
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PREFERENCE-AWARE MIXTURE-OF-EXPERTS FOR
MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent neural methods for multi-objective combinatorial optimization involve
solving preference-specific subproblems with a single model and have achieved
competitive performance. However, they still suffer from limited learning ef-
ficiency and insufficient exploration of the solution space. This paper con-
ducts a theoretical analysis that reveals the equivalence between this single-
model paradigm and an implicit Mixture-of-Experts architecture. Furthermore,
we propose a Preference-Aware mixture-of-experts (PA-MoE) framework that
learns preference-specific representations while explicitly modeling preference-
instance interactions. By integrating a sparsely activated expert module with an
innovative preference-aware gating mechanism, PA-MoE enhances preference-
conditioned representation learning while preserving parameter efficiency. More-
over, PA-MoE is generic and can be applied to three different neural MOCO
solvers. Experimental results on the multi-objective traveling salesman problem
(MOTSP), multi-objective capacitated vehicle routing problem (MOCVRP), and
multi-objective knapsack problem (MOKP) show that PA-MoE is able to generate
a Pareto front with higher diversity, achieving superior overall performance.

1 INTRODUCTION

Multi-objective combinatorial optimization (MOCO) involves solving problems with multiple, often
conflicting objectives, where the goal is to approximate a diverse Pareto front that reflects trade-offs
between objectives Lust & Teghem (2010); Liu et al. (2020). MOCO inherits NP-hardness from its
underlying combinatorial structure, and the multi-objective aspect further compounds its intractabil-
ity. Although heuristic MOCO solvers have long provided competitive performance within reason-
able runtimes Jozefowiez et al. (2008); Florios & Mavrotas (2014); Ehrgott et al. (2016), recent
advances in deep reinforcement learning (DRL) provide a neural, data-driven alternative, enabling
scalable policies and reducing dependence on handcrafted design choices Zhang et al. (2021); Shao
et al. (2021); Zhang et al. (2023).

A decomposition scheme Navon et al. (2021); Lin et al. (2024) is widely adopted in DRL-based
MOCO solvers, where the MOCO problem is scalarized into preference-weighted subproblems,
each tied to a specific preference, and the resulting subproblems are solved end-to-end with deep
models. Within this paradigm, the single-model method trains a single preference-conditioned neu-
ral network (usually using a Transformer Vaswani et al. (2017) backbone) to solve all subproblems.
Its effectiveness has been demonstrated by several recent works that achieve state-of-the-art (SOTA)
performance across multiple MOCO benchmarks Lin et al. (2022); Chen et al. (2023); Fan et al.
(2024); Chen et al. (2025).

Although empirical results are promising, current works mainly focus on single-model architec-
tural refinements (e.g. alternative preference-instance interactions and their placement within the
model), and the theoretical foundations of their effectiveness remain underexplored. In response, we
first reinterpret preference-conditioned Transformers as implicit Mixture-of-Experts (MoE) models,
where attention layers act as dense routers over token-indexed affine experts. However, in this view,
we observe that current single-model approaches lack controllable sparsity and explicit specializa-
tion, which inevitablely results in insufficient representation learning and reduced sample efficiency
under scalarized training paradigm in MOCO.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Subsequently, we introduce an explicit Preference-Aware MoE (PA-MoE) framework. PA-MoE re-
places feed-forward layers with sparsely activated expert modules and employs a lightweight gating
mechanism conditioned on both instance structure and preference. This design delivers significant
performance improvements for neural MOCO solvers, without compromising parameter efficiency.
Our contributions can be summarized as follows:

• We offer a novel insight by interpreting unified preference-conditioned Transformers for
MOCO as implicit Mixture-of-Experts models, providing a fresh view on the connection
between existing MOCO methods and modular expert architectures.

• Driven by this perspective, we propose a PA-MoE framework that explicitly employs
sparsely activated expert modules and an innovative lightweight gating mechanism. PA-
MoE enhances model capacity and enables deeper exploration of the solution space, while
avoiding inefficient representation learning that often leads to suboptimal performance.

• The proposed PA-MoE framework is modular and versatile, enabling architecture-agnostic
integration into three representative neural MOCO solvers. Extensive experiments demon-
strate the significant superiority of our approach over SOTA neural methods.

2 RELATED WORK

Traditional Methods for MOCO. Exact algorithms for MOCO are capable of identifying all
Pareto-optimal solutions through exhaustive enumeration Ehrgott et al. (2016); Bergman et al.
(2022) . In practice, multi-objective evolutionary algorithms (MOEAs) are widely used to approx-
imate the Pareto front under limited computational resources Tian et al. (2021); Xie et al. (2022);
Lin et al. (2021); Garcı́a-Martı́nez et al. (2007). Algorithms such as dominance-based MOEAs
Deb et al. (2002) and decomposition-based MOEAs Zhang & Li (2007); Ke et al. (2014) often in-
corporate local search or domain-specific heuristics to improve solution quality. However, these
methods typically require extensive manual design and fine-tuning of evolutionary operators, such
as crossover and mutation, which limits their flexibility and scalability Fang et al. (2020).

DRL-based methods for MOCO. DRL-based methods have recently gained attention due to their
fast inference and easy deployment across various MOCO problems. Early efforts focused on train-
ing separate policy networks for each scalarized subproblems, termed the multi-model paradigm Li
et al. (2021); Wu et al. (2020); Shao et al. (2021); Zhang et al. (2021). For example, Meta-DRL
(MDRL) Zhang et al. (2023) adapts a pre-trained meta-model through fine-tuning to accommodate
varying preferences. However, training dedicated models for each subproblem introduces substantial
training overhead and the burden of maintaining multiple networks. Alternatively, the single-model
paradigm has been introduced, wherein a unified model is trained to solve subproblems for arbitrary
preference vectors. For example, given a preference as input, PMOCO Lin et al. (2022) employs a
hypernetwork to generate the decoder parameters for each subproblem. Beyond decoder-level adap-
tation, some methods (e.g., CNH Fan et al. (2024)) enhance preference-instance interaction using
dual-attention in the encoder, while others (e.g., WE-CA Chen et al. (2025)) directly modulate node
embeddings via feature-wise affine transformations for better alignment with trade-off preferences.

3 PRELIMINARIES

3.1 MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION (MOCO)

Given M objectives, the MOCO problem can be defined as:

min
x∈X

f(x) =
(
f1(x), f2(x), . . . , fM (x)

)
, (1)

where X is a discrete decision space and f : X → RM maps each solution x ∈ X to an M -
dimensional objective vector. A solution x1 ∈ X is said to Pareto-dominate another solution x2 ∈
X (denoted x1 ≺ x2) if fi(x1) ≤ fi(x2) for all i ∈ {1, . . . ,M}, and there exists at least one
objective j ∈ {1, . . . ,M} such that fj(x1) < fj(x2). A solution x∗ ∈ X is Pareto optimal if there
is no other solution x′ ∈ X such that x′ ≺ x∗. The set of all Pareto optimal solutions, known as
Pareto set, is defined by P = {x∗ ∈ X | ∄x′ ∈ X : x′ ≺ x∗ }. The set of their corresponding
objective vectors constitutes the Pareto front, formally given by F = { f(x) ∈ RM | x ∈ P }.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3.2 SUBPROBLEM FORMULATION

In this paper, we focus on the decomposition-based paradigm of MOEA/D, which partitions a
MOCO problem into multiple subproblems, each modeled as a Markov Decision Process (MDP).
Given the MDP formulation, the policy network is trained using the REINFORCE algorithm
Williams (1992), which maximizes the expected reward over the sampled trajectories. The objective
in DRL can be optimized with the corresponding policy gradient:

∇θL(θ | I) = Eπ∼Pθ(·|I) [(R(π)− b(I))∇θ logPθ(π | I)] , (2)

where b(I) denotes a baseline function used to reduce gradient variance and stabilise learning across
varying instances I ∈ Ĩ. The trained autoregressive neural policy can be used to incrementally
construct solutions for subproblems.

3.3 SINGLE-MODEL PARADIGM FOR MOCO SUBPROBLEMS

The single-model paradigm trains a single parameterized solver πθ that maps an instance s and
a preference vector λ directly to a solution of the corresponding scalarized subproblem. Under the
above DRL formulation, the current paradigm single-model employs preference–instance interaction
to fuse preference and instance information, implemented in the encoder or the decoder of a shared
Transformer Vaswani et al. (2017).

As shown in Figure 1 (a), the early preference-instance interaction strategy operates in the decoder
layers. The preference λ is input to a hypernetwork that dynamically generates the attention pa-
rameters of the decoder. These preference-specific parameters are subsequently used to compute
attention over the node embeddings produced by the encoder, enabling the decoder to output a dis-
tribution over the remaining feasible nodes at each decoding step. In this way, it ensures that solution
construction remains conditioned on the given preference throughout the generation process.

