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Abstract
Multilingual pretrained language models serve
as repositories of multilingual factual knowl-
edge. Nevertheless, a substantial perfor-
mance gap of factual knowledge probing ex-
ists between high-resource languages and low-
resource languages, suggesting limited implicit
factual knowledge transfer across languages in
multilingual pretrained language models. This
paper investigates the feasibility of explicitly
transferring relatively rich factual knowledge
from English to non-English languages. To ac-
complish this, we propose two parameter-free
Language Representation Projection modules
(LRP2). The first module converts non-English
representations into English-like equivalents,
while the second module reverts English-like
representations back into representations of the
corresponding non-English language. Experi-
mental results on the mLAMA dataset demon-
strate that LRP2 significantly improves factual
knowledge retrieval accuracy and facilitates
knowledge transferability across diverse non-
English languages. We further investigate the
working mechanism of LRP2 from the perspec-
tives of representation space and cross-lingual
knowledge neuron.

1 Introduction

Previous studies demonstrate that a language model
is a knowledge base that can recall factual knowl-
edge without additional fine-tuning (Petroni et al.,
2019; Jiang et al., 2020b). This task of factual
knowledge probing, aiming to examine what fac-
tual knowledge language models capture during the
pre-training phase, can be extended to multiple lan-
guages in multilingual pretrained language models,
e.g., mBERT (Devlin et al., 2019), XLM (Con-
neau and Lample, 2019), mT5 (Xue et al., 2021),
XGLM (Lin et al., 2022) and BLOOM (Scao
et al., 2022). Although multilingual pretrained
models serve as repositories of multilingual fac-
tual knowledge, a factual knowledge gap exists
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between English and other languages in terms of
the amount of factual knowledge captured for each
language (Kassner et al., 2021; Jiang et al., 2020a).

Many works on cross-lingual transfer (Conneau
et al., 2020; Chi et al., 2021; Wu et al., 2022;
Yang et al., 2022) validate the effectiveness of
cross-lingual alignment of representation spaces
in facilitating cross-lingual knowledge transfer.
These studies primarily evaluate their methods on
specific downstream tasks, including natural lan-
guage inference (Conneau et al., 2018), sentence
retrieval (Artetxe and Schwenk, 2019), question
answering (Lewis et al., 2020) and text genera-
tion (Wu et al., 2022), etc.

Different from such studies, we focus on the task
of factual knowledge probing in multilingual pre-
trained language models and attempt to answer a
question in this paper: Can cross-lingual alignment
of representation spaces enable factual knowledge
transfer across languages? In particular, we ex-
plore the feasibility of transferring factual knowl-
edge from English to non-English languages.

To answer this question, we propose LRP2,
which incorporates two parameter-free Language
Representation Projection modules into multilin-
gual pretrained models: a language-independent
representation projection module that projects rep-
resentations of non-English languages into English-
like representations and a language-specific repre-
sentation projection module that maps the English-
like representations back to representations of indi-
vidual non-English languages. These two modules,
as depicted in Figure 1, locate at different layers of
Transformer.

Experiments on mLAMA (Kassner et al., 2021)
suggest that LRP2 improves factual knowledge re-
trieval accuracy and facilitates knowledge transfer
across diverse languages. We further conduct in-
depth analysis to investigate the varying degrees
of representation alignment required by different
non-English languages, as well as the transferabil-



ity of different types of factual knowledge. Delving
into the working mechanism of LRP2, we identify
cross-lingual knowledge neurons in multilingual
pretrained language models.

Our contributions are summarized as follows.

• We propose a parameter-free framework
LRP2 that enhances factual knowledge re-
trieval accuracy and cross-lingual factual
knowledge transfer.

• We reveal that LRP2 poses an impact on
the alignment of representation spaces and
enhances the overlap of knowledge neurons
across languages.

• We discover that cross-lingual knowledge neu-
rons exist in multilingual language models.

