
This variety provides ample design space for creating agents tailored to different
characters, which is essential for establishing corner cases.

It can be observed from the radar chart in Fig. 4 that performance of each
character in Route A, Route B, and Route C remains consistent, demonstrating
the stability and controllability of our driver characters. However, due to the
varying difficulty of each route, different degrees of distinction are shown in the
three radar charts. In the following analysis, we will focus on the performance
in Route B.

The Experienced character consistently performs the best across all routes,
indicating its proficiency in handling urban driving conditions and achieving
a good balance between efficiency, safety, and comfort. Aggressive characters
such as Mad, Hurry, and Excited tend to perform poorly in terms of safety
and comfort but exhibit exceptional efficiency, suggesting a higher propensity
for risky driving behaviors and accidents. The moderate performance of the
Novice_Female, Novice_Male, and Patient characters indicates that they are
generally safer but less efficient, likely due to more cautious driving behaviors.
According to the research by Witt M et al . [51], Novice_Female tends to be
more conservative, while Novice_Male tends to be more aggressive. This is also
reflected in the radar charts, with Novice_Male showing higher efficiency and
lower safety.

The characters we designed establish a strong correlation between characters
and driving behavior, with clear distinctions between driving characters. This
highlights HumanSim’s ability to simulate various human-like behaviors, provid-
ing a solid foundation for generating corner cases in multi-agent environments.
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Fig. 4: Performance variations are evident across distinct characters driven
by Qwen-turbo on three urban routes. The Experienced character consistently
outperforms others across all routes. Conversely, aggressive characters such as Mad,
Hurry, and Excited show poor safety and comfort performance but exceptional effi-
ciency, indicating a higher tendency for risky driving and accidents. The moderate
performance of Novice_Female, Novice_Male, and Patient characters suggests safer
yet less efficient driving, likely due to their more cautious behavior.

Table 5: Performance of Diverse LLMs with Experienced character in Route C.

Character Driving Score Completion Percentage Driving Time Speed Limit
Qwen-turbo [4] 84.28 100% 41.57 1.00

GPT-4o-mini [37] 51.76 100% 61.37 0.92
Deepseek-v2 [8] 76.52 100% 45.57 0.97

LLMs Comparative Analysis Our analysis extends beyond Qwen-turbo [4]
to include GPT-4o-mini [37] and Deepseek-v2 [8], aiming at testing the driv-
ing performance and character representation of HumanSim on different LLMs,
especially those with fewer parameters. As illustrated in Tab. 5, when tested
with the Experienced character under identical Route C conditions, all LLMs
achieved a 100% completion percentage in driving. This demonstrates the ex-
cellent and stable driving capability of HumanSim. GPT-4o-mini achieve lower
scores due to flawed decision-making probably caused by its smaller model size.
Under our framework, different LLMs show certain differences while ensuring
relatively stable performance.

4.3 Multi-Agent Simulation for Corner Case Generation

To illustrate the versatile capabilities of HumanSim, we have created several
multi-agent simulation corner cases, as depicted in Fig. 5. These scenarios are
intended to demonstrate the customizable features of HumanSim’s LLM-based
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(a) (b)

(c)

(d)

(e)

(f)

Emergency
Vehicle

Sudden
Breakdown

Aircraft
Landing

Aggressively Cutting In When Merging

Swerving
Driving

Repeatedly Cutting Off

Fig. 5: We build several multi-agent corner cases to demonstrate the flexi-
bility of HumanSim in creating scenarios at will. (a) Vehicle 104 is swerving on
the road and affects other agents, which can be implemented by setting driver character
or navigation information. (b) When the ego vehicle 72 merges the lanes, vehicles from
the other lane are constantly cutting in aggressively. (c) There are vehicles constantly
cutting off, hindering the movement of the ego vehicle 256. (d) An emergency vehicle
is calling for path clearance. (e) A sudden breakdown on the highway blocks other
vehicles. (f) An aircraft needs an immediate landing on a busy highway, which is a rare
but critical case for autonomous driving.

agents, thereby assisting users in developing additional simulations. The scenar-
ios include swerving driving, aggressively cutting in, emergency aircraft landing,
etc. We achieved the construction of these scenarios only by modifying the driver
characters or navigation information. More details including videos of these cor-
ner cases can be found on our website https://humansim.github.io/.

The aforementioned scenarios merely exemplify HumanSim’s functionalities.
We invite more users to join our community to design various scenarios us-
ing HumanSim’s customizable agents, which exhibit diverse human-like driving
styles. Additionally, HumanSim can host challenges and competitions to enrich
the dataset of corner cases.

In this paper, we also conduct extra experiments on the three scenarios (Fig. 5
(d) (e) (f)) to showcase the flexible adaptability of HumanSim’s human-like
drivers. The scenarios encompass:

– Emergency Vehicle Path Clearance: This scenario addresses the real-
time establishment of a clear route for emergency vehicles. Information about
the emergency is transmitted to vehicles ahead, simulating a typical emer-
gency situation. (Fig. 5 (d))

https://humansim.github.io/
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Table 6: Average Travel Time of Multi-Agent Collaboration.

Simulation Platform Emergency Vehicle Sudden Breakdown Aircraft Landing
LimSim [48] 25.5 ✗ ✗

HumanSim w/o comm. 21.5 ✗ ✗

HumanSim 20.0 50.9 43.0

– Sudden Breakdown Impact Mitigation: This scenario deals with the
abrupt failure of a vehicle in a high-speed traffic environment. Upon break-
down, the vehicle alerts others through V2V communication. Vehicles will
frequently encounter this scenario. (Fig. 5 (e))

– Emergency Aircraft Landing: This simulation involves an aircraft need-
ing an immediate landing on a busy highway. It represents a rare and critical
case of autonomous driving, which can be easily simulated using HumanSim.
(Fig. 5 (f))

The experiment results are in Tab. 6. Unlike agents using LimSim [48]’s ba-
sic planner, which experiences performance issues due to limited lane-changing
and overtaking capabilities, those independent LLM-controlled agents show only
marginal speed improvements during emergency but struggle in other opera-
tional contexts. To address these limitations, HumanSim’s human-like drivers
seamlessly integrate collaborative LLMs with V2V communication protocols
within the simulation environment. We suggest that incorporating V2V nat-
ural language communication not only enhances the diversity of agent behaviors
but also paves the way for future research in multi-agent interaction dynamics.

5 Conclusion

In conclusion, HumanSim introduces a customizable platform featuring human-
like agents by prompting large language models (LLMs), significantly advancing
autonomous driving simulations. Our platform excels in creating realistic sce-
narios by leveraging these agents, facilitating the construction of environments
that closely mimic real-world conditions. It stands out for its ability to easily
configure a wide range of corner cases, from simple to complex. This capabil-
ity not only sets a new standard in driving simulations but also invites broader
utilization for diverse scenario building, competitions, and challenges. Areas for
future work include fine-tuning LLMs for culturally diverse behaviors, optimizing
the decision-making process of LLMs for a finer granularity control, and scaling
the system to accommodate more agents and environmental variables for tests
involving large-scale coordinated behaviors.

Limitation While HumanSim significantly advances driving simulations, it
has limitations. The reliance on LLMs may introduce biases and inconsistencies
in agent behavior, especially in culturally diverse scenarios. And it hasn’t been
tested on classic planning benchmarks. Additionally, the delay caused by LLMs
makes its simulation relatively slow.
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