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ABSTRACT

Recent neural methods for multi-objective combinatorial optimization involve
solving preference-specific subproblems with a single model and have achieved
competitive performance. However, they still suffer from limited learning ef-
ficiency and insufficient exploration of the solution space. This paper con-
ducts a theoretical analysis that reveals the equivalence between this single-
model paradigm and an implicit Mixture-of-Experts architecture. Furthermore,
we propose a Preference-Aware mixture-of-experts (PA-MoE) framework that
learns preference-specific representations while explicitly modeling preference-
instance interactions. By integrating a sparsely activated expert module with an
innovative preference-aware gating mechanism, PA-MoE enhances preference-
conditioned representation learning while preserving parameter efficiency. More-
over, PA-MoE is generic and can be applied to three different neural MOCO
solvers. Experimental results on the multi-objective traveling salesman problem
(MOTSP), multi-objective capacitated vehicle routing problem (MOCVRP), and
multi-objective knapsack problem (MOKP) show that PA-MoE is able to generate
a Pareto front with higher diversity, achieving superior overall performance.

1 INTRODUCTION

Multi-objective combinatorial optimization (MOCO) involves solving problems with multiple, often
conflicting objectives, where the goal is to approximate a diverse Pareto front that reflects trade-offs
between objectives [Lust & Tegheml (2010); Liu et al.|(2020). MOCO inherits NP-hardness from its
underlying combinatorial structure, and the multi-objective aspect further compounds its intractabil-
ity. Although heuristic MOCO solvers have long provided competitive performance within reason-
able runtimes Jozefowiez et al| (2008)); Florios & Mavrotas| (2014); |[Ehrgott et al.| (2016)), recent
advances in deep reinforcement learning (DRL) provide a neural, data-driven alternative, enabling
scalable policies and reducing dependence on handcrafted design choices [Zhang et al.[(2021)); |Shao
et al.| (2021); Zhang et al.|(2023).

A decomposition scheme Navon et al.| (2021); |Lin et al.| (2024) is widely adopted in DRL-based
MOCO solvers, where the MOCO problem is scalarized into preference-weighted subproblems,
each tied to a specific preference, and the resulting subproblems are solved end-to-end with deep
models. Within this paradigm, the single-model method trains a single preference-conditioned neu-
ral network (usually using a Transformer |[Vaswani et al.| (2017) backbone) to solve all subproblems.
Its effectiveness has been demonstrated by several recent works that achieve state-of-the-art (SOTA)
performance across multiple MOCO benchmarks |Lin et al.| (2022); |Chen et al.| (2023); [Fan et al.
(2024); (Chen et al.| (2025)).

Although empirical results are promising, current works mainly focus on single-model architec-
tural refinements (e.g. alternative preference-instance interactions and their placement within the
model), and the theoretical foundations of their effectiveness remain underexplored. In response, we
first reinterpret preference-conditioned Transformers as implicit Mixture-of-Experts (MoE) models,
where attention layers act as dense routers over token-indexed affine experts. However, in this view,
we observe that current single-model approaches lack controllable sparsity and explicit specializa-
tion, which inevitablely results in insufficient representation learning and reduced sample efficiency
under scalarized training paradigm in MOCO.
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Subsequently, we introduce an explicit Preference-Aware MoE (PA-MoE) framework. PA-MoE re-
places feed-forward layers with sparsely activated expert modules and employs a lightweight gating
mechanism conditioned on both instance structure and preference. This design delivers significant
performance improvements for neural MOCO solvers, without compromising parameter efficiency.
Our contributions can be summarized as follows:

* We offer a novel insight by interpreting unified preference-conditioned Transformers for
MOCO as implicit Mixture-of-Experts models, providing a fresh view on the connection
between existing MOCO methods and modular expert architectures.

* Driven by this perspective, we propose a PA-MoE framework that explicitly employs
sparsely activated expert modules and an innovative lightweight gating mechanism. PA-
MoE enhances model capacity and enables deeper exploration of the solution space, while
avoiding inefficient representation learning that often leads to suboptimal performance.

* The proposed PA-MoE framework is modular and versatile, enabling architecture-agnostic
integration into three representative neural MOCO solvers. Extensive experiments demon-
strate the significant superiority of our approach over SOTA neural methods.

2 RELATED WORK

Traditional Methods for MOCO. Exact algorithms for MOCO are capable of identifying all
Pareto-optimal solutions through exhaustive enumeration Ehrgott et al| (2016)); Bergman et al.
(2022) . In practice, multi-objective evolutionary algorithms (MOEASs) are widely used to approx-
imate the Pareto front under limited computational resources [Tian et al. (2021); |Xie et al.| (2022));
Lin et al.| (2021); |Garcia-Martinez et al|(2007). Algorithms such as dominance-based MOEAs
Deb et al.| (2002) and decomposition-based MOEAs Zhang & Li| (2007); |[Ke et al.| (2014) often in-
corporate local search or domain-specific heuristics to improve solution quality. However, these
methods typically require extensive manual design and fine-tuning of evolutionary operators, such
as crossover and mutation, which limits their flexibility and scalability [Fang et al.[ (2020).

DRL-based methods for MOCO. DRL-based methods have recently gained attention due to their
fast inference and easy deployment across various MOCO problems. Early efforts focused on train-
ing separate policy networks for each scalarized subproblems, termed the multi-model paradigm |Li
et al.| (2021); [Wu et al.| (2020); |Shao et al.| (2021); [Zhang et al.| (2021). For example, Meta-DRL
(MDRL) [Zhang et al.[(2023)) adapts a pre-trained meta-model through fine-tuning to accommodate
varying preferences. However, training dedicated models for each subproblem introduces substantial
training overhead and the burden of maintaining multiple networks. Alternatively, the single-model
paradigm has been introduced, wherein a unified model is trained to solve subproblems for arbitrary
preference vectors. For example, given a preference as input, PMOCO |Lin et al.[(2022) employs a
hypernetwork to generate the decoder parameters for each subproblem. Beyond decoder-level adap-
tation, some methods (e.g., CNH |[Fan et al.| (2024)) enhance preference-instance interaction using
dual-attention in the encoder, while others (e.g., WE-CA |Chen et al.|(2025))) directly modulate node
embeddings via feature-wise affine transformations for better alignment with trade-off preferences.

3 PRELIMINARIES

3.1 MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION (MOCO)

Given M objectives, the MOCO problem can be defined as:

where X is a discrete decision space and f : X — R maps each solution z € X to an M-
dimensional objective vector. A solution z; € X is said to Pareto-dominate another solution x5 €
X (denoted 1 < mo) if fi(x1) < fi(az) forall i € {1,..., M}, and there exists at least one
objective j € {1,..., M} such that f;(z1) < fj(x2). A solution z* € X is Pareto optimal if there
is no other solution 2’ € X such that ' < z*. The set of all Pareto optimal solutions, known as
Pareto set, is defined by P = {2* € X | #2’ € X : 2’ < 2*}. The set of their corresponding
objective vectors constitutes the Pareto front, formally givenby F = { f(z) e RM |z € P}.
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3.2 SUBPROBLEM FORMULATION

In this paper, we focus on the decomposition-based paradigm of MOEA/D, which partitions a
MOCO problem into multiple subproblems, each modeled as a Markov Decision Process (MDP).
Given the MDP formulation, the policy network is trained using the REINFORCE algorithm
Williams|(1992), which maximizes the expected reward over the sampled trajectories. The objective
in DRL can be optimized with the corresponding policy gradient:

VoL(0|Z) = Exnpy(iz) [(R(7) = b(T))Velog Py(m | T)], 2)
where b(Z) denotes a baseline function used to reduce gradient variance and stabilise learning across

varying instances Z € 7. The trained autoregressive neural policy can be used to incrementally
construct solutions for subproblems.