2 Multilingual Factual Knowledge
Probing

In the multilingual factual knowledge probing
task, multilingual pretrained language models take
language-specific fill-in-the-blank queries as input,
such as "The capital of England is [MASK]" in En-
glish, or the corresponding Chinese question "英
国的首都是[MASK]". As a knowledge base, the
probed pretrained language model initially encodes
the input query, then retrieves its parameterized
memory and ultimately predicts an answer with a
probability distribution over the vocabulary.

The success of factual knowledge transfer across
languages relies on a language-independent repre-
sentation space for different languages to trigger
similar memories within the probed multilingual
pretrained model and language-specific represen-
tations to allow the model to predict tokens in the
corresponding language.

3 LRP2

The primary objective of LRP2 is to bridge the gap
of factual knowledge probing between English and
non-English languages by aligning their represen-
tation spaces.

Libovický et al. (2020) demonstrate that it is
possible to induce language-neutral representations
for a given language, by subtracting its correspond-
ing language vector. The proposed LRP2 draws
inspiration from this work and initiates its pro-
cess by computing a set of language vectors Vl

for each language l. Specifically, for language l,
we feed a set of its sentences into the multilingual
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Figure 1: The diagram of the proposed LRP2 that inserts
two language representation projection modules as ad-
ditional layers into the multilingual pretrained language
model. The input question is "英国的首都是[MASK]".
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for Chinese and English from the i-th and j-th layer of
the multilingual pretrained language model in advance.
We use Chinese to showcase our framework and our
method is applicable to other languages in the same way.
For simplicity, we ignore other sublayers in Transformer
in the diagram. Note that our method is based on the
core assumption that the representation spaces of two
languages can be transferred through a Euclidean dis-
tance mapping. This form of straightforward mapping
is relatively coarse, incapable of achieving the level of
precise semantic transfer depicted in the figure, which
is presented for the sake of illustration but may appear
somewhat overly idealized.

pretrained language model to be probed. From the
i-th layer of the model, we gather sentence-level
vectors through mean-pooling over the representa-
tions of all tokens in the corresponding sentence.
We then further average these sentence vectors, ob-
taining vi

l ∈ Rn, where n is the hidden dimension
of the model. In this way, we collect a set of vectors
Vl = [v1

l ,v
2
l , ...,v

L
l ], where L denotes the number

of layers of the model. These language vectors
serve as the basis for language representation pro-
jection within the proposed LRP2 framework.

As illustrated in Figure 1, LRP2 incorporates two
language representation projection modules into
the probed multilingual pretrained language model,
which are referred to as the Language-Independent
Representation Projection (LIRP) module and
the Language-Specific Representation Projection
(LSRP) module, respectively. These two modules



Model English
(Source)

Language Family Language Resource AvgIndo-European non-Indo-European High Medium Low
Retrieval Accuracy

mBERT 35.2 20.9 18.4 23.4 22.2 17.4 20.0
mBERT (LRP2) 35.2 21.2 19.4 24.1 23.0 17.7 20.6
BLOOM 35.1 17.8 18.4 21.7 17.2 16.1 18.0
BLOOM (LRP2) 35.1 21.3 22.4 25.8 21.2 19.3 21.7

English-centric Cross-lingual Transferability
mBERT 1 37.0 31.8 41.6 37.7 30.5 35.2
mBERT (LRP2) 1 37.9 33.1 43.1 38.5 31.5 36.3
BLOOM 1 20.4 20.3 25.7 19.3 17.6 20.4
BLOOM (LRP2) 1 24.5 24.7 30.3 24.0 21.4 24.6

Table 1: Evaluation results on mLAMA. We report factual knowledge retrieval accuracy and English-centric
cross-lingual transferability. We list average results for Indo-European, non-Indo-European, high-resource, medium-
resource, low-resource and all non-English languages. We measure the amount of language resource based on the
number of Wikipedia articles for each language.

are inserted into the model as two additional lay-
ers. Representations of a non-English language
with limited information are projected to the En-
glish representation space by LIRP, which enables
the non-English language to access relatively rich
memory encoded in the parameters of the model,
in the form of English-like representations. The
accessed memory is then projected back to the
non-English language by LSRP so that answers
in the corresponding non-English language can be
yielded.

