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Abstract

We study dynamic regret minimization in online learning with an oblivious ad-
versary and bandit feedback. In this setting, a learner must minimize the cu-
mulative loss relative to an arbitrary sequence of comparators u1, . . . ,uT in
W ⊆ Rd, but receives only point-evaluation feedback on each round. We pro-
vide a simple approach to combining the guarantees of several bandit algorithms,
allowing us to design algorithms which optimally adapt to the path-length PT =∑
t ∥ut − ut−1∥ or the number of switches ST =

∑
t I {ut ̸= ut−1} of an arbi-

trary comparator sequence. In particular, we provide the first algorithms for linear
bandits which obtain the optimal regret guarantee of order O

(√
(1 + ST )T

)
up to

poly-logarithmic terms without prior knowledge of ST , resolving a long-standing
open problem.

1 Introduction

Online learning is a framework that models sequential decision-making against adversarial environ-
ments (Shalev-Shwartz et al., 2012; Orabona, 2019). In this framework, a learner interacts with an
environment over time, making decisions and receiving feedback which may be partial or incom-
plete. The classical way to evaluate the performance of online algorithms is through the notion of
regret, which compares the learner’s cumulative loss to that of the best fixed strategy chosen in hind-
sight. While this is a natural benchmark, it implicitly assumes that the environment is stationary,
i.e., that the optimal action does not change over time. However, in many practical scenarios this
is far from true: user preferences, market conditions, or system dynamics can evolve unpredictably
over time, leading to situations where minimizing regret against a fixed comparator becomes mean-
ingless.

Formally, we consider a bandit optimization setting characterized by a space of actions W ⊆ Rd and
an oblivious adversary privately selecting a sequence of convex loss functions ℓt : W → R. At each
time step t ∈ [T ], the learner chooses wt ∈ W and observes the incurred loss ℓt(wt). A common
special case we study is the linear bandit setting, in which losses are of the form ℓt(wt) = ⟨ℓt,wt⟩,
where ℓt ∈ Rd. The learner’s performance is evaluated learners according to the expected dynamic
regret

E [RT (u1, . . . ,uT )] = E

∑
t∈[T ]

ℓt(wt)

−
T∑
t=1

ℓt(ut) ,

∗Equal contribution

18th European Workshop on Reinforcement Learning (EWRL 2025).



where (wt)t∈[T ] is the sequence of the learner’s actions, (ut)t∈[T ] is an arbitrary sequence of com-
parators, and the expectation is taken with respect to the internal randomness of the algorithm. The
standard (static) regret is recovered when u1 = · · · = uT .

Notice that the “complexity” of the comparator sequence contributes to characterizing the difficulty
of a given problem. If the comparator is allowed to change arbitrarily on each round, there is no
hope to achieve low dynamic regret since the comparator sequence can ensure

∑T
t=1 ℓt(ut) = 0

even against completely unpredictable losses. On the other hand, we know that in the special case
u1 = . . . = uT we can ensure low regret, since this is just the usual static regret setting. Thus, we
are typically interested in algorithms which make dynamic regret guarantees that gracefully adapt to
some measure of complexity or variability of the comparator sequence. The classic way to quantify
the variability of the comparator sequence is via its path-length

PT =

T∑
t=2

∥ut−1 − ut∥2 .

A related classical benchmark is the switching regret, which bounds regret with respect to the number
of times the comparator sequence changes over time ST =

∑T
t=2 I[ut ̸= ut−1], capturing a coarser

notion of variability. We will consider a generalization of this notion in which the comparator at
time t is sampled from a distribution p∗

t over W , such that its expectation satisfies Ew∼p∗
t
[w] = ut.

This generalizes to situations where the learner is compared against randomized strategies or smooth
shifts in behavior. In this case, we define the distributional path-length as:

P∆
T =

T∑
t=2

∥∥p∗
t − p∗

t−1

∥∥
1
.

While dynamic or switching regret offers a more realistic benchmark in nonstationary settings, it
also poses significant new challenges. In particular, achieving regret bounds that scale optimally
with the path-length typically requires preliminary knowledge of it, or of at least a bound on it
(Agarwal et al., 2017; Marinov & Zimmert, 2021; Luo et al., 2022). This is unrealistic because the
comparator sequence can never be directly observed.

Parameter-free methods, which in dynamic regret settings eliminate the need for knowledge of the
path length, are relatively well understood in the full-information setting. (Zhang et al., 2018;
Cutkosky, 2020; Campolongo & Orabona, 2021; Jacobsen & Cutkosky, 2022, 2023; Zhang et al.,
2023; Jacobsen & Cutkosky, 2024). In this work, we focus instead on the bandit setting, where the
learner only receives point-evaluation feedback at the end of each round. With bandit feedback, the
parameter-free techniques developed for the full information setting are either not directly applicable
or result in a suboptimal dependence on the time horizon and path length.

Our contributions. We prove dynamic regret bounds under bandit feedback against an oblivious
adversary and without requiring prior knowledge of the path length PT . We obtain the first dynamic

regret bounds of order Õ
(√

(1 + P∆
T )T

)
without prior knowledge of the distributional path length

P∆
T (which includes the number of switches ST as a special case), thus resolving a long-standing

open problem (Marinov & Zimmert, 2021; Luo et al., 2022). Key to obtaining these results is
a technique for combining the guarantees of comparator-adaptive base algorithms inspired by a
clever result in the full information setting (Cutkosky, 2019), which we adapt to bandit feedback
via a sampling trick. This simple trick enables us to easily combine the outputs of several bandit
algorithms to achieve the best of their respective dynamic regret guarantees, effectively enabling us
to “tune” hyperparameters on-the-fly. Such hyperparameter tuning arguments have been attempted
by several prior works using sophisticated mixture-of-experts style arguments (Agarwal et al., 2017;
Marinov & Zimmert, 2021; Luo et al., 2022), but have only achieved the optimal

√
PT dependence

by leveraging a priori knowledge of PT . We anticipate that our approach will also find applications
in other settings where bandit-over-bandit ensembling strategies have failed in the past.