Afterward, some works introduce the preference-instance interaction at the encoder layers. As il-
lustrated in Figure 1 (b), the preference λ is used to modulate the node representations within the
encoder, enabling the model to learn preference-aware embeddings prior to the decoding phase. This
modulation is typically performed before the skip connection and instance normalization He et al.
(2016); Ulyanov et al. (2016), and can be performed through preference-aware attention mecha-
nisms. Common designs include FiLM-style conditioning Perez et al. (2018), dual attention-based
preference-instance conditioning Fan et al. (2024) that generate modulation parameters from pref-
erences.

4 METHODOLOGY

4.1 THEORY BASIS: FROM IMPLICIT MOE TO EXPLICIT MOE

Self-attention is the core component of Transformer architectures Vaswani et al. (2017). Therefore,
the theoretical analysis in this section begins from the perspective of the self-attention mechanism.

Preference-conditioned Attention Meet Implicit MoE. A unified preference-conditioned atten-
tion can be viewed as an implicit MoE Shazeer et al. (2017). By conditioning Q/K/V on the
preference λ, attention effectively behaves as soft routing over shared capacity, enabling conditional
specialization across subproblems without parameter duplication.

LetX = [x⊤1 , . . . , x
⊤
N]⊤ ∈ RN×d be node embeddings of instance s. For the l−th head in the atten-

tion layer, the projections with preference conditioning can be defined as Q(l)(λ) = XW
(l)
Q (λ) ∈

RN×dk , K(l)(λ) = XW
(l)
K (λ) ∈ RN×dk , V (l)(λ) = XW

(l)
V (λ) ∈ RN×dv , respectively.

Then, given i and ∀j, let q(l)i (λ) and k
(l)
j (λ) be the i-th and j-th row of Q(l)(λ) and K(l)(λ),

respectively, and v(l)j (λ) be the j-th row of V (l)(λ). The head output at position i is:

h
(l)
i (X,λ) =

N∑
j=1

α
(l)
ij (X,λ) v

(l)
j (λ), α

(l)
ij (X,λ) =

exp
(

q
(l)
i (λ) k

(l)
j (λ)⊤

√
dk

)
∑N

k=1 exp
(

q
(l)
i (λ) k

(l)
k (λ)⊤√
dk

) . (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

.	.	.

Attention	Layer

Add	&
Normalization

Preference-aware
MoE

.	.	.

Encoder

MSA	w/	MoE

Decoder

Add	&
Normalization

.	.	.

...

Expert	1

Expert	N

Preference
Embeddings

Input
Embeddings

...

ForwardForward

ForwardForward Gating	Network

.	.	.

Preference-aware	Attention

Add	&
Normalization

Preference-aware
MoE

.	.	.

Encoder

Decoder

Add	&
Normalization

.	.	.

Preference
Forward

Preference-aware
Hyper	Network

.

Mask&Softmax

Linear

MSA	w/	MoE

.

Mask&Softmax

Preference

Linear

(a)

Linear

Input

Linear

Input

(b)

Expert	2 Expert	3

Expert	i

Figure 1: Neural architectures of PA-MoE under two preference-instance interaction strategies. Left: Decoder-
side interaction with a preference-aware hypernetwork generating parameters for attention layers Lin et al.
(2022). Right: Encoder-side interaction with the preference-aware attention mechanism Fan et al. (2024). In
both, the proposed MoE adapts the policy learning dynamically based on instance and preference.

Next, the output of the l-th head is:

h
(l)
i (X,λ) =

N∑
j=1

softmaxj
(
s
(l)
ij (X,λ)

)︸ ︷︷ ︸
preference-aware routing

E(l)
j (X,λ)︸ ︷︷ ︸

shared (affine) experts

, (4)

where the experts are defined as E(l)
j (X,λ) := v

(l)
j (λ) and the gating scores as s(l)ij (X,λ) :=

q
(l)
i (λ) k

(l)
j (λ)⊤

√
dk

. Thus, each attention head is an implicit MoE that mixes N experts with a gating

distribution that depends on the preference λ via W (l)
Q (λ),W

(l)
K (λ) (and optionally W (l)

V (λ)).

Inspired by the above theoretical analysis, we discuss the rationale and novelty of our proposed
preference-aware MoE architecture subsequently.

Preference-Aware MoE. While preference-conditioned attention realizes an implicit MoE, the
“experts” are token-indexed linear maps tied to the value projection, and the softmax router is dense.
As a result, the sparsity of MoE and the utilization of experts cannot be explicitly controlled. In other
words, the computation cannot be selectively focused on structures that most decrease the scalarized
objective g(f(π | I), λ), especially under wide preference spans or strongly conflicting objectives.

Based on the above analysis, we introduce an explicit Preference-Aware MoE (PA-MoE) with non-
linear expert subnetworks and a router wk(h, λ) that depends jointly on the hidden state and pref-
erence. Replacing them with explicit non-linear experts {Ek}mk=1 and a router wk(h, λ) yields the
hypothesis class as:

HPA-MoE =
{
h 7→

m∑
k=1

wk(h, λ)Ek(h)
∣∣∣ h ∈ Rdh , wk(h, λ) ≥ 0,

∑
k wk(h, λ) = 1}

}
, (5)

which (under mild conditions) strictly enlarges the implicit attention class and supports controllable
sparsity (using Top-K activation) and load balancing via an auxiliary loss.

By default, the above theory applies to token-level MoE, as attention is typically performed over
a batch of tokens. However, we further extend the theory basis (i.e., from implicit MoE to ex-
plicit MoE) to the instance-level MoE and provide theoretical proofs (in Appendix A), by which
we reformulate the layer output into an instance-level explicit MoE through hierarchical routing and
weighted aggregation. Additionally, we conducted experiments to empirically compare token-level
and instance-level routing, and the results demonstrate that the latter outperforms the former on
MOCO problem (see Appendix E). Therefore, we adopt instance-level routing in our MoE to pro-
vide a stronger inductive bias for model learning and optimization. Accordingly, in the remainder
of this paper, we adopt the instance-level perspective in PA-MoE.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 INTEGRATING PA-MOE INTO THE Single-Model PARADIGM

MoE Module Placement. As illustrated in Figure 1, the proposed MoE module supports integra-
tion into both interaction strategies (a) and (b) in single-model paradigm, enabling preference-aware
expert selection in both the encoder and decoder in Transformer architectures for each subproblem
instance. Specifically, we integrate MoE modules by 1) replacing the feed-forward networks in
the encoder; 2) replacing the attention output projection layer of the decoder, which produces the
context embeddings used to calculate node selection logits.

The MoE module consists of a set of m experts {E1, E2, . . . , Em}. Each expert Ek is instantiated
as a self-contained feed-forward neural network that processes input independently and maintains
an individual subset of trainable parameters. This design allows experts to specialize in different
subspaces of the input distribution. The output of the MoE is obtained by a weighted sum of expert
outputs:

MoE(h, λ) =
m∑

k=1

wk(h, λ) · Ek(h), (6)

where wk(h, λ) denotes the gating weight generated by the gating network for the expert k, based
on the representation of input h and preference λ. The final output is computed by aggregating
expert outputs using the gating weights. To ensure generality and computational efficiency, a sparse
routing mechanism based on Top-K selection is adopted, where only K experts with the highest
gating scores are activated, while the rest are masked out. To encourage a balanced use of experts,
we adopt the auxiliary load balancing loss Shazeer et al. (2017) (see Appendix G) to penalize uneven
activation frequencies between experts during training.

Preference-Aware Gating Mechanism. Gating network determines how input is routed between
experts. Although a straightforward gating mechanism routes input solely based on node features,
disregarding the semantic variability induced by different preferences, this may result in suboptimal
expert allocation across heterogeneous subproblems. Intuitively, the router should be responsible for
selecting a sparse subset of experts based on both instance features and preferences. To this end, we
propose preference-aware routing strategy. Specifically, the gating network is jointly conditioned
on the node embeddings and the preference to modulate the expert selection process. Given a node
embedding h ∈ Rd and preferences λ ∈ Rp, the gating logits are computed as:

rk(h, λ) = h⊤W
(x)
k + λ⊤W

(λ)
k , (7)

where W (x)
k ∈ Rd and W

(λ)
k ∈ Rp are trainable parameters associated with expert k. During

training, Gaussian noise ϵk is added to encourage exploration and prevent expert collapse:

r̃k(h, λ) = rk(h, λ) + ϵk, ϵk ∼ N (0, σ2). (8)

The routing weights are obtained via a softmax over the noisy logits, followed by a Top-K selection
to enforce sparse activation:

wk(h, λ) =
exp(r̃k(h, λ))∑
j exp(r̃j(h, λ))

. (9)

Notably, the linear preference-aware routing mechanism delivers efficient preference-specific expert
allocation with negligible GPU overhead, outperforming more sophisticated gating designs. We
empirically validate these advantages in the experimental section.

