
Learning to Reason Across
Parallel Samples for LLM Reasoning

Jianing Qi1, Xi Ye2, Hao Tang1,3, Zhigang Zhu1,4, Eunsol Choi5

CUNY Grad Center1, Princeton University2, BMCC3, CCNY4,
New York University5

jqi@gradcenter.cuny.edu, xi.ye@princeton.edu, htang@bmcc.cuny.edu
zzhu@ccny.cuny.edu, eunsol@nyu.edu

Abstract

Scaling test-time compute brings substantial performance gains for large language
models (LLMs). By sampling multiple answers and heuristically aggregate their
answers (e.g., either through majority voting or using verifiers to rank the answers),
one can achieve consistent performance gains in math domains. In this paper, we
propose a new way to leverage such multiple sample set. We train a compact
LLM, called Sample Set Aggregator (SSA), that takes a concatenated sequence of
multiple samples and output the final answer, optimizing it for the answer accuracy
with reinforcement learning. Experiments on five reasoning datasets demonstrate
both the efficacy and efficiency of SSA. Notably, SSA improves over naive majority
voting by 8% pass@5 on MATH. Furthermore, our 3B SSA surpasses model-based
re-ranking with a much larger 72B process reward model. Our analysis also
shows promising generalization ability of SSA, across sample set sizes, base model
families and scales, and tasks. By separating LLMs to generate answers and LLMs
to analyze and aggregate sampled answers, our approach can work with the outputs
from premier black box models easily and efficiently.

LLM
Ans 1

Ans 2

Ans 3

SSA Ans

Our Sample Set Aggregator (SSA) approach combines
parallel sampling with sequential reasoning

Frozen

Trainable

Hybrid of Parallel & Sequential Method

Concatenate

LLM
Ans 1

Ans 2

Ans 3

LLM Ans 1 Ans 2 Ans 3

0.6

0.9

0.8

Verifier

Sample K answers and score independently, then
select the highest-​scoring one

LLM is trained to extend reasoning
path until reaching correct answer

Parallel
Method

Sequential
Method

Choose max

Figure 1: Illustration of our approach (bottom), parallel method (top left), and sequential method
(top right). We train a compact LLM, called Sample Set Aggregator (SSA), to take a concatenated
sequence of multiple samples and output the final answer.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

1 Introduction

Recent advances in large language models (LLMs) have significantly enhanced their ability to perform
complex reasoning tasks [El-Kishky et al., 2024, DeepSeek-AI et al., 2025]. Orthogonal to approaches
to improve training LLMs through better learning objectives [Ouyang et al., 2022, Rafailov et al.,
2023], architectures [Gu and Dao, 2024, Peng et al., 2023] or training dataset composition [Gunasekar
et al., 2023, Wettig et al., 2025], recent work [Snell et al., 2025] explores a new dimension: test-time
scaling. While having the LLM fixed, by allocating more computation at inference time (e.g., through
repeated sampling and majority voting), one can improve the final task performance.

In general, test-time scaling methods fall into two paradigms. Parallel scaling generates multiple
reasoning paths independently and aggregates them via strategies such as majority voting or best-of-N
selection [Wang et al., 2023, Uesato et al., 2022, Lightman et al., 2024]. Sequential scaling, on the
other hand, iteratively refines a single solution, often through prompting-based self-reflection or by
incentivizing iterative computation [DeepSeek-AI et al., 2025, Muennighoff et al., 2025, Kumar et al.,
2025]. In this paper, we introduce a novel test-time scaling approach that leverages both parallel and
sequential scaling. Figure 1 illustrates our approach in comparison with prior work.

We separately have an LM to draft multiple answers and another LM to combine multiple answers to
generate the final answer, naming the latter Sample Set Aggregator (SSA). SSA is optimized with
reinforcement learning (RL) to maximize final answer accuracy. Unlike parallel scaling approaches
that mostly view individual samples from LLMs in isolation, SSA can interpret multiple generations
as representations of the LM’s output distribution, thus directly optimizing the synthesis of the final
answer based on the landscape of the output distribution.

We conduct extensive experiments across five reasoning benchmarks under controlled test-time
compute budgets. Results show that SSA substantially narrows the gap between actual model
performance and oracle-best accuracy (pass@K), outperforming standard parallel strategies such
as reward-based reranking. Moreover, we demonstrate that a compact SSA model can match
the performance of reinforcement-trained larger models used in sequential scaling, suggesting the
effectiveness of SSA as a lightweight way for sequential scaling. Further analysis highlights the
generalization capabilities of SSA: SSA trained on one dataset for a particular model can successfully
synthesize outputs from different model families and sizes across different tasks.

We summarize our key contributions and findings as follows:

• SSA, a lightweight LLM is introduced that concatenates K parallel candidates from a frozen base
model and then performs one sequential RL step to generate the final answer. This single pass
unifies the strengths of parallel and sequential test-time scaling, showing strong performance gain
while training only a small model.

• Conceptually, we propose to reason over the output distribution. Specifically, instead of training
the base LM, SSA optimizes over its sampled outputs. The base LM that produces answers remains
to be a black box; SSA is trained only with sampled answers from base LMs.

• We observe broad and consistent empirical gains across five math benchmarks, two LLM families
(Qwen 2.5, Llama 3.1) and three base sizes (7B, 14B, 32B), over strong baselines.

Project website: user074.github.io/ssa-parallel-reasoning

2 Related Work

Scaling test-time compute in parallel. Recent research has established the effectiveness of increasing
compute used at inference time, known as test-time scaling [El-Kishky et al., 2024, DeepSeek-AI
et al., 2025, Snell et al., 2025, Brown et al., 2025]. A prominent approach for test-time scaling focuses
on parallel scaling, which samples multiple answers independently and aggregates them into a single
answer. This aggregation can be performed through majority voting [Wang et al., 2023, 2024a] or
more sophisticated selection mechanisms. For instance, some methods prompt language models to
select from one of the multiple samples [Chen et al., 2024a], while others employ dedicated verifier
models to score potential solutions [Cobbe et al., 2021, Uesato et al., 2022, Lightman et al., 2024, Li
et al., 2023, Wang et al., 2024b] and take a weighted majority solution.

2

https://user074.github.io/ssa-parallel-reasoning/

Beyond naively sampling multiple answers with fixed decoding strategy, researchers have explored
advanced search strategies, such as beam search [Yao et al., 2023, Xie et al., 2023] and Monte-Carlo
tree search (MCTS) [Li et al., 2025, Xie et al., 2024]. These search-based methods typically rely
on verifiers [Xie et al., 2023] or process reward models [Cobbe et al., 2021, Wang et al., 2024b] to
guide the decoding process, while still evaluating different rollouts independently. In contrast to
these approaches that primarily assess samples in isolation, our approach learns to compare different
samples jointly to determine the final answer.

Scaling test-time compute sequentially. Another line of research focuses on sequential scaling,
which increases compute by iteratively updating and refining a solution. One way is to prompt or
train LLMs to self-refine their proposed solutions [Madaan et al., 2023, Kumar et al., 2025, Qu et al.,
2024, Chen et al., 2024b] in an iterative manner. Recent work has demonstrated the possibility of
incentivizing LLMs to spend more tokens in a single completion through reinforcement learning
[DeepSeek-AI et al., 2025, Team et al., 2025] or by forcing LLMs to continue their reasoning
chains by appending "wait" token [Muennighoff et al., 2025]. While sequential scaling often yields
performance improvements, recent studies debate on whether it outperforms simpler parallel scaling
when controlling for compute [Zeng et al., 2025b, Hochlehnert et al., 2025a,b]. Our approach bridges
these paradigms by operating on parallel samples but treating them as a sequence rather than as
isolated instances. The growing length of CoT traces incurs substantial inference cost. Recent efforts
have sought to improve efficiency by introducing length penalties [Aggarwal and Welleck, 2025, Sui
et al., 2025], adaptive thinking [Fang et al., 2025, Zhang et al., 2025b, Lou et al., 2025], or applying
early stopping [Zhang et al., 2025a, Yang et al., 2025b]. In contrast, our approach trains a compact
aggregator that achieves both strong performance and efficiency.

Training language models for reasoning. More broadly, our work aims to enhance LLM perfor-
mance on reasoning tasks, which has been a central pursuit in LLM development. Substantial efforts
have been devoted to training LLMs as reasoning policies (distributions more likely to contain correct
answers) through supervised fine-tuning on collections of chain-of-thought [Azerbayev et al., 2024,
Puerto et al., 2024, Luo et al., 2023], or through reinforcement learning with rewards on intermediate
steps [Uesato et al., 2022, Wang et al., 2024b, Kazemnejad et al., 2025] or based solely on final
answer correctness [DeepSeek-AI et al., 2025]. Our research is more closely aligned with work on
training LLMs as better verifiers for reasoning tasks and can complement solutions from any policy
models. Existing methods train LLM verifiers to assess individual solutions using human annotations
[Cobbe et al., 2021] or noisy labels derived from answer correctness [Wang et al., 2024b, Hosseini
et al., 2024, Liang et al., 2024]. Our approach differs in that we train LLMs to verify sequences of
solutions using reinforcement learning with a verifiable reward signal, the final answer correctness.

3 Method

3.1 Problem Formulation

Our method assumes two models: (1) LMans: a language model that generate a solution given an
input, and (2) LMSSA: a language model that takes an input and multiple solutions and generates the
final solution.

Let x be an input problem token sequence drawn from a data distribution D, our method solves the
problem with the following two steps:

Step 1: Parallel answer set generation. In this step, we use the LMans, which defines a conditional
distribution LMans(y|x) over all possible tokens y ∈ Y , to sample K candidate solution sequences
from LMans, and obtain

YK = {y1,y2, . . . ,yK}, yi ∼ LMans(· | x) independently.

Step 2: Analyzing parallel answer set for the final answer. We use a separate trained language
model LMSSA that takes sampled answer sequence as input to generate the final answer yfinal.

yfinal ∼ LMSSA(· | x, YK)

Crucially, we treat the LMans as a black-box sampler of potential solutions, and train a much smaller
model (LMSSA) to do a post hoc aggregation as opposed to performing reinforcement learning on
the answer model. Separating the answer generation model from the SSA introduces flexibility

3

in choosing a different generation model, and enable the use of larger models that are difficult to
fine-tune due to limited compute or are only accessible via APIs. Thus we essentially propose a
general conceptual framework for test-time computing.

To enable an LLM to function as SSA LMSSA for synthesizing the final answer, we provide a natural
language instruction directing the model to “think carefully and thoroughly evaluate the proposed
answer, and identify one correct answer from the proposed candidates”. Following common practice
in prior work [DeepSeek-AI et al., 2025], we specify a structured output format, which we use to
extract the final answer. Please refer to Appendix B Figure 8 for details of the prompt.

In the rest of this section, we will introduce how we train the LMSSA to maximize the correctness of
its final answer. We consider two ways of optimizing the SSA: reinforcement learning (§ 3.2) and
supervised-finetuning (§ 3.3).

3.2 Training SSA with Reinforcement Learning

Let y∗ be the gold solution for x. For the final yfinal given by SSA LMSSA(· | x, YK), we design
a verifiable reward R

(
yfinal,y

∗) that mainly verifies the answer correctness, and update LMSSA to
maximize the expected reward:

E[(x,y∗)∼D, YK∼LMans(·|x)]
[
R
(
LMSSA(x, YK),y∗)]. R(yfinal,y

∗) =


1, if yi is correct,

0.05, if only format is correct,

0, otherwise.

Following prior work [DeepSeek-AI et al., 2025], our reward also consider the format of the output
specified in the prompt. Specifically, we let the reward R to be 1.0 if the answer is correct; we let the
reward be 0.05 if the output follows the format and is incorrect; we let the reward to be 0.0 if the
output does not follow and format.

We use the Group-Relative Policy Optimization (GRPO [Shao et al., 2024]) as our optimization
algorithm, which simplified value function of PPO [Schulman et al., 2017] with a normalized
reward from a group. For the convention of notation, we use πθ for LMSSA with parameter θ. For
completeness, we describe it here. It maximizes:

JGRPO(θ) = E x∼D
YK∼LMans(·|x)

{yi}∼πθold
(·|x,YK)

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

[
min

(
ρi,t(θ) Âi,t, clip

(
ρi,t(θ), 1− ε, 1 + ε

)
Âi,t

)]
− β DKL

(
πθ ∥πref

)
,

with importance weight ρi,t(θ) =
πθ(yi,t | x, YK , yi,<t)

πθold(yi,t | x, YK , yi,<t)
with the advantage as Âi,t =

ri−mean(r)
std(r) ,

Reward as ri = R(yi,y
∗), r = r1, r2, ..., rn, and ε, β are hyperparameters. This policy gradient

method is to maximize the Âi,t which translates to expected reward from ri = R(yi,y
∗).

Implementation We use a training set combining GSM8K and MATH [Cobbe et al., 2021, Hendrycks
et al., 2021]. To prepare the dataset, we use Qwen2.5-7B-Instruct model as LMans to generate five
answers for each questions [Qwen et al., 2025]. Then we concatenate the question and each answer
(ordered randomly) as input context of SSA LLM. We filter out instances where the combined answers
exceed 4000 tokens, or where fewer than three valid answers are available. This results a dataset with
a total size of 17.4k. We set the GRPO sample size to be 8, resulting in 8 ∗ 17.4k ≈ 140k during
training.

3.3 Training SSA With Supervised Finetuning

We also explore the training of the SSA via supervised fine-tuning (SFT), leveraging a stronger
model to construct oracle reasoning paths across multiple sampled answers to identify correct final
answer. Once we constructed the oracle dataset, we use the standard language modeling objective,
but only training on the output part. We assume a dataset of oracle reasoning path that leads to y∗. If
y∗ = (y∗1 , y

∗
2 , . . . , y

∗
T) is tokenized into T tokens, the SFT loss is to minimize:

LSFT(θ) = −
∑

(x, YK ,y∗)∈D

T∑
t=1

log
[
LMSSA

(
y∗t

∣∣ x, YK , y∗
<t

)]
,

4

Implementation We prompt Qwen 2.5 7B Instruct model for 5 candidate solutions per question in the
GSM8K dataset. Then, we provide concatenated candidate solutions to GPT-4.1 Nano model along
with the original question and ground-truth answer (The exact prompt is in Appendix B). GPT-4.1
Nano then provides a step-by-step reasoning process to identify and generate the best final answer
from these candidates, yielding 7.47k training examples. Overall, this approach achieves a 96.24%
match rate with the original ground-truth answers.1

4 Experiments

4.1 Experimental Settings

Datasets. For evaluation, we use an array of commonly used math reasoning datasets: the test split
of GSM8K, MATH as the in-domain evaluation sets, and AIME 2024 [MAA, 2024], AMC 2023, and
Olympiad [He et al., 2024] as the test sets. We use the extracted answers and grade them against the
ground truth answers, using the library that has been used in prior work [Lightman et al., 2024].

Base Models for Candidate Generation (LMans). We use the Qwen-2.5-Instruct model, with sizes
7B, 14B, and 32B to generate K of answers. We use a decoding temperature 0.5 to construct the
training and test dataset. In the training phase, we use k = 5 to train the SSA model. In the testing
phase, we evaluated the performance with k = {5, 10, 15}.
Base Models for SSA (LMSSA). We use the Qwen-2.5-base model with sizes 0.5B, 1.5B, and 3B.
We chose the Qwen-2.5 model family due to its popularity and wide availability for PRM verifiers,
making it possible to compare against existing PRM verifiers from the same model family.

Training Implementation Details. For the training library, we use torchtune due to its efficient
VRAM management [torchtune maintainers and contributors, 2024]. We use GRPO batch sample
group size 8, batch size 1, temperature 1.0, AdamW optimizer, KL coefficient 0.01, and learning rate
1e-5. We trained all experiments one epoch. For hardware, we use 8*H100 80GB for training. For
shorter context, it is also possible to train with 48GB VRAM.

4.2 Comparison Systems

The following models are compared, including the proposed SSA with three variations.

Rule-based Baselines. We report pass@k, which reports the percentage of examples where any of k
number of solution is correct [Brown et al., 2025]. Pass@k also serves as the oracle performance
assuming we have an oracle verifier. We also report the majority vote [Wang et al., 2023], counting
the most frequent answer among the answer set.

Outcome Reward Model (ORM). We use off the shelf Llama-3.1-8B ORM model trained with
RLHF-Reward Modeling [Xiong et al., 2024] to re-rank multiple samples, selecting the best one
scored by the reward. We will call it Llama-ORM (8B). It is trained with 273k data. For ORM
evaluations, it adds an evaluation token at the end of the answer and the model will provide a score.

Process Reward Model (PRM). One prominent way to leverage multiple parallel sample is using
process reward models. We use the Qwen-7B PRM (Qwen PRM) and Qwen-72B PRM model from
Zhang et al. [2025c] to re-rank the candidate solutions.