Related works. The study of dynamic regret was initiated by Herbster & Warmuth (1998, 2001).
In the setting of online convex optimization (OCO) with Lipschitz losses, Zinkevich (2003) showed
that online gradient descent achieves a bound of order O

(
(1+PT )

√
T
)
. Yang et al. (2016) improved
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the rate to O(
√
PTT ) by leveraging prior knowledge of PT . This bound was later shown to be min-

imax optimal by Zhang et al. (2018), who also provided the first algorithm achieving a matching
upper bound without prior knowledge of PT . Since then, several works have achieved general-
izations of

√
(1 + PT )T rate by improving the T dependence with problem-dependent penalties

such as
∑
t ∥∇ℓt(wt)∥2 or

∑
t supx |ℓt(x)− ℓt−1(x)|, and additionally adapting to maxt ∥ut∥

(Cutkosky, 2020; Campolongo & Orabona, 2021; Jacobsen & Cutkosky, 2023; Zhang et al., 2023).
Various improvements in adaptivity can also be obtained under additional assumptions on the losses
such as smoothness Mokhtari et al. (2016); Zhao et al. (2020, 2024).

Key to our results is the notion of comparator adaptive online learning, where the goal is to design
algorithms that adapt to the complexity of the comparator sequence (e.g., its norm or a measure
of its variability) without requiring prior knowledge about it. In the static comparator case, this
idea has been extensively studied under full-information feedback, where the optimal guarantee
RT (u) = O(∥u∥

√
T ), for any u ∈ Rd, can be obtained up to logarithmic terms (Mcmahan &

Streeter, 2012; McMahan & Orabona, 2014; Orabona & Pál, 2016; Cutkosky & Orabona, 2018).
Notably, Cutkosky (2019) showed that algorithms making comparator-adaptive guarantees can be
easily combined, obtaining regret proportional to the best among them; this observation will be
crucial to our approach in Section 2. In both linear and convex bandit settings, comparator-adaptive
bounds were studied by van der Hoeven et al. (2020) where they consider static regret and propose a
black-box reduction approach, taking inspiration from the full information 1-dimensional reduction
of Cutkosky & Orabona (2018).

In the bandit setting, the study of the closely-related notion of switching regret was initiated by
Auer (2002), where a bound of O(

√
STT ) was obtained with prior knowledge of the number of

switches ST . The optimal regret bound for the non-stationary stochastic bandit setting without a
priori variational knowledge was first obtained in Auer et al. (2018). Interestingly, Marinov &
Zimmert (2021) showed the impossibility of obtaining a O

(√
STT

)
bound in adaptive adversary

settings, leaving the question open (until now) for the oblivious setting.

In the bandit convex optimization (BCO) literature, Zhao et al. (2021) showed that the classical
Bandit Gradient Descent algorithm of Flaxman et al. (2004) can achieve dynamic regret bound of
order O

(
T

3/4(1 + P
1/4
T )
)

when the step-size is optimally tuned using knowledge of PT . They also
proposed a parameter-free version using a bandit-over-bandit ensemble strategy, but this leads to a
suboptimal regret of O

(
T

3/4(1 + P
1/2
T )
)

due to additional variance from the meta-learning layer.
Later, Yan et al. (2023) improved the dependence on PT but picked up an additive T 5/6 penalty,
obtaining O(P

1/4
T T

3/4 + T
5/6) overall.

More broadly, ensemble and meta-algorithmic strategies have been proposed to adapt to unknown
environment parameters in bandits. One notable example is the CORRAL framework introduced by
Agarwal et al. (2017); Luo et al. (2022), which maintains a pool of base bandit algorithms to hedge
against misspecification. However, to obtain their result, they still need to assume a fixed and known
number of switches (path length in our setting). Naive bandit-over-bandit schemes incur significant
overhead: for instance, running EXP4 (Auer et al., 2002) as a master over EXP3 bases would yield
O
(
T

2/3
)

regret due to the extra exploration needed (Odalric & Munos, 2011; Cheung et al., 2019).
While these methods are flexible, they often pay a price in terms of worse regret bounds or higher
variance, particularly in dynamic or tuning-free scenarios.

Notation and Assumptions. We assume the action set W is unconstrained, i.e., W = Rd. All the
following results easily extend to action sets contained in a Euclidean ball.

In the following, let Dψ(x, y) be the Bregman divergence with respect to the strongly convex reg-
ularizer ψ : W → R. We denote with ∥·∥ a norm; when the degree is not specified, it refers to the
Euclidean norm. The corresponding dual norm of w is denoted as as ∥w∥∗ = supg:∥g∥≤1 ⟨g,w⟩.
Given a norm ∥·∥ and ρ ≥ 0, we denote by Bρ := {x : ∥x∥ ≤ ρ} the closed ball of radius ρ, or the
unit ball when the radius is not specified. We denote with M1(W)the set of distributions over W .
O(·) hides constant factors and Õ(·) hides constant and logarithmic factors.

2 Combining guarantees with uniform sampling
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Algorithm 1 Uniform Sampling Interface

Input: Domain W ⊆ Rd, base algorithms
(
An

)N
n=1

for t = 1, . . . , T do
Get w(i)

t from Ai for all i ∈ [N ]

Sample it ∼ Uniform(N) and play wt = w
(it)
t

Receive feedback ϕ(wt, ℓt)
Send ϕ(wt, ℓt)I {it = i} to Ai for i ∈ [N ]

end for

Our approach is inspired by a framework for combining guarantees of comparator-adaptive online
learning algorithms proposed by Cutkosky (2019) for the simpler OCO setting. To illustrate the idea,
suppose we have N OCO algorithms A1, . . . ,AN , each guaranteeing regret RAi

T (0) = O(1)—
the fundamental feature characterizing comparator-adaptive algorithms (McMahan & Abernethy,
2013; McMahan & Orabona, 2014; Orabona & Pál, 2016; Cutkosky & Orabona, 2018). The key
insight of Cutkosky (2019) is that we can always obtain the best guarantee among them, RT (u) =
O(miniR

Ai

T (u)), by simply adding the iterates together. Indeed, letting w
(i)
t denote the output of

Ai on round t, if we play wt =
∑
i∈[N ] w

(i)
t then for any j ∈ [N ] we have

RT (u) =

T∑
t=1

⟨gt,wt − u⟩ =
T∑
t=1

〈
gt,w

(j)
t − u

〉
+
∑
i̸=j

T∑
t=1

〈
gt,w

(i)
t

〉
= R

Aj

T (u) +
∑
i ̸=j

RAi

T (0) = O
(
R

Aj

T (u) +N
)
,

where the last step uses the fact that each algorithm guarantees RAi

T (0) = O(1). Moreover, since
this holds for any j ∈ [N ], it must hold for the best among them.

