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ABSTRACT

Large Language Models (LLMs) have shown remarkable capability in code gen-
eration tasks. However, they still struggle with complex software development
tasks where agents of different roles need to work collaboratively. Existing works
have proposed some LLM-based multi-agent software development frameworks
following linear models such as the Waterfall model. However, linear models
suffer from erroneous outputs of LLMs due to the lack of a self-correction mecha-
nism. Inspired by human teams where people can freely start meetings for reach-
ing agreement, we propose a novel and flexible multi-agent framework AltDev,
which enables agents to correct their deliverables and align with other agents in
a real-time manner. AltDev integrates a compulsory alignment checking and a
conditional multi-agent discussion at the end of each development phase, in order
to identify and reduce errors at early stages in the software development lifecycle.
Our experiments on various software development tasks show that AltDev signif-
icantly improves the quality of generated software code in terms of executability,
structural and functional completeness. The code of our project is available at
https://github.com/RainingSea/Altdev.

1 INTRODUCTION

Large Language Models (LLMs) have been demonstrated effective in various code generation tasks
and become efficient assistants to human developers (Austin et al., 2021; Chen et al., 2021b). How-
ever, single LLM performs poor when facing complex software development projects, where the
internal logics of functionalities could be super complicated. A natural extension is to incorporate
multiple LLM-based roles in the software development team, including product managers, archi-
tects, project managers, programmers and test engineers. Due to the fast speed of content generation
and communication, LLM-based software development teams can be much more efficient than hu-
man teams, making it a promosing approach for automated software development.

Despite the efficiency of LLMs in software development, the misalignment between LLM agents
becomes a significant challenge. Actually, the misalignment is also very common in real-world
software development. For example, the architect might ignore some requirements and draw an
incomplete architecture diagram. Also the programmer might misunderstood some functionalities
in the architecture diagram and produce erroneous codes. Figure 1 gives a concrete example to
illustrate the misalignment. Such misalignment is even worse in LLM-based development teams
due to the hallucination of LLMs. Moreover, as the number of agents increases, the misalignment
between agents will accumulate and finally lead to the failure of the whole project. Therefore, it is
critical to develop mechanisms to reduce such misalignment before applying LLM-based agents to
real-world complex software projects.

In order to facilitate software development, people have developed many mature models through
decades of practice, including the Waterfall model, V-model and Agile model (Sundramoorthy &
Murugaiyan, 2012; Adetokunbo & Adenowo, 2013). These models rely heavily on the intelligence
and autonomy of humans, thus cannot directly apply to LLM-based agents. Recent works have
proposed several workflows for LLM-based agents following the Waterfall model (Adetokunbo &
Adenowo, 2013). For example, MetaGPT encodes Standardized Operating Procedures (SOPs) into
prompt sequences for a streamlined workflow. However, they only test code quality in the end of
the whole procedures, without an effective self-correction mechanism during the development pro-
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 Develop a Sticker interface
 Users can select an image, 

zoom in and zoom out the 
size of the sticker 

 ……

Product
Manager

 Library
tkinter, PIL

Architect

 Function descriptions
 main.py: contains the main entry…
 gui.py: create sticker interface, with 

buttons to adjust shapes…
 sticker_editor.py: Adjust the 

sticker to a suitable size

Project 
Manager

 File
 main.py
 Sticker_editor.py

 Class
 GUI 
- [function]…
 Sticker_Editor
- adjust_sticker()

 def adjust_sticker()
shape = “circle”
size = (300,300)
adjusted_sticker = self.sticker(
shape,size)
……

Programmer

zoom out Fixed size=(300,300)
What we want What we get

Figure 1: An example illustrating the misalignment during the software development process.
The original requirement is a sticker that can be zoom in and zoom out by users. Unfortunately,
the project manager misunderstands the requirement and writes a misleading function description
(shown in red). Consequently, the programmer assigns a fixed size to the sticker in her codes.

cess. ChatDev introduces a chat-powered software development framework, where several assistant
agents are employed for code reviews (Hong et al., 2024). Unfortunately, the agents in ChatDev
can only communicate through dialogues, therefore fail to check the correctness of intermediate
deliverables such as architect diagrams.