We note that compared to the PRM model, our SSA is trained with significantly less resources
regarding both model scale (0.5B - 3B vs 7B) and the amount of training data. Specifically, Qwen-7B
PRM is trained with more than 500,000 queries with 6 to 8 answers with step labels, resulting
over 3 million total training data (about 20× larger than the training data size of SSA). For a more
fair comparison, we also include Shepherd PRM [Wang et al., 2024b], 7B model trained with
440k total step level data from their MCTS roll out. Additionally, Qwen PRM initialized from
Qwen2.5-Math-7B-Instruct [Yang et al., 2024], whereas we initialized from the Qwen 2.5 base
model.

For evaluation, we follow the training method of Qwen PRM [Zhang et al., 2025c], and we separate
steps with ‘\n\n’ delimiter. Then we use PRM model to compute a score for each step and use their
product to calculate the response score since this yielded the best performance in their experiments.

1When we inspected the remaining cases, we find many ground-truth labels are incorrect.

5

Table 1: Results (accuracy %) with k = 5 candidate answers generated by Qwen2.5-7B-Instruct as
LLMans model. Aggregation overheads (seconds/question) is measured end to end with AMC23 40
questions with k=5.

Method Aggregation
Overhead (s)

Datasets Avg
GSM8K MATH AIME24 AMC23 Olympiad

pass@1 - 89.01 64.00 10.00 37.50 27.00 45.50
pass@5 - 95.45 78.00 16.67 67.50 41.10 59.74
Majority Vote - 91.66 68.20 10.00 47.50 31.01 49.67
USC w/ Qwen 3B 8.48 61.18 42.80 6.67 17.50 15.43 28.72
USC w/ Qwen 7B 5.89 5.89 61.20 6.67 47.50 28.78 43.83
LLama ORM (8B) 0.61 93.1 67.40 13.33 47.50 28.64 49.99
Qwen PRM (7B) 0.64 92.57 69.40 13.33 57.50 32.05 52.97
Qwen PRM (72B) 5.86 92.87 69.6 13.33 57.50 33.68 53.40
Shepherd PRM (7B) 0.65 90.75 64.40 13.33 35.00 27.00 46.10
SSA RL (0.5B) 0.20 92.65 75.40 10.00 57.50 37.98 54.71
SSA RL (1.5B) 0.33 92.49 76.60 10.00 52.50 38.72 54.06
SSA RL (3B) 0.55 93.25 76.80 13.33 57.50 39.76 56.13

Universal Self Consistency (USC) [Chen et al., 2024a]. USC is a prompting-based method takes
a concatenation of the multiple parallel sample answers, and instructs a LM to generate the final
answer. The exact prompt can be found in Appendix B. The task setting is equivalent to our SSA
method, but the LM is not trained to optimize for the final answer.

SSA and Varitions. We train three types of the SSA models, one trained with the SFT objective only
(SFT), one trained with SFT objective and then with the RL objective (SFT + RL), and one that is
trained with RL objective only (RL). For SFT objective, we use the dataset described in Section 3.3 to
finetune the model. We use learning rates 5e-5, 2e-5, and 1e-5 for 0.5B, 1.5B, and 3B correspondingly.
For RL objective, we use GRPO method described in the Section 3.2. For SFT + RL objective, we
use the trained model from the SFT objective, then we continue to train the RL objective on top of it.
For each variant, we present models of three different sizes, trained from Qwen-0.5B, 1.5B, and 3B
base models checkpoint respectively.

As an ablation for the SSA (RL), we also present SSA trained on GSM8K data only. Another ablation
is to train the SSA RL version without thinking. It helps us to understand how each design decisions
affect the output and performance under controlled settings.

5 Main Results

5.1 Comparison with Parallel Scaling Baselines

5 10 15
k = Number of Candidate Solutions

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

7B LLMans

5 10 15
k = Number of Candidate Solutions

14B LLMans

5 10 15
k = Number of Candidate Solutions

32B LLMans

SSA RL 3B
SSA RL 1.5B
SSA RL 0.5B
Qwen PRM 7B
Majority

Comparison of Different Methods Across Model Sizes

Figure 2: Compare the performance of SSA RL, PRM, and Majority Vote methods across Qwen 2.5
LLMans model sizes (7B, 14B, 32B) and number of candidate solutions k = 5, 10, 15.

We report performances across GSM8K, MATH, AIME24, AMC23, Olympiad benchmark in Table
1, more detailed results can be seen in Table 4 Appendix A.

6

Table 2: Generalization results for different model families (accuracy %) with k = 5 candidate from
Llama 3.1 8B Instruct LLMans models. Aggregation overhead (seconds) is measured end to end with
AMC23 40 questions with k=5.

Method Aggregation
Overhead (s)

Datasets Avg
GSM8K MATH AIME24 AMC23 Olympiad

Majority Vote - 87.95 50.40 6.67 35.00 17.66 39.54
USC w/ Qwen 7B 5.89 84.15 51.6 6.67 37.5 19.29 39.84
LLama ORM (8B) 0.61 89.61 51.8 13.33 30.00 18.4 40.63
Qwen PRM (7B) 0.64 91.51 56.20 13.33 35.00 20.77 43.36
SSA RL (0.5B) 0.20 88.17 52.80 10.00 30.00 20.18 40.23
SSA RL (1.5B) 0.33 88.48 56.60 10.00 27.50 20.47 40.61
SSA RL (3B) 0.55 89.08 57.80 10.00 32.50 20.62 42.00

Overall, the results suggest that SSA is highly effective at leveraging multiple sampled solutions.
In comparison to baseline methods, SSA substantially narrows the performance gap relative to the
oracle (pass@5). Notably, even the smallest SSA variant leads to strong gains. SSA (0.5B) achieves
an average performance of 54.7%, even outperforming the Qwen PRM (7B) baseline which uses
a much larger model. We focus on SSA RL results in this section and leave more detailed results
including SSA SFT and SSA SFT + RL in Appendix A.

5.2 Generalization Capabilities of SSA.

Generalization across scales. SSA trained on outputs from a smaller answer model (Qwen 2.5 7B
Instruct) can generalize to outputs from larger answer models (14B, 32B). Figure 2 compare the
overall performance of SSA and the other baselines under different numbers of samples. We can
see that SSA RL consistently outperform the baselines under different number of candidate solution
samples across Qwen models with scales ranging from 7B to 32B. More SSA versions and results are
in Table 4 in the Appendix A

Generalization across model families. In addition to the Qwen 2.5 7B Instruct model, we also
tested Llama 3.1 8B Instruct model for inference [Grattafiori et al., 2024].

Results are in Table 2. We can see the SSA method can also generalize well outside of the training
data distribution and outperforming Majority Vote, USC, and ORM methods. While Qwen PRM
performs slightly better than SSA RL 3B here (+1.36%), it requires substantially more training data
(over 3 million examples , x21 times) and a larger model (7B).

Generalization to harder datasets. In Table 1, while we have trained the SSA models with problems
only from GSM8K and MATH, we observe substantial performance gains on other harder datasets
(AMC23 and Olympiad). Such results indicate SSA can generalize to unseen test sets outside of the
training datasets.

In addition, we tested SSA on general tasks (specifically ARC-C, MMLU-Pro, and TruthfulQA [Clark
et al., 2018, Wang et al., 2024c, Lin et al., 2022]) without additional training. We observe minor gains
compared to majority vote, especially when using both SFT and RL, in ARC-C and MMLU-Pro
dataset, but very little for TruthfulQA dataset. Further research is needed to study generalization
across different domains. More details can be found in Appendix A.8.

5.3 Comparison with Sequential Test-time Scaling

We have demonstrated the advantageous of SSA over diverse parallel scaling methods in early §5.1.
We now compare the performance on SSA and reasoning models that are enabled to spend more
test-time compute sequentially with an RL-based approach as in [DeepSeek-AI et al., 2025]. In
particular, we use the results reported by Simple-RL Zoo from Zeng et al. [2025a] because they also
uses Qwen-series models and train them on GSM8K and MATH dataset. In our comparison, we
match the test-time computation, specifically, our 3B SSA is trained with Qwen-2.5-7B answers,
but we apply it on top of 7B, 14B, 32B LLMans models. We sample 8 candidate solutions from the
LLMans model with a maximum token length of 1,024 per answer, roughly matching the maximal
generation length, 8,192, of these reasoning models.

7

Table 3: Performance of SSA (accuracy, % averaged over 5 datasets) under increasing number of
samples K. ∗ denote runs that use the adapted two-stage SSA (applied when K>=32). SSA at
K = 15, 64 even outperform majority voting and PRM at K = 128.

Answer K 15 32 64 128

Majority Vote 54.73 54.07 54.43 55.11
Qwen PRM (7B) 56.02 55.37 58.49 56.58
SSA RL (3B) 59.12 58.42∗ 59.78∗ 58.68∗

7B 14B 32B
Answer LLM Model Size

40

45

50

55

60

65

70

75

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

57.4
59.6

64.6

58.6
60.1

65.8

51.8

55.8

61.8

Model Performance by Size
Model

LLMans+ SSA 3B
Sequential Scaling w/ RL
LLMans Majority Vote

Figure 3: Performance comparison between se-
quential scaling with RL and our SSA

As shown in Figure 3, both the SSA and the RL
training from sequential scaling improve over
majority voting. While SSA slightly underper-
forms sequential scaling with RL training, note
that we only optimize the 3B model as opposed
to the 7B, 14B, and 32B model.

5.4 Scaling
SSA to handle a larger sample set

In this section, we study SSA performance at
larger K values (K=32–128). So far, SSA con-
siders all K answers as a concatenated single in-
put. However, concatenation at larger K quickly
runs into context length limitations, leading to
performance degradation or failures in answer
extraction. For instance, with K = 32, the concatenated input length approaches ∼30K tokens,
nearly saturating the 32K context window of our backbone model (Qwen-2.5-3B). Furthermore, prior
work highlights that the effective usable window is often shorter than the nominal size [Yang et al.,
2025a, Liu et al., 2024, Hsieh et al., 2024, Ye et al., 2025].

Two-Stage SSA To address this, we introduce a simple yet effective two-stage adaptation of SSA
for large K similar to [Toshniwal et al., 2025]. In the first stage, we evenly split the K samples
into l2 groups of size l1, and run SSA independently on each group to produce l2 intermediate
candidates. In the second stage, SSA is applied to aggregate these l2 candidates into a final answer.
Instead of running SSA once, with this two-stage adaptation, we run SSA for l2 + 1 times, l2 times
to aggregate l1 inputs, and once to aggregate l2 inputs. We include full descriptions of two stage
SSA in Appendix A.5. For our experiments, we set the hyperparameter l1 = 15. This sets l2 = 3 for
K = 32, and l2 = 5 for K = 64 and l2 = 9 for K = 128.

Results Table 3 presents results of SSA under increasing K on Qwen-2.5-7B outputs, compared
against majority voting and PRM-7B. We find that SSA makes more efficient use of samples,
achieving strong performance. For example, SSA at K = 15 already surpasses both majority vote
and PRM at K = 128. By contrast, PRM shows less stable performance (with noticeable fluctuations
across K), as it operates by scoring individual answers without cross-sample aggregation, making it
more vulnerable to the noisy reward model.

6 Analyses

6.1 Comparing RL vs SFT

As an alternative to RL, we can train the SSA via supervised fine-tuning (SFT). How would SFT
compare to RL? In our setup, we use the dataset described in Section 3.3 and fine-tune 0.5B, 1.5B,
and 3B SSA models on this data for one epoch (learning rates 5e-5, 2e-5, and 1e-5, respectively). For
comparison, we also train SSA models with only RL (on the same GSM8K problems for SFT) for
controlled settings. Figure 4a and Table 6 (Appendix A.2) summarize the results.

We observe that SFT slightly outperforms RL in 0.5B, suggesting that direct supervision from
high-quality data can help small model. For larger models (1.5B, 3B), RL yields better accuracy
and robustness to larger k during inference. SFT trained on LLMans with k = 5 generalizes less

8

0.5B 1.5B 3B
SSA Model Size

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

49.0
50.0

53.9

47.7

51.7

55.4

49.8

51.3

55.2

48.3

55.4 55.0

51.2
52.0

48.1

50.4

49.0
47.9

Average Performance Across All Datasets by Model Size

RL No-Think (k=5)
RL No-Think (k=10)
RL (k=5)
RL (k=10)
SFT (k=5)
SFT (k=10)

(a) Performance comparison of different training meth-
ods (SFT, No-Think, RL) across model sizes.

0 500 1000 1500 2000
Training Step

50

100

150

200

250

Re
sp

on
se

 L
en

gt
h

(to
ke

ns
)

Response Length Throughout Training by Model Size

0.5B (Running Avg)
1.5B (Running Avg)
3B (Running Avg)

(b) Response length evolution during training for dif-
ferent model sizes.

Figure 4: Training method performance and response length analysis. (a) Average accuracy across
datasets shows RL method is more generalizable than SFT method, with performance improving for
larger models. (b) Response length trends during training show a rapid decrease of output length.

effectively to k = 10. Overall, both SFT and RL can work well, but SFT’s performance relies heavily
on dataset quality and alignment. We also note that SFT tends to produce more readable reasoning
traces, whereas RL outputs are often minimal (example outputs can be found in Appendix C).

6.2 To think or not to think

A distinct pattern we noted in our RL training is the reduction of the thinking tokens. Figure 4b shows
how response length quickly drops during training across all model sizes. The model often simply
repeats the provided instruction format for thinking (e.g., ‘<think>reasoning process here</think>’)
followed immediately with the final answer. Examples are shown in Appendix C Figure 14. This
contrasts with other RL-based reasoning models that generate longer explanations with more training
[DeepSeek-AI et al., 2025, Zeng et al., 2025a]. It is likely because our SSA is conditioned on multiple
candidate solutions, reducing the utility of detailed reasoning.

To assess the necessity of explicit reasoning tokens, we train an RL model variant without the
reasoning step (‘No Think’), where the model directly generates the answer (see Appendix B for
prompt and Appendix C Figure 15 for example). Figure 4a summarizes the results, and Table 6 in
Appendix A.2 compares this variant with the original approach across three model sizes in details.
We observe minor performance degradation without explicit thinking, suggesting detailed reasoning
tokens might not substantially contribute to the final performance in our current setup.

7 Conclusion

We introduce SSA, a small LM trained with RL that can leverage outputs from a larger base LLM.
By decoupling RL training from base model, it suggests that the quality of the base model knowledge
is more important for performance. This novel hybrid approach, blending parallel and sequential
scaling methods, provides practical benefits for plug and play.

Limitations Across benchmarks, SSA succeeds mainly by picking an correct candidate among input
candidate answers. Failures happens mainly when the gold answer is absent among the candidates
(Appendix A.6 quantifies this trend). We experimented with enabling SSA to generate new final
answers by cutting the last 10% of candidate answer tokens, but this does not yield better performance
(See Appendix A.7 for details).

Future work We outline few possibilities for further improving and extending our approach.
Promising directions include scaling the number of outputs to be aggregated, as well as building SSA
that can incorporate outputs from multiple LLMs. Improving its performance for diverse application
beyond mathematical reasoning, as well as enhacing SSA’s new target answer synthesis ability can be
fruitful. Overall, we believe SSA’s hybrid approach offers a promising direction for future research in
LLM reasoning.

9

Acknowledgments

The work is supported by the National Science Foundation (NSF) through Awards #2131186 (CISE-
MSI), #1827505 (PFI), and the US Air Force Office of Scientific Research (AFOSR) via Award
#FA9550-21-1-0082. The work is also supported by a College-wide Research Vision (CRV) Fund
from the CCNY Provost’s Office and the Google CyberNYC Initiative. This work used Google
Cloud through the CloudBank project, which is supported by NSF Award #1925001. We gratefully
acknowledge use of the research computing resources of the Empire AI Consortium, Inc, with support
from Empire State Development of the State of New York, the Simons Foundation, and the Secunda
Family Foundation [Bloom et al., 2025].

References
P. Aggarwal and S. Welleck. L1: Controlling how long a reasoning model thinks with reinforcement

learning, 2025. URL https://arxiv.org/abs/2503.04697.

Z. Azerbayev, H. Schoelkopf, K. Paster, M. D. Santos, S. M. McAleer, A. Q. Jiang, J. Deng,
S. Biderman, and S. Welleck. Llemma: An open language model for mathematics. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=4WnqRR915j.

S. Bloom, J. C. Brumberg, I. Fisk, R. J. Harrison, R. Hull, M. Ramasubramanian, K. V. Vliet,
and J. Wing. Empire AI: A new model for provisioning AI and HPC for academic research
in the public good. In Practice and Experience in Advanced Research Computing (PEARC

’25), page 4, Columbus, OH, USA, July 2025. ACM. doi: 10.1145/3708035.3736070. URL
https://doi.org/10.1145/3708035.3736070.