While the above approach is particularly elegant for OCO, it unfortunately will not work under
bandit feedback. Loosely speaking, the issue is that when playing wt =

∑
i∈[N ] w

(i)
t , the feed-

back received will be ⟨gt,
∑
iw

(i)
t ⟩. As a result, there is no way to precisely assign feedback to

any individual learner, as the observed feedback includes contributions from all other learners’ de-
cisions. Instead, we make the following simple observation: if on each round we sample one of
the algorithms uniformly at random and play only its iterate on round t, then in expectation, this
is equivalent to playing

∑
iw

(i)
t /N . As a result, we can still apply nearly the same iterate-adding

argument outlined above, but we can now accurately assign feedback since only one learner’s action
is played on each round. The main difference from the iterate-adding approach is that we need to
rescale the comparator to account for the 1/N factor that shows up in

∑
iw

(i)
t /N .

The procedure described above is summarized in Algorithm 1. It generalizes the strategy to a generic
feedback oracle, which returns a feedback signal ϕ(wt, ℓt) given the loss ℓt and decision wt. Specif-
ically, this model captures first-order feedback when ϕ(wt, ℓt) = gt ∈ ∂ℓt(wt), bandit feedback
when ϕ(wt, ℓt) = ℓt(wt), and full-information feedback when ϕ(wt, ℓt) = ℓt. As a warm-up to
build intuition, the following theorem shows how this simple strategy performs in the first-order
feedback setting.

Proposition 2.1. Let A1, . . . ,AN be online learning algorithms and let w(i)
t denote the output of

Ai on round t. Suppose that for all i, Ai guarantees RAi

T (0) =
∑T
t=1 ℓt(w

(i)
t ) − ℓt(0) ≤ Gϵ for

any sequence of G-Lipschitz loss functions. Then for any sequence u1, . . . ,uT in W , Algorithm 1
guarantees E [RT (u1, . . . ,uT )] ≤ min

n=1,...,N
E
[
RAn

T (Nu1, . . . , NuT )
]
+ (N − 1)Gϵ.

Proof. Denote ĝ
(n)
t = I {it = n} gt and observe that for any n ∈ [N ] we have

E [RT (u1, . . . ,uT )] = E

[
T∑
t=1

ℓt(wt)

]
−

T∑
t=1

ℓt(ut) ≤ E

[
T∑
t=1

⟨gt,wt − ut⟩

]
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= E

 T∑
t=1

〈
ĝ
(n)
t ,w

(n)
t −Nut

〉
+
∑
n′ ̸=n

T∑
t=1

〈
ĝ
(n)
t ,w

(n′)
t

〉
≤ E

RAn

T (Nu1, . . . , NuT ) +
∑
n′ ̸=n

R
An′
T (0)


≤ E

[
RAn

T (Nu1, . . . , NuT )
]
+ (N − 1)Gϵ

This theorem illustrates how uniform sampling of comparator-adaptive algorithms acts as a rudi-
mentary coordination mechanism: by ensuring each learner individually adapts to the complexity
of an arbitrary comparator, then on average we can compare our total loss to the total loss of any
individual algorithm. As we will see in the following sections, this will enable us to “tune” hyperpa-
rameters on-the-fly, allowing us to adapt to the unknown problem parameters such as the path-length
PT without any prior knowledge of it.

Note that, unlike the iterate-adding approach of Cutkosky (2019), this method for combining guar-
antees ends up increasing the comparator norm by a factor of N , and so in the context of OCO
the uniform sampling approach is a worse option than the iterate-adding approach in most situa-
tions. Indeed, this trick is primarily of interest in settings where the iterate-adding approach can’t
be applied. In the following sections, we will see that Algorithm 1 lets us obtain new guarantees
for bandit feedback, where the iterate-adding can not be applied in general, at the expense of mild
poly-logarithmic penalties.

3 Linear Bandits

After illustrating the intuition behind using uniform sampling to combine regret guarantees, we turn
our attention to the linear bandit feedback setting.

Recall from the previous section that the key property that we need to apply the uniform sampling
strategy is that the base algorithms Ai guarantee a comparator-adaptive property,RT (0) = O(1). To
obtain guarantees of this form in the bandit setting, we use a reduction introduced by van der Hoeven
et al. (2020). The idea is to decompose wt into a scale vt ∈ R and direction βt ∈ B, which will be
learned by separate online learning algorithms. In particular, observe that for M = maxt ∥ut∥ we
have

T∑
t=1

⟨ℓt,wt − ut⟩ =
T∑
t=1

⟨ℓt,βt⟩ vt − ⟨ℓt,ut⟩

=

T∑
t=1

⟨ℓt,βt⟩ (vt −M)︸ ︷︷ ︸
=:R

AV
T (M)

+M

T∑
t=1

⟨ℓt,βt − ut/M⟩︸ ︷︷ ︸
=:R

AB
T (u1/M,...,uT /M)

,

so to ensure RT (0) = O(1) it suffices to provide a scale learner which can guarantee RAV
T (0) =