3.3 SINGLE-MODEL PARADIGM FOR MOCO SUBPROBLEMS

The single-model paradigm trains a single parameterized solver 7y that maps an instance s and
a preference vector A directly to a solution of the corresponding scalarized subproblem. Under the
above DRL formulation, the current paradigm single-model employs preference—instance interaction
to fuse preference and instance information, implemented in the encoder or the decoder of a shared
Transformer |[Vaswani et al.| (2017).

As shown in (a), the early preference-instance interaction strategy operates in the decoder
layers. The preference ) is input to a hypernetwork that dynamically generates the attention pa-
rameters of the decoder. These preference-specific parameters are subsequently used to compute
attention over the node embeddings produced by the encoder, enabling the decoder to output a dis-
tribution over the remaining feasible nodes at each decoding step. In this way, it ensures that solution
construction remains conditioned on the given preference throughout the generation process.

Afterward, some works introduce the preference-instance interaction at the encoder layers. As il-
lustrated in (b), the preference A is used to modulate the node representations within the
encoder, enabling the model to learn preference-aware embeddings prior to the decoding phase. This
modulation is typically performed before the skip connection and instance normalization He et al.
(2016); [Ulyanov et al.| (2016), and can be performed through preference-aware attention mecha-
nisms. Common designs include FiLM-style conditioning |Perez et al.| (2018)), dual attention-based
preference-instance conditioning [Fan et al.|(2024) that generate modulation parameters from pref-
erences.

4 METHODOLOGY

4.1 THEORY BASIS: FROM IMPLICIT MOE TO EXPLICIT MOE

Self-attention is the core component of Transformer architectures Vaswani et al.|(2017). Therefore,
the theoretical analysis in this section begins from the perspective of the self-attention mechanism.

Preference-conditioned Attention Meet Implicit MoE. A unified preference-conditioned atten-
tion can be viewed as an implicit MoE [Shazeer et al.| (2017). By conditioning Q/K/V on the
preference A, attention effectively behaves as soft routing over shared capacity, enabling conditional
specialization across subproblems without parameter duplication.

Let X = [z],...,2}]" € RV*9 be node embeddings of instance s. For the [ —th head in the atten-

tion layer, the projections with preference conditioning can be defined as Q) (\) = X Wg ) (N €
RVxde KO\ = X WP ) e RV yO ) = X WP (\) € RN* | respectively.

Then, given i and Vj, let ¢!”()) and k:](-l)()\) be the i-th and j-th row of Q()(\) and KW (\),

) , ! N
; (A) be the j-th row of V(). The head output at position 7 is:

PR ONT
0 e 0 0 exP( — Vix )
hi (X, A) = Zaij (X, A) v; (A), Q5 (X,A) = N D EONTY
S exp (AT

respectively, and v

3)
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Figure 1: Neural architectures of PA-MoE under two preference-instance interaction strategies. Left: Decoder-
side interaction with a preference-aware hypernetwork generating parameters for attention layers |Lin et al.
(2022). Right: Encoder-side interaction with the preference-aware attention mechanism |Fan et al.| (2024). In
both, the proposed MoE adapts the policy learning dynamically based on instance and preference.

Next, the output of the [-th head is:

N
RO (X, 0) =D softmax; (s (X, 1) E7(X,N) 4)
j=1 N——
preference-aware routing shared (affine) experts

where the experts are defined as 5J(l)(X, A) = v(.l)()\) and the gating scores as sgl-) (X, ) =

J J
adP N EP T . . L . . .
#. Thus, each attention head is an implicit MoE that mixes N experts with a gating
distribution that depends on the preference \ via Wg ) (N, 1(<l) (M) (and optionally W‘(,l ) A).

Inspired by the above theoretical analysis, we discuss the rationale and novelty of our proposed
preference-aware MoE architecture subsequently.

Preference-Aware MoE. While preference-conditioned attention realizes an implicit MoE, the
“experts” are token-indexed linear maps tied to the value projection, and the softmax router is dense.
As aresult, the sparsity of MoE and the utilization of experts cannot be explicitly controlled. In other
words, the computation cannot be selectively focused on structures that most decrease the scalarized
objective g(f(m | I), \), especially under wide preference spans or strongly conflicting objectives.

Based on the above analysis, we introduce an explicit Preference-Aware MoE (PA-MoE) with non-
linear expert subnetworks and a router wg (h, \) that depends jointly on the hidden state and pref-
erence. Replacing them with explicit non-linear experts { E }};"_; and a router wy(h, A) yields the
hypothesis class as:

HpaMor = {h 3 w(hA) Bi(h) | he R wy(h,A) > 0, S wi(h, A) = 1}}7 )
k=1
which (under mild conditions) strictly enlarges the implicit attention class and supports controllable
sparsity (using Top-K activation) and load balancing via an auxiliary loss.

By default, the above theory applies to token-level MoE, as attention is typically performed over
a batch of tokens. However, we further extend the theory basis (i.e., from implicit MoE to ex-
plicit MoE) to the instance-level MoE and provide theoretical proofs (in Appendix A), by which
we reformulate the layer output into an instance-level explicit MoE through hierarchical routing and
weighted aggregation. Additionally, we conducted experiments to empirically compare token-level
and instance-level routing, and the results demonstrate that the latter outperforms the former on
MOCO problem (see Appendix E). Therefore, we adopt instance-level routing in our MoE to pro-
vide a stronger inductive bias for model learning and optimization. Accordingly, in the remainder
of this paper, we adopt the instance-level perspective in PA-MoE.
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4.2 INTEGRATING PA-MOE INTO THE Single-Model PARADIGM

MoE Module Placement. As illustrated in the proposed MoE module supports integra-
tion into both interaction strategies (a) and (b) in single-model paradigm, enabling preference-aware
expert selection in both the encoder and decoder in Transformer architectures for each subproblem
instance. Specifically, we integrate MoE modules by 1) replacing the feed-forward networks in
the encoder; 2) replacing the attention output projection layer of the decoder, which produces the
context embeddings used to calculate node selection logits.

The MoE module consists of a set of m experts { £, Es, ..., E,, }. Each expert F, is instantiated
as a self-contained feed-forward neural network that processes input independently and maintains
an individual subset of trainable parameters. This design allows experts to specialize in different
subspaces of the input distribution. The output of the MoE is obtained by a weighted sum of expert
outputs:

MoE(h, A) = Y wy(h, A) - Ex(h), (6)
k=1

where wy(h, \) denotes the gating weight generated by the gating network for the expert k, based
on the representation of input i and preference A. The final output is computed by aggregating
expert outputs using the gating weights. To ensure generality and computational efficiency, a sparse
routing mechanism based on Top-K selection is adopted, where only K experts with the highest
gating scores are activated, while the rest are masked out. To encourage a balanced use of experts,
we adopt the auxiliary load balancing loss|Shazeer et al.|(2017)) (see Appendix G) to penalize uneven
activation frequencies between experts during training.