Specifically, given an input query in a non-
English language l, the LIRP first projects the con-
textual representations from the i-th layer of the
model into English-like representations, which can
be formulated as follows:

ĥi
l = hi

l − vi
l + vi

en (1 ≤ i < L) (1)

where hi
l represent the i-th layer hidden states of

the input query in language l. vi
l and vi

en denote the
language vectors of the i-th layer for non-English
language l and English respectively. By performing
this projection, the representations of non-English
language l are mapped into the English space and
subsequently fed to the succeeding layers.

As mentioned in Section 2, in the multilingual
factual knowledge probing task, it is essential for
the multilingual pretrained language model to yield
answers in the corresponding language. To recover
the language-specific information of the input lan-
guage, we insert the LSRP into the j-th layer of the
model. The back-projection to the input language
is formulated as:

ĥj
l = hj

l − vj
en + vj

l (i < j ≤ L) (2)

where hj
l represent the j-th layer hidden states of

the input query in language l. hj
l are English-like

representations because of the first projection. They
are transformed back into the language l’s repre-
sentation space, resulting in ĥj

l . These language-
specific representations are further fed to the suc-
ceeding layers of the model.

4 Experiments

We conducted extensive experiments to examine
the effectiveness of the proposed LRP2 framework
in factual knowledge transfer across languages.

4.1 Settings

We utilized the TREx portion of mLAMA (Kass-
ner et al., 2021) for our experiments. Further in-
formation regarding mLAMA and the dataset em-
ployed to acquire language vectors can be found
in Appendix A.1. We calculated factual knowl-
edge retrieval accuracy as well as English-centric
cross-lingual transferability for each language. The
details on these evaluation metrics can be found in
Appendix A.2. The experiments were based on two
multilingual pretrained language models, mBERT1

and BLOOM2 (the version with 559 million param-
eters). The details of probing them can be found in
Appendix A.3. Note that the i-layer for inserting
LIRP and the j-layer for inserting LSRP are two
hyperparameters, the details on the setting of them
can be found in Appendix A.4.

1https://huggingface.co/bert-base-multilingual-cased
2https://huggingface.co/bigscience/bloom-560m
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Figure 2: Distance between representation spaces and
overlap rate of knowledge neurons in different layers.
The languages considered here are Chinese and English.
’mBERT (LRP2)’ represents the results with the inser-
tion of the LIRP module into the 4-th layer and the
LSRP module into the 10-th layer of mBERT, which
yields the best transferability result of Chinese.

Model Same Different Avg
mBERT 17.9% 11.5% 11.7%
mBERT (LRP2) 18.5% 11.9% 12.1%

Table 2: Overlap rate of knowledge neurons for factual
relations in Chinese and English.

4.2 Results

Table 1 presents the experimental results on
mLAMA, it shows that LRP2 achieves significant
improvements in terms of both factual knowledge
retrieval accuracy and cross-lingual transferability
across various non-English languages over the base-
line. The results indicate that cross-lingual align-
ment of representation spaces indeed facilitates the
transfer of rich factual knowledge from English to
non-English. More specifically, for both mBERT
and BLOOM, LRP2 demonstrates better perfor-
mance in certain non-Indo-European languages as
well as medium- and high-resource languages.

Additional experimental results on X-
FACTR (Jiang et al., 2020a) are provided in
Appendix B.1. To provide further insights, we
present the performance changes for different
languages as the number of layers between LIRP
and LSRP varies in Appendix B.2. The specific
effects of LRP2 on different non-English languages
are provided in Appendix B.3. In addition, we
observe that the transferability of knowledge
shows variations across different types of factual
relations, as evidenced in Appendix B.4.

5 Working Mechanism of LRP2

In this section, we study the working mechanism
of LRP2 from the perspectives of representation
space and knowledge neuron.