O(1) against the losses v 7→ ⟨ℓt,βt⟩ v. Yet this is simply a 1-dimensional static regret OLO prob-
lem, so we can apply any of the existing comparator-adaptive algorithms as the scale-learner to
ensure this property (Orabona & Pál, 2016; Cutkosky & Orabona, 2018; Mhammedi & Koolen,
2020; Jacobsen & Cutkosky, 2022). The following proposition shows that this scale/direction de-
composition extends easily to a collection of algorithms combined via uniform sampling.
Proposition 3.1. Pick N base algorithms as described in Algorithm 2, where the scale learner AV
is over R and the direction learner is over BN . Suppose that for any sequence of G-Lipschitz linear
losses g1, . . . , gT in R and for any ϵ > 0, the regret of AV satisfies RAV

T (0) =
∑T
t=1 gt(v

(n)
t −0) ≤

Gϵ . Then, for any n ∈ [N ] and any u1, . . . ,uT in Rd, Algorithm 1 guarantees

E [RT (u1, . . . ,uT )] ≤ E
[
R

A(n)
V

T (MN)

]
+MNE

[
R

A(n)
B

T

(u1

M
, . . . ,

uT
M

)]
+ (N − 1)Gϵ

where M = maxt ∥ut∥.
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Algorithm 2 Scale and Direction Decomposition (van der Hoeven et al., 2020)
Input: Domain W , scale learner AV , direction learner AB
for t = 1, . . . , T do

Get scale prediction vt from AV and direction prediction βt from AB
Play wt = vtβt
Observe ⟨wt, ℓt⟩ and compute gt = ⟨wt, ℓt⟩ /vt
Send ⟨ℓt,βt⟩ = ⟨ℓt,wt⟩ /vt to AB as the feedback on round t
Send v 7→ ⟨ℓt,βt⟩ v to AV as the tth loss

end for

Algorithm 3 Continuous Exponential Weight for Linear Bandits
Input: Action set W , initial exploration distr. π, learning rate η > 0, exploration param. β > 0
Initialize: p̃1 = π
for t = 1 : T do

Sample wt ∼ p̃t, observe ⟨ℓt,wt⟩
Let Qt = Ew∼p̃t [ww⊤] and estimate ℓ̂t = Q−1

t ⟨ℓt,wt⟩wt

Update pt+1 = argminp∈M1(W) Ew∼p[⟨ℓt,w⟩] +Dψ(p|p̃t)
Update p̃t+1 = (1− β)pt+1 + βπ

end for

Proof. The result is immediate by applying Proposition 2.1 followed by the scale / direction decom-
position:

E [RT (u1, . . . ,uT )] = E

[
T∑
t=1

⟨ℓt,wt − ut⟩

]

= E

[
T∑
t=1

〈
ℓ̂
(n)

t ,β
(n)
t

〉
v
(n)
t −

〈
ℓ̂
(n)

t , Nut

〉]

= E

[
T∑
t=1

〈
ℓ̂
(n)

t ,β
(n)
t

〉
v
(n)
t ±

〈
ℓ̂
(n)

t ,β
(n)
t

〉
NM −

〈
ℓ̂
(n)

t , Nut

〉]

≤ E

[
T∑
t=1

〈
ℓ̂
(n)

t ,β
(n)
t

〉
(vt −MN)

]
︸ ︷︷ ︸

R
A(n)

V
T (MN)

+MNE

[
T∑
t=1

〈
ℓ̂
(n)

t ,β
(n)
t − ut

M

〉]
︸ ︷︷ ︸

R
A(n)

B
T (u1

M ,...,
uT
M )

+(N − 1)Gϵ

= E
[
R

A(n)
V

T (MN)

]
+MNE

[
R

A(n)
B

T

(u1

M
, . . . ,

uT
M

)]
+ (N − 1)Gϵ

As observed above, the key insight of van der Hoeven et al. (2020) is that the feedback received
by the scale learner is actually full-information feedback; indeed, a scale learner’s loss function
v 7→ ⟨ℓt,βt⟩ v can be precisely recovered from ⟨ℓt,wt⟩ = ⟨ℓt,βt⟩ vt by dividing by vt, so no
tricky loss estimation is required for the scale learner. Moreover, observe that the scale learner faces
a static regret problem, so overall to meet the condition of Proposition 3.1,

it will suffice to apply any comparator-adaptive OCO algorithm for static regret as the scale learner,

leading to a guarantee of the form R
A(n)

V
T (M) = Õ(M

√
T ). Thus all that remains is to design a

bandit algorithm which can handle dynamic regret on a ball of radius N . To achieve this, we use the
Continuous Exponential Weights algorithm (Algorithm 3) and derive the following dynamic regret
guarantee, proven in Appendix A.
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Uniform Sampling

A1

A(1)
V A(1)

B

. . . AN

A(N)
V A(N)

B

Figure 1: Illustration of how the Uniform Sampling interface interacts with each base algorithm
Ai. Each base algorithm internally applies the direction and scale decomposition, using its own
hyperparameters.

Lemma 3.2. Let (∥·∥ , ∥·∥∗) be a dual-norm pair and suppose that ∥w∥ ≤ D for all w ∈ W . Then,
for any sequence u1, . . . ,uT in W and for any sequence of distributions p∗

1, . . . ,p
∗
T satisfying

Ew∼p∗
t
[w] = ut, Algorithm 3 with regularizer ψ(w) = 1

η

∑d
i=1 (wi log(wi)− wi) and exploration

distribution uniform over W guarantees

E [RT (u1, . . . ,uT )] ≤
1 + log (d) (1 + P∆

T )

η
+ ηdD2

T∑
t=1

∥ℓt∥2∗ .

Note that, in this specific setting, we obtain a generalization of the notion of switching regret, which
measures the number of times the comparator action changes, ST =

∑T
t I {ut ̸= ut−1}. This

results from the fact that Continuous Exponential Weights works with the distributions over actions
rather than the actions themselves.

With this guarantee at hand, we can see that the optimal choice of learning rate would be η∗ ∼√
P∆

T log d

dT . However, choosing this step-size would require knowledge of P∆
T . Instead, we will

use the guarantee-combining argument suggested above to consider a grid of exponentially spaced
candidate step-sizes:

S =

{
2i

GT
∧ 1

G
: i = 0, 1, . . .