The main drawback of the plain Waterfall model is that it only test the final codes at the last step. As
a consequence, if any errors occurred during the development process, the whole project should start
over. To overcome this issue, we propose a novel LLM-based multi-agent framework AltDev, which
aims to enhance the quality management of software development during the whole development
process. Following existing works (Adetokunbo & Adenowo, 2013; Hong et al., 2024), AltDev
employs five roles played by LLM-based agents, who work collaboratively to develop a certain
software. Specifically, given a description of requirements, the product manager outputs a detailed
and numerated requirement document. Then, the architect translates the requirement document to
an architect diagram. Hence, a project manager sets out a task plan for the programmer to execute.
Finally, a test engineer will test if the program meets the original requirements.

To address the misalignment during the development process, AltDev introduces an effective real-
time alignment mechanism, inspired by human development teams where people could start meet-
ings anytime to reach an agreement. Specifically, AltDev maintains a Shared Certified Repository
(SCR) to store the certified contents, including requirement documents, architecture diagrams, task
plans and codes. At the end of each phase in the workflow, the generated contents will go through an
alignment checking procedure before being added to the SCR. Whenever a misalignment is detected,
the agent responsible for the current phase would initialize a discussion to address the misalignment,
and then regenerate contents based on the discussion. The above process will repeat until the gener-
ated contents pass the alignment checking. Note that AltDev actually integrates the Waterfall model
with a non-linear self-correction mechanism. By this way, AltDev is more robust to erroneous out-
puts of LLMs and potentially leads to higher success rate of the project.

Our contributions can be summarized as follows:

• We introduce a novel LLM-based multi-agent software development framework AltDev. Com-
pared with existing linear models, AltDev introduces a non-linear real-time alignment mechanism
for correcting erroneous outputs, thus can can solve more complex software development tasks.

• We propose a Chain-of-Thought (CoT) inspired prompting method called Chain-of-Checking
(CoC) for alignment checking at the end of each development phase. CoC efficiently guides dif-
ferent roles of LLM-based agents to check if the current deliverables align with previous ones.

• We present a set of standardized prompt sequences to implement AltDev. The library of prompt
sequences is provided in Appendix A.2 for reproduction of AltDev.

• We test AltDev on over 200 real-world software development tasks from various domains. Ex-
perimental results show that AltDev largely improves the quality of generated codes in terms of
executability, structural and functional completeness. Moreover, under the framework of AltDev,
the misalignment between agents can be significantly reduced compared with baselines.
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2 RELATED WORKS

2.1 CLASSIC SOFTWARE DEVELOPMENT MODELS

Through decades of practice, people have developed many mature software development models
regarding to various scenarios. For example, the Waterfall model is a sequential and linear software
development process that breaks down the software development lifecycle into distinct, discrete
phases (Adetokunbo & Adenowo, 2013). The V-model is an evolution of the traditional Waterfall
model, which introduces parallelism and feedback loops between development and testing activi-
ties (Sundramoorthy & Murugaiyan, 2012). The Agile model is a flexible and iterative approach
that emphasizes rapid delivery of high-quality software through close collaboration and continuous
improvement (Samar et al., 2020). However, these models only describe general workflows and
principles, whose implementations depend heavily on the interpretation of human experts. There-
fore, these models cannot directly apply to LLM-based development teams.

2.2 LLMS FOR CODE GENERATION

Large Language Models (LLMs) have shown surprising performance across a wide range of nat-
ural language processing tasks (Radford et al., 2019; Ouyang et al., 2022; Achiam et al., 2023;
Touvron et al., 2023). LLMs also significantly boost the performance of code generation tasks and
demonstrate a promising potential to be applied at scale. For example, Codex achieves a success
rate of 28.8% in solving a set of 164 hand-written programming problems (Chen et al., 2021a).
Copilot, a code generation tool powered by Codex, has captured the interest of over 1 million pro-
fessional developers (Microsoft, 2023). Other models, including Incoder (Fried et al., 2023),
CodeRL (Lea et al., 2022), Code Llama (Roziere et al., 2023) and ChatGPT (OpenAI, 2022),
also achieve human-level performance in various code generation tasks. However, these works fo-
cus only on code generation ability of single LLMs, ignoring the collaboration and communication
between multiple LLMs, which is crucial to complex software development tasks.

