
Under review as a conference paper at ICLR 2023

SIAMESE-NAS: USING TRAINED SAMPLES EFFI-
CIENTLY TO FIND LIGHTWEIGHT NEURAL ARCHITEC-
TURE BY PRIOR KNOWLEDGE

Anonymous authors
Paper under double-blind review

ABSTRACT

In the past decade, many architectures of convolution neural networks were de-
signed by handcraft, such as Vgg16, ResNet, DenseNet, etc. They all achieve
state-of-the-art level on different tasks in their time. However, it still relies on
human intuition and experience, and it also takes so much time consumption for
trial and error. Neural Architecture Search (NAS) focused on this issue. In re-
cent works, the Neural Predictor has significantly improved with few training
architectures as training samples. However, the sampling efficiency is already
considerable. In this paper, our proposed Siamese-Predictor is inspired by past
works of predictor-based NAS. It is constructed with the proposed Estimation
Code, which is the prior knowledge about the training procedure. The proposed
Siamese-Predictor gets significant benefits from this idea. This idea causes it to
surpass the current SOTA predictor on NASBench-201. In order to explore the im-
pact of the Estimation Code, we analyze the relationship between it and accuracy.
We also propose the search space Tiny-NanoBench for lightweight CNN archi-
tecture. This well-designed search space is easier to find better architecture with
few FLOPs than NASBench-201. In summary, the proposed Siamese-Predictor is
a predictor-based NAS. It achieves the SOTA level, especially with limited com-
putation budgets. It applied to the proposed Tiny-NanoBench can just use a few
trained samples to find extremely lightweight CNN architecture.

1 INTRODUCTION

There are lots of Convolution Neural Network (CNN) models have been proposed that achieved
great success in the past decade (Simonyan & Zisserman (2014); He et al. (2016); Huang et al.
(2017); Howard et al. (2017)). Nevertheless, designing a handcrafted CNN architecture requires
human intuition and experience, which is not easy to get and often not optimal. Neural Architec-
ture Search (NAS) (Zoph & Le (2016)) focus on this problem, it search the best neural network
architecture based on specific strategy on the specific search space (Liu et al. (2018b); Ying et al.
(2019); Dong & Yang (2020)). Many methods have been proposed in the past. One path is to train
a predictor based on Graph Convolution or Multilayer Perceptron. Although the predictor-based
method achieved impressive performance with a few trained samples that are randomly CNN archi-
tecture trained on CIFAR-10 (Krizhevsky et al. (2009)) or other public datasets. However, to get the
ground truth of architectures, we have to train every architecture, which needs so many GPU times,
and we all know that GPU times are so expensive. In other words, we believe there is still a huge
improvement gap. The proposed Siamese-Predictor combined the extra prior knowledge Estima-
tion Code to improve the search efficiency. The proposed Estimation Code is developed from early
losses of the architecture training procedure. It shows a high correlation with the final accuracy of
the architecture in our experiments. Although this code shows the potential to boost the predictor,
it has a huge computational cost for getting the Estimation Code of each model in the search space.
So, we propose the Siamese-Ranking method to reduce this extra cost brought by extra knowledge.
Besides, we also propose the training strategy Batch Top Sampling to use trained samples more
efficiently by conditional training sample selection. Finally, our method surpasses the baseline on
the NASBench-201 (Dong & Yang (2020)) and finds more lightweight CNN architecture on the
proposed Tiny-NanoBench.

1

Under review as a conference paper at ICLR 2023

(a) (b) (c)

Figure 1: The relationship between Estimation Code and ground truth(accuracy) in Tiny-
NanoBench. (a) is the relationship about all architecture, (b) is focused on the first high-scoring
group in (a), (c) is focused on the second high-scoring group in (a).

2 RELATED WORK

There are various NAS methods have been proposed in latter years, some methods based on rein-
forcement learning (Zoph & Le (2016); Baker et al. (2016)), some methods developed from evo-
lutionary algorithm (Lu et al. (2019); Real et al. (2019)), and some methods focused on training
a predictor to sort the search space (Wen et al. (2020); Dudziak et al. (2020)). In this papaer, we
proposes the Siamese-Predictor, it is a predictor-based NAS method. Therefore, We will focus on
introducing the other predictors later.

