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Abstract
Unifying models by reducing task-specific001
structures have been studied to facilitate the002
transfer of learned knowledge. A text-to-text003
framework has pushed the unification of the004
model. However, the framework remains lim-005
ited because it does not allow contents with a006
layout for input and has a basic assumption that007
the task can be solved in a single step. To ad-008
dress these limitations, in this paper, we explore009
a new framework in which a model performs a010
task by manipulating displayed web pages in011
multiple steps. We develop two types of task012
web pages with different levels of difficulty013
and propose a BERT extension for the frame-014
work. We trained the BERT extension with015
those task pages jointly, and the following ob-016
servations were made. (1) The model maintains017
its performance greater than 80% of that of the018
original BERT separately fine-tuned in a single-019
step framework in five out of six tasks. (2) The020
model learned to solve both tasks of difficulty021
level. (3) The model did not generalize effec-022
tively on unseen tasks. These results suggest023
that although room for improvement exists, we024
can transfer BERTs to multi-step tasks, such as025
using graphical user interfaces.026

1 Introduction027

Prior studies have attempted to unify models for028

processing natural language to facilitate the trans-029

fer of learned knowledge by reducing task-specific030

structures. For example, Radford et al. (2018); De-031

vlin et al. (2019) suggest that language models with032

a generic structure, Transformer (Vaswani et al.,033

2017), are effective. Raffel et al. (2020) proposed034

a text-to-text framework which converts tasks into035

a problem where a model receives and generates036

text. Cho et al. (2021) extended the input of the037

text-to-text framework to accommodate images.038

However, existing research on unified models039

remains limited. First, the models proposed by040

Cho et al. (2021) use a linear sequence of text and041

several images as input. However, they are not042
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Figure 1: Comparison of task frameworks. (a) Conven-
tional frameworks assume single-step tasks in which a
model takes a sequence of text and images to generate
an output. (b) In our framework, we make a task as
web pages, which allow structured contents, hyperlinks
and scripts. The page design decides how to submit an
answer (e.g., choose a button or input text). A model
completes a task in multiple steps using the browser user
interface (BUI). The model take a screenshot to output
an action for each step. (e.g., click or keystroke).

designed to handle input with a layout. Second, 043

existing unified models assume single-step tasks. 044

Task-specific design still must be completed when 045

applying these models to compound tasks, such 046

as reading a single document and subsequently 047

searching for missing information. The latter chal- 048

lenge is more difficult to address because meth- 049

ods for using a transformer in multiple-step tasks, 050

have not yet been fully established. Although 051

transformer-based models have been successful in 052

many language-related tasks such as language un- 053

derstanding (Wang et al., 2019), question answer- 054

ing (Rajpurkar et al., 2016), visual question answer- 055

ing (Antol et al., 2015), and referring expression 056

comprehension (Kazemzadeh et al., 2014), never- 057

theless, these are single-step tasks. 058

In this study, we investigate the following re- 059

search question to address this limitation: Can mod- 060

els complete tasks using user interfaces (UIs) that 061

are integrated with visual input content? We pro- 062
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pose a task framework in which tasks are written063

as web pages, and models complete those tasks via064

browser UI (Figure 1). The essence of our study065

is the model that uses graphical UIs. The reason066

we chose a browser instead of other options such067

as an operating systems is that web pages are eas-068

ier to create than native software and browsers are069

connectable to real services.070

We formulate the interaction between a browser071

and a model (§ 3), and create task pages based072

on the existing datasets, including GLUE (Wang073

et al., 2019), SQuAD (Rajpurkar et al., 2016) and074

VQA (Antol et al., 2015) (§ 4). Our formulation075

ensures that the model actions are general and prim-076

itive to enable further extension. Our tasks include077

not only single-page but also multi-page tasks that078

require page jumps to diversify the goal of actions.079

We introduce a BERT (Devlin et al., 2019) exten-080

sion with a simple memory mechanism and pre-081

training for actions (§ 5). In our experiments, we082

train our model in a multi-task setting. We vali-083

date whether our model can learn in the framework084

and compare it with the models in other framework085

based on the same BERT. We show that our pre-086

training and memory mechanisms are effective and087

analyze the models’ ability to solve unseen tasks088

(§ 6). Code will be available online1.089

Our contributions:090

• We propose a framework, in which unified mod-091

els perform tasks with a browser UI, that enables092

the study of models involving multi-step tasks.093

• By designing multi-page tasks that require page094

transition, we demonstrate how the proposed095

framework can expand the task landscape.096

• We introduced a BERT extension and demon-097

strate its ability to learn diverse tasks (GLUE,098

SQuAD, VQA, and multi-page tasks) jointly.099

2 Related Work100

2.1 Execution Style of Unified Models101

Unified Models aim to reduce task-specific struc-102

tures to promote learning different tasks jointly103

such that learned knowledge can be shared between104

tasks2. After the success of transformer-based lan-105

guage models (LMs) (Devlin et al., 2019; Radford106

et al., 2019) and their visual extensions (Lu et al.,107

2019; Li et al., 2019a; Tan and Bansal, 2019; Chen108

1https://url.will.be.replaced/
2While it is a kind of multi-task learning (Caruana, 1997;

Ruder, 2017), it often does not have the central tasks.