5 EXPERIMENTS

Problems. We validate the effectiveness of our method on the bi-objective and tri-objective Trav-
eling Salesman Problem (Bi-TSP and Tri-TSP) Lust & Teghem (2010), bi-objective Capacitated
Vehicle Routing Problem (Bi-CVRP) Zajac & Huber (2021) and multi-objective knapsack problem
(MOKP) Ishibuchi et al. (2015). The detailed definition of the problem is provided in Appendix B.
For the experiments, we use three standard instance sizes for each problem: n = 20, 50, and 100 for
MOTSP and MOCVRP, and n = 50, 100, and 200 for MOKP. We also assess the out-of-distribution
generalization of the model in larger instances, including Bi-TSP150/200 and three TSPLIB Audet
et al. (2021) benchmark instances (KroAB100/150/200).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Comparison results on Bi-TSP with 200 random instances.

Method 20 Nodes 50 Nodes 100 Nodes
HV ↑ Gap ↓ Time HV ↑ Gap ↓ Time HV ↑ Gap ↓ Time

WS-LKH 0.6270 0.02% 10.1m 0.6415 -0.02% 1.8h 0.7090 -0.29% 6.0h
MOGLS 0.6273 −0.03% 2.8h 0.6317 1.51% 7.3h 0.6854 3.04% 12.4h
PPLS/D-C 0.6256 0.24% 26.3m 0.6282 2.06% 2.8h 0.6844 3.18% 11.5h
DRL-MOA 0.6253 0.28% 7s 0.6338 1.18% 10s 0.6962 1.51% 19s
MDRL 0.6271 0.0% 6s 0.6364 0.78% 9s 0.6969 1.41% 17s
EMNH 0.6271 0.0% 6s 0.6364 0.78% 9s 0.6969 1.41% 16s
PMOCO 0.6262 0.14% 6s 0.6350 0.99% 9s 0.6969 1.41% 16s
PA-MoE-P 0.6280 −0.14% 12s 0.6388 0.41% 31s 0.7013 0.79% 31s
CNH 0.6269 0.03% 6s 0.6367 0.73% 9s 0.6985 1.20% 13s
PA-MoE-C 0.6273 −0.03% 9s 0.6375 0.61% 17s 0.6991 1.10% 30s
WE-CA 0.6270 0.02% 7s 0.6392 0.34% 10s 0.7034 0.50% 21s
PA-MoE-W 0.6272 −0.02% 14s 0.6400 0.22% 48s 0.7043 0.37% 31s
MDRL-aug 0.6271 0.00% 33s 0.6408 0.09% 1.7m 0.7022 0.66% 14m
EMNH-aug 0.6271 0.00% 33s 0.6408 0.09% 1.7m 0.7023 0.65% 14m
PMOCO-aug64 0.6280 −0.14% 48s 0.6409 0.08% 2.3m 0.7025 0.62% 9.2m
PA-MoE-P-aug32 0.6284 -0.21% 39s 0.6414 0.00% 2.2m 0.7042 0.38% 8.4m
PA-MoE-P-aug64 0.6284 -0.21% 75s 0.6418 -0.06% 5.1m 0.7046 0.33% 16.4m
CNH-aug64 0.6280 −0.14% 53s 0.6411 0.05% 2.1m 0.7030 0.55% 9.34m
PA-MoE-C-aug32 0.6280 −0.14% 50s 0.6409 0.08% 2.1m 0.7028 0.58% 9.1m
PA-MoE-C-aug64 0.6281 −0.16% 1.1m 0.6413 0.01% 4.3m 0.7033 0.51% 16.8m
WE-CA-aug64 0.6271 0.00% 1.2m 0.6413 0.01% 3.3m 0.7066 0.04% 16m
PA-MoE-W-aug32 0.6271 0.00% 1.1m 0.6413 0.01% 5.1m 0.7066 0.04% 17.1m
PA-MoE-W-aug64 0.6271 0.00% 1.9m 0.6414 0.00% 8.5m 0.7069 0.00% 37.3m

Table 2: Comparison results on Tri-TSP with 200 random instances.

Method 20 Nodes 50 Nodes 100 Nodes
HV ↑ Gap ↓ Time HV ↑ Gap ↓ Time HV ↑ Gap ↓ Time

WS-LKH 0.4712 0.00% 12m 0.4440 -0.32% 1.9h 0.5076 -1.13% 6.6h
MOGLS 0.4627 1.80% 1.5h 0.4235 4.32% 4.2h 0.4328 13.76% 13.5h
PPLS/D-C 0.4701 0.23% 1.3h 0.4301 2.82% 3.7h 0.4489 10.56% 14.4h
DRL-MOA 0.4694 0.38% 6s 0.4309 2.64% 11s 0.4879 2.79% 17s
MDRL 0.4699 0.28% 5s 0.4317 2.46% 9s 0.4852 3.32% 19s
EMNH 0.4699 0.28% 5s 0.4324 2.30% 9s 0.4866 3.05% 16s
PMOCO 0.4706 0.13% 7s 0.4346 1.81% 9s 0.4902 2.33% 17s
PA-MoE-P 0.4727 -0.32% 12s 0.4401 0.56% 21s 0.4965 1.07% 40s
CNH 0.4712 0.00% 6s 0.4374 1.17% 9s 0.4926 1.85% 15s
PA-MoE-C 0.4715 -0.06% 15s 0.4382 0.99% 29s 0.4933 1.71% 54s
WE-CA 0.4707 -0.11% 5s 0.4389 0.84% 9s 0.4975 0.88% 20s
PA-MoE-W 0.4708 -0.09% 17s 0.4387 0.88% 25s 0.4970 0.98% 31s
MDRL-aug 0.4712 0.00% 2.6m 0.4408 0.41% 25m 0.4958 1.21% 1.7h
EMNH-aug 0.4712 0.00% 2.6m 0.4418 0.18% 25m 0.4973 0.92% 1.7h
PMOCO-aug64 0.4740 -0.59% 42s 0.4430 -0.09% 2.4m 0.4967 1.04% 9.3m
PA-MoE-P-aug32 0.4740 -0.59% 33s 0.4447 −0.47% 2.2m 0.5014 0.10% 9.2m
PA-MoE-P-aug64 0.4740 -0.59% 1.0m 0.4452 -0.58% 4.3m 0.5020 -0.02% 17.1m
CNH-aug64 0.4724 -0.25% 42s 0.4417 0.20% 2.2m 0.4974 0.90% 9.4m
PA-MoE-C-aug32 0.4725 −0.28% 35s 0.4423 0.07% 2.5m 0.4975 0.88% 8.5m
PA-MoE-C-aug64 0.4725 −0.28% 1.0m 0.4428 -0.04% 4.5m 0.4983 0.72% 20.0m
WE-CA-aug64 0.4712 0.00% 2.2m 0.4426 0.0% 5.2m 0.5023 -0.08% 25.7m
PA-MoE-W-aug32 0.4712 0.00% 1.1m 0.4422 0.09% 5.1m 0.5014 0.10% 23.3m
PA-MoE-W-aug64 0.4712 0.00% 2.9m 0.4426 0.00% 9.8m 0.5019 0.00% 39.9m

Hyperparameters. The proposed PA-MoE-P, PA-MoE-C, and PA-MoE-W are based on three rep-
resentative preference-aware neural MOCO frameworks: PMOCO, CNH, and WE-CA. Most hy-
perparameters are inherited from their respective baselines, except for the number of experts and
the top-k selection size, which are consistently set to 4 and 2, respectively, in all PA-MoE variants.
We generate N preferences using the Normal-Boundary Intersection (NBI) method Das & Dennis
(1998), with N = 101 for bi-objective (M=2) and N = 105 for tri-objective (M=3) problems.
The model is trained for 200 epochs, with each epoch consisting of 100,000 randomly sampled in-
stances. We use a batch size of 64 and optimize the network using the Adam optimizer Kingma &
Ba (2015) with a learning rate of 10−4 and a weight decay of 10−6.