B. Brown, J. Juravsky, R. S. Ehrlich, R. Clark, Q. V. Le, C. Re, and A. Mirhoseini. Large language
monkeys: Scaling inference compute with repeated sampling, 2025. URL https://openreview.net/
forum?id=0xUEBQV54B.

X. Chen, R. Aksitov, U. Alon, J. Ren, K. Xiao, P. Yin, S. Prakash, C. Sutton, X. Wang, and D. Zhou.
Universal self-consistency for large language models. In ICML 2024 Workshop on In-Context
Learning, 2024a. URL https://openreview.net/forum?id=LjsjHF7nAN.

X. Chen, M. Lin, N. Schärli, and D. Zhou. Teaching large language models to self-debug. In The
Twelfth International Conference on Learning Representations, 2024b. URL https://openreview.
net/forum?id=KuPixIqPiq.

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think you
have solved question answering? try arc, the ai2 reasoning challenge. arXiv:1803.05457v1, 2018.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi,
X. Zhang, X. Yu, Y. Wu, Z. F. Wu, Z. Gou, Z. Shao, Z. Li, Z. Gao, A. Liu, B. Xue, B. Wang,
B. Wu, B. Feng, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, D. Dai, D. Chen, D. Ji, E. Li,
F. Lin, F. Dai, F. Luo, G. Hao, G. Chen, G. Li, H. Zhang, H. Bao, H. Xu, H. Wang, H. Ding,
H. Xin, H. Gao, H. Qu, H. Li, J. Guo, J. Li, J. Wang, J. Chen, J. Yuan, J. Qiu, J. Li, J. L. Cai,
J. Ni, J. Liang, J. Chen, K. Dong, K. Hu, K. Gao, K. Guan, K. Huang, K. Yu, L. Wang, L. Zhang,
L. Zhao, L. Wang, L. Zhang, L. Xu, L. Xia, M. Zhang, M. Zhang, M. Tang, M. Li, M. Wang, M. Li,
N. Tian, P. Huang, P. Zhang, Q. Wang, Q. Chen, Q. Du, R. Ge, R. Zhang, R. Pan, R. Wang, R. J.
Chen, R. L. Jin, R. Chen, S. Lu, S. Zhou, S. Chen, S. Ye, S. Wang, S. Yu, S. Zhou, S. Pan, S. S.
Li, S. Zhou, S. Wu, S. Ye, T. Yun, T. Pei, T. Sun, T. Wang, W. Zeng, W. Zhao, W. Liu, W. Liang,
W. Gao, W. Yu, W. Zhang, W. L. Xiao, W. An, X. Liu, X. Wang, X. Chen, X. Nie, X. Cheng,
X. Liu, X. Xie, X. Liu, X. Yang, X. Li, X. Su, X. Lin, X. Q. Li, X. Jin, X. Shen, X. Chen, X. Sun,
X. Wang, X. Song, X. Zhou, X. Wang, X. Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. Zhang, Y. Xu,
Y. Li, Y. Zhao, Y. Sun, Y. Wang, Y. Yu, Y. Zhang, Y. Shi, Y. Xiong, Y. He, Y. Piao, Y. Wang,
Y. Tan, Y. Ma, Y. Liu, Y. Guo, Y. Ou, Y. Wang, Y. Gong, Y. Zou, Y. He, Y. Xiong, Y. Luo, Y. You,

10

https://arxiv.org/abs/2503.04697
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=4WnqRR915j
https://doi.org/10.1145/3708035.3736070
https://openreview.net/forum?id=0xUEBQV54B
https://openreview.net/forum?id=0xUEBQV54B
https://openreview.net/forum?id=LjsjHF7nAN
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq

Y. Liu, Y. Zhou, Y. X. Zhu, Y. Xu, Y. Huang, Y. Li, Y. Zheng, Y. Zhu, Y. Ma, Y. Tang, Y. Zha,
Y. Yan, Z. Z. Ren, Z. Ren, Z. Sha, Z. Fu, Z. Xu, Z. Xie, Z. Zhang, Z. Hao, Z. Ma, Z. Yan, Z. Wu,
Z. Gu, Z. Zhu, Z. Liu, Z. Li, Z. Xie, Z. Song, Z. Pan, Z. Huang, Z. Xu, Z. Zhang, and Z. Zhang.
Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

A. El-Kishky, D. Selsam, F. Song, G. Parascandolo, H. Ren, H. Lightman, H. W. Chung, I. Akkaya,
I. Sutskever, J. Wei, J. Gordon, K. Cobbe, K. Yu, L. Kondraciuk, M. Schwarzer, M. Rohaninejad,
N. Brown, S. Zhao, T. Bansal, V. Kosaraju, and W. Zhou. Learning to reason with llms, Sep 2024.
URL https://openai.com/index/learning-to-reason-with-llms/.

G. Fang, X. Ma, and X. Wang. Thinkless: Llm learns when to think. ArXiv, abs/2505.13379, 2025.

A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, A. Yang, A. Fan, A. Goyal, A. Hartshorn, A. Yang, A. Mitra, A. Sra-
vankumar, A. Korenev, A. Hinsvark, A. Rao, A. Zhang, A. Rodriguez, A. Gregerson, A. Spataru,
B. Roziere, B. Biron, B. Tang, B. Chern, C. Caucheteux, C. Nayak, C. Bi, C. Marra, C. McConnell,
C. Keller, C. Touret, C. Wu, C. Wong, C. C. Ferrer, C. Nikolaidis, D. Allonsius, D. Song, D. Pintz,
D. Livshits, D. Wyatt, D. Esiobu, D. Choudhary, D. Mahajan, D. Garcia-Olano, D. Perino, D. Hup-
kes, E. Lakomkin, E. AlBadawy, E. Lobanova, E. Dinan, E. M. Smith, F. Radenovic, F. Guzmán,
F. Zhang, G. Synnaeve, G. Lee, G. L. Anderson, G. Thattai, G. Nail, G. Mialon, G. Pang, G. Cu-
curell, H. Nguyen, H. Korevaar, H. Xu, H. Touvron, I. Zarov, I. A. Ibarra, I. Kloumann, I. Misra,
I. Evtimov, J. Zhang, J. Copet, J. Lee, J. Geffert, J. Vranes, J. Park, J. Mahadeokar, J. Shah,
J. van der Linde, J. Billock, J. Hong, J. Lee, J. Fu, J. Chi, J. Huang, J. Liu, J. Wang, J. Yu, J. Bitton,
J. Spisak, J. Park, J. Rocca, J. Johnstun, J. Saxe, J. Jia, K. V. Alwala, K. Prasad, K. Upasani, K. Plaw-
iak, K. Li, K. Heafield, K. Stone, K. El-Arini, K. Iyer, K. Malik, K. Chiu, K. Bhalla, K. Lakhotia,
L. Rantala-Yeary, L. van der Maaten, L. Chen, L. Tan, L. Jenkins, L. Martin, L. Madaan, L. Malo,
L. Blecher, L. Landzaat, L. de Oliveira, M. Muzzi, M. Pasupuleti, M. Singh, M. Paluri, M. Kar-
das, M. Tsimpoukelli, M. Oldham, M. Rita, M. Pavlova, M. Kambadur, M. Lewis, M. Si, M. K.
Singh, M. Hassan, N. Goyal, N. Torabi, N. Bashlykov, N. Bogoychev, N. Chatterji, N. Zhang,
O. Duchenne, O. Çelebi, P. Alrassy, P. Zhang, P. Li, P. Vasic, P. Weng, P. Bhargava, P. Dubal, P. Kr-
ishnan, P. S. Koura, P. Xu, Q. He, Q. Dong, R. Srinivasan, R. Ganapathy, R. Calderer, R. S. Cabral,
R. Stojnic, R. Raileanu, R. Maheswari, R. Girdhar, R. Patel, R. Sauvestre, R. Polidoro, R. Sumbaly,
R. Taylor, R. Silva, R. Hou, R. Wang, S. Hosseini, S. Chennabasappa, S. Singh, S. Bell, S. S. Kim,
S. Edunov, S. Nie, S. Narang, S. Raparthy, S. Shen, S. Wan, S. Bhosale, S. Zhang, S. Vandenhende,
S. Batra, S. Whitman, S. Sootla, S. Collot, S. Gururangan, S. Borodinsky, T. Herman, T. Fowler,
T. Sheasha, T. Georgiou, T. Scialom, T. Speckbacher, T. Mihaylov, T. Xiao, U. Karn, V. Goswami,
V. Gupta, V. Ramanathan, V. Kerkez, V. Gonguet, V. Do, V. Vogeti, V. Albiero, V. Petrovic, W. Chu,
W. Xiong, W. Fu, W. Meers, X. Martinet, X. Wang, X. Wang, X. E. Tan, X. Xia, X. Xie, X. Jia,
X. Wang, Y. Goldschlag, Y. Gaur, Y. Babaei, Y. Wen, Y. Song, Y. Zhang, Y. Li, Y. Mao, Z. D.
Coudert, Z. Yan, Z. Chen, Z. Papakipos, A. Singh, A. Srivastava, A. Jain, A. Kelsey, A. Shajnfeld,
A. Gangidi, A. Victoria, A. Goldstand, A. Menon, A. Sharma, A. Boesenberg, A. Baevski, A. Fein-
stein, A. Kallet, A. Sangani, A. Teo, A. Yunus, A. Lupu, A. Alvarado, A. Caples, A. Gu, A. Ho,
A. Poulton, A. Ryan, A. Ramchandani, A. Dong, A. Franco, A. Goyal, A. Saraf, A. Chowdhury,
A. Gabriel, A. Bharambe, A. Eisenman, A. Yazdan, B. James, B. Maurer, B. Leonhardi, B. Huang,
B. Loyd, B. D. Paola, B. Paranjape, B. Liu, B. Wu, B. Ni, B. Hancock, B. Wasti, B. Spence,
B. Stojkovic, B. Gamido, B. Montalvo, C. Parker, C. Burton, C. Mejia, C. Liu, C. Wang, C. Kim,
C. Zhou, C. Hu, C.-H. Chu, C. Cai, C. Tindal, C. Feichtenhofer, C. Gao, D. Civin, D. Beaty,
D. Kreymer, D. Li, D. Adkins, D. Xu, D. Testuggine, D. David, D. Parikh, D. Liskovich, D. Foss,
D. Wang, D. Le, D. Holland, E. Dowling, E. Jamil, E. Montgomery, E. Presani, E. Hahn, E. Wood,
E.-T. Le, E. Brinkman, E. Arcaute, E. Dunbar, E. Smothers, F. Sun, F. Kreuk, F. Tian, F. Kokkinos,
F. Ozgenel, F. Caggioni, F. Kanayet, F. Seide, G. M. Florez, G. Schwarz, G. Badeer, G. Swee,
G. Halpern, G. Herman, G. Sizov, Guangyi, Zhang, G. Lakshminarayanan, H. Inan, H. Shojanazeri,
H. Zou, H. Wang, H. Zha, H. Habeeb, H. Rudolph, H. Suk, H. Aspegren, H. Goldman, H. Zhan,
I. Damlaj, I. Molybog, I. Tufanov, I. Leontiadis, I.-E. Veliche, I. Gat, J. Weissman, J. Geboski,
J. Kohli, J. Lam, J. Asher, J.-B. Gaya, J. Marcus, J. Tang, J. Chan, J. Zhen, J. Reizenstein, J. Teboul,
J. Zhong, J. Jin, J. Yang, J. Cummings, J. Carvill, J. Shepard, J. McPhie, J. Torres, J. Ginsburg,
J. Wang, K. Wu, K. H. U, K. Saxena, K. Khandelwal, K. Zand, K. Matosich, K. Veeraraghavan,
K. Michelena, K. Li, K. Jagadeesh, K. Huang, K. Chawla, K. Huang, L. Chen, L. Garg, L. A,
L. Silva, L. Bell, L. Zhang, L. Guo, L. Yu, L. Moshkovich, L. Wehrstedt, M. Khabsa, M. Avalani,

11

https://arxiv.org/abs/2501.12948
https://openai.com/index/learning-to-reason-with-llms/

M. Bhatt, M. Mankus, M. Hasson, M. Lennie, M. Reso, M. Groshev, M. Naumov, M. Lathi,
M. Keneally, M. Liu, M. L. Seltzer, M. Valko, M. Restrepo, M. Patel, M. Vyatskov, M. Samvelyan,
M. Clark, M. Macey, M. Wang, M. J. Hermoso, M. Metanat, M. Rastegari, M. Bansal, N. San-
thanam, N. Parks, N. White, N. Bawa, N. Singhal, N. Egebo, N. Usunier, N. Mehta, N. P. Laptev,
N. Dong, N. Cheng, O. Chernoguz, O. Hart, O. Salpekar, O. Kalinli, P. Kent, P. Parekh, P. Saab,
P. Balaji, P. Rittner, P. Bontrager, P. Roux, P. Dollar, P. Zvyagina, P. Ratanchandani, P. Yuvraj,
Q. Liang, R. Alao, R. Rodriguez, R. Ayub, R. Murthy, R. Nayani, R. Mitra, R. Parthasarathy,
R. Li, R. Hogan, R. Battey, R. Wang, R. Howes, R. Rinott, S. Mehta, S. Siby, S. J. Bondu,
S. Datta, S. Chugh, S. Hunt, S. Dhillon, S. Sidorov, S. Pan, S. Mahajan, S. Verma, S. Yamamoto,
S. Ramaswamy, S. Lindsay, S. Lindsay, S. Feng, S. Lin, S. C. Zha, S. Patil, S. Shankar, S. Zhang,
S. Zhang, S. Wang, S. Agarwal, S. Sajuyigbe, S. Chintala, S. Max, S. Chen, S. Kehoe, S. Satterfield,
S. Govindaprasad, S. Gupta, S. Deng, S. Cho, S. Virk, S. Subramanian, S. Choudhury, S. Goldman,
T. Remez, T. Glaser, T. Best, T. Koehler, T. Robinson, T. Li, T. Zhang, T. Matthews, T. Chou,
T. Shaked, V. Vontimitta, V. Ajayi, V. Montanez, V. Mohan, V. S. Kumar, V. Mangla, V. Ionescu,
V. Poenaru, V. T. Mihailescu, V. Ivanov, W. Li, W. Wang, W. Jiang, W. Bouaziz, W. Constable,
X. Tang, X. Wu, X. Wang, X. Wu, X. Gao, Y. Kleinman, Y. Chen, Y. Hu, Y. Jia, Y. Qi, Y. Li,
Y. Zhang, Y. Zhang, Y. Adi, Y. Nam, Yu, Wang, Y. Zhao, Y. Hao, Y. Qian, Y. Li, Y. He, Z. Rait,
Z. DeVito, Z. Rosnbrick, Z. Wen, Z. Yang, Z. Zhao, and Z. Ma. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=tEYskw1VY2.

S. Gunasekar, Y. Zhang, J. Aneja, C. C. T. Mendes, A. D. Giorno, S. Gopi, M. Javaheripi, P. Kauff-
mann, G. de Rosa, O. Saarikivi, A. Salim, S. Shah, H. S. Behl, X. Wang, S. Bubeck, R. Eldan, A. T.
Kalai, Y. T. Lee, and Y. Li. Textbooks are all you need, 2023. URL https://arxiv.org/abs/2306.11644.

C. He, R. Luo, Y. Bai, S. Hu, Z. L. Thai, J. Shen, J. Hu, X. Han, Y. Huang, Y. Zhang, et al.
Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual
multimodal scientific problems. arXiv preprint arXiv:2402.14008, 2024.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt.
Measuring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874,
2021.

A. Hochlehnert, H. Bhatnagar, V. Udandarao, S. Albanie, A. Prabhu, and M. Bethge. A sober
look at progress in language model reasoning: Pitfalls and paths to reproducibility, 2025a. URL
https://arxiv.org/abs/2504.07086.

A. Hochlehnert, H. Bhatnagar, V. Udandarao, S. Albanie, A. Prabhu, and M. Bethge. A sober
look at progress in language model reasoning: Pitfalls and paths to reproducibility, 2025b. URL
https://arxiv.org/abs/2504.07086.

A. Hosseini, X. Yuan, N. Malkin, A. Courville, A. Sordoni, and R. Agarwal. V-STar: Training
verifiers for self-taught reasoners. In First Conference on Language Modeling, 2024. URL
https://openreview.net/forum?id=stmqBSW2dV.

C.-P. Hsieh, S. Sun, S. Kriman, S. Acharya, D. Rekesh, F. Jia, Y. Zhang, and B. Ginsburg. Ruler:
What’s the real context size of your long-context language models?, 2024. URL https://arxiv.org/
abs/2404.06654.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu,
and D. Amodei. Scaling laws for neural language models, 2020. URL https://arxiv.org/abs/2001.
08361.