et al., 2020; Su et al., 2020), unified models with 109

transformers have received significant attention. 110

We can categorize unified transformers in terms 111

of task execution: task-specific head and text gen- 112

eration styles. The task-specific head style shares 113

most model weights between tasks and provides 114

a head for each task. ViLBERT-MT (Lu et al., 115

2020) and UniT (Hu and Singh, 2021) use this style. 116

The text generation style employs text generation 117

to bridge the differences in output between tasks. 118

GPT-2 (Radford et al., 2019) and GPT-3 (Brown 119

et al., 2020) show that large pre-trained models can 120

multitask in the text region by changing the prompt. 121

T5 (Raffel et al., 2020) and VL-T5 (Cho et al., 122

2021), which extends T5 to vision, also employ 123

this style. The text generation style can be applied 124

to, in principle, all tasks that can be expressed in a 125

text-to-text format. Our framework is in this line of 126

study. A model manipulates web pages that define 127

a task via general actions. As a result, it extends the 128

tasks to what can be rendered in a browser screen 129

while keeping the model structure. We refer to this 130

style as the BUI action style. 131

2.2 Vision-and-Language Tasks 132

Document AI is a technique for automatically read- 133

ing, understanding, and analyzing documents (Cui 134

et al., 2021). Our work relates to studies on HTML 135

documents. Tanaka et al. (2021); Chen et al. (2021) 136

proposed reading comprehension datasets on web 137

pages. Wu et al. (2021); Li et al. (2021a) proposed 138

pretrained models for HTML documents. Although 139

documents are processed differently (such as us- 140

ing screenshots or incorporating hierarchy of the 141

elements), prior studies were concerned with a vi- 142

sually rich layout. Our focus is on the interaction 143

between models and the documents. 144

UI modeling is an emerging topic, and Bai et al. 145

(2021); He et al. (2021) have pre-trained UI models 146

for mobile devices to obtain better representations 147

for the UI in terms of understanding tasks, such as 148

predicting the application type or retrieving similar 149

UI components. Li et al. (2021b) proposed a multi- 150

task UI model that can answer questions about the 151

UI. While the questions include commands e.g., 152

’Go to the next screen’, they are limited to single- 153

step commands. By contrast, our models use UIs 154

by recurrently generating actions. 155

Vision-and-language navigation (VLN) (Ander- 156

son et al., 2018; Das et al., 2018; Shridhar et al., 157

2020) studies models that follow instructions in 158
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a physical space, such as room. VLN tasks have159

progressed in action generation with V&L models.160

Recent studies used pre-trained LMs to encode in-161

structions (Li et al., 2019b; Majumdar et al., 2020;162

Hong et al., 2021; Qi et al., 2021). However, the163

visual input rarely contains long text because the164

target is a physical space. Combination of views165

with a long text and actions remains a challenge.166

3 Task Formulation with Browser UI167

In this study, the term browser refers to software for168

accessing web pages. A browser renders web pages,169

navigates to a new page when a hyperlink is clicked,170

and executes the scripts on a page internally.171

Our formulation focuses on browsers that run on172

personal computers3. We assume that the browser173

input devices are a mouse and keyboard, and that174

the browser provides a screenshot. At each step,175

the model partially observes the state of web pages176

from a screenshot to output an action. The cursor177

position is drawn as a dot in the screenshot. We ap-178

ply the action to the browser and waited for a period179

of time (∼ 500ms)4 for the browser to complete180

internal computation (e.g., rendering, navigating).181

Subsequently, we take the next screenshot. In con-182

clusion, suppose a screenshot of the visible area of183

a page si and model’s action ai at step i, then the184

model predicts ai from si:185

ai = Model(si), si+1 = Browser(ai).186

Note that the current framework does not support187

video or audio contents that progress independently188

of the model’s actions owing to this formulation.189

Fixed-size screenshot. In lieu of inputting a whole190

page by using a screenshot with variable size or191

scale, we use fixed-size screenshots and give the192

models actions to move their visible area. Such193

actions are suitable for pages that dynamically load194

additional parts and avoid unexpected long inputs.195

Actions. Table 1 presents the actions defined. The196

actions cover using a mouse, keystrokes and mov-197

ing the visible area. The unit of keystrokes is the198

model’s vocabulary. A model selects one action for199

each step. Thus, if a task requires inputting a sen-200

tence to a text box, the model will move the cursor201

to a text box (MOVETO), click it (CLICK), and202

3Firefox (https://www.mozilla.org/en-US/
firefox/) was adopted as the browser and Selenium
(https://www.selenium.dev/), which is an automa-
tion tool for browser operations, was used to apply the
model’s actions to the browser.

4An internal server was used. Accessing external servers
could require additional time.

scope action name description
mouse MOVETO(x, y) move the cursor to (x, y)
mouse CLICK right click.
key TOKEN(word) type characters in a word
key SPACE type space key
key BACKSPACE type backspace key
key ENTER type enter key
view LEFT move the view to the left
view RIGHT move the view to the right
view UP move the view to the up
view DOWN move the view to the down

Table 1: Defined actions. MOVETO and TOKEN
take the arguments specified in the parentheses.