2.3 MULTI-AGENT FRAMEWORKS FOR SOFTWARE DEVELOPMENT

The key challenge in multi-agent software development is to efficiently coordinate with diverse roles
of agents while ensuring consistent understanding of the outcomes (Unterkalmsteiner et al., 2015;
Bjarnason et al., 2019). Several mutli-LLM software development frameworks have been proposed
to enhance collaboration between agents. For example, the Self-Collaboration framework assigns
different roles to LLMs and encourage them to finish sub-tasks collaboratively (Dong et al., 2024).
MetaGPT proposes the first concrete and standardized software development framework, where
multiple LLM-based agents complete different tasks following a linear workflow (Hong et al.,
2024). However, MetaGPT fails ensure the alignment of agents’ understandings about the current
project, thus performs poor in complex projects. ChatDev introduces a set of assistant agents to
verify if the generated codes are compliant with original requirements (Qian et al., 2023). However,
agents in ChatDev communicate through dialogues, thus they can only ensure the alignment between
requirements and codes. By contrast, the communication mechanism in our framework supports
multiple types of contents, including requirement documents, architecture diagrams, task plans,
codes and reviews, which enables AltDev to achieve alignment in the whole development process.

3 METHODOLOGY

In this section, we present the details of our framework AltDev. Generally, AltDev consists of a
general workflow and a real-time alignment mechanism, which consists of a compulsory alignment
checking phase and a conditional multi-agent discussion phase.

3.1 GENERAL WORKFLOW

Our general workflow is extended from the Waterfall model, which is originated from human soft-
ware development (Adetokunbo & Adenowo, 2013). The Waterfall model specifies several impor-
tant roles in software development and force them to work in a linear manner. Due to its simplicity,
Waterfall model and its variants has been employed in some LLM-based software development
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Figure 2: The overall framework of AltDev. The left part shows the general workflow, where five
LLM-based agents work in a Waterfall manner to accomplish requirements inputted by the user. The
middle part shows the alignment checking phase, in which all previous agents need to check if the
newly generated contents are consistent with outcomes stored in a Shared Certified Repository. The
right part in a conditional multi-agent discussion phase, depending on whether the newly generated
contents pass the alignment checking. After discussion, the current agent should regenerate contents
for another round of alignment checking. The loop will stop until the regenerated contents pass
the alignment checking or the maximum number of iterations is reached. We only showcase the
alignment checking and the multi-agent discussion for the programmer agent due to space limit.

frameworks. For example, the Standardized Operating Procedures encoded by MetaGPT is es-
sentially a Waterfall model. ChatDev proposes a chat chain with sequential phases following the
principles of the Waterfall model. The main drawback of the Waterfall model is that is does not
allow changes to intermediate deliverables due to its linear nature. Our work extends the Water-
fall model by incorporating additional alignment checking and multi-agent discussion procedures,
so that erroneous outputs can be corrected in real-time. In fact, our framework is similar to the
V-model in software engineering, where several review processes are enforced from the code level
to the requirement level (Sundramoorthy & Murugaiyan, 2012). Unlike V-model where the review
processes start at the end of the whole development process, AltDev is more flexible and efficient
since it reduces any misalignment at its occurrence during the development process. As shown in
Figure 2, the framework of AltDev includes the following five roles of agents played by LLMs. Note
that each role is played by a single LLM agent in this work. But our framework can be extended to
involve more agents by further task decomposition.

Product Manager. The Product Manager agent performs requirement analysis based on the raw
functional description of some target software (Arora et al., 2024; Jin et al., 2024). In our framework,
we ask the Product Manager agent to output the Product Requirement Document (PRD) as a list of
numerated requirements that describe the functionalities of the target software.

Architect. The Architect agent analyzes the PRD and determines the general architecture of the
software, including the technology stack, the relationship between classes and the Graphical User
Interface (GUI) if necessary. In our framework, we ask the Architect agent to write the architecture
in Json format, which can be converted to Unified Modeling Language (UML) diagrams using the
Mermaid tool (Sveidqvist & Contributors to Mermaid, 2014).

Project Manager. This Project Manager agent schedules a code plan based on the architecture
diagram. For simplicity, the code plan is represented by a list of files to be created. We also ask the
Project Manager agent to match all the requirements in the PRD with the files in the code plan, in
order to ensure that all the requirements are considered.