}
. (1)

By running a base algorithm for each ηi ∈ S , we guarantee that at least one of them achieves
regret within a constant factor of the optimal choice η∗ (see Appendix B). Combining this with
the guarantees of the scale and direction learners above and applying Proposition 3.1 we obtain the
following guarantee (proof in Appendix A.2).

Theorem 3.3. Let S as defined in Equation (1). For all i ∈ |S|, let Ai be an instance of Algorithm 2
such that the direction learner A(i)

B is an instance of Algorithm 3 with step-size ηi on domain BN ,
and A(i)

V is a comparator-adaptive OLO routine. Then for any sequence u1, . . . ,uT in W and
sequence of distributions p∗

1, . . . ,p
∗
T satisfying Ew∼p∗t [w] = ut, Algorithm 1 guarantees

E [RT (u1, . . . ,uT )] = Õ

Gϵ+ dMG(1 + P∆
T ) + dM

√√√√N(1 + P∆
T )

T∑
t=1

∥ℓt∥2∗

 ,

where M = maxt ∥ut∥.

As noted above, P∆
T is a generalization of the number of switches ST . Hence, this result implies the

optimal switching regret guarantee O(dM
√

(ST + 1)T ) up to poly-logarithmic terms.

4 Conclusions and Future Work

The approach proposed in this paper is remarkably simple and allows hyperparameters to be tuned
on-the-fly, enabling adaptivity to problem parameters that cannot be directly observed or estimated,
such as the path-length. This leads to the first optimal parameter-free dynamic regret bound for
linear bandits. This technique can easily be extended to other settings involving hard-to-estimate
quantities, but it crucially relies on the scale and direction decomposition, which may not apply when
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the action set lacks such structure. Extending this to more general or irregular action sets—e.g.,
combinatorial sets—is non-trivial, as these often lack a clear notion of direction or have an irregular
geometry that complicates such decoupling.

A natural question is whether it is possible to recover guarantees that scale with the standard path
length PT in linear bandits. One possible approach is to directly optimize in the action space—e.g.,
via mirror descent—and then construct a distribution pt such that Ept [w] = wt, playing w ∼ pt.
However, the feasibility and variance control of such sampling methods remain challenging.
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A Linear Bandits

In this section, we show how to derive the unconstrained linear bandit result stated in Theorem 3.3.
We begin by establishing a base regret guarantee for the continuous exponential weights learner. To
that end, we first prove the base guarantee.
Lemma 3.2. Let (∥·∥ , ∥·∥∗) be a dual-norm pair and suppose that ∥w∥ ≤ D for all w ∈ W . Then,
for any sequence u1, . . . ,uT in W and for any sequence of distributions p∗

1, . . . ,p
∗
T satisfying

Ew∼p∗
t
[w] = ut, Algorithm 3 with regularizer ψ(w) = 1

η

∑d
i=1 (wi log(wi)− wi) and exploration

distribution uniform over W guarantees

E [RT (u1, . . . ,uT )] ≤
1 + log (d) (1 + P∆

T )

η
+ ηdD2

T∑
t=1

∥ℓt∥2∗ .

Proof. First observe that we can relate the dynamic regret w.r.t. the chosen actions to the dynamic
regret w.r.t. the action sampling distributions as follows

E [RT (u1, . . . ,uT )] = E

[
T∑
t=1

⟨ℓt,wt − ut⟩

]
= E

[
T∑
t=1

〈
ℓt,

∫
wp̃t(w)dw − ut

〉]

= E

[
T∑
t=1

∫
⟨ℓt,w⟩ (p̃t(w)− p∗t (w))dw

]

= E

[
T∑
t=1

∫ 〈
ℓ̂t,w

〉
(p̃t(w)− p∗t (w))dw

]

where p∗t (w) is the distribution supported on W such that Ep∗t [w] = ut. Equivalently, we will

slightly abuse notation by writing ĝt(w) =
〈
ℓ̂t,w

〉
and ⟨ĝt,p⟩ =

∫
ĝt(w)p(w)dw, we have

E [RT ((u1, . . . ,uT ))] ≤ E

[
T∑
t=1

⟨ĝt, p̃t − p∗
t ⟩

]
. (2)

Now we apply the following regret guarantee, proven in Appendix A.1:

Proposition A.1. Let β = 1/(T + 1), let η > 0 satisfy η |ĝt(w)| ≤ 1 for all w ∈ W , and let

ψ(p) = Ex∼p

[
log(p(x))

η

]
=
∫ p(x) log(p(x))

η dx. Set p̃1 = Uniform(W) and on each round suppose

we play p̃t = (1 − β)pt + βp̃1 and update pt+1 = argminp∈M1(W) Ew∼p[ĝt(w)] + Dψ(p|p̃t).
Then for any sequence of distributions p∗1, . . . , p

∗
T in M1(W), it holds that

T∑
t=1

⟨ĝt, p̃t − p∗
t ⟩ ≤

1 + log (Vol (W)) (1 + P∆
T )

η
+ η

T∑
t=1

Ew∼p̃t [ĝt(w)2],

where P∆
T =

∑T
t=2

∥∥p∗
t − p∗

t−1

∥∥
1
.

Hence, plugging this back into Equation (2), the regret of Algorithm 3 is bounded as

E [RT (u1, . . . ,uT )] ≤ E

[
1 + log (Vol (W)) (1 + P∆

T )

η
+ η

T∑
t=1

Ew∼p̃t [ĝt(w)2]

]

= E

[
1 + log (Vol (W)) (1 + P∆

T )

η
+ η

T∑
t=1

Ew∼p̃t

[〈
ℓ̂t,w

〉2]]
.