enter tokens (TOKEN). 203

4 Task Pages 204

In the BUI framework, tasks are written as web 205

pages. Although there are no restrictions on the 206

layout of the pages, we used layouts that have an 207

instruction, a main content, and an answer form for 208

simplicity. We assumed that a task example has a 209

single answer. Figure 2 summarizes task pages we 210

made. This section describes the types of task page 211

and how to obtain gold actions for training. 212

4.1 Types of Task Page 213

(a) Pre-Training for Actions (PTA). Prior 214

knowledge of interface usage, such as the use of 215

clickable buttons, could assist more efficient learn- 216

ing of tasks in the BUI by avoiding situations where 217

models learn such knowledge and reasoning (e.g., 218

reading comprehension) simultaneously. We intro- 219

duced pre-training for actions: a set of small tasks 220

that focus on moving the cursor, clicking a button, 221

inputting text, and moving the visible area. As 222

shown in Figure 2, in PTA tasks, the instructions 223

are written at the top of the screen, and the model 224

succeeds if it follows the instruction. We generated 225

task instances using templates (in Appendix C.2). 226

(b) Single-page tasks. To evaluate to what ex- 227

tent models can solve traditional tasks in BUI, 228

we created tasks of this type based on existing 229

datasets. We used GLUE (Wang et al., 2019) and 230

SQuAD (Rajpurkar et al., 2016, 2018) for natu- 231

ral language understanding and VQA (Antol et al., 232

2015) for visual grounding. Task pages of this type 233

involve scrolling pages and submitting answers. 234

We chose answer forms that matched the format of 235

those datasets. We used buttons for GLUE (classifi- 236

cation), and a text box for SQuAD and VQA (ques- 237

tion answering). The condition for success is to 238

submit the correct answer of the original datasets. 239
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Figure 2: Three types of task page and the examples. (a) Pre-training for actions. In the area task, a blank space
exists between the instructions and the buttons so that a model needs to scroll until the buttons are visible. (b)
Single-page tasks. The rectangles outlined by the blue dotted lines represent the initial visible area. (c) Multi-page
tasks. Models can make page transitions within the child frames embedded in the outer page.

(c) Multi-page tasks. This type introduces page240

transitions to focus more on procedural tasks241

that BUI enables. We designed Search and An-242

swer (SA) task (Figure 3). For the task, we made243

databases on question answering tasks by sampling244

the contexts (paragraphs or images) and questions245

from SQuAD and VQA. We assigned unique ids246

to the contexts and questions. Task pages of SA247

are linked to one of those databases that can be248

queried with the search UI. The goal of the tasks249

is to answer a question about the database using250

the search UI. We prepared four groups to verify251

whether the models can handle different questions:252

• SA-H: How many questions are related to CID?253

requires querying a given Context ID (CID) and254

answering the number of Hits.255

• SA-Q: What is the question of QID?256

requires identification of the question correspond-257

ing to a given Question ID (QID).258

• SA-QID: What is the QID of QUESTION?259

requires identification of the QID corresponding260

to a given question.261

• SA-A: Answer the question of QID.262

requires answering the question corresponding263

to a given QID.264

While SA-H, -Q, and -QID can be answered di-265

rectly from the search results, SA-A requires mod-266

els to display a detailed page to produce the an-267

swers. Appendix C.3 provides further detail.268

Figure 3: Example pages for the SA-A task. All the SA
tasks share the page design. The task pages include an
initial page, search result, and detail page. The result
changes depending on the query. Models are required
to jump between those pages to answer the question.
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Figure 4: Overview of BUI-BERT. It consists of a pre-trained BERT (Fusion BERT), which takes vision, language,
memory, and some auxiliary tokens to output the next action. The model adds position and segment embeddings to
each token in the same way as the original BERT (omitted in the view).

4.2 Creating Gold Sequences269

Supervised learning was used to train the pro-270

posed BUI model because the probability of com-271

pleting a task by randomly acting on a page ap-272

pears small. To record gold sequences of action-273

screenshot pairs, we manually created rules for274

each task and manipulated task pages loaded in a275

browser following the rules. We designed the rules276

to identify the contents on a task page once and to277

take actions to submit answers.278

Individual rules are listed as follows. Note that279

each rule breaks down further into the actions.280

• GLUE. Scroll down until the buttons appear (to281

view all contents). Click the correct button.282

• SQuAD and VQA. Scroll down until the submit283

form appears. If the question is unanswerable,284

check unanswerable. Otherwise, type the answer285

in the text box. Click the submit button.286

• SA-H. Query the CID in an instruction. Submit287

the number of hit records.288

• SA-Q. Query the QID in an instruction. Scroll289

down until the record related to the query appears.290

Submit the corresponding question.291

• SA-QID. We swapped the question and QID in292

the SA-Q rule. We used only the first three tokens293

of the question to reduce the number of actions.294

• SA-A. Query QID in an instruction. Click the295

’show’ link to display the context. View the entire296

context to produce the answer for the question297

corresponding to the QID. Submit the answer.298

5 BUI-BERT 299

This section describes how to extend the pre-trained 300

BERTsmall to manipulate the browser UI. A small 301

language model was used instead of pre-trained 302

professional models with standard size (e.g., Lay- 303

outLM) owing to the multiple long sequences re- 304

quired by the BUI setup. As illustrated in Figure 4, 305

vision, language, memory, and some auxiliary to- 306

kens are fused with fusion BERT to obtain the next 307

action. We initialized the weight of fusion BERT 308

based on the weight of the pre-trained BERT and 309

pre-trained the model using the PTA tasks. 310

5.1 Vision Input 311

We used grid features from a pre-trained convolu- 312

tional neural network similar to Huang et al. (2020), 313

considering the speed and amount of data. We en- 314

coded the screenshot at each step with a frozen 315

pre-trained ResNet (He et al., 2016)5 followed by 316

a trainable fully connected layer. 317

5.2 Language Input 318

To treat words as a separate modality, we detected 319

words from a screenshot and broke down the words 320

into sub-words using the BERT tokenizer. To avoid 321

the necessity to consider detection errors, a word- 322

based OCR was emulated by inserting span tags 323

between words in the HTML pages. While this 324

emulation works both in text content and labels on 325

5Pre-trained ResNet18 bundled with PyTorch Vision.
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the buttons, it does not capture text in text boxes. A326