A. Kazemnejad, M. Aghajohari, E. Portelance, A. Sordoni, S. Reddy, A. Courville, and N. L. Roux.
VinePPO: Unlocking RL potential for LLM reasoning through refined credit assignment, 2025.
URL https://openreview.net/forum?id=5mJrGtXVwz.

A. Kumar, V. Zhuang, R. Agarwal, Y. Su, J. D. Co-Reyes, A. Singh, K. Baumli, S. Iqbal, C. Bishop,
R. Roelofs, L. M. Zhang, K. McKinney, D. Shrivastava, C. Paduraru, G. Tucker, D. Precup,
F. Behbahani, and A. Faust. Training language models to self-correct via reinforcement learning.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=CjwERcAU7w.

12

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=tEYskw1VY2
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2504.07086
https://arxiv.org/abs/2504.07086
https://openreview.net/forum?id=stmqBSW2dV
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=5mJrGtXVwz
https://openreview.net/forum?id=CjwERcAU7w
https://openreview.net/forum?id=CjwERcAU7w

S. Li, S. Dong, K. Luan, X. Di, and C. Ding. Enhancing reasoning through process supervision with
monte carlo tree search. arXiv preprint arXiv:2501.01478, 2025.

Y. Li, Z. Lin, S. Zhang, Q. Fu, B. Chen, J.-G. Lou, and W. Chen. Making language models better
reasoners with step-aware verifier. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
2023.

Z. Liang, Y. Liu, T. Niu, X. Zhang, Y. Zhou, and S. Yavuz. Improving LLM reasoning through
scaling inference computation with collaborative verification, 2024. URL https://openreview.net/
forum?id=Qyile3DctL.

H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman, I. Sutskever,
and K. Cobbe. Let’s verify step by step. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=v8L0pN6EOi.

S. Lin, J. Hilton, and O. Evans. Truthfulqa: Measuring how models mimic human falsehoods, 2022.
URL https://arxiv.org/abs/2109.07958.

N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang. Lost in the middle:
How language models use long contexts. Transactions of the Association for Computational
Linguistics, 12:157–173, 2024. doi: 10.1162/tacl_a_00638. URL https://aclanthology.org/2024.
tacl-1.9/.

C. Lou, Z. Sun, X. Liang, M. Qu, W. Shen, W. Wang, Y. Li, Q. Yang, and S. Wu. Adacot: Pareto-
optimal adaptive chain-of-thought triggering via reinforcement learning. ArXiv, abs/2505.11896,
2025. URL https://api.semanticscholar.org/CorpusID:278739729.

H. Luo, Q. Sun, C. Xu, P. Zhao, J. Lou, C. Tao, X. Geng, Q. Lin, S. Chen, and D. Zhang. Wizardmath:
Empowering mathematical reasoning for large language models via reinforced evol-instruct. arXiv
preprint arXiv:2308.09583, 2023.

MAA. American invitational mathematics examination - AIME. American Invitational Math-
ematics Examination - AIME 2024, Feb. 2024. URL https://maa.org/math-competitions/
american-invitational-mathematics-examination-aime. Accessed: 2024-05-14.

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye,
Y. Yang, et al. Self-refine: Iterative refinement with self-feedback. Advances in Neural Information
Processing Systems, 36:46534–46594, 2023.

N. Muennighoff, Z. Yang, W. Shi, X. L. Li, L. Fei-Fei, H. Hajishirzi, L. Zettlemoyer, P. Liang,
E. Candès, and T. Hashimoto. s1: Simple test-time scaling, 2025. URL https://arxiv.org/abs/2501.
19393.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F.
Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with hu-
man feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

B. Peng, E. Alcaide, Q. G. Anthony, A. Albalak, S. Arcadinho, S. Biderman, H. Cao, X. Cheng,
M. N. Chung, L. Derczynski, X. Du, M. Grella, K. K. GV, X. He, H. Hou, P. Kazienko, J. Kocon,
J. Kong, B. Koptyra, H. Lau, J. Lin, K. S. I. Mantri, F. Mom, A. Saito, G. Song, X. Tang, J. S.
Wind, S. Woźniak, Z. Zhang, Q. Zhou, J. Zhu, and R.-J. Zhu. RWKV: Reinventing RNNs for the
transformer era. In The 2023 Conference on Empirical Methods in Natural Language Processing,
2023. URL https://openreview.net/forum?id=7SaXczaBpG.

H. Puerto, T. Chubakov, X. Zhu, H. T. Madabushi, and I. Gurevych. Fine-tuning with divergent
chains of thought boosts reasoning through self-correction in language models, 2024.

13

https://openreview.net/forum?id=Qyile3DctL
https://openreview.net/forum?id=Qyile3DctL
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2109.07958
https://aclanthology.org/2024.tacl-1.9/
https://aclanthology.org/2024.tacl-1.9/
https://api.semanticscholar.org/CorpusID:278739729
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://openreview.net/forum?id=7SaXczaBpG

Y. Qu, T. Zhang, N. Garg, and A. Kumar. Recursive introspection: Teaching language model agents
how to self-improve. ArXiv, abs/2407.18219, 2024. URL https://api.semanticscholar.org/CorpusID:
271432135.

Qwen, :, A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei,
H. Lin, J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang,
L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Tang, T. Xia, X. Ren, X. Ren,
Y. Fan, Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu. Qwen2.5 technical report,
2025. URL https://arxiv.org/abs/2412.15115.

R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct preference
optimization: Your language model is secretly a reward model. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=HPuSIXJaa9.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. K. Li, Y. Wu, and D. Guo.
Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024.
URL https://arxiv.org/abs/2402.03300.

C. V. Snell, J. Lee, K. Xu, and A. Kumar. Scaling LLM test-time compute optimally can be more
effective than scaling parameters for reasoning. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=4FWAwZtd2n.

Y. Sui, Y.-N. Chuang, G. Wang, J. Zhang, T. Zhang, J. Yuan, H. Liu, A. Wen, S. Zhong, H. Chen,
and X. Hu. Stop overthinking: A survey on efficient reasoning for large language models. ArXiv,
abs/2503.16419, 2025.

K. Team, A. Du, B. Gao, B. Xing, C. Jiang, C. Chen, C. Li, C. Xiao, C. Du, C. Liao, et al. Kimi k1.
5: Scaling reinforcement learning with llms. arXiv preprint arXiv:2501.12599, 2025.

torchtune maintainers and contributors. torchtune: Pytorch’s finetuning library, Apr. 2024. URL
https//github.com/pytorch/torchtune.

S. Toshniwal, I. Sorokin, A. Ficek, I. Moshkov, and I. Gitman. Genselect: A generative approach to
best-of-n, 2025. URL https://arxiv.org/abs/2507.17797.

J. Uesato, N. Kushman, R. Kumar, F. Song, N. Siegel, L. Wang, A. Creswell, G. Irving, and
I. Higgins. Solving math word problems with process- and outcome-based feedback, 2022. URL
https://arxiv.org/abs/2211.14275.

H. Wang, A. Prasad, E. Stengel-Eskin, and M. Bansal. Soft self-consistency improves language
model agents, 2024a. URL https://arxiv.org/abs/2402.13212.

P. Wang, L. Li, Z. Shao, R. Xu, D. Dai, Y. Li, D. Chen, Y. Wu, and Z. Sui. Math-shepherd: Verify and
reinforce LLMs step-by-step without human annotations. In L.-W. Ku, A. Martins, and V. Srikumar,
editors, Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9426–9439, Bangkok, Thailand, Aug. 2024b. Association for
Computational Linguistics. doi: 10.18653/v1/2024.acl-long.510. URL https://aclanthology.org/
2024.acl-long.510/.

X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery, and D. Zhou.
Self-consistency improves chain of thought reasoning in language models. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=1PL1NIMMrw.

Y. Wang, X. Ma, G. Zhang, Y. Ni, A. Chandra, S. Guo, W. Ren, A. Arulraj, X. He, Z. Jiang, T. Li,
M. Ku, K. Wang, A. Zhuang, R. Fan, X. Yue, and W. Chen. MMLU-pro: A more robust and
challenging multi-task language understanding benchmark. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024c. URL https:
//openreview.net/forum?id=y10DM6R2r3.

14

https://api.semanticscholar.org/CorpusID:271432135
https://api.semanticscholar.org/CorpusID:271432135
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=4FWAwZtd2n
https//github.com/pytorch/torchtune
https://arxiv.org/abs/2507.17797
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2402.13212
https://aclanthology.org/2024.acl-long.510/
https://aclanthology.org/2024.acl-long.510/
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3

A. Wettig, K. Lo, S. Min, H. Hajishirzi, D. Chen, and L. Soldaini. Organize the web: Constructing
domains enhances pre-training data curation, 2025. URL https://arxiv.org/abs/2502.10341.

Y. Xie, K. Kawaguchi, Y. Zhao, X. Zhao, M.-Y. Kan, J. He, and Q. Xie. Self-evaluation guided beam
search for reasoning. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=Bw82hwg5Q3.

Y. Xie, A. Goyal, W. Zheng, M.-Y. Kan, T. P. Lillicrap, K. Kawaguchi, and M. Shieh. Monte carlo
tree search boosts reasoning via iterative preference learning. arXiv preprint arXiv:2405.00451,
2024.

W. Xiong, H. Zhang, N. Jiang, and T. Zhang. An implementation of generative prm. https://github.
com/RLHFlow/RLHF-Reward-Modeling, 2024.

A. Yang, B. Zhang, B. Hui, B. Gao, B. Yu, C. Li, D. Liu, J. Tu, J. Zhou, J. Lin, K. Lu, M. Xue, R. Lin,
T. Liu, X. Ren, and Z. Zhang. Qwen2.5-math technical report: Toward mathematical expert model
via self-improvement, 2024. URL https://arxiv.org/abs/2409.12122.

A. Yang, A. Li, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Gao, C. Huang, C. Lv, C. Zheng,
D. Liu, F. Zhou, F. Huang, F. Hu, H. Ge, H. Wei, H. Lin, J. Tang, J. Yang, J. Tu, J. Zhang, J. Yang,
J. Yang, J. Zhou, J. Zhou, J. Lin, K. Dang, K. Bao, K. Yang, L. Yu, L. Deng, M. Li, M. Xue, M. Li,
P. Zhang, P. Wang, Q. Zhu, R. Men, R. Gao, S. Liu, S. Luo, T. Li, T. Tang, W. Yin, X. Ren, X. Wang,
X. Zhang, X. Ren, Y. Fan, Y. Su, Y. Zhang, Y. Zhang, Y. Wan, Y. Liu, Z. Wang, Z. Cui, Z. Zhang,
Z. Zhou, and Z. Qiu. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

C. Yang, Q. Si, Y. Duan, Z. Zhu, C. Zhu, Z. Lin, L. Cao, and W. Wang. Dynamic early exit in
reasoning models. ArXiv, abs/2504.15895, 2025b.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. R. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=5Xc1ecxO1h.

X. Ye, F. Yin, Y. He, J. Zhang, H. Yen, T. Gao, G. Durrett, and D. Chen. Longproc: Benchmarking
long-context language models on long procedural generation. In Second Conference on Language
Modeling, 2025.

W. Zeng, Y. Huang, Q. Liu, W. Liu, K. He, Z. Ma, and J. He. Simplerl-zoo: Investigating and taming
zero reinforcement learning for open base models in the wild, 2025a. URL https://arxiv.org/abs/
2503.18892.

Z. Zeng, Q. Cheng, Z. Yin, Y. Zhou, and X. Qiu. Revisiting the test-time scaling of o1-like models:
Do they truly possess test-time scaling capabilities?, 2025b. URL https://arxiv.org/abs/2502.12215.

A. Zhang, Y. Chen, J. Pan, C. Zhao, A. Panda, J. Li, and H. He. Reasoning models know when they’re
right: Probing hidden states for self-verification. In Second Conference on Language Modeling,
2025a.

J. Zhang, N. Lin, L. Hou, L. Feng, and J. Li. Adaptthink: Reasoning models can learn when to think.
ArXiv, abs/2505.13417, 2025b.

Z. Zhang, C. Zheng, Y. Wu, B. Zhang, R. Lin, B. Yu, D. Liu, J. Zhou, and J. Lin. The lessons of
developing process reward models in mathematical reasoning, 2025c. URL https://arxiv.org/abs/
2501.07301.

15

https://arxiv.org/abs/2502.10341
https://openreview.net/forum?id=Bw82hwg5Q3
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=5Xc1ecxO1h
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2502.12215
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2501.07301

A More results details

A.1 SSA Results

We compared SSA performance across model size, number of candidate solution k size, subcategories,
and different version of SSAs.

SSA RL performance We can see SSA has strong performance gain in most of the sub categories
compared to other methods in Figure 5. In addition, we also see consistent performance gain from
0.5B, 1B, and 3B model across different LLMans sizes, and from Figure 6, we can see that LLMans
has more effect over the performance gain than the SSA model size.

GSM8K MATH AIME24 AMC23 Olympiad
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

92.7

75.4

10.0

57.5

38.0

92.5

76.6

10.0

52.5

38.7

93.3

76.8

13.3

57.5

39.8

91.7

68.2

10.0

47.5

31.0

92.6

69.4

13.3

57.5

32.1

75.0

61.2

6.67

47.5

28.8

SSA (0.5B)
SSA (1.5B)
SSA (3B)
Majority Vote
Qwen PRM (7B)
USC w/ Qwen (7B)

Figure 5: Compare the performance of model based on Qwen 2.5 7B with k = 5. SSAs are in green.
We see SSA method is very effective against baseline methods.

In addition, we report all benchmark breakdon performance of SSA compared to the PRM 7B and
majority vote in Table 4.

5 10 15 20
k = Number of Candidate Solutions

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

0.5B SSA

5 10 15 20
k = Number of Candidate Solutions

1B SSA

5 10 15 20
k = Number of Candidate Solutions

3B SSA

RL 32B
RL 14B
RL 7B

SFT+RL 32B
SFT+RL 14B
SFT+RL 7B

Figure 6: Compare each SSA’s performance on the average of 5 benchmarks with both RL and
SFT+RL methods. SFT+RL details are in Section A.3. The same SSAs are used on top of Qwen 2.5
7B, 14B, and 32B outputs. For each model, the parallel number of candidate solutions k for SSAs are
k = 5, 10, 15, 20.

We also report the statistical significance of all results in Table 5. For statistical testing, we employed
McNemar’s test, which is appropriate for paired binary outcomes. On our combined dataset analysis
(aggregating all 2563 test examples across five benchmarks), our improvements over the baseline are
statistically significant (p<0.05) for all configurations.

A.2 Ablation on SFT, No Think, and RL Results

We put a combined table of SFT, No Think and RL in Table 6.

A.3 Combining SFT and RL

Because we observe that the model does not give human interpretable reasoning process, we wonder
whether we can improve it. Understanding the model reasoning is important for the decision making
process. So we decided to use the SFT version to cold start the model behavior. We hope to have a
model to give reasoning process on why they select certain answers. We will call the cold started
model as SSA SFT+RL. The performance comparison is in Figure 6 and Table 7. Overall, we observe
1-2% drop of the performance with SSA SFT+RL. However, it gives us a stronger sense on the
model decision making process. In addition, SFT+RL version seems to have a better performance on
datasets outside of the math domain as our discussion in Section A.8

16

Ta
bl

e
4:

Pe
rf

or
m

an
ce

(%
)o

n
fiv

e
m

at
he

m
at

ic
al

be
nc

hm
ar

ks
fo

r7
B

,1
4

B
an

d
32

B
in

fe
re

nc
e

m
od

el
s

tr
ai

ne
d

w
ith

R
L

or
R

L
+

SF
T.

B
en

ch
m

ar
k

M
et

ho
d

7B
14

B
32

B
R

L
R

L
+S

FT
R

L
R

L
+S

FT
R

L
R

L
+S

FT

5
10

15
20

5
10

15
20

5
10

15
20

5
10

15
20

5
10

15
20

5
10

15
20

G
SM

8K

Pa
ss

@
k

95
.4

5
96

.2
1

96
.3

6
96

.6
6

95
.4

5
96

.2
1

96
.3

6
96

.6
6

96
.6

6
97

.1
9

97
.5

0
97

.6
5

96
.6

6
97

.1
9

97
.5

0
97

.6
5

97
.1

2
97

.5
0

97
.8

8
97

.8
8

97
.1

2
97

.5
0

97
.8

8
97

.8
8

M
aj

or
ity

vo
te

91
.6

6
91

.9
6

92
.7

2
92

.6
5

91
.6

6
91

.9
6

92
.7

2
92

.6
5

94
.6

2
94

.5
4

94
.3

1
94

.3
9

94
.6

2
94

.5
4

94
.3

1
94

.3
9

95
.3

0
95

.7
5

95
.9

8
95

.9
8

95
.3

0
95

.7
5

95
.9

8
95

.9
8

Q
w

en
PR

M
7B

92
.5

7
93

.1
8

93
.4

0
93

.3
3

92
.5

7
93

.1
8

93
.4

0
93

.3
3

95
.3

8
95

.9
1

96
.1

3
96

.1
3

95
.3

8
95

.9
1

96
.1

3
96

.1
3

96
.1

3
96

.5
9

96
.7

4
96

.8
2

96
.1

3
96

.5
9

96
.7

4
96

.8
2

Q
w

en
PR

M
72

B
92

.8
7

93
.7

1
93

.8
6

94
.0

9
92

.8
7

93
.7

1
93

.8
6

94
.0

9
95

.6
8

96
.0

6
96

.4
4

96
.2

9
95

.6
8

96
.0

6
96

.4
4

96
.2

9
95

.7
5

96
.0

6
96

.4
4

96
.1

3
95

.7
5

96
.0

6
96

.4
4

96
.1

3
0.