5.1 LRP2 Affects the Alignment of
Representation Spaces across Languages

We utilized Chinese-English parallel queries in the
mLAMA dataset to collect sentence representa-
tions and further calculated the layer-wise cosine
similarity of these two languages’ sentence repre-
sentations, as the distance between the representa-
tion spaces of these two languages. We conducted
a comparative analysis of the distance with and
without the utilization of LRP2.

Figure 2a presents the distance between the rep-
resentation spaces of Chinese and English. It
clearly shows the distinct functions of LIRP and
LSRP. Specifically, the LIRP module first brings
Chinese sentences closer to the representation
space of English, thereby facilitating cross-lingual
knowledge transfer, while the LSRP module in-
creases the distance between Chinese sentences
and the representation space of English, inducing
language-specific outputs in Chinese.

5.2 LRP2 Enhances the Overlap of
Knowledge Neurons across Languages

Dai et al. (2022) discover that knowledge neurons
expressing specific factual knowledge exist in pre-
trained Transformers. Building upon their work,
we identify knowledge neurons in multilingual pre-
trained Transformers and employ them to elucidate
the working mechanism of LRP2. The details on
how we identify knowledge neurons in multilin-
gual pretrained language models are provided in
Appendix C.

Table 2 showcases the overlap rate of knowledge
neurons for factual relations in Chinese and En-
glish. Notably, we have two interesting findings.
First, the overlap rate of knowledge neurons as-
sociated with the same relations is considerably
higher compared to that with different relations,
suggesting the existence of language-independent
knowledge neurons within mBERT. Second, LRP2
increases the overlap rate of knowledge neurons
between Chinese and English. This improvement
indicates that LRP2 facilitates the alignment of En-
glish and non-English representation spaces and
enhances the activation of knowledge neurons in
non-English languages, making them more simi-
lar to those in English. In this way, non-English
languages acquire factual knowledge transferred
from English. Additionally, Figure 2b visualizes
the overlap rate of knowledge neurons across differ-
ent layers. Notably, the layers between LIRP and



LSRP exhibit a prominent increase in the overlap
rate of knowledge neurons between Chinese and
English.

6 Related Work

Factual Knowledge Probing Previous
works (Petroni et al., 2019; Jiang et al., 2020b)
have shown that a language model is a knowledge
base. Subsequent works (Kassner et al., 2021;
Jiang et al., 2020a) extend monolingual factual
knowledge probing to multiple languages. Notably,
Jiang et al. (2020a) improve multilingual factual
knowledge probing in a code-switching style.
Significantly different from this, we suggest that
it is essential to allow multilingual pretrained
language models to yield language-specific
answers.

Model Editing A variety of approaches have
been proposed to edit knowledge in monolingual
language models (Sinitsin et al., 2020; Cao et al.,
2021; Mitchell et al., 2022; Meng et al., 2022; Dai
et al., 2022). Recently, Xu et al. (2022) define a
cross-lingual model editing task, where knowledge
updates in one language need to occur in other lan-
guages as well. In this paper, we focus on factual
knowledge that already exists in multilingual lan-
guage models and enhance the transferability of
them, rather than trying to update a model with
new knowledge.

Cross-lingual Knowledge Transfer Cross-
lingual transfer learning approaches are usually
categorized into instance transfer (Zheng et al.,
2021; Yang et al., 2022), parameter transfer (Chen
et al., 2019; Zhou et al., 2019), and feature
transfer (Libovický et al., 2020; Zhao et al.,
2021). Most of these works explore cross-lingual
knowledge transfer on specific downstream tasks,
while we focus on factual knowledge captured by
language models and explore the possibility of
cross-lingual factual knowledge transfer.

7 Conclusion

We have presented a simple yet effective method
to transfer factual knowledge from English to non-
English languages in multilingual pretrained lan-
guage models. We empirically confirm that cross-
lingual alignment of representation spaces enables
factual knowledge transfer across languages in mul-
tilingual pretrained language models. Further anal-
ysis on knowledge neurons shows that the align-

ment of English and non-English representation
spaces brought by LRP2 can help non-English lan-
guages to stimulate knowledge neurons similar to
English, thereby acquiring knowledge transferred
from English.