Preference-Aware Gating Mechanism. Gating network determines how input is routed between
experts. Although a straightforward gating mechanism routes input solely based on node features,
disregarding the semantic variability induced by different preferences, this may result in suboptimal
expert allocation across heterogeneous subproblems. Intuitively, the router should be responsible for
selecting a sparse subset of experts based on both instance features and preferences. To this end, we
propose preference-aware routing strategy. Specifically, the gating network is jointly conditioned
on the node embeddings and the preference to modulate the expert selection process. Given a node
embedding h € R? and preferences \ € R?, the gating logits are computed as:

re(h, ) = hTW® £ AT, 7

where W,ﬁi) € R and W,g’\) € RP are trainable parameters associated with expert k. During
training, Gaussian noise €y, is added to encourage exploration and prevent expert collapse:

Fe(hy A) = ri(h, A) + ex,  €x ~ N(0,0%). (8)

The routing weights are obtained via a softmax over the noisy logits, followed by a Top-K selection
to enforce sparse activation:

exp(7x(h, A))
25 exp(7(h; A))
Notably, the linear preference-aware routing mechanism delivers efficient preference-specific expert
allocation with negligible GPU overhead, outperforming more sophisticated gating designs. We
empirically validate these advantages in the experimental section.

wi(h, \) = €))

5 EXPERIMENTS

Problems. We validate the effectiveness of our method on the bi-objective and tri-objective Trav-
eling Salesman Problem (Bi-TSP and Tri-TSP) [Lust & Teghem! (2010), bi-objective Capacitated
Vehicle Routing Problem (Bi-CVRP) Zajac & Huber (2021) and multi-objective knapsack problem
(MOKP) [Ishibuchi et al|(2015)). The detailed definition of the problem is provided in Appendix B.
For the experiments, we use three standard instance sizes for each problem: n = 20, 50, and 100 for
MOTSP and MOCVRP, and n = 50, 100, and 200 for MOKP. We also assess the out-of-distribution
generalization of the model in larger instances, including Bi-TSP150/200 and three TSPLIB |Audet
et al. (2021)) benchmark instances (KroAB100/150/200).
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Table 1: Comparison results on Bi-TSP with 200 random instances.

Method 20 Nodes 50 Nodes 100 Nod:

etho HV Gap | Time HV 1 Gap| Time | HV1  Gap i Time
WS-LKH 0.6270  0.02%  10.Im | 0.6415 -0.02% 1.8h | 0.7090 -0.29%  6.0h
MOGLS 0.6273 —0.03%  2.8h | 0.6317 1.51% 7.3h | 0.6854 3.04% 12.4h
PPLS/D-C 0.6256  0.24%  26.3m | 0.6282 2.06% 2.8h | 0.6844 3.18% 11.5h
DRL-MOA 0.6253  0.28% Ts 0.6338  1.18% 10s | 0.6962 1.51% 19s
MDRL 0.6271 0.0% 6s 0.6364  0.78% 9s | 0.6969 1.41% 17s
EMNH 0.6271 0.0% 6s 0.6364  0.78% 9s | 0.6969 1.41% 16s
PMOCO ‘ 0.6262  0.14% 6s ‘ 0.6350  0.99% 9s | 0.6969 1.41% 16s
PA-MoE-P 0.6280 —0.14% 12s | 0.6388 0.41%  31s | 0.7013 0.79% 31s
CNH ‘ 0.6269  0.03% 6s ‘ 0.6367 0.73% 9s | 0.6985 1.20% 13s
PA-MoE-C 0.6273  —0.03% 9s 0.6375 0.61% 17s | 0.6991 1.10% 30s
WE-CA ‘ 0.6270  0.02% Ts ‘ 0.6392  0.34% 10s | 0.7034  0.50% 21s
PA-MoE-W 0.6272  —0.02% 14s | 0.6400 0.22%  48s | 0.7043 0.37% 31s
MDRL-aug 0.6271  0.00% 33s | 0.6408 0.09% 1.7m | 0.7022  0.66% 14m
EMNH-aug 0.6271  0.00% 33s | 0.6408 0.09% 1.7m | 0.7023  0.65% 14m
PMOCO-aug64 0.6280 —0.14%  48s | 0.6409 0.08% 23m | 0.7025 0.62% 9.2m
PA-MoE-P-aug32 | 0.6284 -0.21% 39s | 0.6414 0.00% 2.2m | 0.7042 0.38%  8.4m
PA-MoE-P-aug64 | 0.6284 -0.21% 75s | 0.6418 -0.06% S5.Im | 0.7046 0.33% 16.4m
CNH-aug64 0.6280 —0.14%  53s | 0.6411 0.05% 2.1m | 0.7030 0.55% 9.34m
PA-MoE-C-aug32 | 0.6280 —0.14%  50s | 0.6409 0.08% 2.1m | 0.7028 0.58%  9.lm
PA-MoE-C-aug64 | 0.6281 0.16% 1.Im | 0.6413 0.01% 4.3m | 0.7033 0.51% 16.8m
WE-CA-aug64 0.6271  0.00% 1.2m | 0.6413  0.01% 3.3m | 0.7066 0.04% 16m
PA-MoE-W-aug32 | 0.6271  0.00% I.lm | 0.6413 0.01% 5.1m | 0.7066 0.04% 17.lm
PA-MoE-W-aug64 | 0.6271  0.00% 19m | 0.6414 0.00% 8.5m | 0.7069 0.00% 37.3m

Table 2: Comparison results on Tri-TSP with 200 random instances.