5B
92

.6
5

92
.8

7
92

.4
9

92
.6

5
92

.5
7

92
.8

7
92

.8
0

92
.9

5
94

.6
9

94
.9

2
94

.6
2

94
.7

7
94

.6
2

94
.6

2
94

.7
7

94
.7

7
96

.4
4

96
.1

3
96

.5
1

96
.2

9
95

.9
1

96
.1

3
96

.2
1

96
.2

1
1.

5B
92

.4
9

92
.7

2
93

.2
5

93
.1

0
92

.5
7

93
.0

3
93

.1
0

92
.0

4
94

.3
9

94
.5

4
94

.7
7

94
.9

2
94

.8
4

94
.8

4
94

.7
7

94
.3

9
96

.0
6

96
.2

9
96

.3
6

96
.2

9
96

.1
3

95
.9

8
96

.2
1

96
.2

1
3B

93
.2

5
93

.1
8

93
.6

3
93

.3
3

92
.6

5
92

.9
5

93
.2

5
92

.9
5

94
.7

7
94

.9
2

95
.0

7
94

.9
2

94
.6

9
94

.6
2

94
.6

9
94

.7
7

96
.2

9
96

.2
9

96
.4

4
96

.3
6

95
.9

8
96

.2
1

96
.0

6
95

.9
1

M
AT

H

Pa
ss

@
k

78
.0

0
81

.4
0

83
.4

0
85

.0
0

78
.0

0
81

.4
0

83
.4

0
85

.0
0

82
.0

0
84

.2
0

85
.6

0
85

.8
0

82
.0

0
84

.2
0

85
.6

0
85

.8
0

81
.8

0
84

.0
0

85
.8

0
86

.4
0

81
.8

0
84

.0
0

85
.8

0
86

.4
0

M
aj

or
ity

vo
te

68
.2

0
69

.4
0

71
.6

0
71

.2
0

68
.2

0
69

.4
0

71
.6

0
71

.2
0

74
.4

0
75

.2
0

75
.0

0
75

.4
0

74
.4

0
75

.2
0

75
.0

0
75

.4
0

75
.0

0
75

.4
0

75
.4

0
75

.0
0

75
.0

0
75

.4
0

75
.4

0
75

.0
0

Q
w

en
PR

M
7B

69
.4

0
69

.0
0

69
.2

0
70

.0
0

69
.4

0
69

.0
0

69
.2

0
70

.0
0

73
.6

0
74

.4
0

74
.2

0
75

.2
0

73
.6

0
74

.4
0

74
.2

0
75

.2
0

73
.2

0
74

.0
0

74
.0

0
74

.2
0

73
.2

0
74

.0
0

74
.0

0
74

.2
0

Q
w

en
PR

M
72

B
69

.6
70

.4
71

.4
72

.2
69

.6
70

.4
71

.4
72

.2
72

.8
74

.6
75

75
.2

72
.8

74
.6

75
75

.2
72

.8
74

.6
75

74
.6

72
.8

74
.6

75
74

.6
0.

5B
75

.4
0

76
.2

0
76

.8
0

78
.2

0
76

.8
0

78
.0

0
78

.6
0

79
.6

0
80

.6
0

81
.2

0
80

.4
0

80
.4

0
80

.6
0

81
.4

0
81

.8
0

81
.6

0
82

.4
0

82
.2

0
80

.6
0

81
.4

0
83

.0
0

82
.4

0
83

.0
0

83
.4

0
1.

5B
76

.6
0

77
.6

0
78

.6
0

79
.4

0
76

.8
0

77
.6

0
78

.0
0

78
.4

0
81

.4
0

81
.2

0
81

.6
0

82
.4

0
82

.2
0

81
.8

0
81

.6
0

81
.0

0
82

.8
0

84
.0

0
83

.6
0

84
.0

0
83

.6
0

83
.8

0
83

.8
0

83
.0

0
3B

76
.8

0
78

.8
0

79
.2

0
79

.8
0

77
.2

0
77

.4
0

79
.2

0
79

.2
0

82
.0

0
82

.6
0

82
.6

0
82

.4
0

80
.8

0
81

.4
0

82
.4

0
82

.0
0

82
.8

0
83

.2
0

83
.4

0
83

.0
0

82
.8

0
83

.4
0

83
.6

0
84

.6
0

A
IM

E
24

Pa
ss

@
k

16
.6

7
20

.0
0

26
.6

7
30

.0
0

16
.6

7
20

.0
0

26
.6

7
30

.0
0

16
.6

7
23

.3
3

26
.6

7
30

.0
0

16
.6

7
23

.3
3

26
.6

7
30

.0
0

30
.0

0
33

.3
3

33
.3

3
33

.3
3

30
.0

0
33

.3
3

33
.3

3
33

.3
3

M
aj

or
ity

vo
te

10
.0

0
13

.3
3

16
.6

7
16

.6
7

10
.0

0
13

.3
3

16
.6

7
16

.6
7

10
.0

0
13

.3
3

20
.0

0
16

.6
7

10
.0

0
13

.3
3

20
.0

0
16

.6
7

20
.0

0
30

.0
0

26
.6

7
30

.0
0

20
.0

0
30

.0
0

26
.6

7
30

.0
0

Q
w

en
PR

M
7B

13
.3

3
16

.6
7

20
.0

0
23

.3
3

13
.3

3
16

.6
7

20
.0

0
23

.3
3

13
.3

3
13

.3
3

13
.3

3
13

.3
3

13
.3

3
13

.3
3

13
.3

3
13

.3
3

23
.3

3
20

.0
0

23
.3

3
23

.3
3

23
.3

3
20

.0
0

23
.3

3
23

.3
3

Q
w

en
PR

M
72

B
13

.3
3

16
.6

7
20

23
.3

3
13

.3
3

16
.6

7
20

23
.3

3
13

.3
3

13
.3

3
13

.3
3

13
.3

3
13

.3
3

13
.3

3
13

.3
3

13
.3

3
20

20
26

.6
7

30
20

20
26

.6
7

30
0.

5B
10

.0
0

16
.6

7
6.

67
13

.3
3

10
.0

0
13

.3
3

13
.3

3
13

.3
3

16
.6

7
16

.6
7

16
.6

7
13

.3
3

16
.6

7
16

.6
7

16
.6

7
13

.3
3

23
.3

3
30

.0
0

26
.6

7
23

.3
3

20
.0

0
23

.3
3

23
.3

3
26

.6
7

1.
5B

10
.0

0
20

.0
0

16
.6

7
16

.6
7

10
.0

0
10

.0
0

16
.6

7
16

.6
7

13
.3

3
20

.0
0

20
.0

0
13

.3
3

13
.3

3
20

.0
0

20
.0

0
13

.3
3

26
.6

7
26

.6
7

30
.0

0
26

.6
7

23
.3

3
30

.0
0

23
.3

3
26

.6
7

3B
13

.3
3

20
.0

0
16

.6
7

13
.3

3
13

.3
3

13
.3

3
10

.0
0

13
.3

3
10

.0
0

16
.6

7
16

.6
7

13
.3

3
10

.0
0

16
.6

7
16

.6
7

13
.3

3
23

.3
3

30
.0

0
30

.0
0

26
.6

7
23

.3
3

30
.0

0
26

.6
7

26
.6

7

A
M

C
23

Pa
ss

@
k

67
.5

0
80

.0
0

85
.0

0
85

.0
0

67
.5

0
80

.0
0

85
.0

0
85

.0
0

72
.5

0
80

.0
0

80
.0

0
82

.5
0

72
.5

0
80

.0
0

80
.0

0
82

.5
0

75
.0

0
82

.5
0

87
.5

0
90

.0
0

75
.0

0
82

.5
0

87
.5

0
90

.0
0

M
aj

or
ity

vo
te

47
.5

0
52

.5
0

57
.5

0
57

.5
0

47
.5

0
52

.5
0

57
.5

0
57

.5
0

50
.0

0
55

.0
0

55
.0

0
60

.0
0

50
.0

0
55

.0
0

55
.0

0
60

.0
0

67
.5

0
70

.0
0

67
.5

0
65

.0
0

67
.5

0
70

.0
0

67
.5

0
65

.0
0

Q
w

en
PR

M
7B

57
.5

0
62

.5
0

62
.5

0
60

.0
0

57
.5

0
62

.5
0

62
.5

0
60

.0
0

60
.0

0
60

.0
0

65
.0

0
65

.0
0

60
.0

0
60

.0
0

65
.0

0
65

.0
0

65
.0

0
67

.5
0

65
.0

0
62

.5
0

65
.0

0
67

.5
0

65
.0

0
62

.5
0

Q
w

en
PR

M
72

B
57

.5
62

.5
70

70
57

.5
62

.5
70

70
62

.5
57

.5
60

60
62

.5
57

.5
60

60
57

.5
62

.5
60

65
57

.5
62

.5
60

65
0.

5B
57

.5
0

62
.5

0
60

.0
0

55
.0

0
60

.0
0

60
.0

0
62

.5
0

55
.0

0
57

.5
0

57
.5

0
62

.5
0

57
.5

0
62

.5
0

57
.5

0
65

.0
0

67
.5

0
75

.0
0

72
.5

0
72

.5
0

72
.5

0
75

.0
0

67
.5

0
75

.0
0

72
.5

0
1.

5B
52

.5
0

55
.0

0
57

.5
0

55
.0

0
60

.0
0

57
.5

0
60

.0
0

52
.5

0
55

.0
0

57
.5

0
55

.0
0

62
.5

0
60

.0
0

57
.5

0
65

.0
0

60
.0

0
70

.0
0

67
.5

0
75

.0
0

75
.0

0
65

.0
0

67
.5

0
70

.0
0

67
.5

0
3B

57
.5

0
60

.0
0

65
.0

0
55

.0
0

52
.5

0
52

.5
0

65
.0

0
52

.5
0

65
.0

0
62

.5
0

62
.5

0
67

.5
0

60
.0

0
60

.0
0

67
.5

0
65

.0
0

72
.5

0
72

.5
0

77
.5

0
72

.5
0

70
.0

0
67

.5
0

75
.0

0
70

.0
0

O
ly

m
pi

ad

Pa
ss

@
k

41
.1

0
47

.1
8

50
.1

5
51

.4
8

41
.1

0
47

.1
8

50
.1

5
51

.4
8

46
.2

9
51

.4
8

54
.1

5
56

.2
3

46
.2

9
51

.4
8

54
.1

5
56

.2
3

50
.3

0
54

.1
5

56
.3

8
58

.0
1

50
.3

0
54

.1
5

56
.3

8
58

.0
1

M
aj

or
ity

vo
te

31
.0

1
32

.7
9

35
.1

6
35

.3
1

31
.0

1
32

.7
9

35
.1

6
35

.3
1

36
.0

5
38

.1
3

39
.6

1
39

.7
6

36
.0

5
38

.1
3

39
.6

1
39

.7
6

39
.7

6
41

.9
9

42
.5

8
42

.8
8

39
.7

6
41

.9
9

42
.5

8
42

.8
8

Q
w

en
PR

M
7B

32
.0

5
34

.4
2

35
.0

1
33

.8
3

32
.0

5
34

.4
2

35
.0

1
33

.8
3

34
.1

2
36

.3
5

36
.8

0
36

.9
4

34
.1

2
36

.3
5

36
.8

0
36

.9
4

39
.6

1
39

.6
1

39
.9

1
40

.5
0

39
.6

1
39

.6
1

39
.9

1
40

.5
0

Q
w

en
PR

M
72

B
33

.6
8

35
.4

6
35

.9
1

35
.3

1
33

.6
8

35
.4

6
35

.9
1

35
.3

1
35

.7
6

38
.5

8
39

.7
6

40
.2

1
35

.7
6

38
.5

8
39

.7
6

40
.2

1
40

.6
5

40
.9

5
41

.2
5

41
.5

4
40

.6
5

40
.9

5
41

.2
5

41
.5

4
0.

5B
37

.9
8

39
.0

2
40

.0
6

38
.7

2
37

.9
8

39
.1

7
39

.9
1

40
.2

1
41

.5
4

40
.8

0
41

.2
5

42
.7

3
40

.9
5

40
.5

0
41

.6
9

43
.0

3
45

.5
5

47
.0

3
45

.7
0

45
.8

5
45

.2
5

47
.0

3
46

.2
9

46
.8

8
1.

5B
38

.7
2

41
.1

0
41

.2
5

41
.6

9
39

.4
7

39
.9

1
40

.8
0

39
.7

6
42

.4
3

42
.8

8
43

.4
7

43
.1

8
41

.6
9

42
.1

4
42

.7
3

41
.8

4
46

.8
8

48
.2

2
47

.9
2

48
.5

2
47

.0
3

47
.3

3
47

.7
7

47
.6

3
3B

39
.7

6
40

.6
5

41
.1

0
42

.4
3

38
.4

3
40

.3
6

40
.9

5
41

.5
4

42
.8

8
43

.0
3

43
.9

2
44

.5
1

41
.9

9
43

.0
3

43
.7

7
43

.9
2

47
.1

8
48

.2
2

49
.4

1
48

.8
1

46
.4

4
46

.8
8

47
.3

3
48

.5
2

Av
er

ag
e

Pa
ss

@
k

59
.7

4
64

.9
6

68
.3

2
69

.6
3

59
.7

4
64

.9
6

68
.3

2
69

.6
3

62
.8

2
67

.2
4

68
.7

8
70

.4
4

62
.8

2
67

.2
4

68
.7

8
70

.4
4

66
.8

4
70

.3
0

72
.1

8
73

.1
2

66
.8

4
70

.3
0

72
.1

8
73

.1
2

M
aj

or
ity

vo
te

49
.6

7
52

.0
0

54
.7

3
54

.6
7

49
.6

7
52

.0
0

54
.7

3
54

.6
7

53
.0

1
55

.2
4

56
.7

8
57

.2
4

53
.0

1
55

.2
4

56
.7

8
57

.2
4

59
.5

1
62

.6
3

61
.6

3
61

.7
7

59
.5

1
62

.6
3

61
.6

3
61

.7
7

Q
w

en
PR

M
7B

52
.9

7
55

.1
5

56
.0

2
56

.1
0

52
.9

7
55

.1
5

56
.0

2
56

.1
0

55
.2

9
56

.0
0

57
.0

9
57

.3
2

55
.2

9
56

.0
0

57
.0

9
57

.3
2

59
.4

5
59

.5
4

59
.8

0
59

.4
7

59
.4

5
59

.5
4

59
.8

0
59

.4
7

Q
w

en
PR

M
72

B
53

.4
0

55
.7

5
58

.2
3

58
.9

9
53

.4
0

55
.7

5
58

.2
3

58
.9

9
56

.0
1

56
.0

1
56

.9
1

57
.0

1
56

.0
1

56
.0

1
56

.9
1

57
.0

1
57

.3
4

58
.8

2
59

.8
7

61
.4

5
57

.3
4

58
.8

2
59

.8
7

61
.4

5
0.

5B
54

.7
1

57
.4

5
55

.2
0

55
.5

8
55

.4
7

56
.6

7
57

.4
3

56
.2

2
58

.2
0

58
.2

2
59

.0
9

57
.7

5
59

.0
7

58
.1

4
59

.9
9

60
.0

5
64

.5
4

65
.5

7
64

.4
0

63
.8

7
63

.8
3

63
.2

8
64

.7
7

65
.1

3
1.

5B
54

.0
6

57
.2

8
57

.4
5

57
.1

7
55

.7
7

55
.6

1
57

.7
1

55
.8

7
57

.3
1

59
.2

2
58

.9
7

59
.2

7
58

.4
1

59
.2

6
60

.8
2

58
.1

1
64

.4
8

64
.5

4
66

.5
8

66
.1

0
63

.0
2

64
.9

2
64

.2
2

64
.2

0
3B

56
.1

3
58

.5
3

59
.1

2
56

.7
8

54
.8

2
55

.3
1

57
.6

8
55

.9
0

58
.9

3
59

.9
4

60
.1

5
60

.5
3

57
.5

0
59

.1
4

61
.0

1
59

.8
0

64
.4

2
66

.0
4

67
.3

5
65

.4
7

63
.7

1
64

.8
0

65
.7

3
65

.1
4

17

Ta
bl

e
5:

St
at

is
tic

al
co

m
pa

ri
so

n
of

SS
A

m
od

el
s

vs
.b

as
el

in
es

on
m

at
he

m
at

ic
al

be
nc

hm
ar

ks
.