detection example can be found in Appendix D.1.327

Location embedding. We added location embed-328

ding to each sub-word embeddings to indicate the329

location on a screenshot. The word bounding box6330

was encoded by a trainable MLP. Sub-words in a331

word share the location embedding of the word.332

5.3 Memory Mechanism333

Completing a task over several steps requires mem-334

ory. Our memory mechanism used 2×K embed-335

dings. The first half K was copied from the previ-336

ous memory output, and the second half was filled337

with the [M] embedding, a trainable one-hot vector.338

After fusing inputs, we retained the K encoded em-339

beddings corresponding to the second half for the340

next step. During training, we inputted the memory341

embeddings recurrently while the number of steps342

did not exceed the maximum (50 in our study).343

5.4 Auxiliary Inputs344

Last action. The last action is represented with the345

embeddings of the action name, the cursor position,346

and the sub-word 7. We used trainable one-hot347

vectors for the action name and the sub-word em-348

beddings. We encoded the cursor position using349

the same MLP as the word location 8.350

Next action. We appended trainable one-hot vec-351

tors for [ACT], [TOK], [X], and [Y] tokens and352

inputted these tokens to predict the next action.353

5.5 Next Action Prediction and Loss354

We predicted the next action from the embeddings355

that the fusion BERT encoded the [ACT], [TOK],356

[X], and [Y] tokens. Suppose the encoded embed-357

digns are eact, eTok, ex, and ey. We first classified358

the action name from eact. We then classified the359

token id in Fusion BERT’s vocabulary from etok360

for TOKEN and the pixel coordinate9 from ex and361

ey for MOVETO. All embeddings are projected362

to the class distributions with trainable linear layers.363

During training, we used the Softmax cross-entropy364

loss for the action name, token, x, and y. These365

were evenly added in a mini-batch:366

Lmb = ⟨Lname⟩+ ⟨Ltoken⟩+ ⟨Lx⟩+ ⟨Ly⟩,367

where ⟨·⟩ denotes average for non-pad labels.368

6(center x, center y, width, and height). All elements were
normalized by the width or height of a screenshot.

7For actions unrelated to the cursor position or sub-word,
their embeddings were filled with zeros.

8Width and height were set to zero
9x ∈ {1, ..., screen width} and y ∈ {1, ..., screen height}.

model cursor button text area
BUI-BERTsmall 1.00 0.89 0.77 0.54
BUI-BERTmedium 1.00 0.63 0.66 0.50
chance level - 0.43 - 0.42

Table 2: Exact match accuracy of BUI-BERTs on Pre-
Training for Actions. Models were trained on the four
tasks jointly. Chance levels of the button and area tasks
were calculated as reciprocals of the number of buttons.

6 Experiments10 369

First, we trained our BUI models on the PTA tasks 370

to pre-train the models. Second, we trained the 371

BUI models in the multi-task setting; thereafter, we 372

compared the BUI models to the models with dif- 373

ferent task styles. Finally, we analyzed the models. 374

6.1 Pre-Traing for Actions 375

We trained small and medium sized BUI-BERTs11 376

on PTA tasks jointly with 60k training examples. 377

Setup. The memory length of both models was 64. 378

We set the screen at 640px×448px and resized the 379

screenshots by half before inputting to ResNet18. 380

The maximum epoch was 50. We tracked the vali- 381

dation loss at the end of each epoch and used the 382

model with the smallest validation loss for the eval- 383

uation with the actual browser. During evaluation, 384

the trial was stopped and considered a failure if a 385

model did not submit an answer within 1.5 times 386

the number of steps in the gold sequences. We used 387

the ADAM optimizer (Kingma and Ba, 2014) with 388

a fixed learning rate of 5e-5 and accumulated the 389

gradient such that the mini-batch size was 128. 390

Results. Table 2 presents the results of the PTA 391

tasks. Our models performed well in the cursor, 392

button, and text tasks. The accuracy on the area 393

task was above the chance level, but it was lower 394

than the button task. The reason could be that the 395

area task requires the models to remember the label 396

in the instruction. This result suggests that room 397

for improvement exists in the memory mechanism. 398

6.2 Main Tasks 399

We trained the pre-trained BUI-BERTs on 400

CoLA (Warstadt et al., 2019), STS-B (Cer et al., 401

2017), MNLI-matched (Williams et al., 2018), 402

SQuADv2, VQAv2, and our SA tasks jointly. The 403

number of training examples were 8.6 k, 5.7 k, 393 404

k, 130 k, 444 k, and 50 k, respectively. The first 405

three tasks are from the GLUE benchmark. 406

10Note that our results are based on a single run.
11Initialized with the pre-trained BERTs from

https://github.com/google-research/bert
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model base LM #params exec. style architecture
BERTsmall / +V 31M / 42M task-spec. head BERT (Devlin et al., 2019)
BERTsmall-s2s+V BERTsmall 74M text gen. Enc-dec from Pr. LMs (Rothe et al., 2020)
BUI-BERTsmall 42M BUI action BUI-BERT (our base BUI model)
BUI-BERTmedium BERTmedium 54M BUI action BUI-BERT (our BUI model)
T5-small+V T5-small 72M text gen. T5 (Raffel et al., 2020)