Baselines. We compare our method against six learnable and four non-learnable MOCO baselines.
(1) Learnable MOCO methods. We compare our method with three representative single-model
neural MOCO baselines: PMOCO Lin et al. (2022), CNH Fan et al. (2024), and WE-CA Chen
et al. (2025). In addition, we include multi-model baselines, namely DRL-MOA Li et al. (2020),
and two meta-learning based multi-model approaches, MDRL Zhang et al. (2023) and EMNH Chen
et al. (2023). (2) Non-learnable MOCO methods. MOGLS Jaszkiewicz (2002) is a genetic local
search MOEA that runs for 4,000 iterations with 100 local search steps per iteration. PPLS/D-C Shi
et al. (2022) is a specialized MOEA that applies 2-opt heuristics for TSP and CVRP, and a greedy
transformation heuristic for KP, with 200 iterations in total. WS-LKH and WS-DP are weighted-
sum (WS) based solvers that scalarize MOTSP and MOKP into single-objective subproblems, which
are then solved using LKH heuristic Tinós et al. (2018) and dynamic programming, respectively.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Comparison results on Bi-CVRP with 200 random instances.

Method 20 Nodes 50 Nodes 100 Nodes
HV ↑ Gap ↓ Time HV ↑ Gap ↓ Time HV ↑ Gap ↓ Time

MOGLS 0.4281 0.47% 7.9h 0.3987 2.90% 17h 0.3721 8.89% 21h
PPLS/D-C 0.4273 0.65% 1.7h 0.4012 2.29% 9.3h 0.3829 6.24% 19h
DRL-MOA 0.4279 0.51% 7s 0.4075 0.75% 11s 0.4039 1.10% 24s
MDRL 0.4291 0.23% 8s 0.4082 0.58% 13s 0.4056 0.69% 32s
EMNH 0.4299 0.05% 7s 0.4098 0.19% 13s 0.4072 0.29% 31s
PMOCO 0.4412 −2.58% 6s 0.4031 1.83% 11s 0.4025 1.44% 15s
PA-MoE-P 0.4414 −2.63% 9s 0.4048 1.41% 18s 0.4136 −1.27% 33s
CNH 0.4437 −3.16% 7s 0.4059 1.14% 11s 0.4144 −1.47% 24s
PA-MoE-C 0.4438 −3.19% 11s 0.4062 1.07% 20s 0.4152 −1.66% 37s
WE-CA 0.4290 0.26% 7s 0.4089 0.41% 14s 0.4068 0.39% 26s
PA-MoE-W 0.4292 0.21% 11s 0.4095 0.27% 16s 0.4074 0.24% 30s
MDRL-aug 0.4294 0.16% 11s 0.4092 0.34% 36s 0.4072 0.29% 2.8m
EMNH-aug 0.4302 −0.02% 11s 0.4106 0.00% 35s 0.4079 0.12% 2.8m
PMOCO-aug 0.4421 −2.79% 11s 0.4059 1.14% 23s 0.4102 −0.44% 1.2m
PA-MoE-P-aug4 0.4425 −2.88% 9s 0.4064 1.02% 21s 0.4148 −1.57% 59s
PA-MoE-P-aug8 0.4427 −2.92% 13s 0.4068 0.93% 33s 0.4152 −1.67% 1.9m
CNH-aug8 0.4448 -3.42% 18s 0.4074 0.78% 43s 0.4157 -1.79% 2.5m
PA-MoE-C-aug4 0.4447 -3.39% 15s 0.4074 0.78% 42s 0.4162 -1.91% 2.0m
PA-MoE-C-aug8 0.4448 -3.42% 26s 0.4078 0.68% 1.0m 0.4164 -1.96% 3.6m
WE-CA-aug 0.4300 0.02% 14s 0.4103 0.07% 49s 0.4081 0.07% 3.2m
PA-MoE-W-aug4 0.4299 0.05% 14s 0.4104 0.05% 46s 0.4082 0.05% 3.2m
PA-MoE-W-aug8 0.4301 0.00% 23s 0.4106 0.00% 1.3m 0.4084 0.00% 5.7m

Metrics. We evaluate the performance of the methods using the widely adopted hypervolume (HV)
indicator Audet et al. (2021) (see Appendix C), where a higher HV indicates a better approximation
set. We report the average HV, the HV gap relative to PA-MoE-W-aug, and the total inference time
over a fixed set of 200 test instances.

Methods with the “-aug” apply instance augmentation to improve performance (see Appendix D
for details). To emphasize the relative performance of neural MOCO solvers, we exclude the
strong baseline WS-LKH when marking the best (second-best) results, which are highlighted in
bold (underline) if not significantly different at the 1% level according to the Wilcoxon rank-sum
test Wilcoxon (1992). The experiments were carried out on a machine with RTX 3090 GPUs and
Intel Xeon Silver 4214R CPUs.

5.1 MAIN RESULTS

The comparison results between our unified models (PA-MoE-P/C/W) and a diverse set of MOCO
baselines is presented in Table 1–Table 3 for MOTSP and MOCVRP, and in Appendix F for MOKP.
From these results, we can safely infer that our proposed framework consistently delivers superior
performance across different backbone configurations, highlighting its strong adaptability to varying
architectural designs.

When instance augmentation is introduced, our models improve further. Especially, even with only
half the augmentation size, PA-MoE demonstrates superior performance. For instance, PA-MoE-P-
aug32 outperforms PMOCO-aug64 in all benchmark problems. Compared with multi-model meth-
ods, PA-MoE maintains its lead in most cases, except on Bi-KP100, where EMNH achieves the
lowest gap (−0.15%). PA-MoE establishes new SOTA results across multiple benchmarks, includ-
ing Bi-TSP20/50 (PA-MoE-P-aug), Bi-CVRP50 (PA-MoE-W-aug), and Bi-CVRP100 (PA-MoE-C-
aug). While PA-MoE does not yet surpass WS-LKH on Bi-TSP100 and Tri-TSP100, WS-LKH
demands prohibitive runtimes (e.g., 6 hours on Bi-TSP100). In contrast, PA-MoE produces com-
petitive results within minutes, demonstrating a favorable trade-off between efficiency and solution
quality.

5.2 ABLATION STUDY

Gating Mechanism. We investigate five gating strategies in the PA-MoE-P model on Bi-TSP50: (1)
Inst-Only, which routes based solely on instance embeddings; (2) Pref-Only, which uses only pref-
erences for expert selection; (3) Concat, which combines instance and preference features via con-
catenation before gating; (4) Additive (ours), which separately projects and then adds instance and
preference representations; and (5) HyperNet, which leverages a lightweight hypernetwork condi-
tioned on preferences to generate part of the gating parameters. As shown in Figure 2 (a), Pref-Only
and Inst-Only suffer from limited performance because they rely exclusively on either preference or

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) (b) (c)
Figure 2: Ablation study results: comparison of gating mechanisms (left), performance under varying numbers
of experts (middle), and effects of expert placement (right).

Table 4: Generalization results on 200 instances of larger-size problems.

Method 150 Nodes 200 Nodes
HV ↑ Gap ↓ Time HV ↑ Gap ↓ Time

WS-LKH 0.7149 -1.39% 13h 0.7490 -1.39% 22h
MOGLS 0.6794 3.64% 27h 0.7181 2.79% 53h
PPLS/D-C 0.6738 4.43% 23h 0.7087 4.06% 31h
DRL-MOA 0.6919 1.87% 52s 0.7248 1.88% 1.5m
MDRL 0.6922 1.83% 40s 0.7251 1.84% 1.4m
EMNH 0.6930 1.72% 40s 0.7260 1.72% 1.4m
PMOCO 0.6926 1.77% 40s 0.7261 1.71% 1.1m
PA-MoE-P 0.6983 0.96% 1.4m 0.7323 0.87% 1.7m
MDRL-aug 0.6976 1.06% 47m 0.7299 1.19% 1.6h
EMNH-aug 0.6983 0.96% 47m 0.7307 1.08% 1.6h
PMOCO-aug64 0.6982 0.98% 25.4m 0.7311 1.03% 49.9m
PA-MoE-P-aug32 0.7013 0.54% 23.2m 0.7350 0.50% 46.4m
PA-MoE-P-aug64 0.7018 0.47% 45.0m 0.7355 0.43% 1.5h
CNH 0.6950 1.43% 1.1m 0.7295 1.24% 1.2m
PA-MoE-C 0.6953 1.39% 1.3m 0.7297 1.22% 2.0m
CNH-aug64 0.6997 0.77% 47.9m 0.7339 0.65% 1.3h
PA-MoE-C-aug32 0.6992 0.84% 38.7m 0.7335 0.70% 1.2h
PA-MoE-C-aug64 0.6998 0.75% 1.2h 0.7340 0.64% 1.9h
WE-CA 0.7008 0.61% 1.2m 0.7346 0.56% 3.6m
PA-MoE-W 0.7019 0.45% 1.8m 0.7360 0.36% 3.9m
WE-CA-aug64 0.7044 0.10% 53.6m 0.7381 0.08% 1.7h
PA-MoE-W-aug32 0.7047 0.06% 45.2m 0.7385 0.03% 1.4h
PA-MoE-W-aug64 0.7051 0.00% 1.1h 0.7387 0.00% 1.9h

instance features. By conditioning the gating mechanism on a single source of information, these
models struggle to capture nuanced subproblem-specific features and fail to achieve flexible expert
allocation. While modest gains are observed with the other fusion strategies, the Additive variant
proves most effective.