Programmer. Unlike GPT-Engineer (Osika., 2023) and ChatDev (Qian et al., 2023) where the agent
generates code solely based on the descriptions of requirement, our Programmer agent generates
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code based on task plans and architecture diagrams outputted by previous agents. Benefits from
appropriate task decomposition and scheduling, our Programmer agent is able to generate code for
more complex software development tasks.

Test Engineer. Existing works have explored using LLMs for software test from different perspec-
tives, including unit test case generation Li & Yuan (2024) and GUI test Liu et al. (2024). In our
framework, due to the diversity of development tasks, the Test Engineer agent focuses on testing
general qualities of the code, as is introdued in Section 4.1.3. However, our framework allows
different choices of test engineers depending on the characteristics of the task.

3.1.1 SHARED CERTIFIED REPOSITORY

Our framework maintains a shared certified repository (SCR) to store intermediate deliverables, in-
cluding PRD, architecture diagrams, task plans and codes. Each generated content will go through
an alignment checking procedure before being added to the SCR, so that to ensure its correctness.
The SCR is used in two phases. First, in each content generation phase, agent can flexibly retrieve
useful contents from the SCR in order to complete her subtask. Second, during the alignment check-
ing phase, all agents will check the consistency and correctness of the newly generated content based
on the SCR. Actually, the SCR represents the agents’ common understanding of the task and ensures
that the development process runs on the right way.

3.2 REAL-TIME ALIGNMENT MECHANISM

It is very common in real-world software development that team members have different under-
standings of the task, which might significantly impede the development process. Through decades
of practices, people have developed many solutions to address the misalignment of understandings.
For example, a quick group meeting can help team members to align their opinions when some
problems arise. Such a real-time alignment mechanism in teamwork is key to software development
since it effectively avoids the failure of the whole project.

In this work, we aim to integrate the Waterfall model with a carefully designed real-time alignment
mechanism to accelerate LLM-based multi-agent software development. Our real-time alignment
mechanism consists of an alignment checking and a multi-agent discussion phases. The alignment
checking phase is compulsorily inserted into the end of each generation phase in the main workflow.
The multi-agent discussion phase is optional, conditioned on whether the generated contents pass
the alignment checking. We elaborate the two phases in the following sections.

3.2.1 ALIGNMENT CHECKING

The goal of alignment checking is to ensure that the newly generated contents correctly realize the
requirements and are consistent with the intermediate deliverables in the shared certified repository.
As is shown in Figure 2, our framework includes four alignment checking phases. In each alignment
checking phase, we call the agent responsible for the current generation phase initiator, and all
the previous agents supervisors. For example, in the third alignment checking phase, the Project
Manager serves as the initiator, the Product Manager and the Architect serve as supervisors. Note
that the user can optionally participate in the alignment checking, depending on the human resources.

During each alignment checking phase, the initiator sends the newly generated contents to all su-
pervisors. Then, each supervisor retrieves her outcomes from the SCR and checks if the newly gen-
erated contents are consistent with her previous outcomes. Note that the supervisors will look into
the newly generated contents from different perspectives. For example, in the alignment checking
initiated by the Programmer, the Architect who is responsible for generating architecture diagrams
would focus on whether the generated codes follow the structural relationships between classes.

However, the alignment checking procedure is non-trivial. If we directly feed the files to an LLM
and ask it to check the consistency, it is highly possible that the LLM just outputs a random result.
The potential challenges are two-fold. First, the files to be checked usually contain a large amount of
information, and the LLM might ignore some important details that determines the checking result.
Second, it is hard to develop a unified checking procedure for all of the four alignment checking
phases, since different supervisors have different expertise and focuses.
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Figure 3: Illustration on the Chain-of-Check prompting in four alignment checking phases. Gen-
erally, CoC consists of a primal chain that determines the order of the supervisors, and a subchain
that specifies the necessary checking points for each supervisor. Note that the user involvement is
optional, depending on whether the human resources are adequate.

