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Abstract
Training autonomous agents that can learn new
tasks from only a handful of demonstrations is a
long-standing problem in machine learning. Re-
cently, transformers have been shown to learn
new language or vision tasks without any weight
updates from only a few examples, also referred
to as in-context learning. However, the sequen-
tial decision making setting poses additional chal-
lenges having a lower tolerance for errors since
the environment’s stochasticity or the agent’s ac-
tions can lead to unseen, and sometimes unrecov-
erable, states. In this paper, we use an illustra-
tive example to show that naively applying trans-
formers to sequential decision making problems
does not enable in-context learning of new tasks.
We then demonstrate how training on sequences
of trajectories with certain distributional proper-
ties leads to in-context learning of new sequential
decision making tasks. We investigate different
design choices and find that larger model and
dataset sizes, as well as more task diversity, en-
vironment stochasticity, and trajectory burstiness,
all result in better in-context learning of new out-
of-distribution tasks. By training on large diverse
offline datasets, our model is able to learn new
MiniHack and Procgen tasks without any weight
updates from just a handful of demonstrations.

1. Introduction
For many real-world application domains such as robotics
or virtual assistants, collecting large amounts of data for
training an agent can be time consuming, expensive, or even
dangerous. Hence, the ability to learn new tasks from a
handful of demonstrations is crucial for enabling a wider
range of use cases. However, current deep learning agents
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often struggle to learn new tasks from a limited number of
demonstrations.

Prior work attempts to address this problem using meta-
learning (Schmidhuber, 1987; Duan et al., 2016; Finn et al.,
2017; Pong et al., 2022; Mitchell et al., 2021; Beck et al.,
2023) but these methods tend to be difficult to use in prac-
tice and require more than a handful of demonstrations or
extensive fine-tuning. In contrast, large transformers trained
on vast amounts of data can learn new tasks from only a
few examples without any parameter updates (Brown et al.,
2020; Kaplan et al., 2020; Olsson et al., 2022a; Chan et al.,
2022b). This emergent phenomenon is called few-shot or
in-context learning (ICL), and is achieved by simply condi-
tioning the model’s outputs on a context containing a few
examples for solving the task (Brown et al., 2020; Ganguli
et al., 2022; Wei et al., 2022).

While in-context learning has been observed in multiple
domains from language (Brown et al., 2020) to vision (Chan
et al., 2022b), it has not yet been extensively studied in se-
quential decision making settings. The sequential decision
making problem poses additional challenges that do not
appear in the supervised or self-supervised settings. For ex-
ample, this setting tends to have a lower tolerance for errors
since the environment’s stochasticity or the agent’s actions
can lead to unseen, and sometimes unrecoverable, states.
In this paper, we study in-context learning of sequential
decision making tasks. To test our approach, we consider a
challenging setting where the train and the test task distri-
butions are disjoint with different states, actions, dynamics,
and reward functions. For example, on Procgen we train on
12 of the games and test on the remaining 4. To emphasize
how different the train and test tasks are, one of the training
tasks is Bigfish where the must eat as many smaller fish as
possible while avoiding larger fish than itself and it grows
in size as it eats more. In contrast, one of our test tasks
is Ninja, where the agent must jump across ledges while
avoiding bombs or destroying them by tossing starsin order
to collect the mushroom at the end of the platform. Figure 1
illustrates some of our train and test task, emphasizing how
different they are. To our knowledge, no prior work has
demonstrated the ability to generalize to new MiniHack or
Procgen tasks using only a handful of demonstrations and
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Figure 1: Illustration of Train and Test Tasks. (Left) A collection of procedurally generated Procgen levels from the
Fruitbot task, demonstrating the complexity and diversity inherent in the environment’s design. (Middle) Tasks used for
training. (Right) Tasks used for testing. Note that the test tasks are entirely distinct from the training tasks, and each of them
is procedurally generated, consisting of multiple levels.

no weight updates.

We first focus on the data distributional properties required
to enable in-context learning of sequential decision making
tasks. Our key finding is that in contrast to (self-)supervised
learning where the context can simply contain a few differ-
ent examples (or predictions), in sequential decision making
it is crucial for the context to contain full/partial trajectories
(or sequences of predictions) to cover the potentially wide
range of states the agent may find itself in at deployment.
Translating this insight into a dataset construction pipeline,
we demonstrate that we can enable in-context learning of un-
seen tasks on both the MiniHack and Procgen benchmarks
from only a handful of demonstrations. We additionally per-
form an extensive study of other design choices such as the
model size, dataset size, trajectory burstiness, environment
stochasticity, and task diversity. Our experiments suggest
that larger model and dataset sizes, as well as more trajec-
tory burstiness, environment stochasticity, and task diversity,
all lead to better in-context learning when using transform-
ers for sequential decision making tasks. Our work is first
to show that generalization to new Procgen and Mini-
Hack tasks is possible from just a handful of expert
demonstrations and no weight updates using the trans-
former’s in-context learning ability. This goes beyond the
well-studied generalization to new levels which are merely
procedurally generated instances of the training task rather
than fundamentally new tasks (Cobbe et al., 2020; Igl et al.,
2019; Laskin et al., 2020; Raileanu et al., 2020b; Raileanu
& Fergus, 2021).

2. Background
Markov Decision Processes: Sequential decision mak-
ing tasks can be modeled by Markov Decision Processes
(MDPs) (Sutton & Barto, 2018) represented by a tuple
M =

(
S,A, R, P, γ, µ

)
, where S is the state space, A

is the action space, R : S × A → [Rmin, Rmax] is the re-
ward function , P : S × A × S → R≥0 is the transition

function, γ ∈ (0, 1] is the discount factor, and µ : S → R≥0

is the initial state distribution. We denote the trajectory of
an episode by τ = (s0, a0, r0, . . . , sT , aT , rT , sT+1) where
rt = R(st, at) and T is the length of the trajectory which
can be infinite. If a trajectory is generated by a stochastic
policy π : S × A → R≥0, Rπ =

∑T
t=0 γ

trt is a ran-
dom variable that describes the discounted return the policy
achieves. The objective is to find a policy π⋆ that maximizes
the expected discounted return in the MDP.

Problem Setting. In this paper, we are interested in learn-
ing new tasks from a small number of demonstrations after
pretraining on a large dataset of offline trajectories from
different tasks. Formally, we consider a set of tasks T split
into disjoint sets Ttrain and Ttest. The train and test tasks
have different observations, action distributions, transition
and reward functions. Each task Ti ∈ T is procedurally
generated, meaning that it includes L MDPs {Ml

i}Ll=1 shar-
ing the same state spaces, transition and reward functions,
but different initial state distributions. We refer to these as
“levels” in this paper as depicted in Figure 1 and each level
corresponds to a different random seed used to generate the
corresponding instance of the task. For each MDP Mi in
our set, we collect K expert demonstrations using reinforce-
ment learning (RL) agents which were pretrained on Mi,
to create a dataset Di containing trajectories of the form
τi = (si0, a

i
0, . . . , s

i
T , a

i
T ), where T is the maximum num-

ber of steps in the episode. For the test MDPs K is small,
meaning that we only collect a few expert demonstrations
for each level of a test task and use them to condition our
transformer model.