Limitations

While LRP2 significantly improves factual knowl-
edge retrieval accuracy and facilitates knowl-
edge transferability across diverse non-English lan-
guages, it is noteworthy that the LIRP and LSRP
modules in LRP2 are inserted into multilingual pre-
trained language models as two additional layers.
Thus, the effectiveness of LRP2 heavily relies on
the inherent capabilities of multilingual pretrained
language models.

Through extensive experiments conducted on
the proposed LRP2 framework, we have demon-
strated that cross-lingual alignment of represen-
tation spaces enables factual knowledge transfer
across different languages. Although this finding
is applicable to multilingual pretrained language
models of varying architectures, our experiments
are limited to two relatively small models due to
the limited compute resource available to us. We
plan to investigate LRP2 on larger language models
when more compute resource is available.
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A Experiment Details

A.1 Datasets

mLAMA (Kassner et al., 2021) is a multilingual
factual knowledge probing dataset containing 53
languages and 44 factual relations, and the TREx
part contains 41 of them. To obtain language vec-
tors, we used OPUS-100 (Zhang et al., 2020) to
collect 10,000 filtered sentences for most of the
53 languages, and for languages not included in
OPUS-100, such as ceb, we obtained data from the
OPUS.3

A.2 Evaluation Metrics

We calculated factual knowledge retrieval accuracy
for each language l as Accl =

|Rl|
|Dl| ∗ 100, where

Rl represents the set of correctly predicted knowl-
edge for language l and Dl represents the entire
probing data for language l. Additionally, we cal-
culated English-centric cross-lingual transferability
as Transl = |Rl∩Ren|

|Rl∪Ren| ∗ 100. Here, the denom-
inator |Rl ∪ Ren| corresponds to the amount of
knowledge stored in the probed model, whether in
non-English language l or in English form, while
the numerator |Rl ∩Ren| represents the amount of
the stored knowledge both in the form of language
l and English, indicating the amount of transferable
knowledge.

A.3 Probing mBERT and BLOOM

Following mLAMA (Kassner et al., 2021), we
adopted a typed querying approach for probing.
This entails considering all candidate objects of a
relation as the candidate pool. For each query asso-
ciated with a specific relation, we determined the
ranking of the correct answer within its candidate
pool. The prediction is considered correct if the
correct answer is ranked at the top position.

Probing mBERT When probing mBERT, the
input query follows the format like "The capital
of England is [MASK]", the model’s probability
predictions for the [MASK] tokens are used to com-
pute the ranking. The number of [MASK] tokens
depends on the length of the tokenized object to
be predicted. In cases of multiple [MASK] tokens,
we calculated the average log probability of these
tokens. We utilized the complete candidate pools
for probing mBERT (with an average number of
candidates per relation of approximately 90).

3https://opus.nlpl.eu

English
(Source) zh ko nl vi ceb ja

Retrieval Accuracy
mBERT 22.6 14.4 12.2 18.3 22.8 14.3 10.6
mBERT (LRP2) 22.6 15.4 13.3 18.8 23.3 15.6 12.8

English-centric Cross-lingual Transferability
mBERT 1 30.0 24.9 48.5 46.4 25.4 23.4
mBERT (LRP2) 1 32.6 28.6 48.7 47.0 25.3 30.1

Table 3: Evaluation results of mBERT on X-FACTR.

Probing BLOOM We notice that the objects
to be predicted can appear in the middle of the
corresponding query templates in the mLAMA
dataset. However, due to the pre-training task of
causal language modeling, autoregressive models
like BLOOM are more adept at answering factual
knowledge questions by predicting the next token
in a given query. To address the mismatch be-
tween the form of query templates in mLAMA and
the generative nature of BLOOM, we employed
a compromise approach inspired by Yin et al.
(2022). Specifically, when probing the autoregres-
sive BLOOM, we filled each query with objects
from its candidate pool to construct complete sen-
tences. We then calculated the model’s generation
probabilities for these sentences, which serve as the
prediction probabilities for different objects. Due
to limitation of compute resource, we restricted
the size of the candidate pools to 10 when probing
BLOOM.