Number of Experts. Figure 2 (b) reveals that PA-MoE-P benefits from increased expert capacity up
to 8, beyond which performance saturates or degrades. These results indicate that simply increasing
the number of experts does not consistently improve performance. Similar to challenges observed in
single-objective tasks Zhou et al. (2024), overly large expert pools may suffer from insufficient train-
ing of parameters and degraded generalization due to under-utilization and increased optimization
difficulty.

Position of MoE. We evaluate the impact of inserting MoE modules at different positions in the
transformer architecture with PMOCO backbone, on the Bi-TSP50 dataset. As shown in Figure 2
(c), we first apply MoE to the linear projections of instance features (Raw-Inst) and preferences
(Raw-Pref) separately. We observe that only applying MoE to Raw-Inst results in a performance
improvement. Hence, we extend Raw-Inst by incorporating MoE into the encoder’s feed-forward
layers (Raw-Inst-Enc) and the decoder’s attention output projection layer (Raw-Inst-Dec), each
yielding additional gains. By combining both encoder-side and decoder-side enhancements, the
resulting configuration (Raw-Inst-Enc-Dec) achieves the best performance and is therefore adopted
throughout the paper to fully exploit its potential.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Pareto fronts of benchmark instances, KroAB100/150/200 (left/middle/right).

5.3 GENERALIZATION STUDY

Table 5: Comparison results on benchmark instances.
Method KroAB100 KroAB150 KroAB200

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓
WS-LKH 0.7022 -0.40% 2.3m 0.7017 -0.73% 4.0m 0.7430 -1.05% 5.6m
MOGLS 0.6819 2.50% 49m 0.6651 4.52% 1.2h 0.7045 4.19% 1.5h
PPLS/D-C 0.6785 2.99% 37m 0.6672 4.22% 49m 0.7193 2.17% 3.1h
DRL-MOA 0.6904 1.29% 10s 0.6793 2.48% 18s 0.7185 2.28% 25s
MDRL 0.6881 1.62% 10s 0.6831 1.94% 17s 0.7209 1.96% 23s
EMNH 0.6900 1.34% 9s 0.6832 1.92% 16s 0.7217 1.85% 23s
PMOCO 0.6897 1.39% 9s 0.6834 1.89% 17s 0.7220 1.81% 23s
PA-MoE-P 0.6949 0.64% 11s 0.6893 1.05% 25s 0.7282 0.96% 38s
CNH 0.6913 1.16% 13s 0.6844 1.75% 22s 0.7241 1.52% 37s
PA-MoE-C 0.6924 1.00% 24s 0.6857 1.56% 34s 0.7246 1.46% 43s
WE-CA 0.6948 0.66% 12s 0.6924 0.60% 19s 0.7317 0.49% 32s
PA-MoE-W 0.6967 0.39% 18s 0.6928 0.55% 23s 0.7326 0.37% 42s
MDRL-Aug 0.6950 0.63% 13s 0.6890 1.09% 19s 0.7261 1.25% 28s
EMNH-Aug 0.6958 0.51% 12s 0.6892 1.06% 18s 0.7270 1.13% 27s
PMOCO-Aug 0.6958 0.51% 10s 0.6902 0.92% 21s 0.7272 1.10% 45s
PA-MoE-P-Aug 0.6985 0.13% 17s 0.6937 0.42% 28s 0.7317 0.49% 53s
CNH-Aug 0.6965 0.41% 15s 0.6911 0.79% 27s 0.7238 1.56% 48s
PA-MoE-C-Aug 0.6973 0.30% 19s 0.6913 0.76% 32s 0.7301 0.71% 52s
WE-CA-aug 0.6990 0.06% 22s 0.6957 0.13% 23s 0.7349 0.54% 42s
PA-MoE-W-Aug 0.6994 0.00% 28s 0.6966 0.00% 29s 0.7353 0.00% 55s

We evaluated the generalization performance of models trained on Bi-TSP100 by testing them
on 200 randomly generated instances of larger Bi-TSP150 and Bi-TSP200, as shown in Table 4.
Furthermore, we assess performance on three TSPLIB benchmarks, KroAB100, KroAB150, and
KroAB200, reported in Table 5. The results show that PA-MoE-P and PA-MoE-W outperform
state-of-the-art neural baselines on Bi-TSP150 and Bi-TSP200 benchmark sets. The corresponding
Pareto fronts are also visualized in Figure 3. The magnified regions of the Pareto fronts reveal that
PA-MoE yields clearly dominant solutions over those produced by baseline, validating the superior-
ity of our approach in balancing convergence and diversity. These results indicate that the PA-MoE
architecture is generalizable and corroborate our hypothesis about its robustness.

6 CONCLUSION

In this paper, we provide a novel perspective on the single-model paradigm for MOCO by estab-
lishing its connection to an implicit Mixture-of-Experts architecture. Subsequently, we propose
a generic PA-MoE framework that employs sparsely activated expert modules and an innovative
lightweight gating mechanism, thereby explicitly enhancing the capacity of a single model to address
diverse subproblems. Extensive results demonstrate PA-MoE’s effectiveness and favored cross-size
generalization capability. We believe there remains ample room to uncover deeper connections
between MOCO and MoE, which could inform the design of more effective neural solvers. For
example, incremental expert generation at the subproblem level under shifting preferences, and the
design of more intricate expert architectures, are promising directions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. To this end, we provide the following:
(1) Code availability: The complete source code and detailed instructions for reproducing our
experiments are included in the supplementary material, which can be accessed and downloaded by
reviewers and readers. (2) Theoretical results: All assumptions are clearly stated, and complete
proofs of our main theorems are presented in Appendices A.1 and A.2.

REFERENCES

Charles Audet, Jean Bigeon, Dominique Cartier, Sébastien Le Digabel, and Ludovic Salomon. Per-
formance indicators in multiobjective optimization. European Journal of Operational Research,
292(2):397–422, 2021.

David Bergman, Merve Bodur, Carlos Cardonha, and Andre A Cire. Network models for multiob-
jective discrete optimization. INFORMS Journal on Computing, 34(2):990–1005, 2022.

Jinbiao Chen, Jiahai Wang, Zizhen Zhang, Zhiguang Cao, Te Ye, and Siyuan Chen. Efficient meta
neural heuristic for multi-objective combinatorial optimization. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2023.

Jinbiao Chen, Zhiguang Cao, Jiahai Wang, Yaoxin Wu, Hanzhang Qin, Zizhen Zhang, and Yue-Jiao
Gong. Rethinking neural multi-objective combinatorial optimization via neat weight embedding.
In International Conference on Learning Representations (ICLR), 2025.

Indraneel Das and J.E. Dennis. Normal-boundary intersection: A new method for generating pareto
optimal points in multicriteria optimization problems. SIAM Journal on Optimization, 8(3):631–
657, 1998.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. A. M. T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6
(2):182–197, 2002.

Matthias Ehrgott, Xavier Gandibleux, and Anthony Przybylski. Exact methods for multi-objective
combinatorial optimisation. In Multiple Criteria Decision Analysis: State of the Art Surveys, pp.
817–850. Springer, 2016.

Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, and Guohua
Wu. Conditional neural heuristic for multiobjective vehicle routing problems. IEEE Transactions
on Neural Networks and Learning Systems, 2024.

Wei Fang, Qiang Zhang, Jun Sun, and Xiaojun Wu. Mining high quality patterns using multi-
objective evolutionary algorithm. IEEE Transactions on Knowledge and Data Engineering, 34
(8):3883–3898, 2020.

Kostas Florios and George Mavrotas. Generation of the exact pareto set in multi-objective traveling
salesman and set covering problems. Applied Mathematics and Computation, 237:1–19, 2014.

Carlos Garcı́a-Martı́nez, Oscar Cordón, and Francisco Herrera. A taxonomy and an empirical anal-
ysis of multiple objective ant colony optimization algorithms for the bi-criteria tsp. European
Journal of Operational Research, 180(1):116–148, 2007.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Hisao Ishibuchi, Naoya Akedo, and Yusuke Nojima. Behavior of multiobjective evolutionary algo-
rithms on many-objective knapsack problems. IEEE Transactions on Evolutionary Computation,
19(2):264–283, 2015.

