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Abstract

The weight matrix (WM) of a neural network (NN) is its program. The programs of
many traditional NNs are learned through gradient descent in some error function,
then remain fixed. The WM or program of a self-referential NN, however, can
keep rapidly modifying all of itself during runtime. In principle, such NNs can
meta-learn to learn, and meta-meta-learn to meta-learn to learn, and so on, in the
sense of recursive self-improvement. Here we revisit such NNs, building upon
recent successes of fast weight programmers (FWPs) and closely related linear
Transformers. We propose a scalable self-referential WM (SRWM) that uses self-
generated training patterns, outer products and the delta update rule to modify
itself. We evaluate our SRWM in a multi-task reinforcement learning setting with
procedurally generated ProcGen game environments. Our experiments demonstrate
both practical applicability and competitive performance of the SRWM. Our code
is public.1

1 Introduction

The program of a neural network (NN) is its weight matrix (WM) [1]. For example, with prediction
tasks, starting from random values, an NN training procedure based on gradient descent might update
the WM to minimize an error function that favors compression of given input-output observations [2].
The WM becomes permanent once training ends, and its usefulness is evaluated with respect to its
generalisation capability on yet unseen data.

Many environments, however, continue to evolve after training has halted (e.g., [3, 4]), and the test
setting may deviate from training in ways that exceed the NN’s generalisation capability. Then human
intervention might be required to re-train or fine-tune the model. To minimize such intervention, we
consider NNs that can learn to update their own programs in the light of new experience. Especially
in multi-task learning and meta-learning (learning to learn [5]), it may be useful to learn how to keep
changing and fine-tuning the WM in a way that quickly adapts to new challenges [6].

In principle, a WM could learn by itself a way of executing rapid WM adaptations in task-dependent
and context-dependent fashion through a generic mechanism for self-modification. Various self-
modifying NNs have been proposed (see Sec. 5). We revisit the self-referential WM [7, 8, 9, 10]
from the ’90s in the light of modern techniques for updating and generating weights. In particular,
we leverage mechanisms which are now well established in the context of Fast Weight Programmers
(FWPs; reviewed in Sec. 2) [11, 12, 13]. FWPs have recently seen advancements in terms of
performance and scalability, inspired by their formal equivalence [14] to linear variants [15, 16, 17]
of the popular Transformer [18].
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Here we derive a new type of self-modifying WM which naturally emerges as an extension to recent
works on FWPs. Using ProcGen [19], we evaluate it in a multi-task reinforcement learning (RL)
setting with procedurally generated game environments. We demonstrate both practical applicability
and competitive performance of the proposed method.

2 Background on Fast Weight Programmers

Here we briefly review the essential components of fast weight programmers (FWPs) [11, 12, 13]
which our model is built upon (Sec. 3). FWPs have a slow NN which can rapidly modify weights
of another fast NN. The concept has seen a recent revival, in particular in light of its direct formal
connection [14] to linear variants [15, 16, 17, 20] of the popular Transformer [18] when the weight
generation is based on outer products between keys and values generated by the slow NN [11]. Recent
work augmented the basic FWPs [11, 12] with an improved elementary programming instruction or
update rule invoked by the slow NN to reprogram the fast NN, called delta update rule (akin to the
delta rule by Widrow and Hoff [21]). The resulting DeltaNet [14] is a general purpose auto-regressive
NN with linear complexity w.r.t. input sequence length, which transforms the input xt ∈ Rdin to the
output yt ∈ Rdout as follows:

kt,vt, qt, βt = Wslowxt (1)
v̄t = Wt−1φ(kt) (2)

Wt = Wt−1 + σ(βt)(vt − v̄t)⊗ φ(kt) (3)
yt = Wtφ(qt) (4)

where ⊗ denotes the outer product, σ is a sigmoid function, and φ is an element-wise activation
function whose output elements are all positive and sum up to one (e.g. softmax). In Eq. 1, the input
xt is first projected to key kt ∈ Rdkey , value vt ∈ Rdout , query qt ∈ Rdkey vectors and a scalar βt ∈ R
using a trainable weight matrix Wslow ∈ R(dvalue+2∗dkey+1)×din . The generated key vector kt and a
learning rate βt (generated by the slow NN) are used to update the fast weight matrix Wt−1 using the
delta rule expressed in Eqs. 2-3. The fast weight matrix is typically initialized to zero i.e. W0 = 0.
The final output yt is obtained by querying the updated fast weight matrix Wt using a generated
query vector qt (Eq. 4). We note that the use of φ function for both writing to (Eq. 3) and reading
from (Eqs. 2 and 4) the fast weights is crucial for stability when the delta rule is used [14]. In practice,
we use the multi-head version [18] of the computation above, that is, after the projection (Eq. 1),
the vectors kt, vt, qt are split into equally sized H sub-vectors, and the operations in Eqs. 2-4 are
conducted by H computation heads independently.