3. Methodology
3.1. Training Data

Tasks: In order to study ICL for sequential decision making,
we seek domains which are rich, diverse, and of varying
complexity. For this reason, we decided to use MiniHack
(Samvelyan et al., 2021) and Procgen (Cobbe et al., 2020).
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Figure 2: Experimental Setup: We create a dataset of expert trajectories by rolling out expert policies on N tasks. Given
these expert trajectories, we construct multi-trajectory sequences with trajectory burstiness pb. A sequence is bursty when
there are at least two trajectories in the sequence from the same level. However, note that these trajectories are typically
different due to the environment’s stochasticity. These multi-trajectory sequences then serve as input to the causal transformer,
which we train to predict actions. During evaluation, we condition the transformer on a few expert trajectories from an
unseen task, then rollout the transformer policy until the episode terminates.

MiniHack is a procedurally generated, dungeon-world sand-
box based on the NetHack Learning Environment (Küttler
et al., 2020) which provides a diverse suite of tasks exhibit-
ing challenges related to navigation, tool use, generalization,
exploration and planning. Procgen, similarly to MiniHack,
provides 16 procedurally generated game-like tasks to test
the generalization abilities of the agent, and additionally fea-
tures high-dimensional pixel-based observations. In Mini-
Hack and Procgen, each “level” corresponds to a different
random seed used to generate the task instance, including
the layout, entities and visual aspects. To generate our expert
datasets, we used final checkpoints of E3B (Henaff et al.,
2022) policies for MiniHack and PPO (Cobbe et al., 2020)
policies for Procgen. Details can be found in B.3.

Sequence Construction for Transformer Training: After
collecting the expert data, we construct the trajectory
sequences for training the transformer. Rather than using
single-trajectory sequences as an input sequence to the
transformer as done in (Chen et al., 2021) and its succes-
sors (Janner et al., 2021a; Lee et al., 2022), we use multi-
trajectory sequences (Team et al., 2023a; Laskin et al., 2022)
where we stack multiple episodes to form a big sequence.
We also remove the explicit conditioning on the episodic
return. To summarize, the transformer input takes the form
of {(s0, a0, s1, . . . sT , aT )1, (s0, a0, s1, . . . sT , aT )2 . . .
(s0, a0, s1, . . . sT , aT )n} where n is the number of
trajectories.

Moreover, the multi-trajectory sequences adhere to certain
distributional properties. First, we extend the concept of
burstiness to the sequential decision making setting. Bursti-
ness was first introduced in (Chan et al., 2022b) to describe
the quality of a dataset sample where the input sequence

contains entities which occur in clusters. One can loosely
think of a bursty sequence as to having few-shot examples in
a seqeunce. Here, we extend this idea to trajectory bursti-
ness, which we define as the probability of a given input
sequence containing atleast two trajectories or more (i.e.,
few-shot) from the same level (Figure 2). This means that
the relevant information required to solve the task is entirely
in the sequence. However, note that the trajectories, despite
being from the same level, may vary because of the inherent
environment stochasticity which means that the model still
needs to generalize to handle these cases. These trajectories
can be viewed as the sequential decision making equivalent
of few-shot examples in supervised learning. To construct a
bursty trajectory sequence, we sample n trajectories from a
given set of L levels in such a way that, with bursty proba-
bility pb, there are at least two trajectories coming from the
same level. Note that all the trajectories within a sequence
come from the same task. In our main experiments (Sec-
tion 5), we consider pb = 1.0, meaning that all the input
sequences in the dataset are bursty. Figure 2 contains an
illustration of our approach.

3.2. Model Training and Evaluation

Model Architecture and Training Procedure: For both
MiniHack and Procgen, we use standard neural network
architectures used in prior work (Samvelyan et al., 2021;
Cobbe et al., 2020) to process observations and use a sepa-
rate embedding layer to process actions. In both cases, we
then pass these sequences to a causal transformer (Vaswani
et al., 2017b). Finally, we use a cross-entropy loss over all
the action predictions in our sequence. Unless otherwise
specified, we use a 100M parameter transformer model for
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MiniHack and a 210M parameter model for Procgen.

Evaluation: We evaluate all the pretrained models on un-
seen tasks that differ from those used during training, as
shown in Figure 1. For each pretrained model, we conduct
two types of evaluations: few-shot and zero-shot. For few-
shot evaluations, we condition the model on a handful of
expert demonstration (ranging from 1 to 7) and roll out the
transformer policy for five episodes. This is repeated for L
levels per task, and we aggregate the episodic return across
all levels. The evaluation protocol for zero-shot evaluations
is identical, with the exception that we do not condition on
the expert demonstration. For all our results, we report mean
and standard deviation across 3 seeds.

4. Motivating Experiment
Existing state-of-the-art methods that use transformers for
decision making train them on sequences consisting of sin-
gle trajectories (Chen et al., 2021). In this section, we show
that this setup fails to promote in-context learning of new
tasks. Instead, we will demonstrate that training transform-
ers on sequences of multiple trajectories can enable few-
shot learning of unseen tasks. To illustrate this, we compare
the performance of a single-trajectory transformer trained
on single-trajectory sequences, and a multi-trajectory trans-
former trained on multi-trajectory sequences in a simple
setting.

The single-trajectory transformer’s context consists of
all past transitions from the current episode ct =
{(s0, a0, s1, a1, . . . , st−1, at−1)}, and the transformer has
to predict the action given the current state and the context
p(at|st, ct) for each time-step t. Hence, given a new task
different from the training ones (meaning that we cannot
expect much in-weights (Chen et al., 2022) or zero-shot gen-
eralization), the agent can only leverage information from
past transitions within the same episode. However, agents
typically face different decisions within an episode (i.e., they
rarely see the same state twice), making the problem very
challenging.

In contrast, a multi-trajectory transformer’s context con-
sists of one or more full trajectories from the same task,
as well as all past transitions from the current episode.
We will consider the one-shot case in this example where
ct = {(s0, a0, . . . , sT , aT )0, (s0, a0, . . . , sT−1, aT−1)}1.
The transformer has to predict the action for the current
state p(a1t |s1t , ct) ∀t ∈ T .

Hence, when faced with a new task (even if very different
from from the training ones), the agent can now leverage
information from full trajectories on this task. Note that
due to the stochasticity inherent in many environments, the
agent will often be faced with new scenarios that don’t
appear in its context, so simple memorization is not enough

and generalization is required. However, since the agent
has access to full trajectories, it is less likely that it will
encounter states that are too different from the ones in its
context so it should perform better.