Method 20 Nodes . 50 Nodes . 100 Nodes
etho HV 1t Gap | Time | HV 1 p | Time | HV ©  Gap |  Time
WS-LKH 04712 0.00% 12m | 0.4440 -0 32% 1.9h | 05076 -1.13%  6.6h
MOGLS 04627  1.80% 1.5h | 04235 4.32%  4.2h | 04328 13.76% 13.5h
PPLS/D-C 04701  0.23% 1.3h | 04301 2.82% 3.7h | 0.4489 10.56% 14.4h
DRL-MOA 0.4694  0.38% 6s | 0.4309  2.64% 11s | 04879 2.79% 17s
MDRL 0.4699  0.28% Ss | 04317  2.46% 9s | 04852 3.32% 19s
EMNH 0.4699  0.28% S5s | 04324 2.30% 9s | 0.4866 3.05% 16s
PMOCO ‘ 0.4706  0.13% s ‘ 04346  1.81% 9s ‘ 0.4902  2.33% 17s
PA-MoE-P 0.4727 -0.32% 12s | 0.4401  0.56% 21s | 0.4965 1.07% 40s
CNH ‘ 04712 0.00% 6s ‘ 04374 1.17% 9s ‘ 0.4926  1.85% 15s
PA-MoE-C 04715  -0.06% 15s | 04382  0.99% 29s | 04933 1.71% 54s
WE-CA ‘ 0.4707  -0.11% Ss ‘ 0.4389  0.84% 9s ‘ 0.4975  0.88% 20s
PA-MoE-W 04708  -0.09% 17s | 04387  0.88% 25s | 04970 0.98% 31s
MDRL-aug 04712 0.00%  2.6m | 0.4408 041%  25m | 04958 1.21% 1.7h
EMNH-aug 04712 0.00%  2.6m | 0.4418 0.18%  25m | 04973 0.92% 1.7h
PMOCO-aug64 04740 -0.59%  42s | 04430 -0.09% 2.4m | 04967 1.04%  9.3m
PA-MoE-P-aug32 | 04740 -0.59% 33s | 0.4447 —0.47% 2.2m | 0.5014 0.10%  9.2m
PA-MoE-P-aug64 | 04740 -0.59% 1.0m | 04452 -0.58% 4.3m | 0.5020 -0.02% 17.1m
-au, . -0.25% s . .20% 2m | 0. .90% 4m
CNH-aug64 04724 -0.25% 42 04417  020% 2.2 0.4974  0.90% 9.4
PA-MoE-C-aug32 | 0.4725 —0.28% 35s | 04423  0.07% 2.5m | 0.4975 0.88%  8.5m
PA-MoE-C-aug64 | 0.4725 —0.28% 1.0m | 0.4428 -0.04% 4.5m | 04983 0.72%  20.0m
WE-CA-aug64 04712 0.00%  2.2m | 0.4426 0.0% 52m | 0.5023 -0.08% 25.7m
PA-MoE-W-aug32 | 04712  0.00% 1.1m | 04422 0.09% 5.lm | 0.5014 0.10% 23.3m
PA-MoE-W-aug64 | 04712  0.00% 29m | 04426 0.00% 9.8m | 0.5019 0.00% 39.9m

Hyperparameters. The proposed PA-MoE-P, PA-MoE-C, and PA-MoE-W are based on three rep-
resentative preference-aware neural MOCO frameworks: PMOCO, CNH, and WE-CA. Most hy-
perparameters are inherited from their respective baselines, except for the number of experts and
the top-k selection size, which are consistently set to 4 and 2, respectively, in all PA-MoE variants.
We generate IV preferences using the Normal-Boundary Intersection (NBI) method Das & Dennis
(1998), with N = 101 for bi-objective (M =2) and N = 105 for tri-objective (M =3) problems.
The model is trained for 200 epochs, with each epoch consisting of 100,000 randomly sampled in-
stances. We use a batch size of 64 and optimize the network using the Adam optimizer Kingma &
Bal(2015) with a learning rate of 10~* and a weight decay of 10~°

Baselines. We compare our method against six learnable and four non-learnable MOCO baselines.
(1) Learnable MOCO methods. We compare our method with three representative single-model
neural MOCO baselines: PMOCO [Lin et al.| (2022), CNH |Fan et al.| (2024), and WE-CA |Chen
et al.| (2025). In addition, we include multi-model baselines, namely DRL-MOA [Li et al.| (2020),
and two meta-learning based multi-model approaches, MDRL Zhang et al.|(2023)) and EMNH |Chen
et al.| (2023). (2) Non-learnable MOCO methods. MOGLS Jaszkiewicz| (2002) is a genetic local
search MOEA that runs for 4,000 iterations with 100 local search steps per iteration. PPLS/D-C Shi
et al.| (2022) is a specialized MOEA that applies 2-opt heuristics for TSP and CVRP, and a greedy
transformation heuristic for KP, with 200 iterations in total. WS-LKH and WS-DP are weighted-
sum (WS) based solvers that scalarize MOTSP and MOKP into single-objective subproblems, which
are then solved using LKH heuristic [Tinos et al.|(2018)) and dynamic programming, respectively.
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Table 3: Comparison results on Bi-CVRP with 200 random instances.
20 Nodes 50 Nodes 100 Nodes

Method ‘ HVt ~ Gapl Time ‘ HVt ~ Gapl Time ‘ HVt  Gapl Time
MOGLS 04281 047% 79h | 03987 290% 17h | 03721 8.89% 2lh
PPLS/D-C 04273  065% 17h | 04012 229% 93h | 03829 624% 1%
DRL-MOA 04279 051%  7s | 04075 075% 1ls | 04039 1.10%  24s
MDRL 04201 023%  8s | 04082 058% 13s | 04056 0.69% 325
EMNH 04299 005%  7s | 04098 019% 13s | 04072 029%  31s
PMOCO ‘ 04412 —258% 6s | 04031 1.83% 1ls | 04025 144% 155
PA-MoE-P 04414 —263% 9s | 04048 1.41% 18s | 04136 —1.27%  33s
CNH 04437 —3.16% 7s | 04059 1.14% 1ls | 04144 —147% 24s
PA-MOoE-C 04438 -3119% 1ls | 04062 1.07% 20s | 04152 —1.66% 37s
WE-CA 04200 026%  7s | 04089 041% 14s | 04068 039% 265
PA-MoE-W 04202  021%  11s | 04095 027% les | 04074 0.24%  30s
MDRL-aug 04204  0.16%  1ls | 04092 034% 36s | 04072 029% 2.8m
EMNH-aug 04302 —0.02% 1ls | 04106 0.00% 35s | 04079 0.12% 2.8m
PMOCO-aug 04421 —2.79% 1ls | 04059 1.14% 23s | 04102 —0.44% 1.2m

PA-MoE-P-augd | 04425 —2.88% 9s | 04064 1.02% 2Is | 04148 —1.57% 59s
PA-MoE-P-aug8 | 04427 —2.92% 13s | 04068 0.93% 33s | 04152 —1.67% 19m

CNH—aLﬁgS 0.4448 -3.42% 18s | 0.4074 0.78%  43s | 04157 -1.79% 2.5m
PA-MoE-C-aug4 | 0.4447 -3.39% 15s | 0.4074 0.78%  42s | 04162 -191% 2.0m
PA-MoE-C-aug8 | 0.4448 -342%  26s | 04078 0.68% 1.0m | 0.4164 -1.96% 3.6m

WE-CA-al‘J,% 0.4300  0.02% 14s | 0.4103 0.07%  49s | 0.4081  0.07%  3.2m
PA-MoE-W-augd | 0.4299  0.05% 14s | 0.4104 0.05%  46s | 0.4082  0.05%  3.2m
PA-MoE-W-aug8 | 0.4301  0.00% 23s | 0.4106 0.00% 13m | 04084 0.00% 5.7m

Metrics. We evaluate the performance of the methods using the widely adopted hypervolume (HV)
indicator|Audet et al.[(2021) (see Appendix C), where a higher HV indicates a better approximation
set. We report the average HV, the HV gap relative to PA-MoE-W-aug, and the total inference time
over a fixed set of 200 test instances.

Methods with the “-aug” apply instance augmentation to improve performance (see Appendix D
for details). To emphasize the relative performance of neural MOCO solvers, we exclude the
strong baseline WS-LKH when marking the best (second-best) results, which are highlighted in
bold (underline) if not significantly different at the 1% level according to the Wilcoxon rank-sum
test \Wilcoxon| (1992). The experiments were carried out on a machine with RTX 3090 GPUs and
Intel Xeon Silver 4214R CPUs.