So the slow NN or the programmer (here a one-layer feedforward NN; Eq. 1) with slow weights
Wslow learns by gradient descent to continuously modify or program the fast NN (here also a one-
layer feedforward NN; Eq. 4) with fast weights Wt as it continually receives a stream of inputs. For
further extensions of this concept to more complex slow and fast NN architectures such as recurrent
NNs, we refer the readers to another recent study [20].

We note that FWPs are also of interest from the perspective of context-sensitive systems, since the
fast WM is completely context-dependent: while processing some sequence, a continually changing
custom fast NN is built on the fly.

Here we leverage this mechanism to design a new kind of FWP which programs itself. It can be
naturally derived from the operations described above, resulting in a modern version of the self-
referential weight matrix [7, 8, 9, 10] of the ’90s.

3 A Modern Self-Referential Weight Matrix

Our modern self-referential weight matrix (SRWM) learns to train itself through self-invented
key/value “training” patterns and learning rates, invoking sequences of elementary programming
instructions based on outer products and the delta update rule, as in the recently proposed variants
[14] of FWPs (Sec. 2).

Given an input xt ∈ Rdin at time t, our SRWM Wt−1 ∈ R(dout+2∗din+1)×din produces four variables
[yt, qt,kt, βt] where yt ∈ Rdout is the output of this layer at the current time step, qt ∈ Rdin and
kt ∈ Rdin are query and key vectors, and βt ∈ R is the self-invented learning rate to be used by
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the delta rule. In analogy to the terminology introduced by the original SRWM papers [7, 8, 9, 10],
kt ∈ Rdin is the modifier-key vector, representing the key whose current value in the SRWM has to
be modified, and qt ∈ Rdin is the analyser-query which is again fed to the SRWM to retrieve a new
“value” vector to be associated with the modifier-key.

The overall dynamics can be expressed as simply as follows:

yt,kt, qt, βt = Wt−1φ(xt) (5)
v̄t = Wt−1φ(kt) (6)
vt = Wt−1φ(qt) (7)

Wt = Wt−1 + σ(βt)(vt − v̄t)⊗ φ(kt) (8)

where the value vectors have dimensions: vt, v̄t ∈ R(dout+2∗din+1). Figure 1 illustrates the model.

Importantly, the initial values of the SRWM W0 are the only parameters in this layer which are
trained by gradient descent. In practice, we extend the output dimension of the matrix from “3D+1”
(dout + 2 ∗ din + 1) to “3D+4” (dout + 2 ∗ din + 4) to generate four different learning rates βt ∈ R4 to
be used in Eq. 8 for the four sub-matrices of Wt−1 = [W y

t−1,W
q
t−1,W

k
t−1,W

β
t−1] used to produce

yt, qt, kt, and βt in Eq. 5. For efficient computation, we also make use of multi-head computation as
is done in regular Transformers [18, 15]. Please refer to Appendix A for the full description.

The SRWM described above can potentially be used to replace any regular WM. Here we replace
the WM of a simple feedforward layer. We consider two models which we can describe using the
DeltaNet as a base model. Model (1) consists of the DeltaNet in which we replace Eqs. 1-4 by the
corresponding SRWM equations Eqs. 5-8. In model (2), we replace the slow weight matrix (Eq. 1) in
the DeltaNet by an SRWM (Eqs. 5-8). In the experimental section, we refer to the model (1) simply
as “SRWM” and to the model (2) as “SR-Delta”.

  

Figure 1: A “modern” self-referential weight
matrix (SRWM).

Figure 2: The initial weight matrix W0 is
common to all tasks and episodes. The
effective weight matrix is a function of
task/episode specific input streams.