B
as

el
in

e
M

et
ho

d
7B

14
B

32
B

5
10

20
5

10
20

5
10

20

p-
va

l
si

g
p-

va
l

si
g

p-
va

l
si

g
p-

va
l

si
g

p-
va

l
si

g
p-

va
l

si
g

p-
va

l
si

g
p-

va
l

si
g

p-
va

l
si

g

M
aj

or
ity

Vo
te

0.
5B

vs
.M

aj
1.

1e
-1

4
*

3.
5e

-1
4

*
1.

9e
-0

5
*

7.
0e

-1
1

*
1.

4e
-0

6
*

4.
5e

-0
6

*
2.

5e
-1

6
*

3.
6e

-1
0

*
2.

5e
-0

6
*

1B
vs

.M
aj

4.
2e

-1
7

*
2.

0e
-1

8
*

9.
6e

-1
4

*
1.

2e
-1

2
*

1.
3e

-0
9

*
7.

4e
-1

2
*

1.
4e

-1
8

*
1.

8e
-1

7
*

1.
6e

-1
6

*
3B

vs
.M

aj
5.

8e
-2

5
*

6.
3e

-2
3

*
5.

1e
-1

5
*

3.
1e

-1
7

*
5.

1e
-1

4
*

4.
3e

-1
4

*
2.

0e
-2

0
*

3.
0e

-1
5

*
8.

4e
-1

5
*

Q
w

en
PR

M
7B

0.
5B

vs
.P

R
M

6.
7e

-0
6

*
1.

0e
-0

4
*

4.
6e

-0
4

*
1.

1e
-0

8
*

1.
8e

-0
4

*
1.

4e
-0

3
*

3.
3e

-1
3

*
2.

8e
-1

1
*

6.
6e

-0
7

*
1B

vs
.P

R
M

1.
1e

-0
6

*
1.

2e
-0

6
*

2.
7e

-0
8

*
9.

3e
-1

0
*

8.
1e

-0
6

*
9.

0e
-0

6
*

1.
0e

-1
3

*
1.

5e
-1

5
*

2.
7e

-1
3

*
3B

vs
.P

R
M

1.
0e

-1
0

*
1.

4e
-0

8
*

4.
2e

-1
0

*
1.

5e
-1

3
*

2.
0e

-0
8

*
6.

9e
-0

8
*

5.
5e

-1
5

*
3.

5e
-1

5
*

1.
7e

-1
2

*

N
ot

e:
A

ll
re

su
lts

ar
e

on
th

e
co

m
bi

ne
d

of
al

l5
be

nc
hm

ar
ks

.T
he

*
in

di
ca

te
s

st
at

is
tic

al
si

gn
ifi

ca
nc

e
(p

<
0.

05
).

A
ll

SS
A

m
od

el
s

(0
.5

B
,1

B
,3

B
)s

ho
w

si
gn

ifi
ca

nt
im

pr
ov

em
en

to
ve

rb
ot

h
M

aj
or

ity
vo

te
an

d
PR

M
ba

se
lin

es
ac

ro
ss

al
li

nf
er

en
ce

m
od

el
si

ze
s

(7
B

,1
4B

,3
2B

).

18

Table 6: Ablation of different training methods. Including SFT method, No Thinking Method, and
RL methods trained with LLMans k = 5 on GSM8K train data only. We report LLMans k = 5, 10
results as accuracy (%)

GSM8K MATH AIME24 AMC23 Olympiad Average
Model k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10

Baseline
Majority Vote 91.66 91.96 68.20 69.40 10 13.33 47.50 52.50 31.01 32.79 49.67 52.0
PRM 92.57 93.18 69.4 69.00 13.33 16.67 57.5 62.5 32.05 34.42 52.97 55.15

0.5B
SFT 91.51 92.04 66.0 66.6 10.0 10.0 57.5 50.0 30.86 33.38 51.17 50.4
RL No-Think 91.43 91.58 62.4 61.2 10.0 10.0 52.5 47.5 28.49 28.19 48.96 47.69
RL 92.42 93.1 58.6 57.2 10.0 13.33 60.0 50.0 28.04 27.89 49.81 48.3

1.5B
SFT 91.51 91.66 72.4 70.4 10.0 10.0 50.0 42.5 36.05 30.56 51.99 49.02
RL No-Think 92.65 93.1 63.2 63.2 10.0 16.67 52.5 52.5 31.75 32.94 50.02 51.68
RL 92.65 93.1 71.6 73.0 10.0 20.0 47.5 55.0 34.57 35.91 51.26 55.4

3B
SFT 91.13 91.58 68.4 66.6 6.67 10.0 45.0 40.0 29.38 31.31 48.12 47.9
RL No-Think 92.8 93.25 72.6 72.8 10.0 20.0 57.5 52.5 36.8 38.28 53.94 55.37
RL 93.18 93.1 75.0 74.8 13.33 16.67 60.0 52.5 34.57 37.69 55.22 54.95

Table 7: Average Performance (%) of SSA RL and SSA SFT+RL over five benchmarks. The answers
are generated with Qwen 32B models. The second row indicates the number of sampled answers (k).

Method RL SFT + RL
5 10 15 20 5 10 15 20

Pass@k 66.84 70.30 72.18 73.12 66.84 70.30 72.18 73.12
Majority vote 59.51 62.63 61.63 61.77 59.51 62.63 61.63 61.77
Qwen PRM 59.45 59.54 59.80 59.47 59.45 59.54 59.80 59.47
SSA (0.5B) 64.54 65.57 64.40 63.87 63.83 63.28 64.77 65.13
SSA (1.5B) 64.48 64.54 66.58 66.10 63.02 64.92 64.22 64.20
SSA (3B) 64.42 66.04 67.35 65.47 63.71 64.80 65.73 65.14

A.4 Increasing k during training

We see that the inference k could lead to the potential improvements of the performance. Would
the same hold if we improve the k during training. For the original design, we use k = 5 for the
training. For comparison, we train the model with k = 8 to see its performance. The results are
presented in Figure 7. We see that training longer context does not help with the performance. In fact
it has lower performance on average for the dataset. It might due to longer context creates more same
answers, and it would make the model to choose more depends on the majority vote than distinguish
the differences.

6 8 10 12 14 16 18 20
Inference k

54

55

56

57

58

59

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

0.5B SSA Performance

6 8 10 12 14 16 18 20
Inference k

1B SSA Performance

6 8 10 12 14 16 18 20
Inference k

3B SSA Performance

Model Configuration
5-answer GRPO
8-answer GRPO

Figure 7: Compare training k and their effect. It seems that increasing context length to longer k
during training does not out perform the shorter context.

19

Table 8: Aggregation overhead per question
Answer K 32 64 128

Qwen PRM (7B) 5.25 5.41 5.80
SSA RL (3B) 9.28 7.94 7.02

A.5 Scaling K during inference and Two-stage SSA

To handle large K under context limits, we use a simple two-stage adaptation of SSA.

Stage 1. We form ℓ2 overlapping groups by taking evenly spaced, cyclic windows of length ℓ1 over
the K candidates. Concretely, with start indices si =

⌊
iK
ℓ2

⌋
for i = 0, . . . , ℓ2 − 1, the i-th group

is Gi =
[
a(si+t) mod K

]ℓ1−1

t=0
. We run SSA independently on each Gi to produce one intermediate

winner.

Stage 2. We concatenate the ℓ2 intermediate winners and run SSA once more to produce the final
answer.

This makes ℓ2+1 SSA calls: ℓ2 calls on inputs of size ℓ1, then one call on ℓ2. We use ℓ1=15 in
all experiments; thus ℓ2=⌈K/ℓ1⌉ gives ℓ2=3 for K=32, ℓ2=5 for K=64, and ℓ2=9 for K=128.
By construction, groups overlap whenever ℓ1 > K/ℓ2 (our default), yielding a replication factor
(ℓ1ℓ2)/K that adds controlled redundancy for robustness at modest extra compute. The details are in
Algorithm 1.

In addition to the performance reported in the Table 3, we also report the aggregation overhead over
the AMC23 dataset. The results are in Table 8.

Algorithm 1 Two-stage SSA

Require: Question x; K candidates A = {a0, . . . , aK−1}; group size ℓ1; group count ℓ2
1: if K ≤ ℓ1 then
2: return SSA(x,A)
3: end if
4: stage1← [] ▷ will hold ℓ2 winners (full CoTs)
5: for i = 0 to ℓ2 − 1 do ▷ Stage 1: ℓ2 calls, each on ℓ1 answers

6: si ←
⌊
i ·K
ℓ2

⌋
evenly spaced starts

7: Gi ←
[
a ((si+t) mod K) : t = 0, . . . , ℓ1 − 1

]
cyclic window (overlap-allowed)

8: ŷi ← SSA(x,Gi) infer the group’s final answer
9: aGi ← MapBack(ŷi, Gi) pick the chosen candidate’s full CoT

10: stage1.append(aGi)
11: end for
12: return SSA(x, stage1) ▷ Stage 2: aggregate ℓ2 winners

A.6 Error Analysis

We conduct error analysis of the SSA outputs. We use SSA 3B model with five answer samples.
Across all datasets the vast majority of correct cases are simply copied from a candidate that already
contains the ground-truth answer. Hence the main value of SSA lies in finding the right candidate.
When the ground-truth answer is absent from the sample set, SSA fails in two ways: it either chooses
the majority wrong answer (y∗ /∈ C copied) or try to come up a new but still wrong answer (y∗ /∈ C
synthesized). While SSA sometimes come up with the correct answer even the ground truth are not
provided in the inference, when we manually examine the answers in this category most are in wrong
format that extraction failed. It confirms an input quality bottleneck: if no correct candidate exists,
the policy has difficulty to recover it. Conversely, errors with a correct candidate present (y∗ ∈ C /
copied wrong or y∗ ∈ C / synthesized wrong) are much smaller, showing that SSA rarely mis-ranks
truly correct answers. In order to understand whether SSA can synthesize new answers, we designed
addition experiments to cut off last 10% of the answers, and our results are in Appendix A.7. It

20

Table 9: Accuracy and error composition for the 3 B SSA (k=5). Columns are percentages of the
whole dataset. y∗ ∈ C means ground-truth answer y∗ included among the 5 candidates C.

Acc.↑ Correct Wrong

y∗ ∈ C
copied

y∗ /∈ C
synthesized

y∗ /∈ C
copied

y∗ /∈ C
synthesized

y∗ ∈ C
copied

y∗ ∈ C
synthesized

GSM8K 93.3 87.7 5.5 3.3 1.0 2.3 0.2
MATH 79.2 75.6 3.6 9.4 3.6 6.6 1.2
AMC23 57.5 52.5 5.0 12.5 7.5 12.5 10.0
AIME24 13.3 13.3 0.0 23.3 50.0 3.3 10.0
Olympiad 39.8 34.9 4.9 27.6 24.6 5.6 2.4

shows that the SSA has synthesize ability when answers are all removed, and the accuracy has some
degradation.

A.7 Copy or Synthesize?

Our error analysis reveals that the majority of correct answers are copied from the provided responses.
To test whether the SSA can synthesize answers, we created a variant of the dataset where the last
10% of every answer is cut off. This ensures that the final answers are not directly available in the
input, requiring the model to synthesize them.

Table 10: Performance comparison between original responses and those with last 10% removed.

Method Datasets Avg
GSM8K MATH AIME24 AMC23 Olympiad

Original (complete answers)
SSA 93.25 76.80 13.33 57.50 39.76 56.13

Truncated (last 10% removed)
SSA + RL 74.22 52.80 0.00 22.50 23.00 34.50
SSA + RL + SFT 89.99 67.80 6.67 40.00 31.01 47.09

As shown in Table 10, performance significantly drops when answers must be synthesized rather than
copied. The RL method alone achieves only 34.50% average accuracy, while combining RL with
SFT improves this to 47.09%. Notably, the RL+SFT approach recovers much of the performance gap,
particularly on GSM8K (89.99% vs. original 93.25%), suggesting effective synthesis capabilities for
easy problems. However, since pure copy would only result 0%, this suggests that SSA is not just
copy but able to synethize correct results.

A.8 Generalization to other tasks

Table 11 reports accuracy on three general tasks benchmarks. On ARC-C and MMLU-Pro the
SFT + RL SSA mostly beats the majority-vote baseline [Clark et al., 2018, Wang et al., 2024c]. Pure
RL SSAs give smaller (sometimes negative) gains, suggesting that an SFT warm-start improves out-
of-domain transfer. Pure SFT SSAs exhibit varied performance: strong at 3B scale but significantly
weaker at smaller scales (0.5B and 1.5B), suggesting SFT’s generalization capability strongly depends
on model capacity for out domain generalization. On TruthfulQA (truthfulness/adversarial) none
of the SSAs can consistently outperform majority voting, suggesting that truthfulness might not be
beneficial from answer selection. Tackling truthfulness might require different goal than reasoning
among answers.

Table 11: Model evaluation results on ARC, MMLU-PRO, TruthfulQA benchmarks
Metric Qwen2.5-7B-Instruct SSA RL SSA SFT + RL SSA SFT

pass@1 Majority Vote (5) 0.5B 1.5B 3B 0.5B 1.5B 3B 0.5B 1.5B 3B
ARC-C 88.65 91.38 88.05 91.3 88.99 91.72 91.38 91.81 69.88 90.02 92.06
MMLU-PRO 43.63 49.24 33.19 43.09 39.84 46.28 48.01 50.37 25.76 43.93 51.41
TruthfulQA 62.43 66.23 66.52 67.11 64.62 66.08 64.47 63.89 49.85 63.89 66.23

21

Table 12: Efficiency Evaluation. We report end-to-end runtime on one RTX 6000 Ada.
Method Base-LM passes Aggregator time Total time (s) ↓ Overall Accuracy (%) ↑

Qwen2.5-7B 1 – 556.12 45.5
Majority vote (k=5) 5×Qwen2.5-7B – 2 780.6 49.67
Qwen PRM 7B (k=5) 5×Qwen2.5-7B 21.9 2 780.6 + 21.9 = 2 802.5 52.97
SSA RL 3B (k=5, ours) 5×Qwen2.5-7B 25.7 2 780.6 + 25.7 = 2 806.3 56.13

SimpleRL 7B (seq. RL) 1 pass – 3 273.2 58.56

“Base-LM passes” = number of forward decodes of Qwen-2.5-7B-Instruct (556.12 s per pass). Aggregator time
is measured separately.

A.9 Efficiency Evaluation

We now evaluate the amount of compute required for each aggregation strategy. Compared to other
methods which considers each sample independently, our method considers them jointly, generating
longer sequence which can incur high computation cost.

Compute Cost (Wall-clock) For more details, we conduct an actual measure based on the real
settings. The results are in Table 12. All measurements were taken on a single NVIDIA RTX 6000
Ada with the AMC23 benchmark (40 questions). In practice, parallelized sampling from the LLM
can significantly speed up the time required.

Inference Cost To measure raw compute (flops), we follow the formula from Kaplan et al. [2020].
It uses roughly Cforward ≈ 2N , and the backward pass is about 2 times which is 4N . So the total is
C ≈ 6N FLOPs per training token, with N as the model parameter and C as the non embedding
training compute. We use D as token length.

For inference cost we will use Cforward ≈ 2ND per query. For k = 5, input context D ≈ 5 ∗ 1000.
So the SSA method needs a 7B base model with inference cost 2ND = 2 ∗ 7 ∗ 109 ∗ (1000 ∗ 5) =
70TFLOPs. SSA itself has a constant compute overhead of 2ND = 2 ∗ 3 ∗ 109 ∗ (5000 + 60) ≈
30TFLOPs since SSA’s compute cost depends on the input token length not the inference model
size. The total for SSA would be 70 + 30 = 100TFLOPs. In comparison, the sequential RL
approach would result 2ND = 2 ∗ 7 ∗ 109 ∗ 8000 ≈ 110TFLOPs. This method scales favourably
to larger bases (SSA 350 TFLOPs vs Sequential RL 512 TFLOPs on a 32B model).

A.10 Stability Analyses

A.10.1 Effect of Candidate Ordering

A potential concern for methods that concatenate K candidates is that the relative order of those
candidates might influence the SSA’s decision. To test this, we evaluate the 3B SSA (RL) under
three independent random permutations of the K responses of 7B answer model at inference time,
holding everything else fixed. As shown in Table 13, we do not observe meaningful differences when
changing the order.

A.10.2 Training different random seed

Reinforcement learning can exhibit sensitivity to initialization. We therefore train SSA 3B (RL) with
another seed 16 using identical data and hyperparameters, and evaluate the resulting checkpoints
under the same protocol as the main results of 7B answer model. Table 14 reports per-K accuracy.
We do not see significant differences.