5.1 MAIN RESULTS

The comparison results between our unified models (PA-MoE-P/C/W) and a diverse set of MOCO
baselines is presented in[Table THTable 3|for MOTSP and MOCVRP, and in Appendix F for MOKP.
From these results, we can safely infer that our proposed framework consistently delivers superior
performance across different backbone configurations, highlighting its strong adaptability to varying
architectural designs.

When instance augmentation is introduced, our models improve further. Especially, even with only
half the augmentation size, PA-MoE demonstrates superior performance. For instance, PA-MoE-P-
aug32 outperforms PMOCO-aug64 in all benchmark problems. Compared with multi-model meth-
ods, PA-MoE maintains its lead in most cases, except on Bi-KP100, where EMNH achieves the
lowest gap (—0.15%). PA-MoE establishes new SOTA results across multiple benchmarks, includ-
ing Bi-TSP20/50 (PA-MoE-P-aug), Bi-CVRP50 (PA-MoE-W-aug), and Bi-CVRP100 (PA-MoE-C-
aug). While PA-MoE does not yet surpass WS-LKH on Bi-TSP100 and Tri-TSP100, WS-LKH
demands prohibitive runtimes (e.g., 6 hours on Bi-TSP100). In contrast, PA-MoE produces com-
petitive results within minutes, demonstrating a favorable trade-off between efficiency and solution
quality.

5.2 ABLATION STUDY

Gating Mechanism. We investigate five gating strategies in the PA-MoE-P model on Bi-TSP50: (1)
Inst-Only, which routes based solely on instance embeddings; (2) Pref-Only, which uses only pref-
erences for expert selection; (3) Concat, which combines instance and preference features via con-
catenation before gating; (4) Additive (ours), which separately projects and then adds instance and
preference representations; and (5) HyperNet, which leverages a lightweight hypernetwork condi-
tioned on preferences to generate part of the gating parameters. As shown in (a), Pref-Only
and Inst-Only suffer from limited performance because they rely exclusively on either preference or



Under review as a conference paper at ICLR 2026

Figure 2: Ablation study results: comparison of gating mechanisms (left), performance under varying numbers
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Table 4: Generalization results on 200 instances of larger-size problems.

150 Nodes 200 Nodes
Method HV?t "Gapl Time | HV1 ™ Gapl Time
WS-LKH 0.7149 -139% 13h |0.7490 -139% 22h
MOGLS 06794 3.64% 27h |07181 279%  33h
PPLS/D-C 0.6738 443% 23h | 07087 4.06% 31h
DRL-MOA 06019 1.87% 3525 |07248 1.88% 1.5m
MDRL 06022 183% 40s (07251 184% 14m
EMNH 0.6030 1.72% 40s |0.7260 172% 1:4m
PMOCO 0.6026 1.77% 40s |07261 171% ILlm
PA-MoE-P 0.6983 096% 1.4m |0.7323 0.87% 1.7m
MDRL-aug 0.6076 1.06% 47m [0.7299 1.19% 1.6h
EMNH-aug 0.6983 0.96% 47m |0.7307 1.08% 1.6h
PMOCO-aug64 [ 0.6982 0.98% 25.4m 07311 1.03% 49.9m
PA-MoE-P-aug32 |0.7013 0.354% 232m 07350 0.50% 46.4m
PA-MoE-P-aug6d | 0.7018 0.47% 45.0m | 0.7355 043% 1.5h
CNH 06950 143% IL.Im [07295 1.24% 12m
PA-MoE-C 0.6953 1:39% 13m |0.7297 122% 2.0m
CNH-aug64 0.6997 0.77% 47.9m [0.7339 0.65% 13h
PA-MoE-C-aug32 | 0.6992 0.84% 38.7m[0.7335 0.70% 12h
PA-MoE-C-aug6d | 0.6998 0.75% 1.2h |0.7340 0.64% 1.9h
WE-CA 07008 0.61% 1.2m [0.7346 0.56% 3.6m
PA-MoE-W 0.7019 045% 18m | 07360 0.36% 3.9m
WE-CA-aug64 [ 0.7044 0.10% 53.6m|0.7381 0.08% 1.7
PA-MoE-W-aug32 [ 0.7047 0.06% 452m | 0.7385 0.03% 1.4h
PA-MoE-W-aug64 | 0.7051 0.00% 1.1h | 0.7387 0.00% 1.9h

instance features. By conditioning the gating mechanism on a single source of information, these
models struggle to capture nuanced subproblem-specific features and fail to achieve flexible expert
allocation. While modest gains are observed with the other fusion strategies, the Additive variant
proves most effective.

Number of Experts. (b) reveals that PA-MoE-P benefits from increased expert capacity up
to 8, beyond which performance saturates or degrades. These results indicate that simply increasing
the number of experts does not consistently improve performance. Similar to challenges observed in
single-objective tasksZhou et al.{(2024), overly large expert pools may suffer from insufficient train-
ing of parameters and degraded generalization due to under-utilization and increased optimization
difficulty.

Position of MoE. We evaluate the impact of inserting MoE modules at different positions in the
transformer architecture with PMOCO backbone, on the Bi-TSP50 dataset. As shown in [Figure 2|
(c), we first apply MoE to the linear projections of instance features (Raw-Inst) and preferences
(Raw-Pref) separately. We observe that only applying MoE to Raw-Inst results in a performance
improvement. Hence, we extend Raw-Inst by incorporating MoE into the encoder’s feed-forward
layers (Raw-Inst-Enc) and the decoder’s attention output projection layer (Raw-Inst-Dec), each
yielding additional gains. By combining both encoder-side and decoder-side enhancements, the
resulting configuration (Raw-Inst-Enc-Dec) achieves the best performance and is therefore adopted
throughout the paper to fully exploit its potential.
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Figure 3: Pareto fronts of benchmark instances, KroAB100/150/200 (left/middle/right).

5.3 GENERALIZATION STUDY

Table 5: Comparison results on benchmark instances.