To bound the last term, define Qt = Ew∼p̃t [ww⊤] and observe that

Ew∼p̃t

[〈
ℓ̂t,w

〉2]
=

∫
⟨ℓt,wt⟩2 w⊤

t Q
−1
t ww⊤Q−1

t w⊤
t p̃t(w)dw
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= ⟨ℓt,wt⟩2 w⊤
t Q

−1
t Ew∼p̃t [ww⊤]︸ ︷︷ ︸

Qt

Q−1
t wt

= ⟨ℓt,wt⟩2 ∥wt∥2Q−1
t

Therefore, for wt ∼ p̃t, we have

E

[
T∑
t=1

∫ 〈
ℓ̂t,w

〉2
p̃t(w)dw

]
= E

[
T∑
t=1

⟨ℓt,wt⟩2 ∥wt∥2Q−1
t

]

≤ E

[
T∑
t=1

∥ℓt∥∗D
2E
[
∥wt∥2Q−1

t

∣∣∣p̃t]]

= E

[
D2

T∑
t=1

∥ℓt∥2∗ Tr
(∫

ww⊤p̃t(w)dwQ−1
t

)]

= E

[
D2d

T∑
t=1

∥ℓt∥2∗

]
,

for ∥wt∥ ≤ D. Plugging this back in above, we have

E [RT (u1, . . . ,uT )] ≤
1 + log (Vol (W)) (1 + P∆

T )

η
+ ηdD2

T∑
t=1

∥ℓt∥2∗ .

A.1 Switching Regret on the Simplex

For completeness, in this section we show how to derive the dynamic regret of the base OLO algo-
rithm. The result follows a standard mirror descent argument.

Throughout this section, we will use the short-hand notation ⟨g,p⟩ =
∫
g(w)p(w)dw, where g is a

function with domain W , p is a the density of a distribution of W . We let M1(W) denote the set of
distributions over W .
Proposition A.1. Let β = 1/(T + 1), let η > 0 satisfy η |ĝt(w)| ≤ 1 for all w ∈ W , and let

ψ(p) = Ex∼p

[
log(p(x))

η

]
=
∫ p(x) log(p(x))

η dx. Set p̃1 = Uniform(W) and on each round suppose

we play p̃t = (1 − β)pt + βp̃1 and update pt+1 = argminp∈M1(W) Ew∼p[ĝt(w)] + Dψ(p|p̃t).
Then for any sequence of distributions p∗1, . . . , p

∗
T in M1(W), it holds that

T∑
t=1

⟨ĝt, p̃t − p∗
t ⟩ ≤

1 + log (Vol (W)) (1 + P∆
T )

η
+ η

T∑
t=1

Ew∼p̃t [ĝt(w)2],

where P∆
T =

∑T
t=2

∥∥p∗
t − p∗

t−1

∥∥
1
.

Proof. Using a standard dynamic regret decomposition for mirror descent updates (see, e.g., Jacob-
sen & Cutkosky (2023, Lemma A.1)), we have

T∑
t=1

⟨ĝt, p̃t − p∗
t ⟩ ≤

T∑
t=1

Dψ(p
∗
t |p̃t)−Dψ(p

∗
t |p̃t+1)︸ ︷︷ ︸

=:Pt

+

T∑
t=1

Dψ(p
∗
t |pt+1)−Dψ(p

∗
t |p̃t+1)︸ ︷︷ ︸

=:ξt

+

T∑
t=1

〈
ĝt, p̃t − pt+1

〉
−Dψ(pt+1|p̃t)︸ ︷︷ ︸

=:δt

.

Observe that for any u, p, q ∈ M1(W) we have

Dψ(u | p)−Dψ(u | q) = 1

η

∫
u(w) log

(
u(w)

p(w)

)
dw − 1

η

∫
u(w) log

(
u(w)

q(w)

)
dw
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=
1

η

∫
u(w) log

(
q(w)

p(w)

)
dw (3)

Thus, the terms ξt can be bound as
T∑
t=1

ξt =

T∑
t=1

Dψ(p
∗
t | p̃t+1)−Dψ(p

∗
t | pt+1)

=
1

η

T∑
t=1

∫
p∗t (w) log

(
pt+1(w)

p̃t+1(w)

)
dw

=
1

η

T∑
t=1

∫
p∗t (w) log

(
pt+1(w)

(1− β)pt+1(w) + βp̃1(w)

)
dw

≤ 1

η

T∑
t=1

∫
p∗t (w) log

(
1

(1− β)

)
dw

≤ T

η
log

(
1

(1− β)

)
.

Now, focusing on the path terms Pt, we have
T∑
t=1

Pt = Dψ(p
∗
1|p̃1)−Dψ(p

∗
T |p̃T+1) +

T∑
t=2

Dψ(p
∗
t |p̃t)−Dψ(p

∗
t−1|p̃t)

= Dψ(p
∗
1|p̃1)−Dψ(p

∗
1|p̃T+1)

+Dψ(p
∗
T |p̃1)−Dψ(p

∗
1|p̃1) +

T∑
t=2

1

η

∫
(p∗t−1(w)− p∗t (w)) (log (p̃t(w))− log (p̃1(w))) dw

= Dψ(p
∗
T |p̃1)−Dψ(p

∗
T |p̃T+1) +

T∑
t=2

1

η

∫ (
p∗t−1(w)− p∗t (w)

)
log

(
p̃t(w)

p̃1(w)

)
dw

≤ Dψ(p
∗
T |p̃1)−Dψ(p

∗
T |p̃T+1) +

T∑
t=2

1

η

∥∥p∗
t − p∗

t−1

∥∥
1
sup
w∈W

∣∣∣∣log( p̃t(w)

p̃1(w)

)∣∣∣∣
≤ Dψ(p

∗
T |p̃1)−Dψ(p

∗
T |p̃T+1) +

T∑
t=2

1

η

∥∥p∗
t − p∗

t−1

∥∥
1
|log (Vol (W))| ,

where the first inequality applies Hölder inequality. Moreover, using Equation (3), the first two
terms can be bound as

Dψ(p
∗
T |p̃1)−Dψ(p

∗
T |p̃T+1) =

1

η

∫
p∗T (w) log

(
p̃T+1(w)

p̃1(w)

)
dw

=
1

η

∫
p∗T (w) log

(
(1− β)pT+1(w) + βp̃1(w)

p̃1(w)

)
dw

≤ 1

η

∫
p∗T (w) log

(
(1− β)pT+1(w)

p̃1(w)
+ β

)
dw

≤ 1

η
log (Vol (W) (1− β) + β) ≤

log+ (Vol (W))

η

where we’ve recalled p̃t = (1− β)pt + βp̃1 for any t and used (1− β)a+ βb ≤ max {a, b}.