Table 3: Models to be compared. Model with +V use an image input obtained from a frozen pre-trained ResNet18.
Of the #params, ResNet18 and its related layers account for approximately 11M.

model multi-task CoLA
M

STS-B
P

MNLI-m
macro f1

VQAv2
acc.

SQuADv2
exact.

SA
acc.

BERTsmall/+V no 31.3 81.2 75.8 42.9 / 51.4 56.8 -
BERTsmall-s2s+V w/o SA 0.0 82.5 75.5 51.4 47.0 -
BUI-BERTsmall all -1.0 72.6 70.5 48.1 49.1 63.4
BUI-BERTmedium all -2.0 78.2 75.7 48.8 52.2 65.1
T5-small+V w/o SA 9.5 86.9 81.8 52.4 70.3 -

Table 4: Overall scores on the validation splits. M and P denote Matthews’ and Pearson’s correlation, respectively.

Compared models. Table 3 shows the summary.407

BERTsmall/+V: To estimate the upper bound of per-408

formance, we fine-tuned BERTsmall to each task409

independently, except SA, with task-specific heads.410

BERTsmall-s2s+V, T5-small+V: For comparison411

with text generation models, we prepared an412

encoder-decoder model whose encoder and de-413

coder weights were initialized based on the weights414

of BERTsmall, and T5-small12. We trained those415

models on all the tasks except for SA jointly. The416

input sequences were generated such that they pro-417

vided the most complete information required to418

solve a task, for example, task description, question,419

and class labels, using templates (in Appendix B.1).420

The models with the suffix +V use an image in-421

put for VQA. We obtained the grid features using422

ResNet18 in a manner similar to BUI-BERTs. We423

inserted the features into the head of the input em-424

beddings. Appendix B.2 provides further details.425

Setup. We trained all models in 10 epochs. We426

tracked the validation loss at the end of each epoch427

to select the best model. The other conditions for428

BUI-BERTs were the same as those for the PTA429

training. We optimized the hyper-parameters for430

the compared models (see Appendix B.3).431

Results. Table 4 summarizes the results. A compar-432

ison between BERTsmall/+V and BUI-BERTsmall433

shows that the performance of BUI-BERTsmall was434

80-90% of that of the original BERTsmall fine-435

tuned on each task separately with classification436

heads. BUI-BERTsmall obtained lower scores than437

BERTsmall-s2s+V. This indicates that the BUI ac-438

tion style is more challenging than the language439

generation style; however, the models can learn440

in the BUI framework. The improvement of BUI-441

12Weights from https://huggingface.co/t5-small

BERTmedium suggests that LMs with higher perfor- 442

mance will give larger gains. T5 can be a candidate 443

owing to the highest scores. We leave for future 444

work the BUI model based on the encoder-decoder 445

LM as our base BERT is an encoder-only LM. Note 446

that the small CoLA scores in the multi-task set- 447

ting can be due to the relatively small training data. 448

Applying dynamic sampling of examples (Lu et al., 449

2020) might mitigate the inequality. 450

6.3 Analysis 451

Ablation study. We added two models to vali- 452

date PTA and the memory mechanism. For BUI- 453

BERTsmall w/o PTA, we initialized its weight with 454

BERTsmall and directly trained it on the multi- 455

task training. For BUI-BERTsmall w/o mem, we 456

omitted the memory sequence. This model was 457

re-initialized and trained on PTA. Table 5 shows 458

the results. Ablated models were lower than BUI- 459

BERTsmall on almost all the tasks. This shows that 460

PTA and the memory mechanism is effective. Espe- 461

cially, BUI-BERTsmall w/o mem largely degraded 462

on the SA tasks. This suggests that memory plays 463

important role in the interactive tasks. 464

SA tasks. BUI-BERTsmall/medium achieved high 465

accuracy on the SA-QID, -Q, and -H as presented 466

in Table 5. By contrast, the accuracy of the SA-A 467

for those models is low. BUI-BERTsmall/medium 468

failed to submit an answer in half/one-third of the 469

cases. This indicates those models didn’t fully 470

learn to click on the ’show’ hyperlinks. Although 471

BUI-BERTs can learn the procedures that consist 472

of querying text, reading a table, and inputting an 473

answer, this contrast suggests those models need 474

many examples to learn how to use the UI elements. 475

Unseen tasks. We used three GLUE tasks: 476
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CoLA STS-B MNLI-m VQAv2 SQuADv2 Search and Answer (SA)
-all -all -all -all -all -QID -Q -H -A -all

#steps 2 2 2.0 5.8 9.2 23.0 30.8 13.1 19.4 24.0
#cases 1043 1500 9815 214354 11873 1623 1634 182 1561 5000
metric M P macro f1 acc. exact acc. acc. acc. acc. acc.