Method KroAB100 KroAB150 KroAB200

HV?T Gapl Time| | HVt Gapl Timel | HVt Gapl  Timel
WS-LKH 0.7022  -0.40% 2.3m | 0.7017 -0.73% 4.0m | 0.7430 -1.05% 5.6m
MOGLS 0.6819 2.50%  49m | 0.6651 4.52% 1.2h | 0.7045 4.19% 1.5h
PPLS/D-C 0.6785 299% 37m | 0.6672 4.22%  49m | 0.7193 2.17%  3.1h
DRL-MOA 0.6904 1.29% 10s | 0.6793 2.48% 18s | 0.7185 2.28% 25s
MDRL 0.6881 1.62% 10s | 0.6831 1.94% 17s | 0.7209  1.96% 23s
EMNH 0.6900 1.34% 9s 0.6832 1.92% 16s | 0.7217 1.85% 23s
PMOCO ‘ 0.6897 1.39% 9s 0.6834  1.89% 17s | 07220 1.81% 23s
PA-MoE-P 0.6949  0.64% 11s | 0.6893 1.05% 25s | 0.7282  0.96% 38s
CNH ‘ 0.6913  1.16% 13s | 0.6844 1.75% 22s ‘ 0.7241 1.52% 37s
PA-MoE-C 0.6924  1.00% 24s | 0.6857 1.56% 34s | 0.7246  1.46% 43s
WE-CA ‘ 0.6948  0.66% 12s | 0.6924  0.60% 19s ‘ 0.7317  0.49% 32s
PA-MoE-W 0.6967 0.39% 18s | 0.6928 0.55% 23s | 0.7326 0.37% 425
MDRL-Aug 0.6950  0.63% 13s | 0.6890 1.09% 19s | 0.7261 1.25% 28s
EMNH-Aug 0.6958 0.51% 12s | 0.6892  1.06% 18 | 0.7270 1.13% 27s
PMOCO-Au; 0.6958 0.51% 10s | 0.6902 0.92% 2ls | 07272 1.10% 45s
PA-MoE-P-Aug | 0.6985 0.13% 17s | 0.6937 0.42% 28s | 0.7317 0.49% 53s
CNH-Aug 0.6965 0.41% 15 | 0.6911  0.79% 27s | 0.7238  1.56% 48s
PA-MoE-C-Aug | 0.6973 0.30% 19s | 0.6913 0.76% 32s | 07301 0.71% 52s
WE—CA—a% 0.6990  0.06% 228 | 0.6957 0.13% 23s | 0.7349  0.54% 42s
PA-MoE-W-Aug | 0.6994 0.00% 28s | 0.6966 0.00% 29s | 0.7353  0.00% 55s

We evaluated the generalization performance of models trained on Bi-TSP100 by testing them
on 200 randomly generated instances of larger Bi-TSP150 and Bi-TSP200, as shown in
Furthermore, we assess performance on three TSPLIB benchmarks, KroAB100, KroAB150, and
KroAB200, reported in The results show that PA-MoE-P and PA-MoE-W outperform
state-of-the-art neural baselines on Bi-TSP150 and Bi-TSP200 benchmark sets. The corresponding
Pareto fronts are also visualized in The magnified regions of the Pareto fronts reveal that
PA-MOoE yields clearly dominant solutions over those produced by baseline, validating the superior-
ity of our approach in balancing convergence and diversity. These results indicate that the PA-MoE
architecture is generalizable and corroborate our hypothesis about its robustness.

6 CONCLUSION

In this paper, we provide a novel perspective on the single-model paradigm for MOCO by estab-
lishing its connection to an implicit Mixture-of-Experts architecture. Subsequently, we propose
a generic PA-MoE framework that employs sparsely activated expert modules and an innovative
lightweight gating mechanism, thereby explicitly enhancing the capacity of a single model to address
diverse subproblems. Extensive results demonstrate PA-MoE’s effectiveness and favored cross-size
generalization capability. We believe there remains ample room to uncover deeper connections
between MOCO and MoE, which could inform the design of more effective neural solvers. For
example, incremental expert generation at the subproblem level under shifting preferences, and the
design of more intricate expert architectures, are promising directions.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. To this end, we provide the following:
(1) Code availability: The complete source code and detailed instructions for reproducing our
experiments are included in the supplementary material, which can be accessed and downloaded by
reviewers and readers. (2) Theoretical results: All assumptions are clearly stated, and complete
proofs of our main theorems are presented in Appendices A.1 and A.2.
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A CONSTRUCTIVE DERIVATION FROM TOKEN-LEVEL IMPLICIT MOE TO
INSTANCE-LEVEL EXPLICIT MOE

Let H = [hq,...,hy] be the hidden states of a layer (e.g., an attention block) for an instance X,
and A\ a preference vector. An implicit token-level mixture has the per-token output
= > wir(hi, ) Ex(hi),  wix >0, Y wig =1, (10)
k=1 k=1

where E;; are shared (token-agnostic) expert functions and w;j, are token-level gates.

A.1 WEIGHTED AGGREGATION IDENTITY

Lemma 1 (Weighted aggregation identity). Let yl be defined as in equation[I0] For any aggregation
operator that is a linear mean over tokens (e.g., ~ E ), we have the exact identity

k=1 i=1 Zi:l Wik

(X, A) Ep(X,\)

Proof. Expand Z y; using equat1onl
1
sy =1 winBx(hi) = Y (5 D winBu(ho))-

For each k, multiply and divide by >, w;, (non-negative; when zero, define the term as 0 by conti-

nuity), yielding
1 Z wzkEk
¥ (5 X w) (Bgelhd) -5

A.2 HIERARCHICAL ROUTING AND INSTANCE-LEVEL MOE

Define an instance-/preference-level context c by pooling token states as:

¢(X, ) :=Pool(H(X,\)) € R%  (e.g., mean/max pooling or learned attention pooling). (12)

Then, introduce a hierarchical router that factors instance- and token-level gates as:
Bk (¢, A) := softmaxy, (u,l—gb([c; ). (13)
aik (hiy A) := softmaxy, (a;w([hi; )\])), (14)
Wik
Zk’ Wik
Proposition 1 (Constructive instance-level MoE form). Let y; be as in equation [I0|with gates de-
fined by equation[I3] Then the instance-level aggregation Fi, in equation|[I1]equals

cwik By (hy
Fanst (X, \) = kzlwk (X, N) B(X,N), mpo= L Zwm, B = szwkk()

which is an instance-level explicit MoE with expert responses Ek and gates .

Wi (hiy e, A) o< Br(c, A) aar (hiy N), Wik, = (15)

(16)

If one prefers the canonical structure ) -, S (c, \) Ep(X), set:

Ep(X) = E), (X,\) and Bi(c, ) o 1 (X, \) (followed by normalization), 17)
then Finet (X, A) = >, Br(c, A) E(X) holds exactly by construction.

13



Under review as a conference paper at ICLR 2026

A.3 SPARSITY AND CAPACITY CONTROL AT THE INSTANCE LEVEL

The instance-level gates m, or B; expose explicit control: (i) Top-K sparsity: keep the K largest
entries and renormalize; (ii) Load balancing: add a standard MoE auxiliary loss on average usage,

m N
Lisa =m Y _prlogpe,  Pri=Ex) [% > wik(hi,c, )\)} : (18)
k=1 i=1

This operates at the instance level, which dense token-indexed routing in standard attention does not
directly expose.

A.4 EXPRESSIVE POWER OF EXPLICIT MOE: APPROXIMATION AND EXTENSION

Proposition 2 (Approximation and extension). Assume experts { Ej}}"_; are MLPs with a univer-
sal approximation property on compact sets, and the router in equation[I5|is implemented by MLPs
¢, . Then for any token-mixing attention layer (with value projection linear in H), the mapping
H — % >~ Yi can be approximated arbitrarily well by the instance-level explicit MoE in equa-
tion[I6] Moreover, by choosing non-linear experts, the explicit MoE can represent mappings beyond
linear token mixing under comparable depth/width.

Proof. (i) Approximation: Fix k and approximate Ej(h) to match the target value-map behaviour;
let the router mimic attention weights by fitting w;;, via equation [I5] The weighted identity equa-
tion [IT]then recovers the aggregated mapping. Universal approximation of MLPs gives the arbitrar-
ily small error. (ii) Extension: Non-linear experts allow composition of non-linear token responses
aggregated at instance level, which exceeds the linear subspace spanned by token-mixing with a
fixed linear V'; a small counterexample is obtained by requiring expert-specific non-linearities that
cannot be reduced to a single linear value map without increasing depth/width. O

Prop. [2| concerns the layer-level representational view after aggregation; it is not a claim of equiva-
lence between full model classes.

B MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION
PROBLEMS

Multi-objective combinatorial optimization problems extend classical optimization problems by in-
corporating multiple objectives. This section explores three key problems: the Multi-Objective
Traveling Salesman Problem (MOTSP), the Multi-Objective Capacitated Vehicle Routing Problem
(MOCVRP), and the Multi-Objective Knapsack Problem (MOKP), each involving the optimization
of competing objectives under specific constraints.

B.1 MULTI-OBJECTIVE TRAVELING SALESMAN PROBLEM (MOTSP)

MOTSP is an extension of the classic single-objective Traveling Salesman Problem (TSP). In
MOTSP, M objectives are considered, with each objective represented by a distinct set of node
coordinates. The aim is to find a tour 7, which is a cyclic permutation of the nodes, that simultane-
ously minimizes the costs across all objectives:

min L(r|s) = min(Ly (7|s), La(m|s), ..., La(w|s)), (19)

where L;(7|s) denotes the cost for the i-th objective and is calculated as:
n—1
Li(w|s) = ¢i(mw(n), m(1)) + Z ci(m(j), (5 +1)). (20)
j=1

Here, ¢;(j, k) represents the cost of moving from node j to node & under the i-th objective. The
solution to MOTSP often involves trade-offs as it requires minimizing all objective functions simul-
taneously.
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B.2 MULTI-OBJECTIVE CAPACITATED VEHICLE ROUTING PROBLEM (MOCVRP)

MOCVRP aims to optimize two objectives simultaneously: minimizing the total length of the route,
which is the sum of distances traveled by all vehicles, and minimizing the makespan, defined as the
length of the longest route. This problem involves a depot node and multiple customer nodes, each
with a specific demand ¢;. A fleet of vehicles, each with a fixed capacity D, starts and ends its routes
at the depot, ensuring that the total demand on any route satisfies the constraint » ¢; < D.

The total route length can be mathematically formulated as

K ng

min 1 (1) = > > de, (i) ma(i41)» @D

k=11i=1

where K denotes the number of vehicles, ny is the number of customer nodes in the k-th route, and
d

1 (i),m (i+1) 18 the distance between consecutive nodes in the route. The makespan, representing
the longest route among all vehicles, is expressed as
Nk
min fo(m) = max dr (i i11)- 22
f2( ) kG{l,...,K}iZ:; 7 (), (141) (22)

In addition, the solution must satisfy two key constraints. Each customer must be visited exactly
once, and all routes must start and end at the depot. This problem models real-world scenarios
where optimizing operational efficiency and resource utilization is critical in multi-vehicle delivery
systems.

B.3 MULTI-OBJECTIVE KNAPSACK PROBLEM (MOKP)

The Knapsack Problem (KP) is a classic problem in combinatorial optimization, and MOKP is an
extension of KP, involving m objectives and n items. The goal of this problem is to maximize the
values of multiple objective functions:

f(‘r) :max(fl(x),fg(x),,fm(x)), (23)

where each objective function is defined as

j=1
The constraints are given by
> wiz; <W,  withz; € {0,1}. (25)

=1

Each item has a weight w; and m different values v;;, where i = 1,2, ..., m. The knapsack has a
maximum weight capacity W, and the objective is to select a set of items such that their total weight
does not exceed the capacity W, while maximizing the sum of values for each objective.

C HYPERVOLUME INDICATOR

The hypervolume (HV) indicator is one of the most widely adopted metrics for evaluating the qual-
ity of solution sets in multi-objective combinatorial optimization (MOCO), as it comprehensively
measures both the convergence and diversity of the obtained Pareto front without requiring access to
the ground truth. Given a reference point 7 € RM and a Pareto front ', the HV indicator is defined
as:

Y, (F) =p| U @], (26)

flz)eF
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where u denotes the Lebesgue measure, and [f(z), r] denotes the hyper-rectangle spanned between
a solution f(z) and the reference point . For example, in the bi-objective case, the HV value
corresponds to the area of the union of rectangles extending from each solution to the reference
point in the objective space.

Since HV values are sensitive to the scale of the objective space, we employ a normalized version
defined as:

HV(F) = M, Q27)

M
Hi:l |ri — zil

where z is an ideal point satisfying z; < min{f;(z) | f(z) € F} foralli € {1,..., M} in the case
of minimization problems. This normalization ensures fair comparison across different problem
instances and objective scales.

From a theoretical perspective, optimizing the HV indicator over a fixed-size population of y solu-
tions corresponds to maximizing a single-objective quality indicator. The resulting set of y solutions
is referred to as an optimal p-distribution, which introduces an implicit search bias depending on
the indicator and the choice of the reference point.

The reference point  plays a crucial role in determining which regions of the objective space are
favored during optimization. A poorly chosen reference point can lead to suboptimal or biased
distributions, especially with respect to extreme solutions on the Pareto front. In this work, we
adopt a consistent reference point across all compared methods, and the specific values used are
summarized in Table[6l

Table 6: Reference points and ideal points.

Problem Size r z
20 (20, 20) (0,0)
Bi-TSP 50 (35, 35) (0,0)
100 §65, 65; (0. og
150 . (0.0
200 (115.115)  (0.0)
. 20 (30, 4) (0, 0)
Bi-CVRP 5 (45, 4) (0. 0)
100 (80. 4) (0, 0)
) 50 (5,5) (30, 30)
Bi-KP 100 (20,20) (50, 50)
200 (30,30)  (75.75)
. 20 (20,20,20) (0,0, 0)
Tr-TSP 50  (35.35.35) (0.0.0)
100 (65,65.65) (0.0, 0)

D INSTANCE AUGMENTATION

To further improve the performance during inference, we adopt an instance-level augmentation strat-
egy [Kwon et al.| (2020) Lin et al.| (2022) that generates multiple geometric transformations of the
same input.

In single-objective combinatorial optimization, Euclidean problem instances such as TSP and CVRP
are typically defined with node coordinates sampled from the unit square [0, 1], Given the invari-
ance of pairwise Euclidean distances under certain geometric transformations, the underlying prob-
lem structure remains unchanged when the coordinates are transformed through operations such as
reflection, rotation, or axis swapping. A commonly used set of eight symmetry-preserving transfor-
mations is defined over the unit square. Given any coordinate (x,y), the transformed coordinates
(2',y’) are selected from the set {(z,y), (v, z), (z,1—y),(1—z,y), 1—2,1—y), 1—vy,z), (y,1—
x),(1 —y,1 — x)}. These transformations preserve the essential structure of the problem, while
neural models may respond differently to varied input representations. As a result, the generated
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solutions remain feasible for the original instance and, in some cases, can even outperform those
obtained from the original input, serving as better approximations to the optimal solution.