To resolve the above challenges, we propose a novel Chain-of-Check (CoC) reasoning procedure
to guide the alignment checking in each of the four phases, inspired by the Chain-of-Thought
(CoT) (Wei et al., 2022). The key idea of CoC is to decompose each alignment checking proce-
dure into several important steps. As is shown in Figure 3, CoC consists of a primal chain that
involves all the supervisors, and a subchain for each supervisor indicating several necessary check-
ing points. The supervisor will approve the current content only when all the checking points in the
subchain are satisfied. Overall, a concrete CoC prompt includes the contents to be checked, the con-
tents generated by the supervisor, the necessary checking points and a counter-example explaining
the misalignment. More details of the CoC prompts can be found at Appendix A.

The alignment phase ends when all supervisors make decisions on whether to approve the current
contents. If all the supervisors approve the newly generated contents, they will be added to the SCR.
Otherwise, a multi-agent discussion phase will be initiated to address the misalignments.

3.2.2 MULTI-AGENT DISCUSSION

In human development teams, a quick discussion or meeting is perhaps the most efficient way to
align with each other. Existing works have shown that discussion in LLM-based multi-agent com-
munities also help to resolve conflicts and accelerate the teamwork Park et al. (2023); An et al.
(2024). We introduce an optional multi-agent discussion phase in our framework to efficiently re-
solve any misalignment identified by the supervisors. Note that in the above alignment checking
process, each supervisor checks the initiator’s content only from their own perspectives. Since there
might be conflicts in the supervisors’ reviews, the initiator would be confused when regenerating
her contents. Therefore, the multi-agent discussion phase helps to form a more clear feedback to the
initiator. Moreover, supervisors in the discussion could refer to others’ opinions and revise mistakes
they may have made during the alignment checking phase.
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Specifically, after the alignment checking, supervisors who vote for misalignment will participate in
the multi-agent discussion phase (despite the cases where only one supervisor is involved). The su-
pervisors who vote for alignment do not participate the discussion for the sake of efficiency, but their
reviews are visible to the agents in the discussion phase. There are two loops in the multi-agent dis-
cussion phase, as is shown in Figure 2. In the inner loop, each agent analyzes other agents’ reviews
and modifies her own reviews, during with she could flexibly retrieve any necessary documents in
the SCR. In the outer loop, the initiator regenerates her contents based on the final reviews outputted
by the supervisors after discussion, until the regenerated contents pass the alignment checking or the
maximum number of iteration reached. We will show how to determine the maximum numbers of
iterations of both inner and outer loop in the next section.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

4.1.1 BASELINES

As LLM-based software development is an emerging topic, we choose three open-sourced represen-
tative works as our baselines. GPT-Engineer (Osika., 2023) is a fundamental single-agent approach
in LLM-based software agents with a precise understanding of task requirements and the application
of one-step reasoning, which highlights its efficiency in generating detailed software solutions at the
repository level. MetaGPT (Hong et al., 2024) is an advanced framework that allocates specific
roles to various LLM-based software agents and incorporates Standardized Operating Procedures
to enable multi-agent participation. In each step, agents with specific roles generate solutions by
adhering to static instructions predefined by human experts. ChatDev (Qian et al., 2023) is also
a multi-agent software development framework that utilizes a chat chain and communicative de-
hallucination to guide specialized agents in collaboratively and autonomously developing software
through multi-turn dialogues.

4.1.2 DATASETS

The Software Requirement Description Dataset (SRDD) introduced by Qian et al. (2023) repre-
sents a comprehensive corpus of textual software requirements, specifically curated to facilitate
agent-driven software development. This dataset includes 1,200 distinct software tasks, which are
categorized into five primary domains: Education, Work, Life, Game, and Creation. The dataset
incorporates software descriptions from major platforms such as Ubuntu, Google Play, Microsoft
Store, and Apple Store, providing a diverse and representative sample of software requirements
across various domains. However, we thoroughly reviewed the description of each software require-
ment and noticed several issues. First, some descriptions were incomplete, ending with ellipses,
while many others had similar or even identical functionalities. Second, some tasks are too hard for
LLM-based software development at the current stage, such as developing a Monster Hunter game.
We believe that these tasks are not suitable for evaluating the automatic software development frame-
works. After careful selection, we curated a dataset consists of 214 complete and reasonable tasks.