To verify our hypothesis that in sequential decision making,
multi-trajectory transformers enable better in-context learn-
ing than single-trajectory transformers, we perform the fol-
lowing experiment. We collect expert demonstrations from
100K levels from the MiniHack-MultiRoom-N6 task.
Using the above protocols, we construct training sequences
for the single-trajectory and multi-trajectory transformers
and train them using the same hyperparameters1. We then
evaluate them on the MiniHack-Labyrinth task. To
ensure a fair comparison, we condition both transformer
variants on a single expert demonstration from the test task.

The multi-trajectory transformer with episodic return of
0.780± 0.07 outperforms the single-trajectory trans-

former with −0.323± 0.05 by a large margin, indi-
cating the importance of training transformers on se-
quences of trajectories in order to obtain in-context
learning of new sequential decision making tasks (from
only a handful of demonstrations and without any weight
updates). For the rest of the results in the paper, we use
multi-trajectory transformer as our base model for analysis.

5. Experiments
We next illustrate the in-context learning abilities of the
multi-trajectory transformer on unseen MiniHack and
Procgen tasks, and compare against single-trajectory and
hashmap-based baselines. While many previous works have
studied generalization to new levels, to our knowledge we
are the first to study generalization to completely different
tasks, and we demonstrate promising results.

Baselines: We compare against two baselines. Hashmap
(HM): builds a hashmap of states and the corresponding
actions of the expert trajectory from the test environment.
It’s important to note that in deterministic environments, this
baseline acts as an oracle. However, in stochastic environ-
ments, it struggles to generalize to states that are not present
in the demonstration. Behavioural Cloning (BC): trains a
transformer with single trajectory sequences. BC learns a
policy to predict the action the expert would take given the
history of transitions so far in the current trajectory. During
evaluation time, we condition BC on zero (BC-0) and one
(BC-1) demonstration, respectively – meaning the model
sees either zero or one demonstration during the test time.
Because of the lack of context, BC struggles to generalize
to new tasks.

1We set trajectory burstiness pb = 1 for this experiment.
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Figure 3: Performance on New MiniHack Tasks comparing (1) our multi-trajectory transformer conditioned on different
number of demonstrations from the same level, (2) Hashmap baseline conditioned on the same demonstrations, and (3) BC
baseline conditioned on zero or one demonstration due to context length constraints. Our model outperforms both baselines
when provided with at least one demonstration and its performance improves with the number of demonstration.

5.1. Main Results

MiniHack: We collect offline data from 12 MiniHack tasks
and train a multi-trajectory transformer on sequences com-
prising eight trajectories from the same level (pb = 1).
For evaluation, we test the performance on 4 new Mini-
Hack tasks. We would like to emphasize that environ-
ments are stochastic where the stochasticity is induced by
sticky actions. The results are reported in Figure 3. Our
approach achieves good performance across multiple sce-
narios, demonstrating that it can learn new tasks with only a
handful of demonstrations and without any weight updates.
In addition, there is a consistent increase in performance
with the addition of more demonstrations across all envi-
ronments. Notably, our model outperforms all the baselines.
When compared to BC, it underscores the significance of
training transformers on sequences of trajectories, rather
than on single trajectories, to foster in-context learning of
new tasks. In contrast to the Hashmap, our model demon-
strates the capability to learn a policy that generalizes to
unseen states, rather than merely copying actions from its
context which is insufficient in this setting.

Procgen: We also evaluate our approach on a high-
dimensional pixel-based domain to test (Figure 1) the gener-
ality of our findings. To do so, we collect offline data from
12 Procgen tasks and train a 310M transformer model on
Procgen sequences compromising of five episodes from the
same level (pb = 1). We then evaluate the performance on
four unseen tasks. To induce stochasticity, we use sticky
actions with sticky probability 0.2 while performing on-
line rollouts2. As shown in Figure 4, the performance of
our model consistently increases as we condition on more
demonstrations while outperforming the baselines. Finally
note that it is not fair to compare our results with (Cobbe
et al., 2020) because we only provide handful demonstra-
tions to learn and the test tasks are disjoint from the train.

In summary, our results show that our method works well

2We also vary this probability found no difference in our con-
clusions (Appendix C.4)

in complex pixel environments where learning good state
representations is hard, and where states, layouts, dynamics,
rewards, colors, textures, backgrounds, and visual features
all vary between training and testing.

6. Detailed Analysis on MiniHack
In this section, we conduct an extensive analysis on the dif-
ferent factors which affect in-context learning for sequential
decision making. We highlight both zero-shot and one-shot
results and conclude with a discussion on failure cases. As
we’ve seen in the previous section, adding more demonstra-
tions in the context generally improves the results, so here
we focus on the comparison between zero-shot and one-shot
which is the most significant.

Effect of Trajectory Burstiness: First, we analyze the ef-
fect of trajectory burstiness. We hypothesize that having
demonstrations similar to the query inside the context (i.e.,
trajectory burstiness) encourages the model to utilize the
contextual information. Our results in Figure 6 confirm that
in-context learning improves with more trajectory burstiness,
resulting in strong one-shot generalization to new tasks for
pb = 1. This is consistent with insights from supervised
learning (Chan et al., 2022b).

Effect of Environment Stochasticity We next investi-
gate the impact of different environment dynamics on in-
context learning. For this, we gather offline data using
expert E3B policies in both deterministic and stochastic
environments. To introduce stochasticity in the environ-
ments, we employ sticky actions, a widely utilized tech-
nique in deep reinforcement learning (Machado et al., 2018)
where previous actions are repeated with some probabil-
ity (p = 0.1 in our experiments). We gather pretraining
datasets from both stochastic and deterministic versions of
the MiniHack-MultiRoom-N6 task, which we use to
train two separate variants of the transformer model. We
then evaluate each model on unseen environments with ei-
ther stochastic or deterministic dynamics. Results are shown
in a confusion matrix in Figure 5. Models trained with
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Figure 4: Performance on New Procgen Tasks comparing (1) our multi-trajectory transformer conditioned on different
number of demonstrations from the same level, (2) Hashmap baseline conditioned on the same demonstrations, and (3) BC
baseline conditioned on zero or one demonstration due to context length constraints. Our model outperforms both behavioral
cloning baselines, is competitive with Hashmap on Plunder, and its performance improves with demonstrations.
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Figure 5: Effect of Environment Stochasticity: This figure
illustrates the effect of environment dynamics on in-context
learning of Labyrinth task. The x-axis denotes the environ-
ment dynamics considered during evaluation and the y-axis
denotes the environment dynamics used for training. We
show the one-shot episodic returns averaged across 3 seeds.

stochastic dynamics exhibit superior performance on unseen
tasks, whether their dynamics are deterministic or stochastic.
An explanation is that when dynamics are deterministic, the
diversity within the training dataset is comparatively low,
resulting in identical copies of the trajectory in the context
and query. This limits the model’s in-context learning ability
to pure copying behavior. In contrast, when the training en-
vironment dynamics are stochastic, the pretraining dataset
exhibits greater diversity and identical copies of the trajec-
tory become rarer, forcing the model to generalize from
similar, but not identical, trajectories.