In this paper, preference vectors are generated using the Normal-Boundary Intersection (NBI)
method |Das & Dennis| (1998). For each preference, input augmentations are applied while keep-
ing the scalarization fixed. The augmented instances are decoded independently, and their solutions
are mapped back to the original coordinate space and evaluated under the same objective formula-
tion. When each objective is associated with a separate coordinate space, as in Bi-TSP or Tri-TSP,
geometric transformations should be applied independently to each objective-specific embedding.
Since each coordinate set can undergo eight distinct symmetric transformations, a problem with M
objectives yields 8 transformed variants. In particular, Bi-TSP results in 82 = 64 transformations,
and Tri-TSP results in 8% = 512. For Bi-CVRP, where each node has only one coordinate set,
there are eight possible transformations per instance. Consequently, the best solution is selected by
evaluating the objective values across both the original and all transformed instances.

E TOKEN VS. INSTANCE-LEVEL ROUTING (GATING) ABLATIONS

Table 7: Token-level vs. instance-level routing in PA-MoE on Bi-TSP50 and Bi-CVRP50.

Backbone  Routin Bi-TSP50 Bi-CVRP50
& HVT Time(s)) | HV1 Time (s) |
Token-level 0.6379 31s 0.4041 18s
PMOCO 1 tance-level (PA-MoE-P) | 0.6388  31s | 0.4048 185
WE.ca  Token-level 0.6393 45s 0.4093 15s
Instance-level (PA-MoE-W) | 0.6400 48s 0.4095 16s

We compare Token-level routing (w;; = «;;(h;, A)) and Instance-level (hierarchical) routing
(wir, < Br(c, ) aip(hi, A), ¢ = Pool(H)). Here, H = [hy,...,hy] are token states, Pool() is
an instance/pref. pooling (e.g., mean/attn), «;; is a token-level gating score, 5 is an instance-level
gating score, and o indicates subsequent normalization (and Top-K selection) to obtain a valid
distribution over experts. As shown in Table[7] instance-level routing (PA-MoE) consistently yields
slightly higher HV on both Bi-TSP50 and Bi-CVRP50, with negligible overhead in runtime (e.g.,
31s vs 31s). This supports the view that instance-aware capacity allocation is beneficial even under
the same computational cost.

F MOKP RESULTS

Table 8: Comparison results on Bi-KP with 200 random instances.

Method 50 Nodes ) 100 Nodes 200 Nodes
HV 1t Gap| Time| HV{ Gap | Time | HV T Gap | Time

WS-DP 0.3561 -0.11% 22m | 0.4532 -0.09% 2.0h | 0.3601 0.00%  5.8h

MOGLS 0.3532  0.70%  5.1h | 04502 0.57%  7.3h | 0.3517 2.33% 13h

PPLS/D-C 03517 1.12%  23m | 04398 2.87% 48m | 03527 2.05% 1.2h
DRL-MOA | 0.3557 0.00% 9s | 04531 -007%  22s | 0.3601 0.00% 1.lm
MDRL 0.3530 0.76% 6s | 04532 -0.09% 21s | 0.3601 0.00% 1.2m
EMNH 0.3561 -0.11% 6s | 04535 -0.15% 21s | 0.3603 -0.06% 1.2m
PMOCO 03521 1.01% 7s | 04445 1.83% 16s | 0.3587 0.39% 1.2m
PA-MoE-P | 03547 0.28% 9s | 04450 1.72% 22s |1 03590 030% 1.4m
WE 0.3554  0.08% 9s | 04527 0.02% 19s | 0.3601 0.00% 1.1m
PA-MoE-W | 0.3557 0.00% 13s | 0.4528  0.00% 30s | 03601 0.00% 1.6m

As shown in Table 8] the PA-MoE framework exhibits consistent advantages on the Bi-KP problem
across varying sizes (50/100/200 items). Both variants (PA-MoE-P/W) outperform PMOCO on
BiKP50/100, and PA-MoE-P further maintains its edge on BiKP200 while PA-MoE-W matches the
baseline. This demonstrates the strong scalability and competitive generalization of PA-MoE.
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G DETAILS OF AUXILIAR LOAD BALANCING LOSS

Algorithm 1 Training algorithm

Input: weight distribution A, instance distribution S,, on problem size 7, number of training steps E, batch
size B, optimizer ADAM
Output: Learned model parameters 60

1: Initialize the model parameters 6

2: fore =1to E do

3 Sample s; ~ Samplelnstance(S,) Vi€ {1,---,B}

4 Sample \ ~ SampleWeight(A)
5: for i = 1to Bdo
6.
7
8

Sample 7; ~ SampleSolution(P (7|, s;))
gi < g(milA, s:)

VID(0) < (gi — b;) Vo log P(mi|A, si)
©)

balance

9: Compute load balancing loss £
10: end for _

11: VIO« 232, vID )

12: [«balance — Z?:l [’lngﬂ)ance

13: 0 < ADAM(0, V.7 (0) + V Lvatance )
14: end for

based on CV of importance and load

The proposed PA-MoE adopts instance-level gating, wherein each input instance computes a gating
score vector to select its Top-K preferred experts. This routing strategy enables greater flexibility, as
different instances may activate distinct sets of experts. However, this flexibility comes at the cost
of increased difficulty in balancing expert load, often leading to expert collapse, where only a small
subset of experts are frequently utilized while others remain idle. Following [Shazeer et al.| (2017),
we incorporate input-dependent noise into the gating logits to facilitate stochastic expert selection
and optimize expert assignment via load-balancing loss for each subproblem in MOCO.

Load-Balancing Loss To learn balanced expert usage, an auxiliary loss is introduced based on
the coefficient of variation (CV) of both expert importance and estimated load. This regularization
encourages uniform expert activation and enables effective gradient-based optimization of the gating
parameters. Specifically, let G € R™ denote the gating vector produced by the top-k mechanism for
an input instance, where m is the number of experts. The importance of expert j is defined as:

importance; = G[j], (28)

representing the gating weight received by expert 5 from the current instance. We approximate the
expert load, which reflects the expected number of instances routed to each expert, using a smooth
and differentiable formulation. This is achieved by modeling the routing probability from instance
s to expert j using the cumulative distribution function (CDF) of a standard normal distribution:

H[j]_Tk>7

9j

Pr(s — j) = @ ( (29)

where H[j] is the gating logit for expert j of the instance; T}, is the k-th largest gating score among
all experts excluding j; and o is the input-dependent noise scale computed as:
o = SOftplllS((thise)j) + €noise 30)

with h being the instance embedding. The soft load is then computed across a mini-batch as:

B
10~adj = ZPr(si = j). (3D

i=1
To quantify expert imbalance, the coefficient of variation (CV) is adopted as a normalized metric to
measure dispersion across expert usage. Specifically, the final load-balancing loss is defined as:

Loatance = Abal - (CV2 (importance) + CV%lo&d)) , (32)

where Apy is a weighting coefficient set to 0.01 in our experiments. This loss encourages the gating
network to maintain both balanced gating weights and equitable expert selection frequencies. The
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auxiliary load-balancing 1oss Lpaance 18 combined with the scalarized objective loss of each sub-
problem to form the overall training objective. These losses are jointly optimized via gradient-based
training, enabling each subproblem to participate in backpropagation and contribute to the global
parameter updates. The complete training procedure is presented in Algorithm [T}
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