Andrzej Jaszkiewicz. Genetic local search for multi-objective combinatorial optimization. European
Journal of Operational Research, 137(1):50–71, 2002.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. Multi-objective vehicle routing prob-
lems. European Journal of Operational Research, 189(2):293–309, 2008.

Liangjun Ke, Qingfu Zhang, and Roberto Battiti. A simple yet efficient multiobjective combina-
torial optimization method using decomposition and pareto local search. IEEE Transactions on
Cybernetics, 44(11):1808–1820, 2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multi-objective optimiza-
tion. arXiv preprint arXiv:1906.02386, 2020. URL https://arxiv.org/abs/1906.
02386.

Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multiobjective optimization.
IEEE Transactions on Cybernetics, 51(6):3103–3114, 2021.

Wu Lin, Qiuzhen Lin, Junkai Ji, Zexuan Zhu, Carlos A. Coello Coello, and Ka-Chun Wong.
Decomposition-based multiobjective optimization with bicriteria assisted adaptive operator se-
lection. Swarm and Evolutionary Computation, 60:100790, 2021.

Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combinato-
rial optimization. In International Conference on Learning Representations (ICLR), 2022.

Xi Lin, Xiaoyuan Zhang, Zhiyuan Yang, Fei Liu, Zhenkun Wang, and Qingfu Zhang. Smooth
tchebycheff scalarization for multi-objective optimization. In Ruslan Salakhutdinov, Zico Kolter,
Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.),
Proceedings of the 41st International Conference on Machine Learning, volume 235 of Pro-
ceedings of Machine Learning Research, pp. 30479–30509. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/lin24y.html.

Qi Liu, Xiaofeng Li, Haitao Liu, and Zhaoxia Guo. Multi-objective metaheuristics for discrete
optimization problems: A review of the state-of-the-art. Applied Soft Computing, 93:106382,
2020.

Thibaut Lust and Jacques Teghem. The multiobjective traveling salesman problem: A survey and
a new approach. In Carlos A. Coello Coello, Gregorio Toscano Pulido, and M. Salazar Lechuga
(eds.), Advances in Multi-Objective Nature Inspired Computing, pp. 119–141. Springer, 2010.
doi: 10.1007/978-3-642-11218-8 6.

Aviv Navon, Aviv Shamsian, Ethan Fetaya, and Gal Chechik. Learning the pareto front with hy-
pernetworks. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=NjF772F4ZZR.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Yinan Shao, Jerry Chun-Wei Lin, Gautam Srivastava, Dongdong Guo, Hongchun Zhang, Hu Yi,
and Alireza Jolfaei. Multi-objective neural evolutionary algorithm for combinatorial optimization
problems. IEEE Transactions on Neural Networks and Learning Systems, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations (ICLR), 2017.

Jialong Shi, Jianyong Sun, Qingfu Zhang, Haotian Zhang, and Ye Fan. Improving pareto local
search using cooperative parallelism strategies for multiobjective combinatorial optimization.
IEEE Transactions on Cybernetics, 2022. doi: 10.1109/TCYB.2022.3148874.

11

https://arxiv.org/abs/1906.02386
https://arxiv.org/abs/1906.02386
https://proceedings.mlr.press/v235/lin24y.html
https://openreview.net/forum?id=NjF772F4ZZR
https://openreview.net/forum?id=NjF772F4ZZR

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ye Tian, Langchun Si, Xingyi Zhang, Ran Cheng, Cheng He, Kay Chen Tan, and Yaochu Jin.
Evolutionary large-scale multi-objective optimization: A survey. ACM Computing Surveys, 54
(8):1–34, 2021.

Renato Tinós, Keld Helsgaun, and Darrell Whitley. Efficient recombination in the lin-kernighan-
helsgaun traveling salesman heuristic. In International Conference on Parallel Problem Solving
from Nature (PPSN), pp. 95–107. Springer, 2018.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 30, 2017.

Frank Wilcoxon. Individual comparisons by ranking methods. In Samuel Kotz and Norman L. John-
son (eds.), Breakthroughs in Statistics: Methodology and Distribution, pp. 196–202. Springer,
New York, NY, 1992.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, 1992.

Hong Wu, Jiahai Wang, and Zizhen Zhang. Modrl/d-am: Multiobjective deep reinforcement learn-
ing algorithm using decomposition and attention model for multiobjective optimization. In In-
ternational Symposium on Intelligence Computation and Applications (ISICA), volume 1205 of
Communications in Computer and Information Science (CCIS), pp. 575–589. Springer, 2020.

Yingbo Xie, Shengxiang Yang, Ding Wang, Junfei Qiao, and Baocai Yin. Dynamic transfer ref-
erence point-oriented moea/d involving local objective-space knowledge. IEEE Transactions on
Evolutionary Computation, 26(3):542–554, 2022.

Sandra Zajac and Sandra Huber. Objectives and methods in multi-objective routing problems: a
survey and classification scheme. European Journal of Operational Research, 290(1):1–25, 2021.

Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm based on decompo-
sition. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

Yongxin Zhang, Jiahai Wang, Zizhen Zhang, and Yalan Zhou. Modrl/d-el: Multiobjective deep re-
inforcement learning with evolutionary learning for multiobjective optimization. In International
Joint Conference on Neural Networks (IJCNN). IEEE, 2021.

Zizhen Zhang, Zhiyuan Wu, Hang Zhang, and Jiahai Wang. Meta-learning-based deep reinforce-
ment learning for multiobjective optimization problems. IEEE Transactions on Neural Networks
and Learning Systems, 34(10):7978–7991, 2023.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. MVMoE:
Multi-task vehicle routing solver with mixture-of-experts. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
61804–61824. PMLR, 21–27 Jul 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A CONSTRUCTIVE DERIVATION FROM TOKEN-LEVEL IMPLICIT MOE TO
INSTANCE-LEVEL EXPLICIT MOE

Let H = [h1, . . . , hN] be the hidden states of a layer (e.g., an attention block) for an instance X ,
and λ a preference vector. An implicit token-level mixture has the per-token output

yi =

m∑
k=1

wik(hi, λ)Ek(hi), wik ≥ 0,

m∑
k=1

wik = 1, (10)

where Ek are shared (token-agnostic) expert functions and wik are token-level gates.

A.1 WEIGHTED AGGREGATION IDENTITY

Lemma 1 (Weighted aggregation identity). Let yi be defined as in equation 10. For any aggregation
operator that is a linear mean over tokens (e.g., 1

N

∑
i), we have the exact identity

Finst(X,λ) :=
1

N

N∑
i=1

yi =

m∑
k=1

(
1
N

N∑
i=1

wik

)
︸ ︷︷ ︸
πk(X,λ)

(∑N
i=1 wik Ek(hi)∑N

i=1 wik

)
︸ ︷︷ ︸

Êk(X,λ)

. (11)

Proof. Expand 1
N

∑
i yi using equation 10:

1

N

∑
i

yi =
1

N

∑
i

∑
k

wikEk(hi) =
∑
k

(1

N

∑
i

wikEk(hi)
)
.

For each k, multiply and divide by
∑

i wik (non-negative; when zero, define the term as 0 by conti-
nuity), yielding ∑

k

(1

N

∑
i

wik

)(∑
i wikEk(hi)∑

i wik

)
=
∑
k

πk Êk.

A.2 HIERARCHICAL ROUTING AND INSTANCE-LEVEL MOE

Define an instance-/preference-level context c by pooling token states as:

c(X,λ) := Pool
(
H(X,λ)

)
∈ Rdc (e.g., mean/max pooling or learned attention pooling). (12)

Then, introduce a hierarchical router that factors instance- and token-level gates as:

βk(c, λ) := softmaxk
(
u⊤k ϕ([c;λ])

)
, (13)

αik(hi, λ) := softmaxk
(
a⊤k ψ([hi;λ])

)
, (14)

w̃ik(hi, c, λ) ∝ βk(c, λ)αik(hi, λ), wik =
w̃ik∑
k′ w̃ik′

. (15)

Proposition 1 (Constructive instance-level MoE form). Let yi be as in equation 10 with gates de-
fined by equation 15. Then the instance-level aggregation Finst in equation 11 equals

Finst(X,λ) =

m∑
k=1

πk(X,λ) Êk(X,λ), πk := 1
N

∑
i

wik, Êk :=

∑
i wikEk(hi)∑

i wik
, (16)

which is an instance-level explicit MoE with expert responses Êk and gates πk.