A.4 Hyperparameters

The i-layer for inserting LIRP and the j-layer for
inserting LSRP are two hyperparameters. We sys-
tematically evaluate different combinations of them
for each language and report the best results. This
exploration allows us to investigate the potential for
cross-lingual factual knowledge transfer facilitated
by the alignment of representation spaces.

B Additional Results

B.1 Experiments on X-FACTR

Yet another dataset used to probe multilingual fac-
tual knowledge is X-FACTR (Jiang et al., 2020a).
In contrast to mLAMA, this dataset contains fewer
languages and slightly more factual relations (23
and 46, respectively). We supplemented experi-
ments on 6 languages of X-FACTR, using mBERT
as the baseline model. The results are listed in
Table 3, which shows that LRP2 can also achieve
improvements on the X-FACTR dataset.



不同层的结果
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Figure 3: Cross-lingual transferability change with the
number of layers between LIRP and LSRP for ru, ja,
eu, sk and be. Note that a one-to-many relationship
exists between the number of the layers and the configu-
ration of LIRP and LSRP (i.e., the same difference of
two numbers corresponds to multiple pairs of numbers).
We display the best results for each specific number of
layers here.

B.2 Different Languages Necessitate Varying
Optimal Layer Settings

Figure 3 presents the change of cross-lingual trans-
ferability for five languages as the number of lay-
ers between LIRP and LSRP varies. Notably, we
observe that different languages exhibit distinct
requirements for representation space alignment
to achieve optimal transferability. In addition, we
notice that the performance of certain languages
is very sensitive to the choice of model layers for
the insertion of LIRP and LSRP modules. For cer-
tain numbers of layers between LIRP and LSRP
for some languages, such as 9 for language eu in
Figure 3a, none of the particular insertion settings
(the layers where LIRP and LSRP are inserted into
are 1/10, 2/11, 3/12, respectively) lead to efficient
knowledge transfer. We hypothesize that such sen-
sitivity may stem from the relatively fragile nature
of the representation space learned by mBERT for
these languages. Consequently, the representations
of these languages could easily lose semantic in-
formation and become meaningless after language
representation projections, leading to a complete
failure of knowledge transfer.

In addition, Table 4 and Table 5 show mBERT’s
and BLOOM’s optimal layer configurations for all
languages respectively, further underscoring the
substantial disparity in the optimal layer settings
among various languages.

B.3 The Impact of LRP2 Differs across
Non-English Languages

Figure 4 and Figure 5 illustrate the specific ef-
fects of LRP2 on different non-English languages
for mBERT and BLOOM respectively. It is note-

worthy that LRP2 is effective for languages that
are not covered by the training data of BLOOM.
This can be attributed to BLOOM’s utilization of
a byte-level BPE algorithm for subword tokeniza-
tion (Scao et al., 2022), ensuring that unknown
tokens are never yielded. In this way, unknown lan-
guages can be effectively represented to a certain
extent, enabling the transfer of factual knowledge
between them and other languages.

B.4 The Transferability Varies across Factual
Relations

We assess the transferability change of each fac-
tual relation in every language and consider a fac-
tual relation to be transferable from English to
a non-English language if its transferability im-
proves under any configurations of the LIRP and
LSRP modules. Figure 6 illustrates the transfer-
able percentages across all factual relations for
mBERT. We observe that 37 out of 41 relations
exhibit transferability from English to over 80%
non-English languages. Notably, the relations P17,
P1412, and P138, representing Place (e.g., Ger-
many, Ireland) and Language (e.g., Italian, Span-
ish) demonstrate consistent transferability across
all languages. However, some factual relations dis-
play lower transferability, e.g., P413, P264, P140,
and P108, which represent Athlete Position (e.g.,
midfielder, pitcher), Organization (e.g., Decca, Mo-
town), Religion (e.g., Buddhism, Islam) and Orga-
nization (e.g., Apple, Microsoft), respectively.