4 Experiments

4.1 Experimental Settings

We evaluate the proposed model in a multi-task reinforcement learning setting using procedurally
generated game environments of ProcGen [19]. The corresponding setting is illustrated in Figure 2.
Unlike other popular game environments such as Atari [22], ProcGen provides various procedurally
different levels. This allows for creating clean train/test splits. Working with diverse levels is
especially relevant to our setting, as we wish to build models which are adaptive to changes across
game types, as well as diversity within the same game.

General Settings. In our main experiment, we jointly train on 6 environments, namely Bigfish,
Fruitbot, Maze, Leaper, Plunder, and Starpilot in the easy distribution. We conduct distributed
training using the standard IMPALA [23] architecture implemented in Torchbeast [24]. We use 48
actors (i.e. 8 actors per environment). All our models use the common large architecture of Espeholt
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Table 1: ProcGen normalised aggregated scores (multiplied by 100) over 6 environments (Bigfish,
Fruitbot, Maze, Leaper, Plunder, and Starpilot) in the easy distribution and over 4 environments
(Dodgeball, Heist, Maze, Miner) in the memory distribution. The models are trained in a multi-task
setting. Normalisation constants are taken from the original ProcGen paper (we use constants from
the hard distribution for the memory distribution). Results are computed from 3 independent training
runs for 300 M and 800 M steps each in the easy and memory distribution respectively. The test
scores are averaged over 3 distinct sets of 200 fixed test levels (i.e. the mean/std computed from 9
data points). For further details, see tables in Appendix B where we provide scores obtained for each
game. The number of trainable parameters are 626 K for feedforward baseline (FF), 959 K for Fake
SR, 1.2 M for LSTM, 1.05 M for DeltaNet and 968 K for SRWM.

easy dist. (6 env.) memory dist. (4 env.)

FF LSTM Fake SR DeltaNet SRWM DeltaNet SR-Delta

Train 22.5 (2.6) 28.3 (1.4) 27.0 (1.8) 35.0 (1.6) 34.6 (1.8) 51.8 (2.6) 59.0 (2.1)
Test 16.4 (1.6) 15.7 (1.6) 15.3 (1.9) 18.6 (1.7) 20.0 (1.8) 38.0 (4.1) 38.5 (3.2)

et al. [23] which consists of a 15-layer residual convolutional vision model. They differ from each
other by the “memory” module inserted between the vision stem and the output layer. In addition
to our SRWM model, we train the baseline IMPALA feed-forward and LSTM [25, 26] models, as
well as two additional baselines: the DeltaNet [14] and a “Fake SR” model which has exactly the
same architecture as the SRWM model but from which we removed the self-modification mechanism.
(i.e. we only keep the “y”-part in Eq. 5). We set the backpropagation span of 50 steps to train the
self-modification, as well as LSTM and DeltaNet baselines. The LSTM model has 1 layer with 256
nodes as in the IMPALA baseline. Both DeltaNet and SRWM have two layers with a hidden size of
128, the same setting as the DeltaNet used for Atari in the previous work [20].

These 6 environments are known for not explicitly requiring “memory” to perform the task (we also
confirm this trend by comparing our baseline feed-forward and LSTM RNN models). In principle, this
allows us to evaluate the effect of self-modifications in isolation (even if it is difficult to completely
dissociate self-modification from the concept of “memory”). In addition to the above setting using 6
environments in the easy distribution, we also conduct an extra experiment using 4 environments
in the memory distribution (Dodgeball, Heist, Maze, Miner) to evaluate our models also in partially
observable settings. In ProcGen memory distributions, the size of the world is increased and the
observation is restricted to a small patch of space around the agent [19]. The backpropagation span is
increased to 100 time steps for the memory distribution. In all cases, the memory states (including the
weight changes for the SRWM) are only reset at episode boundaries for all stateful models (LSTM,
DeltaNet, and SRWM). We train for a total of 300 M steps (ca. 50 M per environment) for joint
training on 6 environments in the easy distribution, and 800 M steps (200 M steps per environment)
for 4 environments in the memory distribution.