If one prefers the canonical structure
∑

k βk(c, λ) Ẽk(X), set:

Ẽk(X) := Êk(X,λ) and βk(c, λ) ∝ πk(X,λ) (followed by normalization), (17)

then Finst(X,λ) =
∑

k βk(c, λ) Ẽk(X) holds exactly by construction.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 SPARSITY AND CAPACITY CONTROL AT THE INSTANCE LEVEL

The instance-level gates πk or βk expose explicit control: (i) Top-K sparsity: keep the K largest
entries and renormalize; (ii) Load balancing: add a standard MoE auxiliary loss on average usage,

Lload = m

m∑
k=1

p̄k log p̄k, p̄k := EX,λ

[
1
N

N∑
i=1

wik(hi, c, λ)
]
. (18)

This operates at the instance level, which dense token-indexed routing in standard attention does not
directly expose.

A.4 EXPRESSIVE POWER OF EXPLICIT MOE: APPROXIMATION AND EXTENSION

Proposition 2 (Approximation and extension). Assume experts {Ek}mk=1 are MLPs with a univer-
sal approximation property on compact sets, and the router in equation 15 is implemented by MLPs
ϕ, ψ. Then for any token-mixing attention layer (with value projection linear in H), the mapping
H 7→ 1

N

∑
i yi can be approximated arbitrarily well by the instance-level explicit MoE in equa-

tion 16. Moreover, by choosing non-linear experts, the explicit MoE can represent mappings beyond
linear token mixing under comparable depth/width.

Proof. (i) Approximation: Fix k and approximate Ek(h) to match the target value-map behaviour;
let the router mimic attention weights by fitting wik via equation 15. The weighted identity equa-
tion 11 then recovers the aggregated mapping. Universal approximation of MLPs gives the arbitrar-
ily small error. (ii) Extension: Non-linear experts allow composition of non-linear token responses
aggregated at instance level, which exceeds the linear subspace spanned by token-mixing with a
fixed linear V ; a small counterexample is obtained by requiring expert-specific non-linearities that
cannot be reduced to a single linear value map without increasing depth/width.

Prop. 2 concerns the layer-level representational view after aggregation; it is not a claim of equiva-
lence between full model classes.

B MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION
PROBLEMS

Multi-objective combinatorial optimization problems extend classical optimization problems by in-
corporating multiple objectives. This section explores three key problems: the Multi-Objective
Traveling Salesman Problem (MOTSP), the Multi-Objective Capacitated Vehicle Routing Problem
(MOCVRP), and the Multi-Objective Knapsack Problem (MOKP), each involving the optimization
of competing objectives under specific constraints.

B.1 MULTI-OBJECTIVE TRAVELING SALESMAN PROBLEM (MOTSP)

MOTSP is an extension of the classic single-objective Traveling Salesman Problem (TSP). In
MOTSP, M objectives are considered, with each objective represented by a distinct set of node
coordinates. The aim is to find a tour π, which is a cyclic permutation of the nodes, that simultane-
ously minimizes the costs across all objectives:

minL(π|s) = min(L1(π|s), L2(π|s), . . . , LM (π|s)), (19)

where Li(π|s) denotes the cost for the i-th objective and is calculated as:

Li(π|s) = ci(π(n), π(1)) +

n−1∑
j=1

ci(π(j), π(j + 1)). (20)

Here, ci(j, k) represents the cost of moving from node j to node k under the i-th objective. The
solution to MOTSP often involves trade-offs as it requires minimizing all objective functions simul-
taneously.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2 MULTI-OBJECTIVE CAPACITATED VEHICLE ROUTING PROBLEM (MOCVRP)

MOCVRP aims to optimize two objectives simultaneously: minimizing the total length of the route,
which is the sum of distances traveled by all vehicles, and minimizing the makespan, defined as the
length of the longest route. This problem involves a depot node and multiple customer nodes, each
with a specific demand qi. A fleet of vehicles, each with a fixed capacityD, starts and ends its routes
at the depot, ensuring that the total demand on any route satisfies the constraint

∑
qi ≤ D.

The total route length can be mathematically formulated as

min f1(π) =

K∑
k=1

nk∑
i=1

dπk(i),πk(i+1), (21)

where K denotes the number of vehicles, nk is the number of customer nodes in the k-th route, and
dπk(i),πk(i+1) is the distance between consecutive nodes in the route. The makespan, representing
the longest route among all vehicles, is expressed as

min f2(π) = max
k∈{1,...,K}

nk∑
i=1

dπk(i),πk(i+1). (22)

In addition, the solution must satisfy two key constraints. Each customer must be visited exactly
once, and all routes must start and end at the depot. This problem models real-world scenarios
where optimizing operational efficiency and resource utilization is critical in multi-vehicle delivery
systems.

B.3 MULTI-OBJECTIVE KNAPSACK PROBLEM (MOKP)

The Knapsack Problem (KP) is a classic problem in combinatorial optimization, and MOKP is an
extension of KP, involving m objectives and n items. The goal of this problem is to maximize the
values of multiple objective functions:

f(x) = max(f1(x), f2(x), . . . , fm(x)), (23)

where each objective function is defined as

fi(x) =

n∑
j=1

vijxj . (24)

The constraints are given by
n∑

j=1

wjxj ≤W, with xj ∈ {0, 1}. (25)

Each item has a weight wj and m different values vij , where i = 1, 2, ...,m. The knapsack has a
maximum weight capacity W , and the objective is to select a set of items such that their total weight
does not exceed the capacity W , while maximizing the sum of values for each objective.

C HYPERVOLUME INDICATOR

The hypervolume (HV) indicator is one of the most widely adopted metrics for evaluating the qual-
ity of solution sets in multi-objective combinatorial optimization (MOCO), as it comprehensively
measures both the convergence and diversity of the obtained Pareto front without requiring access to
the ground truth. Given a reference point r ∈ RM and a Pareto front F , the HV indicator is defined
as:

HVr(F) = µ

 ⋃
f(x)∈F

[f(x), r]

 , (26)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where µ denotes the Lebesgue measure, and [f(x), r] denotes the hyper-rectangle spanned between
a solution f(x) and the reference point r. For example, in the bi-objective case, the HV value
corresponds to the area of the union of rectangles extending from each solution to the reference
point in the objective space.

Since HV values are sensitive to the scale of the objective space, we employ a normalized version
defined as:

HV′
r(F) =

HVr(F)∏M
i=1 |ri − zi|

, (27)

where z is an ideal point satisfying zi < min{fi(x) | f(x) ∈ F} for all i ∈ {1, . . . ,M} in the case
of minimization problems. This normalization ensures fair comparison across different problem
instances and objective scales.

From a theoretical perspective, optimizing the HV indicator over a fixed-size population of µ solu-
tions corresponds to maximizing a single-objective quality indicator. The resulting set of µ solutions
is referred to as an optimal µ-distribution, which introduces an implicit search bias depending on
the indicator and the choice of the reference point.

The reference point r plays a crucial role in determining which regions of the objective space are
favored during optimization. A poorly chosen reference point can lead to suboptimal or biased
distributions, especially with respect to extreme solutions on the Pareto front. In this work, we
adopt a consistent reference point across all compared methods, and the specific values used are
summarized in Table 6.

Table 6: Reference points and ideal points.

Problem Size r z

Bi-TSP
20 (20, 20) (0, 0)
50 (35, 35) (0, 0)
100 (65, 65) (0, 0)
150 (85, 85) (0, 0)
200 (115, 115) (0, 0)

Bi-CVRP 20 (30, 4) (0, 0)
50 (45, 4) (0, 0)
100 (80, 4) (0, 0)

Bi-KP 50 (5, 5) (30, 30)
100 (20, 20) (50, 50)
200 (30, 30) (75, 75)

Tri-TSP 20 (20, 20, 20) (0, 0, 0)
50 (35, 35, 35) (0, 0, 0)
100 (65, 65, 65) (0, 0, 0)

D INSTANCE AUGMENTATION

To further improve the performance during inference, we adopt an instance-level augmentation strat-
egy Kwon et al. (2020) Lin et al. (2022) that generates multiple geometric transformations of the
same input.

In single-objective combinatorial optimization, Euclidean problem instances such as TSP and CVRP
are typically defined with node coordinates sampled from the unit square [0, 1]2. Given the invari-
ance of pairwise Euclidean distances under certain geometric transformations, the underlying prob-
lem structure remains unchanged when the coordinates are transformed through operations such as
reflection, rotation, or axis swapping. A commonly used set of eight symmetry-preserving transfor-
mations is defined over the unit square. Given any coordinate (x, y), the transformed coordinates
(x′, y′) are selected from the set {(x, y), (y, x), (x, 1−y), (1−x, y), (1−x, 1−y), (1−y, x), (y, 1−
x), (1 − y, 1 − x)}. These transformations preserve the essential structure of the problem, while
neural models may respond differently to varied input representations. As a result, the generated

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

solutions remain feasible for the original instance and, in some cases, can even outperform those
obtained from the original input, serving as better approximations to the optimal solution.