Effect of Dataset Size: While many studies in NLP (Brown
et al., 2020; Kaplan et al., 2020; Olsson et al., 2022a) have
reported a positive correlation between dataset size and ICL,
few have studied it the realm of sequential decision mak-
ing (Team et al., 2023a). Consequently, here we explore the
impact of the dataset size on ICL and cross-task generaliza-
tion. We train models on varying numbers of levels from
the same MiniHack task and evaluate them on a different
MiniHack task. As seen in 6, performance on unseen tasks
increases with the dataset size and saturates at 30K levels
for one-shot models. This is expected as the models im-

prove on their ability to generalize as the dataset increases,
even to these new tasks. Moreover, as the dataset sizes in-
creases, we also see the emergence of a performance gap
between one-shot and zero-shot evaluations on these new
tasks, demonstrating the emergence of in-context learning.
We also observe that the performance saturates and sub-
sequently increasing the dataset size above a certain scale
(30K levels) yields diminishing returns. We hypothesize
that this could be due to insufficient data diversity beyond a
certain point in Minihack.

Effect of Model Size: We next scale the number of model
parameters and study how it affects ICL. We evaluate trans-
former models with 1M, 10M, 30M and 100M parameters,
trained on a dataset consisting of 100, 000 levels from 12
different MiniHack tasks. Figure 6 shows that increasing the
model size increases ICL on unseen tasks. However, in this
case, scaling the model size has diminishing returns and the
performance plateaus after 30M parameters.

Effect of Task Diversity: In this section, we study how
ICL behaves as we scale the diversity of tasks used for
training. Increasing the diversity of tasks should improve
the generalization of the in-weights learning, but its not clear
how this should affect a model’s to perform ICL. In Figure 6
we see that above a certain diversity of tasks, ICL ability
plateaus, while as the task diversity shrinks, some novel
tasks are capable of demonstrating ICL, while others are
not. In Section 6.1, we investigate the difference between
these environments detail.

6.1. Investigating Failure Modes

In this section, we aim to better understand why our ap-
proach performs much better on some tasks than others. To
do so, we plot the episodic return and in-context action ac-
curacy for 8 unseen test tasks after training the model on 12
different tasks (see Figure 7). The in-context action accu-
racy is defined as the percentage of correct actions taken by
the agent (i.e., matching the actions provided in the context
corresponding to the same states). High in-context action ac-
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Figure 6: Mean performance (with std. across 3 seeds) for different levels of trajectory burstiness (a), dataset sizes (b), model
sizes (c) and numbers of training tasks (d). These factors all have a positive effect on in-context learning.

curacy indicates that the model is able to effectively utilize
the demonstration provided in its context. We categorize
these results into four categories, each explaining a different
learning phenomenon.

In-Context Learning: In this category, we have environ-
ments like Labyrinth and Memento F2 with both high
episodic return and high in-context action accuracy. The
high in-context action accuracy indicates that the trans-
former learns to copy the correct action when it encounters
states that appear in the given demonstration, which in turn
leads to good performance on the task, as expected.

In-Weights Learning: In this category, we have environ-
ments like MazeWalk-15 and MazeWalk-45 where the
episodic return is relatively high but the in-context action ac-
curacy is low. This means that the agent manages to perform
well on the new task even without copying actions from its
context. This suggests the model is leveraging information
stored in its weights during training, also referred to as in-
weights learning (Chan et al., 2022b). It is worth noting that

MazeWalk-9 is one of the training environments, which
shares similarities with the two test ones. However, note that
the test tasks are much harder versions of the training one,
so they require some degree of generalization.

Unforgiving Environment: This category includes environ-
ments such as River-Narrow and Memento-F4 with
high in-context action accuracy but low episodic returns.
This indicates that while the agent is able to perform in-
context learning and predict the correct action for most states
that appear in the demonstration, it still cannot achieve high
reward due to reaching unrecoverable states. This is remi-
niscent of the covariate shift problem in imitation learning,
where despite predicting actions well on the expert data, the
agent performs poorly at deployment due to small mistakes
which put it outside the training distribution (Ross et al.,
2011).

Distributional Drift: In the last category, we have environ-
ments like Lava-Crossing and Hide-N-Seek-Big
where both the episodic return and the in-context action

7
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Figure 7: Investigating Failure Modes: This figure illus-
trates different learning phenomena across eight tasks. The
x-axis represents the in-context action accuracy, while the
y-axis represents the episodic return, with each point in the
plot corresponding to an unseen task. We cluster these data
points using k-means clustering and color-code each cluster.

accuracy are low. Here, the agent is unable to perform in-
context learning and the test tasks are too different from the
training ones for in-weights learning to be effective.

7. Related Work
The success of transformers in natural language processing
(Vaswani et al., 2017a) has motivated their application to
sequential decision making (Raileanu et al., 2020a; Janner
et al., 2021b; Reid et al., 2022; Ajay et al., 2022; Correia
& Alexandre, 2022; Yamagata et al., 2022; Melo, 2022;
Reed et al., 2022; Zheng et al., 2022; Chen et al., 2022;
Lu et al., 2023a; Ryoo et al., 2022; Lin et al., 2023; Sun
et al., 2023; Hu et al., 2023; Xu et al., 2023; Sudhakaran
& Risi, 2023), with several works emphasizing their limi-
tations in this setting (Brandfonbrener et al., 2022; Paster
et al., 2022; Siebenborn et al., 2022). The Decision Trans-
former (DT) (Chen et al., 2021) was one of the first works to
treat policy optimization as a sequence modelling problem
and train transformer policies conditioned on the episode
history and future return. However, DT has limited gener-
alization capabilities and does not show few-shot transfer
to OOD tasks. More similar to our work, Prompt-DT (Xu
et al., 2022) shows that DTs conditioned on an explicit
prompt exhibit few-shot learning of new tasks (i.e., with
different reward functions) in the same environment (i.e.,
with the same states and dynamics). However, the test tasks
they consider differ only slightly from the training ones e.g.
the agent has to walk in a different direction so the reward
function changes but the states, actions, and dynamics re-
main the same. In contrast, our train and test tasks differ
greatly e.g. playing a platform game versus navigating a
maze, having entirely new states, actions, dynamics, and
reward functions. Similarly, (Melo, 2022) show that trans-
formers are meta-reinforcement learners, but they require
access to rewards and many demonstrations to solve new

Paper Setting Multi-Env Training Generalization Axes of Generalization

Our Work Few-Shot Imitation Learning Yes OOD States, rewards, and dynamics
(Xu et al., 2022) Offline RL with Transformers No IID Rewards

(Kumar et al., 2020) Offline RL No NA NA
(Laskin et al., 2022) Offline RL as a Sequence Modeling Problem with Transformers No IID Rewards

(Lu et al., 2023b) Online RL with Structured State Space Models Yes OOD Rewards and dynamics
(Lee et al., 2023) Offline RL as a Sequence Modeling Problem with Transformers No IID Rewards

(Team et al., 2023a) Online RL with Transformers Yes OOD Rewards, states and dynamics