Returning to our regret bound, we have
T∑
t=1

⟨ĝt, p̃t − p∗
t ⟩ ≤

1

η
|log (Vol (W))|+ 1

η
|log (Vol (W))|

T∑
t=2

∥∥p∗
t−1 − p∗

t

∥∥
1
+
T

η
log

(
1

(1− β)

)
+

T∑
t=1

δt

=
|log (Vol (W))| (1 + P∆

T )

η
+
T

η
log

(
1

(1− β)

)
+

T∑
t=1

δt (4)
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We now have to take care of the terms
∑T
t=1 δt. Let p+t+1 denote the unconstrained minimizer

p+t+1 = argminp ⟨ĝt,p⟩+Dψ(p|p̃t), we have

T∑
t=1

δt =

T∑
t=1

⟨ĝt, p̃t − pt+1⟩ −Dψ(pt+1|p̃t) ≤
T∑
t=1

⟨ĝt, p̃t − p+
t+1⟩ −Dψ(p

+
t+1|p̃t)

=

T∑
t=1

〈
∇ψ(p̃t)−∇ψ(p+

t+1), p̃t − p+
t+1

〉
−Dψ(p

+
t+1|p̃t)

=

T∑
t=1

Dψ(p̃t|p+t+1) =

T∑
t=1

∫
1

η

(
p̃t(w) log

(
p̃t(w)/p+t+1(w)

)
− p̃t(w) + p+t+1(w)

)
dw

=

T∑
t=1

∫
1

η

(
p̃t(w) log

(
eηĝt(w)

)
− p̃t(w) + p̃t(w)e−ηĝt(w)

)
dw

=

T∑
t=1

∫
p̃t(w)

η

(
ηĝt(w)− 1 + e−ηĝt(w)

)
dw

≤
T∑
t=1

∫
ηĝt(w)2p̃t(w)dw,

where we’ve used p+t+1(w) = p̃t(w)e−ηĝt(w) via the first-order optimality condition for p+t+1 and
e−x − 1 + x ≤ x2 for x ≥ −1. Hence,

T∑
t=1

⟨ĝt, p̃t − p∗
t ⟩ ≤

|log (Vol (W))|
η

+
|log (Vol (W))|

∑T
t=2

∥∥p∗
t − p∗

t−1

∥∥
1

η

+
T

η
log

(
1

(1− β)

)
+ η

T∑
t=1

∫
ĝt(w)2p̃t(w)dw.

Setting β = 1/(T + 1), and using the following simple inequalities:

log

(
1

1− β

)
= log

(
1

1− 1/(T + 1)

)
= log

(
T + 1

T

)
= log

(
1 +

1

T

)
≤ 1

T
,

we have an overall regret bound of

T∑
t=1

⟨ĝt, p̃t − p∗
t ⟩ ≤

1 + |log (Vol (W))| (1 + P∆
T )

η
+ η

T∑
t=1

∫
ĝt(w)2p̃t(w)dw.

A.2 Optimal Switching Regret without Prior Knowledge

Now combining the results from Proposition 3.1 and Lemma 3.2, we are ready to prove Theorem 3.3.
Theorem 3.3. Let S as defined in Equation (1). For all i ∈ |S|, let Ai be an instance of Algorithm 2
such that the direction learner A(i)

B is an instance of Algorithm 3 with step-size ηi on domain BN ,
and A(i)

V is a comparator-adaptive OLO routine. Then for any sequence u1, . . . ,uT in W and
sequence of distributions p∗

1, . . . ,p
∗
T satisfying Ew∼p∗t [w] = ut, Algorithm 1 guarantees

E [RT (u1, . . . ,uT )] = Õ

Gϵ+ dMG(1 + P∆
T ) + dM

√√√√N(1 + P∆
T )

T∑
t=1

∥ℓt∥2∗

 ,

where M = maxt ∥ut∥.
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Proof. Observe that ηmax/ηmin = T , so N = ⌈log2(ηmax/ηmin)⌉ = ⌈log2(T )⌉. By Proposi-
tion 3.1, for any ηi ∈ S we have

E [RT (u1, . . . ,uT )] ≤ E
[
R

A(i)
V

T (MN) +MNRT

(u1

M
, . . . ,

uT
M

)
+ (N − 1)Gϵ

]
,

where M = maxt ∥ut∥. The regret guarantee of A(i)
V ensures that

E
[
R

A(i)
V

T (NM)

]
≤ Gϵ+MNE

√√√√∑
t

〈
ℓ̂
(i)

t ,β
(it)
t

〉2

log

(
MNΛT
ϵG

+ 1

)
∨G log

(
NMΛT
ϵG

+ 1

)
= Õ

ϵG+M

√
N
∑
t

∥ℓt∥2∗

 ,

since
∥∥∥β(it)

t

∥∥∥ ≤ 1 for all t and E

[√∑T
t=1

∥∥∥∥ℓ̂(i)t ∥∥∥∥2
∗

]
≤

√∑T
t=1 E

[
∥ℓt∥2∗ I {it = i}

]
=√∑T

t=1 ∥ℓt∥
2
∗ /N via Jensen’s inequality. Moreover, letting ũt =

ut

M , each of the algorithms A(i)
B

guarantees

E
[
R

A(i)
B

T (ũ1, . . . , ũT )

]
≤ 1 + log (Vol (W)) (1 + P∆

T )

ηi
+ ηid

T∑
t=1

E

[∥∥∥∥ℓ̂(i)t ∥∥∥∥2
∗

]