4.1.3 METRICS

Software testing is a complicated task by its nature. In real-world scenarios, people have developed
various approaches for software testing, including unit test Li & Yuan (2024) and GUI test Liu
et al. (2024). However, due to the lack of efficient testing tools for large-scale diverse software
tasks, existing works usually use simplified metrics to test the quality of generated software Qian
et al. (2023); Hong et al. (2024). Following existing works, we choose structural completeness and
executability as metrics to evaluate AltDev. In addition, we propose a new functional completeness
metric to evaluate how the developed software meets the functional requirements listed in the PRD.
The three metrics are elaborated as follows.

• Structural Completeness (SC) is a statistical metric that measures the completeness of code struc-
tures. In practice, codes generated by LLMs are usually incomplete, where some important classes
and functions are replaced by placeholders (e.g., PASS, TODO). For each software development
task, we flag it as structural complete if the generated codes do not contain any placeholders, and in-
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Table 1: Overall performance of the LLM-based software development methods. Performance met-
rics are averaged for all tasks. The top scores are in bold, with second-highest underlined.

Method Paradigm SC Executability FC
GPT-Engineer single-agent 0.7009 0.8224 0.5007
MetaGPT multi-agent 0.6822 0.6215 0.5485
ChatDev multi-agent 0.8971 0.7383 0.5547
AltDev (w/o RTA) multi-agent 0.6028 0.9018 0.5311
AltDev multi-agent 0.9205 0.9065 0.6442

complete otherwise. The SC of a set of tasks are calculated as the percentage of structural complete
tasks. A higher SC score of a framework indicates the better ability to generate complete code.

• Executability measures whether the generated codes could run successfully within the compil-
ing environment environment, regardless of whether the functional requirements are met. In other
words, the executability focus on checking if there are low-level bugs in the code. We calculate this
metric as the percentage of tasks that compile and run successfully. A higher score indicates the
better ability of the framework to generate bug-free code.

• Functional Completeness (FC) measures how the software meets the functional requirements. The
FC of a task is calculated as the percentage of the accomplished requirements to the total require-
ments. We report the FC of a development framework as the average FC of all tasks. Compared
with the SC and executability metrics, FC is a more advanced metric because it measures the quality
of generated code from a higher level.

4.1.4 IMPLEMENTATION DETAILS

In practice, calculating accurate FC is hard because it requires a complete test of software function-
alities. An alternative approach is to use an LLM for functional test, as is introduced in Tuffveson
et al. (2024). In order to verify the LLM’s ability for functional test, we conduct an additional set
of experiments described as follows. First, we randomly select 25 tasks from the SRDD and gen-
erate the codes for them using ChatDev. The 25 tasks correspond to 232 functional requirements
in total. Then, we manually examine whether the requirements are accomplished by the generated
codes and save human verification results as ground-truth labels. Also, we use GPT-4o to verify if
the requirements are accomplished and save the results as predicted labels. The experimental results
show that the verification results of GPT-4o achieve an accuracy of 72.84% and a recall of 81.81%.
This results support us to use GPT-4o to perform FC evaluation, in order to save human efforts.

In order to reduce human factors in the experimental results, we skip the steps in alignment checking
where human inputs are required. Although effective human feedback may help to improve the
performance of our methods, we believe that removing human factors leads to a fairer comparison.
In addition, we set the maximum number of iterations as 1 for the inner loop, and 3 for the outer
loop in the multi-agent discussion phase. We use GPT-4o with a temperature of 0.2. All baselines
in the experiments share the same hyper-parameters and settings.

4.2 MAIN RESULT

As shown in Table 1, AltDev performs better than all baseline methods in all metrics, which demon-
strates the superiority of our framework. In terms of SC, ChatDev achieves the second best result
among all methods, benefiting from its code completion phase that involves multiple rounds of
code improvement. AltDev achives the best results because our real-time alignment mechanism
can effectively detect codes that are not fully implemented or have placeholders. Also the multi-
agent discussion greatly improves structural completeness of regenerated codes. In terms of the
executability, AltDev also achieves the best results, potentially due to the feedback from the Test
Engineer so that the low-level bug can be fixed in real time. FC is the most important metric, which
can comprehensively measure whether the code meets the functional requirements. We can see that
AltDev has a significant advantage in terms of FC compared with baselines, which indicates that the
real-time alignment mechanism indeed ensures that all the agents working towards the same goal.
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Table 2: Statistics of tokens (number of tokens used), files (number of code files generated), and
lines (total number of lines of codes).