Table 1: Comparison of our work with related works

tasks at test time. While (Team et al., 2023b) demonstrate
few-shot online learning of new tasks, their model is trained
on billions of tasks, whereas we consider the few-shot of-
fline learning setting and we train our model only on a
handful of tasks. Another related work is Algorithmic Dis-
tillation (AD) (Laskin et al., 2022), which aims to learn a
policy improvement operator by training a transformer on
sequences of trajectories with increasing returns. However,
AD assumes access to multiple model checkpoints with
different proficiency levels and hasn’t demonstrated gener-
alization to entirely new tasks with different states, actions,
dynamics and rewards. In contrast with all these works, our
goal is to generalize to completely new tasks with differ-
ent states, actions, dynamics, and rewards from a handful
of expert demonstrations. Our work is also first to demon-
strate cross-task generalization and extensively study how
different factors (such as task diversity, trajectory burstiness,
environment stochasticity, model and dataset size) influence
the emergence of in-context learning in sequential decision
making. Finally, the notion of “trajectory burstiness” in this
work is inspired from (Chan et al., 2022b) which analyzes
ICL from then lens of data distributional properties. Their
findings suggest that ICL naturally arises when data distri-
bution follows a power law (i.e., Zipfian) distribution and
exhibits inherent “burstiness”. Finally, Section 7 succinctly
contrasts our work with prior work.

8. Conclusion and Future Work
In this work, we perform an in-depth study of the different
factors which influence in-context learning for sequential
decision making tasks. We find that a key ingredient during
pretraining is to include entire trajectories in the context,
which belong to the same environment level as the query
trajectory a.k.a trajectory burstiness. In addition, we find
that larger model and dataset sizes, as well as more task di-
versity, environment stochasticity, and trajectory burstiness,
all result in better few-shot learning of out-of-distribution
tasks. Leveraging these insights, we are able to train models
which generalize to unseen MiniHack and Procgen tasks,
using only a handful of expert demonstrations and no addi-
tional weight updates. To our knowledge, we are the first
to demonstrate cross-task generalization on MiniHack and
Procgen in the few-shot imitation learning setting. We also
probe the limits of our approach by highlighting different
failure modes, such as those caused by environment stochas-
ticity or low tolerance for errors, which we believe constitute
important directions for future work.
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Impact Statement
The ability to generalize to unseen tasks with the help of
single demonstration is crucial for many real world applica-
tions like robotics, self-driving cars. In this work we focus
on how to achieve this goal with the help of in-context learn-
ing. More specifically, our work focuses on highlighting how
different factors like trajectory burstiness pb, environment
dynamics, task dynamics, model and dataset sizes influence
in-context learning in sequential decision-making settings.
Since our results are based on Minihack and Procgen en-
vironments, which are somewhat simplified comapared to
real-world settings, we do not foresee any potential nega-
tive impact on the society. We believe that our work could
provide some useful insights into using transformers for
sequential decision-making settings.
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E., and Rocktäschel, T. Minihack the planet: A sand-
box for open-ended reinforcement learning research. In
Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 1),
2021. URL https://openreview.net/forum?
id=skFwlyefkWJ.

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-
... hook. PhD thesis, Technische Universität München,
1987.

Shen, L., Chen, C., Zou, F., Jie, Z., Sun, J., and Liu, W. A
unified analysis of adagrad with weighted aggregation
and momentum acceleration, 2023.

Siebenborn, M., Belousov, B., Huang, J., and Peters, J. How
crucial is transformer in decision transformer? arXiv
preprint arXiv:2211.14655, 2022.

Sudhakaran, S. and Risi, S. Skill decision transformer. arXiv
preprint arXiv:2301.13573, 2023.

Sun, Y., Ma, S., Madaan, R., Bonatti, R., Huang, F.,
and Kapoor, A. Smart: Self-supervised multi-task
pretraining with control transformers. arXiv preprint
arXiv:2301.09816, 2023.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Team, A. A., Bauer, J., Baumli, K., Baveja, S., Behbahani, F.,
Bhoopchand, A., Bradley-Schmieg, N., Chang, M., Clay,
N., Collister, A., Dasagi, V., Gonzalez, L., Gregor, K.,
Hughes, E., Kashem, S., Loks-Thompson, M., Openshaw,
H., Parker-Holder, J., Pathak, S., Perez-Nieves, N., Ra-
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A. Additional Related Work
Few-Shot Imitation Learning: Several other works aim to learn from only a few demonstrations using them as inverse
curricula for solving very hard exploration problems (Duan et al., 2016; James et al., 2018; Jang et al., 2022; Mandi et al.,
2022), even if the demonstrations don’t contain any actions (Resnick et al., 2018; Salimans & Chen, 2018). However, none
of these works leverage the in-context learning abilities of transformers to achieve few-shot offline learning of new tasks.
There is also a large body of work focusing on meta-reinforcement learning, but this requires online interaction and feedback
from the environment in order to adapt to new tasks at test time (Schmidhuber, 1987; Duan et al., 2016; Finn et al., 2017;
Pong et al., 2022; Mitchell et al., 2021; Beck et al., 2023), which we do not assume. Instead, our aim is to learn to solve new
tasks from a small number of offline demonstrations.

In-Context Learning with Transformers: In-context learning (ICL), first coined in (Brown et al., 2020), is a phenomenon
where a model learns a completely new task simply by conditioning on a few examples, without the need for any weight
updates. Many works thereafter study this phenomenon (von Oswald et al., 2022; Chan et al., 2022a; Akyürek et al., 2022;
Olsson et al., 2022b; Hahn & Goyal, 2023; Xie et al., 2021; Dai et al., 2022). For example, (Chan et al., 2022b) analyze what
makes large language models perform well on few-shot learning tasks through the lens of data properties. Their findings
suggest that ICL naturally arises when data distribution follows a power law (i.e., Zipfian) distribution and exhibits inherent
”burstiness.” In (Kirsch et al., 2022), the authors demonstrate that ICL emerges as a function of the number of tasks and
model size, with a clear phase transition between instance memorization, task memorization, and generalization. More
recently, (Garg et al., 2022) show that standard transformers can ICL learn entire function classes such as linear functions,
sparse linear functions, and two-layer MLPs. While all these works are confined to the supervised learning setting, our work
aims to study what drives the emergence of ICL in the sequential decision making setting.

B. Experimental Setup
B.1. Model Details

Model: For most of our MiniHack experiments, we use a 100M causal transformer model with num layers = 12,
d model = 768, and num heads = 12. For our model scaling experiments presented in ??, we consider the following
values for num layers, d model, and num heads presented in Table 2. For procgen experiments, we use a 210M causal
transformer with num layer = 12 , d model = 1024 and n heads = 16.

Number of Parameters num layers d model num heads

1M 4 128 4
10M 6 256 8
30M 8 512 8

100M 12 768 12
200M 12 1024 16
310M 18 1024 16

Table 2: List of transformer model configurations with varying number of parameters, including details on the number of
layers, model dimension, and the number of attention heads.