BUI-BERTsml.
#sub
score

1042
-1.0

1500
72.6

9815
70.5

213294
48.1

10444
49.1

1547
86.1

1624
82.7

172
94.0

753
16.1

4096
63.4

w/o PTA #sub
score

1040
-2.0

1500
11.1

9813
68.0

213206
46.0

10254
44.9

1359
49.3

1622
75.5

131
70.9

755
5.0

3867
46.0

w/o mem #sub
score

1043
0.0

1500
50.1

9815
69.0

212406
46.9

8423
32.3

679
22.1

1210
1.0

55
10.4

106
0.4

1264
8.0

BUI-BERTmed.
#sub
score

1041
-1.5

1500
78.2

9814
75.8

213562
48.8

10335
52.2

1541
90.9

1627
93.0

171
72.0

1060
8.1

4399
65.1

Table 5: Ablation study with the validation splits. #steps : the averaged numbers of steps in the gold sequences.
#cases : the number of cases evaluated. #sub : the number of cases where the model made a submission. We counted
the cases with no submission as failure cases. M and P represent Matthews’ and Pearson’s correlation, respectively.

(#cor / #sub) WNLI MRPC SST-2
#cases 71 408 872

T5-small+V 0 / 0 0 / 0 124 / 155
BERTsmall-s2s+V 8 / 14 0 / 0 1 / 2
BUI-BERTsmall 20 / 35 169 / 238 160 / 359
BUI-BERTmedium 9 / 18 11 /31 27 / 57

Table 6: Unseen task evaluation on the validation splits.
#sub (#cor) : the number of cases where the model was
successful in submitting an answer (a correct answer).
#cases : the number of cases evaluated.

WNLI (Levesque et al., 2012), MRPC (Dolan and477

Brockett, 2005), and SST-2 (Socher et al., 2013).478

Those were two-choice tasks, and their similarity479

to the learned tasks was differed. WNLI and MNLI480

were textual entailment tasks. MRPC and STS-B481

were equivalence and similarity tasks. SST-2 is a482

sentiment prediction, which was new to the models.483

Table 6 presents the results. Nudged by the answer484

form of buttons, the BUI-BERTs can submit across485

the tasks. However, the number of times submitted486

and correct answers was low in all of those task.487

7 Discussion488

Thus far, we constructed the BUI framework to489

test whether it can serve as a foundation for uni-490

fied models. Experiments demonstrated that BUI-491

BERTs can learn different tasks in a single model492

using general inputs and outputs and an objec-493

tive function. Our tasks include multi-step pro-494

cedures, indicating that BUI models can go be-495

yond the single-step assumption. In particular, the496

BUI framework could be suitable for the dynamic497

grounding study (Chandu et al., 2021).498

Generalization performance is the key to a uni-499

fied model that is more valuable than a single model500

for multiple tasks. As shown in our analysis, the501

ability of BUI models to complete unseen tasks502

remained limited. The generalization of BUI mod-503

els involves both reasoning and procedure. Using 504

larger LMs will be effective if sufficient compu- 505

tational resources are available. Such LMs will 506

improve linguistic reasoning and the understanding 507

of instructions that explain procedures. However, 508

LMs pre-trained on text distribution are not trained 509

to perform procedures and thus need a large amount 510

of training examples to learn procedures. We could 511

obtain the examples by perturbing the task pages 512

we made (e.g., changing the font size and contents 513

position) and converting existing datasets. 514

Finally, we point out the problem structure be- 515

hind SA tasks, in which a model transfers some 516

processing to an external program (database search 517

in this case). Our results suggest that transformer 518

LMs with an interactive framework may address 519

this structure. A hierarchical system could be con- 520

sidered with specialized programs and a model that 521

uses such program to achieve both performance 522

and generality. Now might be a time to ask the 523

question: To what extent should unified models 524

unify task-related processing in their weights? 525

8 Conclusion 526

In this work, we demonstrated that BERT can be 527

applied to a task framework that requires multiple 528

actions to use a browser UI. In multi-task training, 529

our BERT extension with a memory mechanism 530

learned to solve six tasks according to the UI, in- 531

cluding hyperlinks, provided by the task pages. Si- 532

multaneously, we observed the low ability to solve 533

unseen tasks. It is worth noting that the proposed 534

solution could be limited by the small model size 535

and a lack of diversity of task pages. In future work, 536

we aim to create and evaluate larger models using 537

memory-efficient methods. We hope this study will 538

inspire the future design of unified models. 539
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A Environment Detail786