Train/Test split. Following Cobbe et al. [19], we use 200 levels (level ID 0 to 199) to train in the
easy distribution. For evaluation, instead of randomly sampling the test levels as is commonly done
for ProcGen, we consistently use the same set of 3 distinct test splits for all models. Each of our
test splits contains 200 levels, respectively including levels 1000 to 1199, 1200 to 1399, and 1400 to
1599. We opt for using 3 test splits and report an average score to take into account the performance
variability across the choice of test levels. The performance in the training set is computed using all
200 training levels. We train each model three times, and thus report training performance averaged
over three runs, and test performance over 9 data points (3 test splits for 3 training runs). In the
memory distribution setting, since there is no standard convention [19], we opt for training on 500
training levels (level ID 0 to 499) as recommended for the hard distribution. For testing, we use the
exact same setting as in our easy distribution setting described above.

4.2 Results

Overall performance. Table 1 shows the aggregated normalised scores. First of all, comparing
the LSTM and feed-forward baselines, we confirm Cobbe et al. [19]’s finding that the LSTM layer
does not provide any improvements regarding the test performance (while some improvements are
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obtained on the train set). The two fast weight models, DeltaNet and SRWM, clearly outperform the
feedforward and LSTM baselines. The SRWM achieves a slightly better test score than the DeltaNet.
The trend is slightly different in the memory distribution setting. While having a similar parameter
count, the SRWM variant achieves a better training score than the DeltaNet baseline, while the test
scores are rather close. Overall, the proposed SRWM based model variants achieve very competitive
performance.

Comparison to expert models. We observed that the performance gains achieved by our SRWM
over the baselines in the easy distribution are particularly large for two of the environments, Bigfish
and Starpilot. Here we study these two cases in isolation. We compare the performance of multi-task
agents presented above with expert agents trained specifically on one environment for 50 M steps. As
shown in Table 2, the performance gap between the two agents tends to be larger in case of the model
without self-modification, especially on Bigfish.

Table 2: Comparison between multi-task vs expert agent performance. Raw scores obtained in the
easy distribution of ProcGen.

Weight Update
No (Fake SRM) Yes (SRM)

Env Split Multi-6 Expert Multi-6 Expert

Bigfish Train 11.6 (5.7) 28.9 (0.9) 20.1 (2.4) 28.5 (1.2)
Test 4.7 (2.4) 15.8 (1.7) 9.0 (2.0) 14.2 (2.0)

Starpilot Train 55.0 (1.3) 59.8 (0.7) 61.3 (2.0) 64.0 (1.9)
Test 49.6 (2.1) 52.9 (1.2) 54.6 (2.4) 57.3 (1.6)

Ablation on State Reset. The SRWM models presented above are trained by carrying over the
weight modifications across entire episodes whose lengths are variable—often episodes are getting
longer during training as the agent becomes better at the task. We were initially uncertain about the
empirical stability of the dynamics described by Eqs. 5-8 in such a scenario. As an ablation study,
we also trained and evaluated an SRWM agent by resetting the weight update every fixed time span
whose length is the backpropagation span. We found such a model to fail in leveraging the SRWM
mechanism. It obtained scores of 28.5 (1.2) and 16.1 (2.2) on the train and test splits respectively,
which are similar to that of the baseline without self-modification (Table 1).

4.3 Discussion

Interpretability. As is often the case with NNs, interpreting the model behavior is not straight-
forward. Looking into the values of βt in Eq. 8 which intuitively define the strength of the weight
modification, we observe that the value of all four components of βt varies between 0.50 to 0.65
depending on the input, rather than the full range of sigmoid values between 0 and 1. We find it
difficult to derive any further interpretation beyond those statistics. Also βt alone does not fully
describe the behavior of Eq. 8, as it also depends on the actual values of key and query. We leave
further analysis to future work on certain simpler supervised learning tasks.

Implementation/Limitation. Similar to recent works on fast weight programmers (FWPs) [14, 15,
20], our SRWM is implemented as a custom CUDA kernel. While this approach yields competitive
computation time and memory-efficient custom backpropagation, its flexibility is limited. For instance,
if we want to replace all weight matrices in the agent’s vision module, a custom implementation for
convolution would be required, even if we claim that in theory, the SRWM presented above could
replace any regular weight matrix. Regarding speed, the feedforward and LSTM baselines process
about 3,500 steps per second, while DeltaNet and SRWM do 2,300 and 1,700 steps per second
respectively on a single P100 GPU.
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5 Related Work

Original Self-Referential Weight Matrix. The original SRWM was proposed in the ’90s as a
framework for self-modifying recurrent NNs [7, 8, 9, 10]. Such an RNN has special output and input
units to directly address and read and modify any of its own current weights through an index for each
weight of its weight matrix (i.e., for a weight matrix with an input/output dimension N , the weight
index ranges from 0 to N2−1 which is encoded as a binary vector). In contrast, our self-modification
is based on key/value associations, i.e., to encode a WM modification, our NN generates a key vector,
a value vector, and a temporary learning rate which allows for the rapid modification of an entire rank
at a time [11, 13]. This design is reinforced by the recent success of linear Transformers and fast
weight programmers [15, 14, 20]. In this sense, our SRWM is a modern approach to self-modification,
even if the use of outer products to parameterise fast weight generation itself is not (e.g. [11, 13]).