For embedding the minihack observations, we use the NetHackStateEmbeddingNet from
https://github.com/facebookresearch/e3b/blob/main/minihack/src/models.py. For embedding actions and rewards,
we follow the same procedure as (Chen et al., 2021). For the experiments presented in Section 6, we stack 3 episodes along
the sequence axis and restrict the context size to 900 tokens. Since the episodes are of variable length, we stack the three
episodes contiguously and then pad the rest of the sequence with padding tokens. For the MiniHack main results presented
in Section 5.1, we stack 8 episodes from the same level (i.e., pb = 1.0) and use the context length of 2048. Similarly for
Procgen results presented in the same section, we stack 4 episodes from the same level and use the context length of 2048.

Training: For all our experiments, we use AdamW optimizer (Shen et al., 2023) for optimization with cosine annealing
learning rate scheduler. We train our models for 25 epochs in case of MiniHack and 100 epochs for Procgen environments.
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B.1.1. COMPUTE

We use 8 GPUs, each with 80GB of RAM, leveraging PyTorch’s Distributed Data Parallel (DDP) capabilities for training.
The largest model in our MiniHack experiments (100M), trained on a dataset comprising 100K MiniHack levels with a
batch size of 64, took approximately 42 hours (1 day and 18 hours) for complete training. We emphasize that it is feasible to
conduct the training with a single GPU; however, this approach would extend the training duration. For inference tasks, we
utilize 1 GPU.

B.2. Environment Details

B.2.1. MINIHACK

Observation Space - The observation space in MiniHack is designed as a dictionary-style structure. It primarily borrows
keys from the foundational NetHack Learning Environment (NLE), with the addition of a few unique keys specific to
MiniHack. To get the necessary observations from the environment, relevant options need to be specified during the
initialization process. In this paper, we focus on a few key observation types:

1. Glyphs: This refers to a 21x79 matrix comprising glyphs, which are identifiers of entities present on the map. Each
glyph is unique and represents a specific entity. They are represented as integers ranging from 0 to 5991.

2. Blstats: This is a 26-dimensional vector that displays the status line found at the screen’s bottom. It provides information
about the player character’s location, health status, attributes, and other vital statuses.

3. Messages: This is a 256-dimensional vector that represents the UTF-8 encoding of the message displayed on the
screen’s top.

Action Space - In this work, all of our environments are navigation-based, and therefore, the action space consists of eight
compass directions. Additionally, we create a padding action represented by the number 31 for padding purposes.

Rewards - In all MiniHack environments, the rewards are sparse. In other words, the agent receives a reward of +1 if
it successfully solves the task at hand, and 0 otherwise. The environment also penalizes the agent for bumping into lava,
monsters, or walls.

In our work, we consider the following environments -

1. MiniHack-MultiRoom-N6-v0 - In this task, the agent must navigate through six rooms and reach the goal. Upon
reaching the goal, the agent receives a reward of +1, otherwise, the reward is 0. Collisions with walls incur a penalty of
−0.01.

2. MiniHack-MultiRoom-N6-Lava-v0 - In this task, the agent navigates through six rooms with lava-covered
walls. The task is completed with a reward of +1 when the goal is reached; otherwise, the reward is 0. Collisions with
lava result in immediate death.

3. MiniHack-MultiRoom-N4-Lava-v0 - This task is similar to MiniHack-MultiRoom-N6-Lava-v0, but
with only four rooms. The agent must avoid lava-filled walls to complete the task.The task is completed with a reward
of +1 when the goal is reached; otherwise, the reward is 0. Collisions with lava result in immediate death.

4. MiniHack-MazeWalk-9x9-v0 - The agent navigates a 9× 9 maze. Upon reaching the goal, the agent receives a
reward of +1 otherwise, the reward is 0. Collisions with walls incur a penalty of −0.01.

5. MiniHack-CorridorBattle-Dark-v0 - The agent must battle the monsters strategically in a dark room, using
corridors for isolation. The agent must keep track of its kill count. A reward of +1 is given upon survival, otherwise the
agent receives a reward of 0.

6. MiniHack-MultiRoom-N6-LavaMonsters-v0 - The agent must navigate through six rooms filled with mon-
sters and lava. To successfully complete this task, the agent must avoid the lava walls and monsters. The agent receives
a reward of +1, otherwise 0.
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7. MiniHack-MultiRoom-N6-Open-v0 - The agent navigates through six rooms without doors. The reward struc-
ture is identical to that of MiniHack-MultiRoom-N6-v0.

8. MiniHack-MultiRoom-N10-LavaOpen-v0 - In this task, the agent navigates through ten rooms to reach the
goal. Collisions with lava walls result in immediate death. Upon reaching the goal, the agent receives a reward of +1.

9. MiniHack-SimpleCrossingS11N5-v0 - Here, the agent reaches the goal on the other side of the room. The
agent receives a reward of +1 for reaching the goal, a penalty of −0.01 for hitting the walls, and 0 otherwise.

10. MiniHack-SimpleCrossingS9N2-v0 - This task is an easier version of
MiniHack-SimpleCrossingS11N5-v0.

11. MiniHack-River-Narrow-v0 - The agent crosses a river by using boulders to create a dry path, aiming to reach
the goal on the other side. The agent receives a reward of +1 upon reaching the goal.

12. MiniHack-HideNSeek-v0 - The agent is placed in a room filled with sight-blocking trees and clouds. The agent
must avoid monsters while navigating the environment to reach the goal swiftly.

13. MiniHack-MultiRoom-N2-Monster-v0 - The agent must navigate through two rooms, avoiding monsters. It
receives a reward of +1 upon reaching the goal and otherwise 0.

14. MiniHack-LavaCrossingS11N5-v0 - This task is similar to SimpleCrossing, but the environment is filled with
several lava streams running across the room, either horizontally or vertically. The agent needs to avoid the lava, as
touching it would result in immediate death. The agent receives a reward of +1 upon the completion of the task.

15. MiniHack-Memento-F2-v0 - In this task, the agent is presented with a cue at the beginning of the episode and
the agent must navigate through the corridor. The end of corridor leads to a two-path fork and the agent should choose
one direction based on the cue it saw in the beginning. Upon choosing the correct path and reaching the goal, the gent
receives +1 reward and -1 for stepping on the trap.

16. MiniHack-Memento-F4-v0 - In this task, the agent is presented with a cue at the beginning of the episode and
the agent must navigate through the corridor. The end of corridor leads to a four-path fork and the agent should choose
one direction based on the cue it saw in the beginning. Upon choosing the correct path and reaching the goal, the gent
receives +1 reward and -1 for stepping on the trap.

17. MiniHack-MazeWalk-15x15-v0 - This task is a slightly harder task than MiniHack-MazeWalk-15x15-v0.
The agent navigates a 15× 25 maze. Upon reaching the goal, the agent receives a reward of +1 otherwise, the reward
is 0. Collisions with walls incur a penalty of −0.01.