A.11 Training Data Statistics

Table 15 summarizes the distribution of instance-level correctness in the raw training pool prior to
filtering. For each question we sampled K=5 candidate solutions using top-k sampling. “m/5”
indicates that exactly m of the five candidates match the reference answer.

Filtering and preprocessing. We apply two light filters before RL training:

22

Table 13: Ordering sensitivity. SSA 3B (RL)
evaluated with the original concatenation order
vs. three random permutations at inference time.
Values are accuracy (%).

Metric 5 10 15 20

Original (%) 56.13 58.53 59.12 56.78
Avg. over 3 random permutations (%) 56.06 58.70 59.40 58.47

Table 14: Training-seed sensitivity.SSA 3B
(RL) trained with different random seeds. Values
are accuracy (%).

Metric 5 10 15 20

Original Random Seed 42(%) 56.13 58.53 59.12 56.78
Random Seed 16 (%) 56.09 57.27 59.49 56.64

Table 15: Correctness distribution in the raw training pool (five sampled responses per question).
Counts and column percentages are shown.

Correct GSM8K MATH Combined

0/5 618 (8.3%) 3170 (26.4%) 3788 (19.5%)
1/5 218 (2.9%) 1007 (8.4%) 1225 (6.3%)
2/5 198 (2.6%) 841 (7.0%) 1039 (5.3%)
3/5 268 (3.6%) 881 (7.3%) 1149 (5.9%)
4/5 477 (6.4%) 1157 (9.6%) 1634 (8.4%)
5/5 5694 (76.2%) 4944 (41.2%) 10638 (54.6%)

Total 7473 (100.0%) 12000 (100.0%) 19473 (100.0%)

• Validity filter. We discard instances where more than one of the five samples is NULL (un-
parsable/empty). This removes ≈0.4% of GSM8K and ≈9.8% of MATH instances.

• Length filter. Answer sets exhibit a long-tailed length distribution; some concatenations exceed
8k tokens due to looping or unbounded reasoning. To control VRAM and remove pathological
traces, we drop instances whose concatenated prompt + answers exceed 4k tokens. This reduces
the pool from ∼19k to ∼17k instances and slightly denoises the supervision.

These filters are minimal (no step-level labeling) and aimed purely at stabilizing training; we did not
tune them for accuracy.

23

B Prompt Details

For SSA method, we trained and evaluate it with the following prompt:

SSA Prompt: A conversation between User and Assistant. The user provide a question and some
proposed answers. The Assistant first evaluate each answers individually,check whether each answer
directly addresses the original question, assess the correctness of each answer based on logical reasoning,
calculations, and accuracy relative to the question. After thorough evaluation, identify one correct answer.
If the correct answer is not in the provided proposed answers, the Assistant will combine the correct
answer with the proposed answers and provide the correct answer. The reasoning process and answer
are enclosed within <think></think> and <answer></answer> tags, respectively, i.e., <think>reasoning
process here</think> <answer>answer here</answer>.

Figure 8: Example prompt for SSA. For reward extraction, we will use rule based extraction to extract
anything inside <think></think> and <answer></answer>. If the output matches the structure and
able to extract some values we will provide minimal format reward.

SSA No-Think Prompt:A conversation between User and Assistant. The user provide a question and
some proposed answers. The Assistant answer the question based on the proposed answers. The answer is
enclosed within <answer></answer> tag, i.e., <answer>answer here</answer>.

Figure 9: Example prompt for SSA

USC Prompt: You are a helpful assistant. The user provide a question and some proposed answers. The
Assistant first evaluate each answers individually,check whether each answer directly addresses the original
question, assess the correctness of each answer based on logical reasoning, calculations, and accuracy
relative to the question. After thorough evaluation, identify one correct answer based on majority consensus.
The reasoning process and answer are enclosed within <think></think> and <answer></answer> tags,
respectively, i.e., <think>reasoning process here</think> <answer>answer here</answer>.

Figure 10: Example prompt for USC prompt to the Instruct model

SFT Data Construction Prompt: Here is a question and some proposed answers. You need to evaluate
each answers individually, check whether each answer directly addresses the original question, assess the
correctness of each answer based on logical reasoning, calculations, and accuracy relative to the question.
After thorough evaluation, identify one correct answer. If the correct answer is not in the provided proposed
answers, the Assistant will combine the correct partial responses to proposed answers and provide the
correct answer. Make the reasoning process concise and to the point. The reasoning process and answer are
enclosed within <think></think> and <answer></answer> tags, respectively,i.e., <think>reasoning process
here</think> <answer>answer here</answer>. Here is the Question and proposed answers: Question and
5 Answers.
Here is the labeled answer with answer tags ’<answer>Ground Truth Answer</answer>’, and most likely
the correct answer. If none of the proposed answers is correct, come up with the reasoning process to arrive
at the actual correct final answer. **Attention: Do not ever mention the answer is given in the response,
but you need to justify it from the problem and proposed answers!**

Figure 11: Example prompt for constructing SFT dataset

24

C Example Results

A conversation between User and Assistant. The user provide a question and some proposed answers. The Assistant first evaluate each answers individually,check
whether each answer directly addresses the original question, assess the correctness of each answer based on logical reasoning, calculations, and accuracy relative to
the question. After thorough evaluation, identify one correct answer. If the correct answer is not in the provided proposed answers, the Assistant will combine the
correct answer with the proposed answers and provide the correct answer.The reasoning process and answer are enclosed within <think></think> and
<answer></answer> tags, respectively, i.e., <think>reasoning process here</think> <answer>answer here</answer>.

User: Question: What is the value of\n\\[2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + \\dots + 18^3 - 17^3?\\]\n\nBelow are the proposed answers:\n\n

Answer 1:\nTo solve the given expression \\(2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + \\dots + 18^3 - 17^3\\), we can observe that it consists of pairs of terms where each pair is
of the form \\((2k)^3 - (2k-1)^3 \\).\n\nLet's simplify the general term in the series:\n\\[\n(2k)^3 - (2k-1)^3\n\\]\n\nUsing the binomial expansion for cubes, we
have:\n\\[\na^3 - b^3 = (a - b)(a^2 + ab + b^2)\n\\]\nwhere \\(a = 2k\\) and \\(b = 2k-1\\). Substituting these values, we get:\n\\[\n(2k)^3 - (2k-1)^3 = [(2k) - (2k-1)][(2k)^2 +
(2k)(2k-1) + (2k-1)^2]\n\\]\nSimplifying inside the brackets:\n\\[\n(2k - (2k-1)) = 1\n\\]\nSo,\n\\[\n(2k)^3 - (2k-1)^3 = 1 \\cdot [(2k)^2 + (2k)(2k-1) + (2k-1)^2]\n\\]\nNow, let's
expand the quadratic expression:\n\\[\n(2k)^2 = 4k^2\n\\]\n\\[\n(2k)(2k-1) = 4k^2 - 2k\n\\]\n\\[\n(2k-1)^2 = 4k^2 - 4k + 1\n\\]\nAdding these together:\n\\[\n4k^2 + (4k^2 -
2k) + (4k^2 - 4k + 1) = 12k^2 - 6k + 1\n\\]\nThus,\n\\[\n(2k)^3 - (2k-1)^3 = 12k^2 - 6k + 1\n\\]\n\nNext, we need to sum this expression from \\(k=1\\) to \\(k=9\\) (since the
sequence goes up to 18, which corresponds to \\(k=9\\)):\n\\[\n\\sum_{k=1}^{9} (12k^2 - 6k + 1)\n\\]\n\nWe can split this into three separate sums:\n\\[\n\\sum_{k=1}^{9}
12k^2 - \\sum_{k=1}^{9} 6k + \\sum_{k=1}^{9} 1\n\\]\n\nCalculating each sum separately:\n1. Sum of squares:\n\\[\n\\sum_{k=1}^{9} k^2 = \\frac{9 \\cdot 10 \\cdot 19}{6}
= 285\n\\]\nMultiplying by 12:\n\\[\n12 \\sum_{k=1}^{9} k^2 = 12 \\cdot 285 = 3420\n\\]\n\n2. Sum of integers:\n\\[\n\\sum_{k=1}^{9} k = \\frac{9 \\cdot 10}{2} =
45\n\\]\nMultiplying by 6:\n\\[\n6 \\sum_{k=1}^{9} k = 6 \\cdot 45 = 270\n\\]\n\n3\n\n

Answer 2:\nTo find the value of the expression \\(2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + \\dots + 18^3 - 17^3\\), we can observe that it is a sum of dieerences of cubes in
pairs. Let's break it down step by step.\n\nFirst, consider the general term in the sequence:\n\\[(2k)^3 - (2k-1)^3 \\]\nfor \\(k = 1, 2, 3, \\ldots, 9 \\).\n\nWe need to
simplify the expression \\((2k)^3 - (2k-1)^3\\). Using the identity for the dieerence of cubes, \\(a^3 - b^3 = (a-b)(a^2 + ab + b^2)\\), where \\(a = 2k\\) and \\(b = 2k-1\\), we
get:\n\\[\n(2k)^3 - (2k-1)^3 = (2k - (2k-1)) \\left((2k)^2 + (2k)(2k-1) + (2k-1)^2 \\right)\n\\]\nSimplifying inside the parentheses:\n\\[\n= 1 \\left(4k^2 + 4k^2 - 2k + 4k^2 - 4k +
1 \\right)\n= 4k^2 + 4k^2 - 2k + 4k^2 - 4k + 1\n= 12k^2 - 6k + 1\n\\]\n\nNow, we need to sum this expression from \\(k=1\\) to \\(k=9\\):\n\\[\n\\sum_{k=1}^{9} (12k^2 - 6k +
1)\n\\]\n\nWe can split this into three separate sums:\n\\[\n\\sum_{k=1}^{9} 12k^2 - \\sum_{k=1}^{9} 6k + \\sum_{k=1}^{9} 1\n\\]\n\nUsing the formulas for the sum of
squares and the sum of the first \\(n\\) natural numbers:\n\\[\n\\sum_{k=1}^{n} k^2 = \\frac{n(n+1)(2n+1)}{6}\n\\]\n\\[\n\\sum_{k=1}^{n} k =
\\frac{n(n+1)}{2}\n\\]\n\\[\n\\sum_{k=1}^{n} 1 = n\n\\]\n\nFor \\(n = 9\\):\n\\[\n\\sum_{k=1}^{9} k^2 = \\frac{9 \\cdot 10 \\cdot 19}{6} = 285\n\\]\n\\[\n\\sum_{k=1}^{9} k =
\\frac{9 \\cdot 10}{2} = 45\n\\]\n\\[\n\\sum_{k=1}^{9} 1 = 9\n\\]\n\nSubstituting these values back into our expression:\n\\[\n12 \\sum_{k=1}^{9} k^2 - 6 \\sum\n\n

Answer 3:\nTo find the value of the expression \\(2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + \\dots + 18^3 - 17^3\\), we can observe that it consists of pairs of terms where each
pair is of the form \\((2n)^3 - (2n-1)^3 \\).\n\nFirst, let's simplify the general term in the sequence:\n\\[\n(2n)^3 - (2n-1)^3\n\\]\nUsing the binomial expansion for cubes,
we have:\n\\[\na^3 - b^3 = (a - b)(a^2 + ab + b^2)\n\\]\nHere, \\(a = 2n\\) and \\(b = 2n-1\\). So,\n\\[\n(2n)^3 - (2n-1)^3 = (2n - (2n-1))((2n)^2 + (2n)(2n-1) + (2n-
1)^2)\n\\]\nSimplifying inside the parentheses:\n\\[\n= 1 \\cdot ((2n)^2 + 2n(2n-1) + (2n-1)^2)\n\\]\n\\[\n= (4n^2 + 4n^2 - 2n + 4n^2 - 4n + 1)\n\\]\n\\[\n= 4n^2 + 4n^2 - 2n +
4n^2 - 4n + 1\n\\]\n\\[\n= 12n^2 - 6n + 1\n\\]\n\nNow, we need to sum these simplified terms from \\(n=1\\) to \\(n=9\\):\n\\[\n\\sum_{n=1}^{9} (12n^2 - 6n + 1)\n\\]\n\nWe
can split this into three separate sums:\n\\[\n\\sum_{n=1}^{9} 12n^2 - \\sum_{n=1}^{9} 6n + \\sum_{n=1}^{9} 1\n\\]\n\nCalculating each sum separately:\n1. Sum of
squares:\n\\[\n\\sum_{n=1}^{9} n^2 = \\frac{9 \\cdot 10 \\cdot 19}{6} = 285\n\\]\nSo,\n\\[\n12 \\sum_{n=1}^{9} n^2 = 12 \\cdot 285 = 3420\n\\]\n\n2. Sum of
integers:\n\\[\n\\sum_{n=1}^{9} n = \\frac{9 \\cdot 10}{2} = 45\n\\]\nSo,\n\\[\n6 \\sum_{n=1}^{9} n = 6 \\cdot 45 = 270\n\\]\n\n3. Sum of ones:\n\\[\n\\sum_{n\n\n

Answer 4:\nTo find the value of the expression \\(2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + \\dots + 18^3 - 17^3\\), we can observe that it is a sum of dieerences of cubes in
pairs. Specifically, it can be written as:\n\n\\[\n(2^3 - 1^3) + (4^3 - 3^3) + (6^3 - 5^3) + \\dots + (18^3 - 17^3)\n\\]\n\nWe can use the identity for the dieerence of cubes,
which states \\(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\\). For each pair \\((2k)^3 - (2k-1)^3 \\):\n\n\\[\n(2k)^3 - (2k-1)^3 = (2k - (2k-1))((2k)^2 + (2k)(2k-1) + (2k-1)^2)\n\\]\n\\[\n=
1 \\left(4k^2 + 4k^2 - 2k + 4k^2 - 4k + 1\\right)\n\\]\n\\[\n= 1 (12k^2 - 6k + 1)\n\\]\n\\[\n= 12k^2 - 6k + 1\n\\]\n\nSo, the expression simplifies to:\n\n\\[\n(2^3 - 1^3) + (4^3 -
3^3) + (6^3 - 5^3) + \\dots + (18^3 - 17^3) = (12 \\cdot 1^2 - 6 \\cdot 1 + 1) + (12 \\cdot 2^2 - 6 \\cdot 2 + 1) + \\dots + (12 \\cdot 9^2 - 6 \\cdot 9 + 1)\n\\]\n\nThis can be
written as:\n\n\\[\n\\sum_{k=1}^{9} (12k^2 - 6k + 1)\n\\]\n\nWe can split this sum into three separate sums:\n\n\\[\n12 \\sum_{k=1}^{9} k^2 - 6 \\sum_{k=1}^{9} k +
\\sum_{k=1}^{9} 1\n\\]\n\nUsing the formulas for the sum of the first \\(n\\) squares and the sum of the first \\(n\\) integers, we get:\n\n\\[\n\\sum_{k=1}^{9} k^2 = \\frac{9
\\cdot 10 \\cdot 19}{6} = 285\n\\]\n\\[\n\\sum_{k=1}^{9} k = \\frac{9 \\cdot 10}{2} = 45\n\\]\n\\[\n\\sum_{k=1}^{9} 1 = 9\n\\]\n\nSubstituting these val\n\n

Answer 5:\nTo solve the expression \\(2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + \\dots + 18^3 - 17^3\\), we can observe that it consists of pairs of terms where each pair is of the
form \\((2n)^3 - (2n-1)^3 \\).\n\nFirst, let's simplify the general term \\((2n)^3 - (2n-1)^3 \\):\n\\[\n(2n)^3 - (2n-1)^3 = 8n^3 - (8n^3 - 12n^2 + 6n - 1) = 12n^2 - 6n +
1.\n\\]\n\nNow, we need to sum this expression for \\(n = 1 \\) to \\(n = 9 \\) (since the sequence goes up to 18 and 17, which correspond to \\(n = 1 \\) to \\(n = 9
\\)):\n\\[\n\\sum_{n=1}^{9} (12n^2 - 6n + 1).\n\\]\n\nWe can split this sum into three separate sums:\n\\[\n\\sum_{n=1}^{9} 12n^2 - \\sum_{n=1}^{9} 6n + \\sum_{n=1}^{9}
1.\n\\]\n\nUsing the formulas for the sum of squares and the sum of the first \\(n \\) natural numbers:\n\\[\n\\sum_{n=1}^{9} n^2 = \\frac{9 \\cdot 10 \\cdot 19}{6} =
285,\n\\]\n\\[\n\\sum_{n=1}^{9} n = \\frac{9 \\cdot 10}{2} = 45,\n\\]\n\\[\n\\sum_{n=1}^{9} 1 = 9.\n\\]\n\nSubstituting these values back in, we get:\n\\[\n12 \\sum_{n=1}^{9}
n^2 - 6 \\sum_{n=1}^{9} n + \\sum_{n=1}^{9} 1 = 12 \\cdot 285 - .