Browser. We used the following environment to787

render and execute task pages:788

• OS: Ubuntu 18.04, 20.04789

• Browser: Firefox version 87.0790

• Browser driver: geckodriver 0.29.0791

• Selenium: version 3.141.0792

• Default font (main text): Dejavu Serif, 16px793

• Default font (text, button): 13px794

Packages and libraries. We used Python 3.6 and795

PyTorch (1.10) to implement our BUI models. For796

sequence to sequence models, we used the Trans-797

formers library (4.12). To evaluate SQuAD and798

VQA, we used the public scripts13 .799

Training. We used a NVIDIA V100 GPU with800

32 GB VRAM or a NVIDIA RTX 3090 GPU with801

24 GM VRAM in each training run.802

A.1 Required Time 803

We report the required time for our experiments in 804

the Table 7. 805

B Additional Details on Compared 806

Models 807

B.1 Input Templates 808

We used templates to make the text inputs for the 809

seq2seq models. Table 8 shows the templates and 810

the rule to fill the sentences in the template for 811

each dataset. We made the templates so that they 812

provided task_type, instruction, content names and 813

content values. In addition, image embeddings are 814

added to the head of sequence for VQA. We made 815

TASK_TYPE and INSTRUCTION with reference 816

to the contents of the data set. 817

B.2 Image Input 818

First, we resize an given image 320px× 224px. If 819

the aspect ratio does not match, we center the image 820

and fill in the missing pixels with black pixel. Sec- 821

ond, we input the image to the frozen pre-trained 822

ResNet18 model to obtain the last feature map (C4; 823

10x7). We flat the feature map in one dimension 824

and input each feature to one fully-connected lin- 825

ear layer, which is trainable, to align the dimension 826

with the hidden dimension of the LM. Finally, we 827

concatenate those features and language embed- 828

dings before adding positional and segment type 829

embeddings. 830

B.3 Hyper-parameters 831

We used the ADAM optimizer without schedul- 832

ing of learning rate (LR), and enabled Automatic 833

Mixed Precision (AMP). Every training was 10 834

epoch. In a preliminary experiment, we observed 835

that optimization of pre-trained ResNet18 had little 836

impact on the VQA performance, so we only used 837

the frozen setting above. 838

BERTsmall / +V. We fixed the max token length 839

for the GLUE tasks and VQA 300, and for SQuAd 840

512. We tried six hyper-parameter combination: 841

the mini-batch size from {64, 128, 256}, the 842

LR from {1e-4, 5e-5}. We adopted the hyper- 843

parameter set whose smallest validation loss was 844

the smallest. 845

13SQuAD : https://rajpurkar.github.
io/SQuAD-explorer/ and VQA : https:
//github.com/GT-Vision-Lab/VQA.
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process time remarks
record gold seqs for PTA 6h 62k examples.
record gold seqs for the others ∼4d ∼1.3M examples.
Train small / medium on PTA in 50 ep. ∼2d / ∼4d 60k examples. with a GPU.
Train small / medium on the multi-task training in 10 ep. ∼6d / ∼12d ∼1.0M examples. with a GPU.
Predict with a model on val. split of PTA 20min 2k examples. with a GPU.
Predict with a model on val. split of the others ∼2d ∼230k examples. with a GPU.

Table 7: Required time. Since we used several servers with the different configurations, those values are approxi-
mations. Gold sequences are reusable if the screensize, tokenization and actions of the models are identical. We
saved the screenshots and actions of a single example in a single json file, and read it from disks each time we used
it. We used float32 for the training. We also tried float16 with automated mix precision. Although it reduced the
training time by about 30% (we doubled the batchsize using the reduced memory space), it sometimes caused NaNs
and stop the training. Therefore, we did not use it this time.

T5-small+V and BERTsmall-s2s+V. We fixed846

the base mini-batch size 32, the max token length847

for text-only tasks 512 and for text-and-image848

tasks 432 (+70 image embeddings). We tried six849

hyper-parameter combination: gradient accumula-850

tion from {1, 4} and LR from {1e-4, 5e-5, 1e-5}.851

We adopted the hyper-parameter set whose smallest852

validation loss was the smallest. In the T5-small+V853

training with the LR 1e-4 and the AMP enabled, we854

sometimes saw NaNs in training losses after several855

epochs. We ignored such losses and continued the856

training. (Unlike the case of BUI-BERT, NaNs did857

not occur in the parameters of the model.) The best858

hyper-parameters were (1, 1e-4) for T5-small+V,859

and (4, 5e-5) for BERTsmall-s2s+V860

B.4 Classification with Seq2Seq models861

For classification tasks, we considered the model862

failed to submit an answer when the generated text863

did not exactly match any class labels specified in864

the instruction.865

C Tasks in the BUI setup866

C.1 Instructions for Answer Forms867

Here, we shows the instructions and answer forms868

as images. Figure 5 shows the SQuAD and VQA869

pages. Figure 6 shows the task pages for the GLUE870

tasks. Figure 7 and Figure 8 show the task pages for871

the SA tasks. Instructions are basically the same as872

the counter parts for the seq2seq models shown in873

Table 8 except for that word choices are changed874

so that they fit to the screen.875

C.2 Templates for Pre-Training for Actions876

Vocabulary. We made a vocabulary from the877

training split of the Wikitext103 (Merity et al.,878

2016) corpus. We kept the words that consist of879

only alphabets and numbers. We lower-cased the880

words. 881

Sets of words in the instructions are expanded 882

to make the variation. We sampled one uniformly 883

from the instructions for a task instance. 884

C.2.1 Cursor 885

Instructions: 886

• Move the cursor in the box. 887

• Point to the box with the cursor. 888

The coordinates of the box was sampled from a 889

window uniformly. 890

C.2.2 Button 891

Instructions: 892

• {Click, Push, Press, Choose, Select} the but- 893

ton labelled WORD. 894

• {Click, Push, Press, Choose, Select} the 895

WORD button. 896

WORD was sampled from the vocabulary. 897

C.2.3 Text 898

Instructions: 899

• {Type, Enter, Input} the string to the left of it 900

in each text box. Click the submit button at 901

last. 902

Each string was made by jointing two words, sam- 903

pled from the vocabulary, with a space. 904

C.2.4 Area 905

Instructions: 906

• Scroll down until the buttons appear and click 907

the button labelled WORD. 908

• Scroll down until the buttons appear and click 909

the WORD button. 910

WORD was sampled from the vocabulary. 911
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Figure 5: Screen examples form the BUI version of VQAv2 (left) and that of SQuADv2 (right). Those are
screenshot that the BUI models receive. The blue dash rectangles show the initial visible area for the models. The
instructions and answer forms are common for the all examples.