=
1 + log (Vol (W)) (1 + P∆

T )

ηi
+
ηid

N

T∑
t=1

E
[
∥ℓt∥2∗

]
,

where we’ve used the fact that E

[∥∥∥∥ℓ̂(i)t ∥∥∥∥2
∗

]
= E

[
∥ℓt∥2∗ I {it = i}

]
= ∥ℓt∥2∗ /N . Hence, by

Lemma B.1, there is an i ∈ [N ] such that

NME
[
R

A(i)
B

T (ũ1, . . . , ũT )

]
≤ 3M

√√√√dN(1 + log (Vol (W)) (1 + P∆
T ))

T∑
t=1

∥ℓt∥2∗

+NM(1 + log (d) (1 + P∆
T ))G+

dM

GT

T∑
t=1

∥ℓt∥2∗

≤ 3

√√√√dN(1 + log (Vol (W)) (1 + P∆
T ))

T∑
t=1

∥ℓt∥2∗

+NM(1 + log (d) (1 + P∆
T ))G+MGd

Hence, combining with the previous display we have

E [RT (u1, . . . ,uT )] = Õ

(
NG(ϵ+ dM) +NM(1 + log (Vol (W)))(1 + P∆

T )G

+M

√√√√N

T∑
t=1

∥ℓt∥2∗ + 3M

√√√√dN(1 + log (Vol (W)) (1 + P∆
T ))

T∑
t=1

∥ℓt∥2∗

)

= Õ

Gϵ+ dMG(1 + P∆
T ) + dM

√√√√N(1 + P∆
T )

T∑
t=1

∥ℓt∥2∗

 ,

where the last line hides polylog factors and bounds log (Vol (W)) ≤ Õ(d).
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B Supporting Lemmas

In this section, we present the supporting lemmas used to combine the guarantees of the base algo-
rithms.
Lemma B.1. Let b > 1, 0 < ηmin ≤ ηmax and let S =

{
ηi = ηminb

i ∧ ηmax : i = 0, 1, . . .
}

Then
for any P, V ∈ R≥0, there is an η ∈ S such that

R(η) :=
P

η
+ ηV ≤ (b+ 1)

√
PV +

P

ηmax
+ ηminV

Proof. Define

R(η) =
P

η
+ ηV.

Clearly the bound is optimized by η∗ = argminη
P
η + ηV =

√
P/V . Suppose that η∗ ∈

[ηmin, ηmax]. Then there is an i ∈ 0, 1, . . . such that ηi ≤ η∗ ≤ ηi+1 = bηi, hence setting η = ηi
yields

R(η) =
P

ηi
+ ηiV ≤ b

P

η∗
+ η∗V = (b+ 1)

√
PV . (5)

Otherwise, η∗ /∈ [ηmin, ηmax] and there are two cases to consider. First suppose that η∗ ≥ ηmax,
then setting η = ηmax we have

R(η) =
P

ηmax
+ ηmaxV ≤ P

ηmax
+ η∗V =

P

ηmax
+
√
PV . (6)

Likewise, if η∗ ≤ ηmin, then setting η = ηmin yields

R(η) =
P

ηmin
+ ηminV ≤ P

η∗
+ ηminV =

√
PV + ηminV. (7)

Overall, combining Equations (5) to (7), we have that there is an η ∈ S such that

R(η) ≤ (b+ 1)
√
PV +

P

ηmax
+ ηminV.

Lemma B.2. Let b > 1, c > 1, 0 < ηmin ≤ ηmax, 0 < δmin ≤ δmax and let
S =

{
ηi = ηminb

i ∧ ηmax : i = 0, 1, . . .
}

and
{
δj = δminc

j ∧ δmax : j = 0, 1, . . .
}

Then for any
P, V1, V2 ∈ R≥0, there is an η ∈ S such that

R(η, δ) :=
P

η
+ η

V1
δ2
T + δV2T ≤ P

ηmax
+ ηmin

V1
δ2max

T + δminV2T +
1 + b+ c2√

2
V

1/2
2 (PV1)

1/4T 3/4

Proof. Define:

R(η, δ) =
P

η
+ η

V1
δ2
T + δV2T

To obtain the optimal η∗ and δ∗:

∂R

∂η
= − P

η2
+
V1T

δ2
= 0 =⇒ η =

√
Pδ2

V1T
.

Then,

∂R

∂δ
= TV2 − 2

ηV1T

δ3
= 0 =⇒ V2T − 2

(√
Pδ2

V1T

)
V1T

δ3
= 0
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=⇒ V2T − 2

√
PV1T

δ2
= 0 =⇒ δ =

(
2

V2

√
PV1
T

)1/2

So, δ∗ =

(
2
V2

√
PV1

T

)1/2

and η∗ =

√
P 2

V2

√
PV1
T

V1T
=

√
2P 3/2

V2V
1/2
1 T 3/2

yields

R(η∗, δ∗) ≤ 2
√
2V

1/2
2 (PV1)

1/4T 3/4 .

Now suppose that η∗ ∈ [ηmin, ηmax] and δ∗ ∈ [δmin, δmax]. Then there are i, j ∈ 0, 1, . . . such that
ηi ≤ η∗ ≤ ηi+1 = bηi and δj ≤ δ∗ ≤ δj+1 = cδj , hence setting η = ηi and δ = δj yields

R(η, δ) ≤ P

η
+ η

V1
δ2
T + δV2T ≤ b

P

η∗
+ c2η∗

V1
δ∗2

T + δ∗V2T ≤ 1 + b+ c2√
2

V
1/2
2 (PV1)

1/4T 3/4

Now we need to analyze the other cases, note that we can proceed as in the previous lemma for both
the parameters, if η∗ ≥ ηmax then the second term can be optimized with η∗, while in the other case
the first term will be. The same reasoning is used for the δ parameter, yielding:

R(η, δ) ≤ P

ηmax
+ ηmin

V1
δ2max

T + δminV2T +
1 + b+ c2√

2
V

1/2
2 (PV1)

1/4T 3/4
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