Assistant: <think>Each proposed answer simplifies the general term and sums the series. The key is to recognize that the series is composed of pairs of cubes, and each
pair simplifies to \\(12n^2 - 6n + 1\\). The sums of squares and integers from 1 to 9 are well-known and can be calculated directly. The total sum is the sum of these three
parts: \\(12 \\cdot 285 - 6 \\cdot 45 + 9\\). Calculating each part: \\(12 \\cdot 285 = 3420\\), \\(6 \\cdot 45 = 270\\), and \\(9 = 9\\). Summing these: \\(3420 - 270 + 9 =
3159\\). All answers arrive at the same total, confirming the correctness of the calculation.</think> <answer>3159</answer>",

Figure 12: Example output when we cut off the last 10% of all answers to test whether SSA can
synthesize. SSA SFT+RL 3B can synthesize and continue to get the final correct answer from
AMC23 data. We can see the final answer 3159 does not appear anywhere in the provided solutions.

25

 A conversation between User and Assistant. The user provide a question and some proposed answers. The Assistant first
evaluate each answers individually,check whether each answer directly addresses the original question, assess the
correctness of each answer based on logical reasoning, calculations, and accuracy relative to the question. After thorough
evaluation, identify one correct answer. If the correct answer is not in the provided proposed answers, the Assistant will
combine the correct answer with the proposed answers and provide the correct answer.The reasoning process and answer are
enclosed within <think></think> and <answer></answer> tags, respectively, i.e., <think>reasoning process here</think>
<answer>answer here</answer>. User: Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many
bolts in total does it take?\n\nBelow are the proposed answers:\n\n

Answer 1:\nTo determine the total number of bolts needed for the robe, we start by identifying the amount of each type of fiber
required:\n\n- The robe requires 2 bolts of blue fiber.\n- It requires half as much white fiber as blue fiber, which means it needs
\\(\\frac{1}{2} \\times 2 = 1 \\) bolt of white fiber.\n\nAdding these together gives us the total number of bolts:\n\n\\[2
\\text{ (blue)} + 1 \\text{ (white)} = 3 \\text{ bolts} \\]\n\n#### 3\n\n

Answer 2:\nTo determine the total number of bolts needed for the robe, we start by identifying the amount of each type of fiber
required:\n\n1. The robe requires 2 bolts of blue fiber.\n2. The amount of white fiber required is half the amount of blue fiber,
which is \\(\\frac{2}{2} = 1 \\) bolt.\n\nAdding these together gives the total number of bolts needed:\n\\[2 \\text{ (blue)} + 1
\\text{ (white)} = 3 \\text{ bolts} \\]\n\n#### 3\n\n

Answer 3:\nTo determine the total number of bolts of fiber needed for the robe, we start by identifying the amount of each type
of fiber required.\n\n1. The robe requires 2 bolts of blue fiber.\n2. The amount of white fiber required is half that of the blue
fiber. Therefore, the amount of white fiber needed is:\n \\[\n \\frac{2}{2} = 1 \\text{ bolt}\n \\]\n\nNext, we add the bolts of
blue fiber and white fiber together to find the total number of bolts needed:\n\\[\n2 \\text{ (blue)} + 1 \\text{ (white)} = 3
\\text{ bolts}\n\\]\n\nThus, the total number of bolts of fiber needed for the robe is:\n#### 3\n\n

Answer 4:\nA robe takes 2 bolts of blue fiber and half that amount in white fiber, which means it takes 1 bolt of white fiber
(since half of 2 is 1). Therefore, the total number of bolts needed is 2 (blue) + 1 (white) = 3 bolts.\n\n#### 3\n\n

Answer 5:\nA robe takes 2 bolts of blue fiber and half that amount in white fiber, which means it takes 1 bolt of white fiber
(since half of 2 is 1). \n\nIn total, the robe takes 2 bolts of blue fiber + 1 bolt of white fiber = 3 bolts.\n\n#### 3.

Assistant: <think>Each proposed answer correctly identifies that the robe requires 2 bolts of blue fiber and half that amount in
white fiber, which is 1 bolt. The total bolts needed are then 2 (blue) + 1 (white) = 3 bolts. All answers arrive at the same
conclusion through correct reasoning and calculations. Since all answers are consistent and correct, the most straightforward
and clear answer is the one that explicitly states the total as 3 bolts, which is Answer 5. Therefore, the correct answer is 3
bolts.</think> <answer>3</answer>

Figure 13: SSA SFT Example. We can see there is a more clear reasoning on the response on the
decision process.

26

 A conversation between User and Assistant. The user provide a question and some proposed answers. The Assistant first
evaluate each answers individually,check whether each answer directly addresses the original question, assess the
correctness of each answer based on logical reasoning, calculations, and accuracy relative to the question. After thorough
evaluation, identify one correct answer. If the correct answer is not in the provided proposed answers, the Assistant will
combine the correct answer with the proposed answers and provide the correct answer.The reasoning process and answer are
enclosed within <think></think> and <answer></answer> tags, respectively, i.e., <think>reasoning process here</think>
<answer>answer here</answer>.

User: Question: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This
increased the value of the house by 150%. How much profit did he make?\n\nBelow are the proposed answers:\n\n

Answer 1:\nFirst, we need to calculate the new value of the house after the repairs. The original cost of the house was $80,000,
and Josh spent an additional $50,000 on repairs. Therefore, the total cost before considering the increase in value
is:\n\n\\[80,000 + 50,000 = 130,000 \\]\n\nThe repairs increased the value of the house by 150%. To find the new value of the
house, we need to calculate 150% of the original purchase price ($80,000) and add it to the original purchase
price.\n\n\\[150\\% \\text{ of } 80,000 = 1.5 \\times 80,000 = 120,000 \\]\n\nAdding this to the original purchase price gives us
the new value of the house:\n\n\\[80,000 + 120,000 = 200,000 \\]\n\nNow, we subtract the total amount Josh spent (the initial
purchase price plus the repair costs) from the new value of the house to determine his profit:\n\n\\[200,000 - 130,000 =
70,000 \\]\n\nTherefore, Josh made a profit of $70,000.\n\n#### $70,000\n\n

Answer 2:\nFirst, we need to calculate the new value of the house after the repairs. The original cost of the house was $80,000,
and Josh spent an additional $50,000 on repairs. Therefore, the total cost before considering the increase in value
is:\n\n\\[80,000 + 50,000 = 130,000 \\]\n\nNext, we know that the repairs increased the value of the house by 150%. An
increase of 150% means the value of the house became 250% (or 2.5 times) its original value before the repairs. So, the new
value of the house is:\n\n\\[130,000 \\times 2.5 = 325,000 \\]\n\nNow, to find the profit, we subtract the total cost from the
new value of the house:\n\n\\[325,000 - 130,000 = 195,000 \\]\n\nTherefore, the profit Josh made is:\n\n#### $195,000\n\n

Answer 3:\nFirst, let's calculate the new value of the house after the repairs. The original cost of the house was $80,000, and
Josh spent an additional $50,000 on repairs. Therefore, the total cost before considering the increase in value is:\n\n\\[80,000
+ 50,000 = 130,000 \\]\n\nNext, we need to determine the new value of the house after the 150% increase in value. A 150%
increase means the value of the house becomes 250% (100% original value + 150% increase) of its pre-repair value. The pre-
repair value of the house is $130,000, so the new value is:\n\n\\[130,000 \\times 2.5 = 325,000 \\]\n\nNow, to find the profit,
we subtract the total cost from the new value of the house:\n\n\\[325,000 - 130,000 = 195,000 \\]\n\nTherefore, the profit Josh
made is:\n\n#### $195,000\n\n

Answer 4:\nFirst, let's calculate the new value of the house after the repairs. The original purchase price of the house was
$80,000, and Josh spent an additional $50,000 on repairs. Therefore, the total cost before considering the increase in value
is:\n\n\\[80,000 + 50,000 = 130,000 \\]\n\nNext, we need to determine the new value of the house after it increased by 150%.
An increase of 150% means the value of the house becomes 250% (or 2.5 times) its original purchase price. So, the new value
of the house is:\n\n\\[80,000 \\times 2.5 = 200,000 \\]\n\nNow, we can find out how much profit Josh made by subtracting his
total cost from the new value of the house:\n\n\\[200,000 - 130,000 = 70,000 \\]\n\nTherefore, the profit Josh made is:\n\n####
$70,000\n\n

Answer 5:\nFirst, we need to determine the new value of the house after the repairs. The original cost of the house was
$80,000, and Josh spent an additional $50,000 on repairs. Therefore, the total cost before any increase in value
is:\n\n\\[80,000 + 50,000 = 130,000 \\]\n\nThe problem states that the value of the house increased by 150% due to the
repairs. An increase of 150% means the value of the house became 250% (or 2.5 times) its original cost after repairs. So, the
new value of the house is:\n\n\\[130,000 \\times 2.5 = 325,000 \\]\n\nTo find the profit, we subtract the total cost from the new
value of the house:\n\n\\[325,000 - 130,000 = 195,000 \\]\n\nTherefore, the profit Josh made is:\n\n#### $195,000.

Assistant: <think>reasoning process here</think> <answer>195000</answer>",

Figure 14: SSA RL Example. We can see the response reasoning process is just a copy of the
instruction template. There are no meaningful content there

27

A conversation between User and Assistant. The user provide a question and some proposed answers. The Assistant answer the question
based on the proposed answers. The answer is enclosed within <answer></answer> tag, i.e., <answer>answer here</answer>.

User: Question: Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form
$(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.$\n\nBelow are the proposed answers:\n\n

Answer 1:\nTo convert the point \\((0,3)\\) from rectangular coordinates to polar coordinates, we need to find the values of \\(r\\) and
\\(\\theta\\).\n\n1. **Calculate \\(r\\):**\n The formula for \\(r\\) is:\n \\[\n r = \\sqrt{x^2 + y^2}\n \\]\n Substituting \\(x = 0\\) and \\(y =
3\\):\n \\[\n r = \\sqrt{0^2 + 3^2} = \\sqrt{9} = 3\n \\]\n\n2. **Determine \\(\\theta\\):**\n The angle \\(\\theta\\) can be found using the
arctangent function:\n \\[\n \\theta = \\tan^{-1}\\left(\\frac{y}{x}\\right)\n \\]\n However, since \\(x = 0\\) and \\(y = 3\\), this results in an
undefined value for \\(\\tan^{-1}\\). Instead, we consider the position of the point in the coordinate plane. The point \\((0,3)\\) lies on the
positive \\(y\\)-axis.\n\n On the positive \\(y\\)-axis, the angle \\(\\theta\\) is:\n \\[\n \\theta = \\frac{\\pi}{2}\n \\]\n\nThus, the polar
coordinates of the point \\((0,3)\\) are:\n\\[\n(r, \\theta) = (3, \\frac{\\pi}{2})\n\\]\n\n#### \\((3, \\frac{\\pi}{2})\\)\n\n

Answer 2:\nTo convert the point \\((0,3)\\) from rectangular coordinates to polar coordinates, we need to find the values of \\(r\\) and
\\(\\theta\\).\n\n1. **Calculate \\(r\\):**\n The formula for \\(r\\) is:\n \\[\n r = \\sqrt{x^2 + y^2}\n \\]\n Substituting \\(x = 0\\) and \\(y =
3\\):\n \\[\n r = \\sqrt{0^2 + 3^2} = \\sqrt{9} = 3\n \\]\n\n2. **Calculate \\(\\theta\\):**\n The formula for \\(\\theta\\) is:\n \\[\n \\theta =
\\tan^{-1}\\left(\\frac{y}{x}\\right)\n \\]\n However, since \\(x = 0\\) and \\(y = 3\\), this point lies on the positive \\(y\\)-axis. Therefore,
\\(\\theta\\) should be \\(\\frac{\\pi}{2}\\).\n\nThus, the polar coordinates of the point \\((0,3)\\) are:\n\\[\n(r, \\theta) = (3,
\\frac{\\pi}{2})\n\\]\n\n#### \\((3, \\frac{\\pi}{2})\\)\n\n

Answer 3:\nTo convert the point \\((0,3)\\) from rectangular coordinates to polar coordinates, we need to find \\(r\\) and \\(\\theta\\).\n\n1.
Calculate \\(r\\):\n The formula for \\(r\\) is:\n \\[\n r = \\sqrt{x^2 + y^2}\n \\]\n Substituting \\(x = 0\\) and \\(y = 3\\):\n \\[\n r =
\\sqrt{0^2 + 3^2} = \\sqrt{9} = 3\n \\]\n\n2. **Calculate \\(\\theta\\):**\n The formula for \\(\\theta\\) is:\n \\[\n \\theta = \\tan^{-
1}\\left(\\frac{y}{x}\\right)\n \\]\n However, since \\(x = 0\\) and \\(y = 3\\), this results in an undefined value for \\(\\tan^{-1}\\). Instead, we
consider the position of the point in the coordinate plane. The point \\((0,3)\\) lies on the positive \\(y\\)-axis.\n\n On the \\(y\\)-axis, the
angle \\(\\theta\\) is \\(\\frac{\\pi}{2}\\) (or 90 degrees).\n\nTherefore, the polar coordinates of the point \\((0,3)\\) are:\n\\[\n(r, \\theta) = (3,
\\frac{\\pi}{2})\n\\]\n\n#### \\((3, \\frac{\\pi}{2})\\)\n\n

Answer 4:\nTo convert the point \\((0,3)\\) from rectangular coordinates to polar coordinates, we need to find the values of \\(r\\) and
\\(\\theta\\).\n\n1. **Calculate \\(r\\):**\n The formula for \\(r\\) is given by:\n \\[\n r = \\sqrt{x^2 + y^2}\n \\]\n Substituting \\(x = 0\\)
and \\(y = 3\\):\n \\[\n r = \\sqrt{0^2 + 3^2} = \\sqrt{9} = 3\n \\]\n\n2. **Determine \\(\\theta\\):**\n The angle \\(\\theta\\) can be found
using the arctangent function:\n \\[\n \\theta = \\tan^{-1}\\left(\\frac{y}{x}\\right)\n \\]\n However, since \\(x = 0\\) and \\(y = 3\\), this
directly places the point on the positive \\(y\\)-axis. Therefore, the angle \\(\\theta\\) is:\n \\[\n \\theta = \\frac{\\pi}{2}\n \\]\n\nThus, the
polar coordinates of the point \\((0,3)\\) are:\n\\[\n(r, \\theta) = (3, \\frac{\\pi}{2})\n\\]\n\n#### \\((3, \\frac{\\pi}{2})\\)\n\n

Answer 5:\nTo convert the point \\((0, 3)\\) from rectangular coordinates to polar coordinates, we need to find \\(r\\) and \\(\\theta\\).\n\n1.
Calculate \\(r\\):\n The formula for \\(r\\) is:\n \\[\n r = \\sqrt{x^2 + y^2}\n \\]\n Substituting \\(x = 0\\) and \\(y = 3\\):\n \\[\n r =
\\sqrt{0^2 + 3^2} = \\sqrt{9} = 3\n \\]\n\n2. **Calculate \\(\\theta\\):**\n The formula for \\(\\theta\\) is:\n \\[\n \\theta = \\tan^{-
1}\\left(\\frac{y}{x}\\right)\n \\]\n However, since \\(x = 0\\), \\(\\tan^{-1}\\left(\\frac{3}{0}\\right)\\) is undefined. This indicates that the
point lies on the positive \\(y\\)-axis. Therefore, \\(\\theta\\) must be \\(\\frac{\\pi}{2}\\).\n\nPutting it all together, the polar coordinates
are:\n\\[\n(r, \\theta) = (3, \\frac{\\pi}{2})\n\\]\n\n#### \\((3, \\frac{\\pi}{2})\\).

Assistant: <answer>3, pi/2</answer>

Figure 15: SSA No Think Example. We can see the Assistant output answer directly

28

	Introduction
	Related Work
	Method
	Problem Formulation
	Training SSA with Reinforcement Learning
	Training SSA With Supervised Finetuning

	Experiments
	Experimental Settings
	Comparison Systems

	Main Results
	Comparison with Parallel Scaling Baselines
	Generalization Capabilities of SSA.
	Comparison with Sequential Test-time Scaling
	Scaling SSA to handle a larger sample set

	Analyses
	Comparing RL vs SFT
	To think or not to think

	Conclusion
	More results details
	SSA Results
	Ablation on SFT, No Think, and RL Results
	Combining SFT and RL
	Increasing k during training
	Scaling K during inference and Two-stage SSA
	Error Analysis
	Copy or Synthesize?
	Generalization to other tasks
	Efficiency Evaluation
	Stability Analyses
	Effect of Candidate Ordering
	Training different random seed

	Training Data Statistics

	Prompt Details
	Example Results