18. MiniHack-MazeWalk-45x15-v0 - This task is a very challenging task than MiniHack-MazeWalk-9x9-v0
The agent navigates a 45× 15 maze. Upon reaching the goal, the agent receives a reward of +1 otherwise, the reward
is 0. Collisions with walls incur a penalty of −0.01.

19. MiniHack-Labyrinth-Small-v0 - This task is a very challenging task than
MiniHack-MazeWalk-9x9-v0 The agent navigates a 45 × 15 maze. Upon reaching the goal, the agent
receives a reward of +1 otherwise, the reward is 0. Collisions with walls incur a penalty of −0.01.

For the task diversity experiments presented in ??, we use the environments in Table 3. Note that we randomly sample these
environments to avoid selection bias.

B.2.2. PROCGEN

1. Bigfish - In the task, the agent must only eat fish smaller than itself to survive. It receives a small reward for eating
a smaller fish and a large reward for becoming bigger than all other fish. The episode ends once it happens.

2. Bossfight - In this task, the agent controls a starship, dodging boss attacks until the boss’s shield goes down,
then damages the boss to earn small rewards. After repeated damage and rewards, the boss is destroyed and the player
wins a large final reward.
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Number of Tasks Environments
1 Task MiniHack-MultiRoom-N6-v0,
4 Tasks MiniHack-LavaCrossingS11N5-v0

MiniHack-MultiRoom-N6-v0
MiniHack-River-Narrow-v0

MiniHack-MultiRoom-N10-LavaOpen-v0
8 Tasks MiniHack-SimpleCrossingS11N5-v0

MiniHack-MultiRoom-N10-LavaOpen-v0
MiniHack-MultiRoom-N6-v0

MiniHack-MultiRoom-N6-Lava-v0
MiniHack-MultiRoom-N4-Lava-v0

MiniHack-MazeWalk-9x9-v0
MiniHack-MultiRoom-N6-LavaOpen-v0
MiniHack-CorridorBattle-Dark-v0

12 Tasks MiniHack-MultiRoom-N6-v0
MiniHack-MultiRoom-N6-Lava-v0

MiniHack-MazeWalk-9x9-v0
MiniHack-CorridorBattle-Dark-v0

MiniHack-MultiRoom-N6-LavaMonsters-v0
MiniHack-MultiRoom-N6-Open-v0

MiniHack-MultiRoom-N10-LavaOpen-v0
MiniHack-SimpleCrossingS11N5-v0
MiniHack-SimpleCrossingS9N2-v0

MiniHack-River-Narrow-v0
MiniHack-HideNSeek-v0

MiniHack-MultiRoom-N2-Monster-v0
Test Tasks MiniHack-Labyrinth-Small-v0

MiniHack-MazeWalk-15x15-v0
MiniHack-MazeWalk-45x19-v0
MiniHack-Memento-F2-v0
MiniHack-Memento-F4-v0

Table 3: This table illustrates the different environments used for the pretraining.

3. Caveflyer - In this task, the agent controls a starship through a cave network to reach a goal ship, moving like in
Asteroids. Most reward comes from reaching the goal, but more can be earned by destroying targets along the way.
There are lethal stationary and moving obstacles.

4. Chaser - In this task, the agent collects green orbs while avoiding enemies, with stars temporarily making enemies
vulnerable. Eating a vulnerable enemy spawns an egg that hatches into a new enemy. The player gets small rewards per
orb and a large reward for completing the level.

5. Climber - In this task, the agent climbs platforms collecting stars, getting small rewards per star and a big reward
for all stars, ending the level. Lethal flying monsters are scattered throughout.

6. Coinrun - In this task, the player must collect a coin on the far right, starting on the far left, dodging saws, pacing
enemies, and lethal gaps. Velocity info is no longer included, increasing the difficulty versus prior versions.

7. Dodgeball - In this task, the agent navigates a room with walls and enemies, losing if they touch a wall. The
player and enemies move slowly, with enemies throwing balls and the player throwing balls in their facing direction.
Hitting all enemies unlocks the exit platform; exiting earns a large reward.

8. Fruitbot - In this task, the agent controls a robot collecting fruit and avoiding non-fruit objects in a scrolling gap
game, getting rewards or penalties. Reaching the end brings a large reward.
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9. Heist - In this task, the agent controls a character in a maze filled with monsters. The goal is to reach the exit while
collecting coins and avoiding monster attacks. More coins collected and reaching the exit results in a higher reward.

10. Jumper - In this task, the goal is to navigate the world to find a carrot, using double jumps to reach tricky platforms
and avoid deadly spikes. A compass shows direction and distance to the carrot. The only reward comes from collecting
the carrot which ends the episode.

11. Leaper - In this task, the agent crosses lanes of moving cars then hops logs on a river to reach the finish line and
get a reward. Falling in the river ends the episode.

12. Miner - In this task, the agent digs through dirt to collect all diamonds in a world with gravity and physics, avoiding
deadly falling boulders. Small rewards are given for diamonds, and a large reward for completing the level by exiting
after collecting all diamonds.

13. Maze - In this task, the agent must navigate to find the sole piece of cheese. Upon reaching the cheese, the agent
receives a large reward.

14. Ninja - As a ninja, the agent jumps across ledges avoiding bombs, charging jumps over time, and can clear bombs
by tossing throwing stars. The player is rewarded for collecting the mushroom that ends the level.

15. Plunder - In this task, the player controls a ship firing cannonballs at enemy pirate ships before the on-screen
timer runs out, while avoiding friendly ships, with rewards for hits and penalties for misses or hitting friendlies. Firing
advances the timer, so ammunition must be conserved. Wooden obstacles can block line of sight to enemies.

16. Starpilot - A side scrolling shooter where all enemies target and fire at the player, requiring quick dodging to
survive, with varying enemy speeds and health. Clouds block vision and meteors block movement.

Train Tasks Test Tasks
Bigfish, Bossfight, Caveflyer, Chaser Climber, Ninja
Fruitbot, Dodgeball, Heist, Coinrun Plunder, Jumper

Leaper, Miner, Starpilot, Maze

Table 4: This table illustrates the Train and Test split of Procgen

Note that in some environments, the episodes are very long, making it harder to fit the full context into the transformer. To
address this, we truncate episodes to 200 steps during both training and testing. In test environments, most games have fewer
than 200 episode steps, except for Plunder where we only show the first 200 timesteps.

B.3. Dataset Details

Data Collection for training - As mentioned in Section 3.1, we use E3B policies (Henaff et al., 2022) for our data collection.
We first train E3B policies following the protocol mentioned in (Henaff et al., 2022) on all the above-mentioned environments
individually until the performance is optimal. We then take these expert E3B models and use them for data collection. For
each level in the environment, we rollout the expert E3B policies for five episodes and collect the observations (glpyhs,
messages, blstats), actions and reward information. We repeat this for L levels per environment. Additionally, we
filter out the bad trajectories which did not solve the task and only utilize the optimal trajectories.

For Procgen, we train a PPO policy for 25M timesteps until convergence on 10K levels for each task. We then use the final
checkpoints to collect the trajectories.