Method Tokens Files Lines
GPT-Engineer 2875.28 6.67 113.15
MetaGPT 46824.35 5.75 364.00
ChatDev 28394.71 4.25 129.45
AltDev (w/o RTA) 5355.28 3.80 133.45
AltDev 48373.19 4.34 171.80

We also report some statistics of our experiments in Table 2. We can see that although multi-agent
approaches (MetaGPT, ChatDev and AltDev) consumes more tokens than the single-agent approach
(GPT-Engineer), they also generates larger code bases, which may enhance the integrity and support
more functionalities of the software. By analyzing the codes manually, we found that the multi-
agent approaches prefer to do more optional works, such as creating a GUI or an interface to a
game, even though these additional functionalities are not required. By contrast, GPT-Engineer
prefers to be concise in code generation. As a result, it can be found that GPT-Engineer achieves
good performance in terms of SC and executability, but performs poor in terms of FC.

AltDev (w/o RTA) is an implementation of AltDev, where the real-time alignment mechanism (in-
cluding the alignment checking and the multi-agent discussion) is removed. From Table 2 we can
find that AltDev consumes more tokens than AltDev (w/o RTA) due to the real-time alignment
mechanism. However, by comparing AltDev (w/o RTA) with AltDev in Table 1, we can find that
AltDev improves all metrics by a large extent, which demonstrates the effectiveness of the real-time
alignment mechanism. In addition, we find that the performance of AltDev (w/o RTA) in terms of
executability is very close to that of AltDev, which indicates that the real-time alignment mechanism
plays a small role in improving the executability.

4.3 GRID SEARCH FOR OPTIMAL HYPER-PARAMETERS
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Figure 4: The Functional Completeness perfor-
mance of AltDev under different hyper-parameter
settings in 20 tasks.

The maximum numbers of inner and outer loop
iterations are two key hyper-parameters in Alt-
Dev. Increasing the numbers of iterations might
lead to better performance, but it also brings
more costs. Therefore, we need to find a bal-
ance between performance and efficiency. In
practice, we randomly sample 20 tasks from
the SRDD and run a grid search procedure to
find the optimal hyper-parameters. In order
to reduce the number of hyper-parameters, we
skip the first three alignment checking phases
and only run the alignment checking and multi-
agent discussion phases initiated by the Pro-
grammer agent, as the last alignment checking
phase involve all the agents. We set the maxi-
mum number of outer loop iterations (A in Fig-
ure 4) as 1,2,3,5,7 and the maximum number of
inner loop iterations (M in Figure 4) as 1,2,3,
resulting in 15 sets of experiments in total.

As shown in Figure 4, overall, with the increase of the maximum number of outer loop iterations,
the FC performance also improves clearly. By averaging over M, we find that the performance on
FC increases gradually from A = 1 to A = 7. This also aligns with out intuition that more rounds
of regeneration and alignment checking help to improve the quality of code. Note that the number
of alignment checking in our work refers to the maximum allowable number of checking, so the
outer loop is possibly finished before reaching the limit. This termination often happens for simpler
projects, therefore increasing the number of alignment checking is more suitable for addressing
complex projects. In our experiments, we choose A=3 since it provides a balance.
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Figure 5: Comparison of misalignment counts.

Regarding to the number of inner loop iterations, the intuition is that more discusses between super-
visors could lead to better results. However, as shown in Figure 4, we do not find a clear trend of
improvement by increasing M, especially when A is small. As the number of alignment checking
increases, the benefits of discussion start to manifest. Overall, the increase on the number of inner
loop iterations shows a slight improvement, which is less important than that of the outer loop.

4.4 MISALIGNMENT ANALYSIS

Figure 5 shows the misalignment statistics of different frameworks. For MetaGPT and AltDev, we
conduct misalignment statistics across three phases in software development: architecture design,
code planning and code writing. Considering that ChatDev only generates code, we conduct mis-
alignment statistics during code writing phase and count the misalignment between the PRD and the
code. In each phase, we use previous documents relevant to current phase as references to determine
whether the contents generated in the current phase are aligned.