Other Self-Modifying Neural Networks. There are also more recent works on self-modifying
NNs. Neuromodulated plasticity is a Hebbian-style self-modification [27, 28, 29, 30] which also
makes use of outer products to generate a modulation term which is added to the base weights.
The corresponding computations can also be interpreted as key/value/query association operations.
However, the key, query, and value patterns are hard-coded to be one of the input/output pairs of the
corresponding layer at each time step. While this circumvents the necessity to allocate parameters for
generating those vectors, it is known that the resulting program can be simply expressed as a regular
attention [13] over the past outputs [31]. In contrast, in our model, all these patterns are arbitrary as
they are generated from learned transformations whose parameters are themselves self-modifying.

Hierarchical Fast Weight Programmers. As reviewed in Sec. 2, an FWP is an NN which learns
to generate, update, and maintain weights of another NN. However, a typical FWP has a slow NN
with a weight matrix that remains fixed after training. Previous work [20] has proposed to go one
step further by parameterising the slow weights in the Delta Net with another FWP to obtain the
DeltaDelta Net. However, such a hierarchy has no end, as the highest level programmer would still
have a fixed weight matrix. In this work, we follow the spirit of early work [7, 8, 9, 10, 13] and
collapse these potentially hierarchical meta-levels into one single self-referential weight matrix.

Fixed Weight Meta-RNNs. Learning learning dynamics using a fixed-weight NN (typically an
RNN) has become a common approach [32, 33, 34, 35, 36, 37, 38, 39]. A truly self-referential weight
matrix, however, would allow for modifying all of its own components. The only thing that’s trained
by gradient descent are the SWRM’s initial weights at the beginning of each episode—all of them,
however, may rapidly change during sequence processing, in a way that’s driven by the SRWM itself.

Recursive Self-Improvements. Beyond the scope of NNs, the concept of self-modification is of
general interest when considering autonomous, self-improving machines [5, 40, 41, 42, 43, 44]. In
future work, we intend to use the proposed SRWM as a backbone for exploiting the benefits of
recursive self-improvement.

6 Conclusion

We proposed a new type of self-referential weight matrix (SRWM) with a modern mechanism for
self-modification. Our self-improving NNs learn to generate patterns of keys and values and learning
rates, translating these patterns into rapid changes of their own weight matrix through sequential outer
products and invocations of the delta update rule. We demonstrated that our SRWM is practical and
performs well in a multi-task reinforcement learning setting using game environments procedurally
generated by ProcGen. In future work, we plan to evaluate the SRWM also on supervised learning
tasks such as few shot learning.
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A Model Details

Equations for the four-learning rate case. In Sec. 3, for the purpose of clarity, we presented
the equations for our SRWM model in the case where we only have a single learning rate βt.
Here we provide a complete description of an SRWM with a separate self-inveted learning rate
for each component. As we noted in Sec. 3, the SRWM can be split into sub-matrices: Wt−1 =

[W y
t−1,W

q
t−1,W

k
t−1,W

β
t−1] according to the sub-components used to produce yt, qt, kt, and βt

in Eq. 5. In case where we use separate learning rates, we need separate equations to describe the
update of each sub-matrices. For example, for the “y”-part W y

t−1, while keeping the same equation
for the first projection (Eq. 5), the rest becomes:

ykt = W y
t−1φ(kt) (9)

yqt = W y
t−1φ(qt) (10)

W y
t = W y

t−1 + σ(βy,t)(y
q
t − ykt )⊗ φ(kt) (11)

where ykt and yqt are the “y”-part of v̄t and vt in Eq. 6 and 7 respectively, and βy,t ∈ R is one of four
learning rate dedicated to the “y”-part. The equations for other sub-matrices W q

t−1, W k
t−1, W β

t−1
are analogous.