In addition, Figure 7 reveals a similar trend
in the transferability of factual relations between
BLOOM and mBERT. Specifically, the factual re-
lations P264, P413 and P449 exhibit lower transfer-
ability, while relations representing Place or Lan-
guage, such as P937, P530, P407, P37, and so on,
demonstrate higher transferability in BLOOM.

C Identifying Knowledge Neurons in
Multilingual Pretrained Models

We identify knowledge neurons in multilingual
pretrained models using Knowledge Attribution
proposed by Dai et al. (2022). We first identify
the knowledge neurons of all prompts in a re-
lation. Specifically, for each prompt, we calcu-
late the knowledge attribution scores of neurons
and take top-20 neurons as its knowledge neu-
rons. Further, for each factual relation, we take
the top-20 neurons with the highest number of oc-
currences in its all prompts as knowledge neurons



ceb cs cy fa gl id ko lt pl pt ro sk ur vi af ar de he hi ja zh es th az bg bn da el fr sv tr ga ru sr be ca eu hu hy it ka la lv nl ta uk sq et fi ms hr sl
LIRP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 4 5 5 6 6 6 6 6 6 6 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 9 10 10 10 11 11
LSRP 2 5 2 2 2 2 3 3 2 2 2 9 2 2 4 4 4 6 7 11 10 6 11 7 7 7 7 11 7 7 7 10 12 12 10 9 11 9 9 9 12 9 10 9 9 9 10 11 11 11 12 12

Table 4: mBERT’s optimal layer configurations for all languages. ’LIRP’ indicates which layer of mBERT the LIRP
module is inserted into, ’LSRP’ follows the same pattern.

da ru sq ja ca es la az cy af bg ceb et lt sl sr ta cs el fa fi hr pl ro sk uk be hu hi hy ga id ka th vi ko lv tr zh gl it nl eu pt fr de ms bn sv ur ar he
LIRP 1 1 1 2 3 4 4 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 10 10 11 11 13 14 15 15 16 16 16 16 17 17 17 17 18 18 18 18 18 20 20 21 21 21
LSRP 14 22 24 22 22 20 13 9 13 14 22 24 15 13 20 13 19 13 22 18 22 22 15 22 20 14 13 21 21 21 16 19 22 19 21 21 22 21 23 21 21 21 22 22 22 23 21 22 23 23 23 22

Table 5: BLOOM’s optimal layer configurations for all languages. ’LIRP’ indicates which layer of BLOOM the
LIRP module is inserted into, ’LSRP’ follows the same pattern.

of it. For a language, we identify knowledge neu-
rons of all its factual relations in mLAMA, such as
KN P101, KN P17, etc. Unlike Dai et al. (2022),
we perform score ranking at each layer of the
model, i.e., for a factual relation, we obtain its
knowledge neurons in all layers, e.g., KN P101 =
{KN 1

P101,KN 2
P101, ...,KNL

P101}, where L is the
number of layers of pretrained language models.
Specifically, we identified knowledge neurons for
both Chinese and English in mBERT. For Chinese,
we additionally detected knowledge neurons under
the configuration that yields the best transferability
result of Chinese.
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Figure 4: The effect of LRP2 on English-centric cross-lingual transferability of different non-English languages.
Results are based on mBERT.
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Figure 5: The effect of LRP2 on English-centric cross-lingual transferability of different non-English languages.
Results are based on BLOOM. Note that the training data for BLOOM cover only 14 of all languages in the mLAMA
dataset, which are marked with an asterisk (*).

MBERT

Language

Place Organization

Occupation Religion

Specialization

Music Genre

Musical Instrument Undefined

Athlete position

Figure 6: Transferable percentages of all factual relations in mLAMA. Results are based on mBERT.
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Figure 7: Transferable percentages of all factual relations in mLAMA. Results are based on BLOOM.