In this paper, preference vectors are generated using the Normal-Boundary Intersection (NBI)
method Das & Dennis (1998). For each preference, input augmentations are applied while keep-
ing the scalarization fixed. The augmented instances are decoded independently, and their solutions
are mapped back to the original coordinate space and evaluated under the same objective formula-
tion. When each objective is associated with a separate coordinate space, as in Bi-TSP or Tri-TSP,
geometric transformations should be applied independently to each objective-specific embedding.
Since each coordinate set can undergo eight distinct symmetric transformations, a problem with M
objectives yields 8M transformed variants. In particular, Bi-TSP results in 82 = 64 transformations,
and Tri-TSP results in 83 = 512. For Bi-CVRP, where each node has only one coordinate set,
there are eight possible transformations per instance. Consequently, the best solution is selected by
evaluating the objective values across both the original and all transformed instances.

E TOKEN VS. INSTANCE-LEVEL ROUTING (GATING) ABLATIONS

Table 7: Token-level vs. instance-level routing in PA-MoE on Bi-TSP50 and Bi-CVRP50.

Backbone Routing Bi-TSP50 Bi-CVRP50
HV ↑ Time (s) ↓ HV ↑ Time (s) ↓

PMOCO Token-level 0.6379 31s 0.4041 18s
Instance-level (PA-MoE-P) 0.6388 31s 0.4048 18s

WE-CA Token-level 0.6393 45s 0.4093 15s
Instance-level (PA-MoE-W) 0.6400 48s 0.4095 16s

We compare Token-level routing (wik = αik(hi, λ)) and Instance-level (hierarchical) routing
(wik ∝ βk(c, λ)αik(hi, λ), c = Pool(H)). Here, H = [h1, . . . , hN] are token states, Pool(·) is
an instance/pref. pooling (e.g., mean/attn), αik is a token-level gating score, βk is an instance-level
gating score, and ∝ indicates subsequent normalization (and Top-K selection) to obtain a valid
distribution over experts. As shown in Table 7, instance-level routing (PA-MoE) consistently yields
slightly higher HV on both Bi-TSP50 and Bi-CVRP50, with negligible overhead in runtime (e.g.,
31s vs 31s). This supports the view that instance-aware capacity allocation is beneficial even under
the same computational cost.

F MOKP RESULTS

Table 8: Comparison results on Bi-KP with 200 random instances.

Method 50 Nodes 100 Nodes 200 Nodes
HV ↑ Gap ↓ Time HV ↑ Gap ↓ Time HV ↑ Gap ↓ Time

WS-DP 0.3561 -0.11% 22m 0.4532 -0.09% 2.0h 0.3601 0.00% 5.8h
MOGLS 0.3532 0.70% 5.1h 0.4502 0.57% 7.3h 0.3517 2.33% 13h
PPLS/D-C 0.3517 1.12% 23m 0.4398 2.87% 48m 0.3527 2.05% 1.2h
DRL-MOA 0.3557 0.00% 9s 0.4531 -0.07% 22s 0.3601 0.00% 1.1m
MDRL 0.3530 0.76% 6s 0.4532 -0.09% 21s 0.3601 0.00% 1.2m
EMNH 0.3561 -0.11% 6s 0.4535 -0.15% 21s 0.3603 -0.06% 1.2m
PMOCO 0.3521 1.01% 7s 0.4445 1.83% 16s 0.3587 0.39% 1.2m
PA-MoE-P 0.3547 0.28% 9s 0.4450 1.72% 22s 0.3590 0.30% 1.4m
WE 0.3554 0.08% 9s 0.4527 0.02% 19s 0.3601 0.00% 1.1m
PA-MoE-W 0.3557 0.00% 13s 0.4528 0.00% 30s 0.3601 0.00% 1.6m

As shown in Table 8, the PA-MoE framework exhibits consistent advantages on the Bi-KP problem
across varying sizes (50/100/200 items). Both variants (PA-MoE-P/W) outperform PMOCO on
BiKP50/100, and PA-MoE-P further maintains its edge on BiKP200 while PA-MoE-W matches the
baseline. This demonstrates the strong scalability and competitive generalization of PA-MoE.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G DETAILS OF AUXILIAR LOAD BALANCING LOSS

Algorithm 1 Training algorithm
Input: weight distribution Λ, instance distribution Sn on problem size n, number of training steps E, batch
size B, optimizer ADAM
Output: Learned model parameters θ
1: Initialize the model parameters θ
2: for e = 1 to E do
3: Sample si ∼ SampleInstance(Sn) ∀i ∈ {1, · · · , B}
4: Sample λ ∼ SampleWeight(Λ)
5: for i = 1 to B do
6: Sample πi ∼ SampleSolution(P (π|λ, si))
7: gi ← g(πi|λ, si)
8: ∇J (i)(θ)← (gi − bi)∇θ logP (πi|λ, si)
9: Compute load balancing loss L(i)

balance based on CV of importance and load
10: end for
11: ∇J (θ)← 1

B

∑B
i=1∇J

(i)(θ)

12: Lbalance ←
∑B

i=1 L
(i)
balance

13: θ ← ADAM(θ,∇J (θ) +∇Lbalance)
14: end for

The proposed PA-MoE adopts instance-level gating, wherein each input instance computes a gating
score vector to select its Top-K preferred experts. This routing strategy enables greater flexibility, as
different instances may activate distinct sets of experts. However, this flexibility comes at the cost
of increased difficulty in balancing expert load, often leading to expert collapse, where only a small
subset of experts are frequently utilized while others remain idle. Following Shazeer et al. (2017),
we incorporate input-dependent noise into the gating logits to facilitate stochastic expert selection
and optimize expert assignment via load-balancing loss for each subproblem in MOCO.

Load-Balancing Loss To learn balanced expert usage, an auxiliary loss is introduced based on
the coefficient of variation (CV) of both expert importance and estimated load. This regularization
encourages uniform expert activation and enables effective gradient-based optimization of the gating
parameters. Specifically, let G ∈ Rm denote the gating vector produced by the top-k mechanism for
an input instance, where m is the number of experts. The importance of expert j is defined as:

importancej = G[j], (28)

representing the gating weight received by expert j from the current instance. We approximate the
expert load, which reflects the expected number of instances routed to each expert, using a smooth
and differentiable formulation. This is achieved by modeling the routing probability from instance
s to expert j using the cumulative distribution function (CDF) of a standard normal distribution:

Pr(s→ j) = Φ

(
H[j]− Tk

σj

)
, (29)

where H[j] is the gating logit for expert j of the instance; Tk is the k-th largest gating score among
all experts excluding j; and σj is the input-dependent noise scale computed as:

σj = Softplus((hWnoise)j) + ϵnoise, (30)

with h being the instance embedding. The soft load is then computed across a mini-batch as:

˜loadj =

B∑
i=1

Pr(si → j). (31)

To quantify expert imbalance, the coefficient of variation (CV) is adopted as a normalized metric to
measure dispersion across expert usage. Specifically, the final load-balancing loss is defined as:

Lbalance = λbal ·
(
CV2(importance) + CV2(˜load)

)
, (32)

where λbal is a weighting coefficient set to 0.01 in our experiments. This loss encourages the gating
network to maintain both balanced gating weights and equitable expert selection frequencies. The

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

auxiliary load-balancing loss Lbalance is combined with the scalarized objective loss of each sub-
problem to form the overall training objective. These losses are jointly optimized via gradient-based
training, enabling each subproblem to participate in backpropagation and contribute to the global
parameter updates. The complete training procedure is presented in Algorithm 1.

19

	Introduction
	Related Work
	Preliminaries
	Multi-objective Combinatorial Optimization (MOCO)
	Subproblem Formulation
	Single-Model Paradigm for MOCO Subproblems

	Methodology
	Theory Basis: From Implicit MoE to Explicit MoE
	Integrating PA-MoE into the Single-Model Paradigm

	Experiments
	Main Results
	Ablation Study
	Generalization Study

	Conclusion
	Constructive Derivation from Token-Level Implicit MoE to Instance-Level Explicit MoE
	Weighted aggregation identity
	Hierarchical routing and instance-level MoE
	Sparsity and capacity control at the instance level
	Expressive Power of Explicit MoE: Approximation and Extension

	MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION PROBLEMS
	Multi-objective traveling salesman problem (MOTSP)
	Multi-objective capacitated vehicle routing problem (MOCVRP)
	Multi-objective knapsack problem (MOKP)

	Hypervolume indicator
	Instance augmentation
	Token vs. Instance-Level Routing (Gating) Ablations
	MOKP results
	Details of auxiliar load balancing loss