Figure 6: Screen examples from the BUI version of the GLUE benchmark. The bottom margins are omitted.
While the contents in the bold solid boxes change depend on the examples, the instruction and the label buttons are
common. Note that tasks we did not used (QNLI, QQP, and RTE) are not presented.
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Figure 7: Screen examples of SA-QID, -Q and -H. The screenshots show the last step of tasks. These tasks are
expected to be solved by (1) extracting a key phrase from a given instruction, (2) querying the key phrase, (3) finding
an answer segment, and (4) entering the segment.

Figure 8: Screen examples of SA-A. These tasks are expected to be solved by (1) extracting a key phrase from
a given instruction, (2) querying the key phrase, (3) showing the detail, (4) reading the question, (5) finding the
answer in the context, and (6) entering the answer.
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C.3 Detail of Search and Answer Tasks912

For Search and Answer Tasks, we sampled 100 con-913

texts (paragraphs or images) from each of SQuAD914

and VQA to create a database. The database con-915

tains ∼2k questions because each context has ap-916

proximately 10 questions. We chose this database917

size to make it difficult to enter the whole data into918

the model. We assigned unique labels to each con-919

text and question in the database, CID, and QID,920

and created four tasks. A database yields 200 SA-H921

tasks and ∼2k SA-QID, -Q, -A tasks. Finally, we922

sampled 500 tasks from those generated tasks.923

In total, we created 100 databases (50000 tasks)924

for the training split, and 10 databases (5000 tasks)925

for the validation split. The contexts do not overlap926

between databases.927

The search UI uses partial matching on the en-928

tries929

C.4 Distribution of the Gold Sequence Length930

Figure 9 shows the distributions of the length of931

gold action sequences. Almost all of the examples932

fall within the upper limit of 50 steps that we set933

during our training. Tasks that require entering an-934

swers into text boxes tend to have a longer number935

of steps.936

D Additional Details on BUI-BERTs937

D.1 OCR Emulation938

We used OCR emulation, where we surrounds each939

word in HTML sources using span tags, instead940

of real OCR in this work. Figure 10 shows an941

example. The Emulation do not capture the text in942

text boxes owing to technical reason. Words are943

sorted in a top faster and left faster manner. Sorting944

preserves natural orders basically, but it sometimes945

breaks the order as shown in the figure.946

D.2 Mini-Batching Strategy947

Figure 11 illustrates mini-batching we used for948

training. We packed multiple trajectories in a line949

of mini-batches to increase the filling rate. We950

input memory and last actions recurrently for a tra-951

jectory and reset them at each head of trajectories.952

D.3 Learning Curves of BUI-BERTs953

Figure 12 shows the learning curves of the BUI954

models. In the PTA training, three models were955

roughly converged. In the multi-task training,956

all models except BUI-BERTsmall w/o PTA were957

roughly converged in 10 epoch. However, the loss958

average: 2.00 average: 9.23

average: 5.82 average: 24.03

average: 22.98 average: 30.75

average: 13.12 average: 19.36

average: 1.00 average: 2.00

average: 17.72 average: 5.97

Figure 9: Distributions of the length of gold action
sequences on the dev splits. We show cumulative values.
Since the number of actions in the document classifica-
tion task is basically two, we showed MNLI as a typical
example.
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Figure 10: Example of our OCR emulation. (a) Example screen. (b) Detected words. detected words are surrounded
by solid boxes. (c) Obtained text sequence. Parts with the broken order are underlined.

Figure 11: Mini-batching for multi-step training.

of BUI-BERTsmall w/o PTA began to reduce drasti-959

cally around 5k update and it could become smaller960

after 10 epoch. This indicate that PTA speeds up961

the convergence of the loss at least, but it may not962

affect the final performance achieved after longer963

time.964

D.4 Cases of Task Execution965

We show the cases of task execution using BUI-966

BERTsmall in Figure 13 as an aid to understanding.967
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Figure 12: Learning curves of the BUI models.
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(a) Failure (timeout). (CoLA val. 554)

(b) Success. (SA val. 34)

(c) Failure. Gold answer : article 30, model : unanswerable (SA val. 42)

(d) Failure. Gold answer : gray, model : blue. (SA val. 46)

(e) Success. Gold answer : third, model : third-most abundant element. (SA val. 67)

Figure 13: Case studies. (a) Model repeated move_to (172, 200), click, token (“unacceptable”), move_to (172, 178),
click, token (“unacceptable”), move_to (172, 200), . . . (b) Model queried the first three words, which is the same
strategy as the gold sequence, and obtained a list. It scrolled down until the question appeared and then extracted the
QID successfully. (c) Model went to the detail and read all the context. However, it chose the unanswerable check
box to an answerable question. (d) Model went to the detail to see the picture. The answer type was correct, but the
answer was different to the gold answer. (e) Model went to the detail and read all the context to answer correctly.
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