Use of multiple heads. In this work, the SRWM was inserted between other layers with learned
parameters with configurable dimensionalities. This allows us for an efficient computation using
multiple heads for computation described as follows. Given a number of heads H which we use in
the SRWM layer, we configured the model dimensions such that the input dimension to an SRWM
layer din is divisible by H . The input is then split into H equally sized components, and each head
executes separate SRWM operations (Eqs. 5-8) on one of the input components. In consequence, the
SRWM with the same model hyper-parameters as the DeltaNet has less parameters than the DeltaNet.
For example, if din = dkey, the common head dimension is d = din//H , the parameter shape of key
projection in the SRWM is (H , d, d) while it is (din, din) = (H ∗ d, H ∗ d) for the DeltaNet. In case
the input size of the SRWM layer is not configurable, this option has to be disabled and a single head
version should be used.

B Extra Result Tables
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Table 3: Performance on ProcGen game environments. Multi-task training in 6 environments in the
easy distribution. The three variants of the SRWM are as follows: True: the SRWM model, Fake:
the SRWM model without self-modification mechanism, and Reset: the SRWM trained and evaluated
with weight update reset.

Env Split FF LSTM Delta SRM

True Fake Reset

Bigfish Train 8.3 (3.9) 6.5 (2.0) 19.6 (4.0) 20.1 (2.4) 11.6 (5.7) 15.7 (2.8)
Test 4.3 (2.3) 3.2 (1.1) 7.8 (1.5) 9.0 (2.0) 4.7 (2.4) 5.8 (1.3)

Fruitbot Train 29.2 (0.2) 27.8 (0.5) 28.8 (0.9) 28.7 (0.2) 27.8 (1.3) 29.2 (0.2)
Test 25.6 (1.1) 24.8 (0.7) 24.5 (1.5) 25.5 (1.0) 24.6 (1.2) 25.2 (1.4)

Leaper Train 3.3 (0.2) 3.3 (0.2) 3.5 (0.4) 3.5 (0.2) 3.3 (0.3) 3.4 (0.2)
Test 3.4 (0.4) 3.6 (0.4) 3.3 (0.4) 3.4 (0.4) 3.6 (0.4) 3.5 (0.3)

Maze Train 1.9 (0.3) 3.1 (0.7) 3.8 (0.2) 3.6 (0.5) 3.2 (0.2) 2.9 (0.2)
Test 1.4 (0.3) 1.6 (0.4) 1.7 (0.2) 1.8 (0.5) 1.3 (0.3) 1.5 (0.3)

Plunder Train 3.2 (0.2) 3.2 (0.4) 3.3 (0.2) 3.1 (0.0) 3.1 (0.4) 3.1 (0.1)
Test 3.2 (0.3) 2.9 (0.4) 3.3 (0.2) 3.0 (0.2) 3.1 (0.5) 3.0 (0.2)

Starpilot Train 57.6 (0.9) 56.0 (1.5) 60.3 (0.4) 61.3 (2.0) 55.0 (1.3) 55.0 (1.9)
Test 53.0 (1.7) 48.3 (2.0) 53.9 (2.4) 54.6 (2.4) 49.6 (2.1) 48.6 (1.9)

Aggregated Train 22.5 (2.6) 28.3 (1.4) 35.0 (1.6) 27.0 (1.8) 34.6 (1.8) 28.5 (1.2)
Test 16.4 (1.6) 15.7 (1.6) 18.6 (1.7) 20.0 (1.8) 15.3 (1.9) 16.1 (2.2)

Table 4: Performance on ProcGen game environments. Multi-task training in 4 environments in the
memory distribution.

Env Split DeltaNet SRM-Delta

Dodgeball Train 7.1 (0.2) 7.1 (0.6)
Test 6.4 (0.3) 6.2 (0.6)

Heist Train 1.0 (0.3) 1.5 (0.1)
Test 0.8 (0.2) 1.1 (0.3)

Maze Train 5.3 (0.4) 5.9 (0.2)
Test 3.3 (0.6) 3.3 (0.4)

Miner Train 32.3 (0.4) 34.5 (0.8)
Test 29.2 (1.1) 29.4 (0.7)

Aggregated Train 51.8 (2.6) 59.0(2.1)
Test 38.0 (4.1) 38.5(3.2)
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