Compared to the baselines, AltDev effectively reduces the misalignment at most phases, indicating
that by incorporating real-time alignment, AltDev can efficiently resolve misalignment so that to
ensure the quality during the whole development process. The only exception is a slight increase
(5.6%) in misalignment between architecture and code plan comparing with MetaGPT. This is be-
cause that MetaGPT prompts hard encode a strict correspondence between architecture and code
plan, which reduces misalignment between these two contents.

5 CONCLUSION

In this paper, we introduce AltDev, a novel LLM-based multi-agent framework for software devel-
opment. AltDev extends the classic Waterfall model by introducing an efficient real-time alignment
mechanism. The real-time alignment mechanism includes a compulsory alignment checking phase
and an optional multi-agent discussion phase to address misalignment between agents. The ex-
perimental results show that AltDev outperforms other baselines, including single-agent approach
and multi-agent approaches, in terms of different metrics. Moreover, AltDev significantly performs
better in terms of functional completeness, which indicates that AltDev has a great potential in real-
world complex software development tasks.
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A APPENDIX

A.1 CASE STUDY

Figure 6: An example of software generated by ChatDev(left) and AltDev(middle and right). In the
left picture, we uploaded an image and selected the sticker shape as a circle, and then we cannot
change the sticker size. In the middle picture, we uploaded an image and selected the sticker shape
as a circle. In the right picture, we set the desired sticker size.

We selected a software in the dataset as an example and compared the effects of the software gener-
ated by ChatDev and AltDev, which intuitively demonstrated the superiority of AltDev in software
development. The requirement for this software is described as: A software that allows users to
create customized stickers using their own photos. Users can select an image, choose the desired
shape and size of the sticker, and add text or decorative elements. The software provides easy-to-use
tools for cropping, resizing, and adding effects to the photos. Once the sticker is created, users can
save it as a transparent PNG file to use in messaging apps or social media platforms.

As illustrated in Figure 6, the software generated by AltDev implements all the functionalities men-
tioned in the software description, while the software generated by ChatDev does not implement
functionalities such as cropping, resizing, and adding special effects. In addition, when implement-
ing the functionality where users can choose the desired shape and size of the sticker, the software
generated by ChatDev could only select stickers of a fixed size. These examples show that Alt-
Dev can reduce the misalignment in the software development process after the real-time alignment
phase, and generate more comprehensive and accurate software that meets the requirements.
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A.2 A CONCREATE EXAMPLE

We provide an example of gradually generating a medical diet planner software project using Altdev.
We first show a framework diagram, then demonstrate each phase with corresponding agent’s prompt
and output.

Figure 7: The generated medical diet planner software.

General Workflow

Figure 8: Altdev workflow.

User
User needs to input the initial user requirement, typically in natural language.

Figure 9: User requirement.
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Product Manager
Product mananger performs requirement analysis based on the user requirement and generate Prod-
uct Requirement Document(PRD).

Figure 10: Top: prompt for product manager to generate PRD. Bottom: Generated PRD.
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Architect
Architect analyzes the PRD and determines the general architecture of the software.

Figure 11: prompt for architect to generate architectural diagram.
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Figure 12: Generated architectural diagram.
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Project Manager
Project Manager schedules a code plan based on the PRD and the architectural diagram.

Figure 13: Top: prompt for project manager to generate code plan. Bottom: Generated code plan.
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Programmer
Programmer generates code file based on the architectural diagram and code plan.

Figure 14: Prompt for programmer to generate code.
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Figure 15: Generated code.
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Tester
Tester test the project and provide feedback to programmer. If error occurs, programmer needs to
fix the error and revise codes.

Figure 16: Top: Test report. Bottom: The code revised according to the test report.
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A.3 STANDARDIZED PROMPT SEQUENCES

Figure 17: Prompt of alignment checking between PRD and architectural diagram.
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Figure 18: Prompt of alignment checking between PRD and code plan.
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Figure 19: Prompt of alignment checking between architectural diagram and code plan.
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Figure 20: Prompt of alignment checking between PRD and code.
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Figure 21: Prompt of alignment checking between architectural diagram and code.
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Figure 22: Prompt of alignment checking between code plan and code.
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A.4 MULTI AGENT DISCUSSION

We provide a multi-agent discussion prompt during the code alignment process as an example.

Figure 23: Prompt for Multi-Agent Discussion.
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