Evaluation Data - For evaluation on unseen environments (Labyrinth, Memento-F2, Memento-F4,
MazeWalk 15x15 and MazeWalk 45x19), we use human expert trajectories instead of E3B policies. The main
reason for this is that the E3B policies are incentivized to explore more, which might hinder the agent from solving the
task optimally. For each evaluation environment, we manually collect trajectories on 20 levels and use these human expert
trajectories as prompts for evaluation.

For Procgen, we use PPO trajectories as expert demonstrations. For each evaluation, we consider test 100 levels and rollout
5 episodes per level and aggregate the returns.
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Figure 8: Impact of Reward Tokens: This figure illustrates the impact of reward tokens on the performance. Overall, reward
tokens do not seem to play a crucial role in the performance across on all five MiniHack tasks.

Multi-Task Data - For all the results presented in Section 6 we use the offline data collected from 12 tasks for pretraining. We
consider a total number of levels L = 100, 000 across all tasks or 8, 300 levels per task. For the task diversity experiments,
we consider 100, 000, 25000, 12, 500, and 8, 300 levels per task for 1, 4, 8, and 12 tasks, respectively.

Similarly for Procgen results, we use the offline data collect from 12 tasks for pretraining and for each task, we collect
trajectories from 10k levels.

C. Additional Results
C.1. Impact of Reward Tokens

In this section, we examine the significance of reward tokens on generalization. Given that our training exclusively leverages
expert data, we hypothesize that reward tokens are not essential to the learning process. To test this, we conducted experiments
where we omit reward tokens from the context, maintaining only state and action tokens. This was compared against the
performance of models trained with the inclusion of reward tokens. As illustrated in Figure 8, the exclusion of reward tokens
results in negligible performance degradation. In fact, some environments even show slight performance improvements. This
phenomenon may be due to the nature of the training data, which consists of expert-level trajectories, making the reward
information somewhat redundant.

C.2. Training Results

In this section, we report the performance of our pre-trained models on the training environments. We adhere to the same
evaluation protocol specified in Section 3.2 and report the mean and standard deviation of the episodic return across three
model seeds.

C.2.1. MINIHACK

We present the results in Figure 9, 10, and 11. Overall, the performance is good on most of the environments and there is
no big difference between the zero-shot and one-shot performance. This means that the model is utilizing the in-weights
information to solve these tasks and conditioning on one-shot demonstration is not helping much. However, we notice that
the model struggles to perform well on some tasks like /textttRiver Narrow, Corridor Battle and Lava Crossing. We
speculate that these environments are hard to solve and there is a high penalty for death.

C.2.2. PROCGEN

We present results in Figure 12. We can see that the transformer model is able to perform consistently well across all the
training environments. We also notice that there is not big difference in zero-shot and few-shot performance.
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Figure 9: Performance on Test Levels from 12 Train Tasks - This figure illustrates the episodic returns on 12 environments
used for pre-training, across three different trajectory burstiness values; pb ∈ {0.0, 0.6, 1.0}. Overall, the performance is
good on most of the environments and there is no big difference between the zero-shot and one-shot performance. This
means that the model is utilizing the in-weights information to solve these tasks, as expected. However, we notice that the
agent’s performance on Corridor Battle, Six Rooms, River Narrow is rather poor.

Figure 10: Performance on Test Levels from 8 Train Tasks - This figure illustrates the episodic returns on 8 pretraining
environments across three different trajectory burstiness values; pb ∈ {0.0, 0.6, 1.0}. Overall, the performance is good on
most of the environments and there is no big difference between the zero-shot and one-shot performance. This means that
the model is utilizing the in-weights information to solve these tasks, as expected. However, we notice that the performance
on Corridor Battle is rather poor.

C.3. Task Diversity Results

In this section, we extend the results presented in Section 6 by showing the performance on unseen environments for a model
pre-trained on 4 tasks. We can see that the claims made in Section 6 still hold - increasing the diversity of tasks improves
generalization to new yet similar tasks via in-weights learning, but it is not clear how the diversity affects the model’s ability
to ’soft-copy’ via in-context learning. In Figure 13 we see that above a certain diversity of tasks, the in-context learning
ability plateaus, while for lower task diversity, some novel tasks are capable of demonstrating in-context learning, while
others are not.

C.4. Procgen Sticky Action Results

In this section, we perform evaluations on Procgen test environments with sticky actions with sticky probability 0.3 (higher
than what we consider in Section 5). We follow similar evaluation protocol as mentioned in Section 5 and report the
performance across 5 procgen tasks. As we can see, the performance of our model is consistent with the performance in
Figure 14. While we outperform the most of the baselines, the Hashmap is competitive in case of plunder. Despite the
increase in stochasticity, we find our main conclusions are inline with Section 5.

D. Hyperparameters
We present the hyperparameters used in this work in Table 5
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Figure 11: Performance on Test Levels from 4 Train Tasks - This figure illustrates the episodic returns on 4 pretraining
environments across three different trajectory burstiness values; pb ∈ {0.0, 0.6, 1.0}. Overall, the performance is good on
most of the environments and there is no big difference between the zero-shot and one-shot performance. This means that
the model is utilizing the in-weights information to solve these tasks, as expected. However, we notice that the performance
on Lava Crossing, River Narrow is rather poor.

Hyperparameters Values
Batch Size 64

Number of Levels { 10000, 30000, 100000}
Context Size 900

Vocabulary Size 32
Trajectory Burstiness pb { 0.0, 0.6, 1.0 }

Sticky Probability 0.2
Number of Epochs 25

Learning Rate 0.0001
Learning Rate Scheduler Consine Annealing
Minimum Learning Rate 1.0e-06

Model Size {128, 256, 512, 768, 1024 }
Number of Layers { 4, 6, 8, 12,}
Number of Heads { 4, 8, 12 }
Vocabulary Size 32

Dropout 0.2
Nethack Hidden Size 64

Nethack Embedding Size {128, 256, 512, 768 }
Crop Size 12

Nethack Number of Layers 2
Nethack Dropout 0.1

Table 5: List of hyperparameters used in our experiments
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Figure 12: Procgen Train Environments Results. We observe that the model is able to perform well across all the training
environments.

Figure 13: Effect of Task Diversity: This figure illustrates the effect of the number of different training tasks on the
average episode return for 5 unseen MiniHack tasks. The dashed line indicates the zero-shot performance, and the solid
line represents the one-shot performance. Overall, both the one-shot and zero-shot performances improve when increasing
the number of tasks from 1 to 8, but then they plateau. This suggests that increasing the task diversity can help both the
in-weights and in-context learning but the improvements have diminishing returns and may depend on the similarity between
the train and test tasks. The error bars represent the standard deviation across 3 model seeds.
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Figure 14: Sticky Action Evaluations comparing (1) our multi-trajectory transformer conditioned on different number of
demonstrations from the same level, (2) Hashmap baseline conditioned on the same demonstrations, and (3) BC baseline
conditioned on zero and one demonstration due to context length constraints.
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