2.1 NEURAL PREDICTORS

The predictor-based NAS methods are the mainstream approach, creating a predictor to predict the
accuracy of CNN architecture. There are many types of these predictors (Liu et al. (2018a); Luo
et al. (2018); Wen et al. (2020); Dudziak et al. (2020); Wei et al. (2022)), in recent works, the Neural
Predictor (Wen et al. (2020)) is the most representative method. It encodes the architecture to graph
structure embedded code that contains the adjacency matrix and feature matrix. The adjacency
matrix represents the relationship between nodes. The feature matrix represents the operations used
by the nodes in the cell. Since the number of cells in their meta-architecture is fixed and the structure
is also fixed. So that uses multiple Graph Convolution (GCN) (Kipf & Welling (2016)) to extract the
high-level feature matrix while considering directionality by the adjacency matrix. Finally, flatten
it and use a fully connected layer to get the prediction accuracy, then sort search space based on
it to find the promising architectures. This GCN-based predictor shows significant performance in
NASBench-101 (Ying et al. (2019)). After that, the BRP-NAS (Dudziak et al. (2020)) proposes
a binary predictor that takes two different architectures as inputs at the same time, and it predicts
which is better in these two instead of directly predicting accuracy. This method greatly improves
the performance compared to the neural predictor. We believe that this improvement is caused by the
use of prior knowledge, i.e., inputs two architectures at the same time. In this paper, we explore this
idea to propose the Siamese-Predictor that using losses of training procedure as prior knowledge, it
improves the performance considerably in NASBench-201 (Dong & Yang (2020)).

3 METHODS

This section introduces the proposed Estimation Code, Siamese-Predictor, and Siamese-Ranking.
The Estimation Code is prior knowledge about the final accuracy of architecture based on training
procedure. We believe that the performance of the predictor will be improved by combining prior
knowledge. It inspired the past work (Dudziak et al. (2020)). They used two different architectures
as inputs at the same time. They think doing this will give the predictor more information. Our
observation Fig. 1 also shows a high correlation between Estimation Code and accuracy of architec-
ture. For the proposed Siamese-Predictor, we mixed naive predictor and Estimation Code. It consists
of two parts, the basic branch and the estimation branch, the consumption of the two branches in
the prediction stage is inconsistent. So, the Siamese-Ranking is about how to use them efficiently to
predict every accuracy of search space.

2

Under review as a conference paper at ICLR 2023

Algorithm 1 Siamese Ranking
Input: (i) search sapce S , (ii) basic branch of siamese-predictor Pb, (iii) estimation branch of
siamese-predictor Pe.
Output: ranked search sapceR.

1: Rb ← ∅
2: Re ← ∅
3: while s ∈ S do
4: sadj , sfeat ← s # getting adjacency matrix and feature matrix.
5: pb ← Pb(sadj , sfeat) # getting prediction by basic branch.
6: insert s toRb based on pb.
7: end while
8: Rc ← Top(Rb, c) # take out the top c.
9: while s ∈ Rc do

10: sadj , sfeat ← s
11: sestc ← EstCode(sadj , sfeat) # for 3 epochs(0.3% cost of complete training).
12: pe ← Pe(sadj , sfeat, sestc) # getting prediction by estimaion branch.
13: insert s toRe using pe.
14: end while
15: R ← replaceRc ∩Rb withRe. # this means resorting the top c.
16: returnR

3.1 ESTIMATION CODE

The proposed Estimation Code is developed from the loss of model training procedure. It is an
intuitive idea about the relationship between the loss value and the ground truth accuracy of an ar-
chitecture. Based on this idea, We used the first three losses as the Estimation Code. In order to
explore and evaluate this naive idea, we are experimenting with the Tiny-NanoBench we built. The
Fig. 1 shows that the Estimation Code has a local positive correlation with accuracy, especially in
the high-accuracy group. However, to get an architecture’s Estimation Code (first three losses), we
have to train this architecture on CIFAR-10 or the other dataset for three epochs. Considering that
the whole search space contains thousands of architectures, this will cause much computational cost
in the search stage. Therefore, we construct the mini-batch of CIFAR-10 by random sampling with
a one-tenth ratio, then train from scratch on this mini-batch for three epochs to get the Estimation
Code. In this way, the consumption of computing resources can be significantly reduced. So the
consumption of Estimation Code compared to the entire training is 50,000 times 100 epochs and
5,000 times three epochs. The consumption is only 0.3% of the complete training process for an
architecture, which is almost negligible. Eq. (1) shows that the idea of the proposed Estimation
Code, g(M) denotes the ground truth of architectures, p(M) denotes the prediction accuracy of
architectures by predictor, θ denotes the weights of predictor, I denotes the prior knowledge (Es-
timation Code), S0, S1, S2 denotes the budget using of trained samples for predictor or Estimation
Code. Therefore, we believe that the prior knowledge brought by Estimation Code can make the
Siamese-Predictor more accurate while S1 + S2 is more minor than S0.

min(θ) (g(M)− p(M |θ))2 ≃ (g(M)− p(M |S0))
2,

min(θ,I) (g(M)− p(M |θ, I))2 ≃ (g(M)− p(M |S1, S2))
2,

then (S1+S2) < S0

(1)

3.2 SIAMESE-PREDICTOR

This section continues the previous section. We will describe how to integrate the proposed Estima-
tion Code into the native predictor. In general, adding some extra prior knowledge to the predictor
may boost the performance. But as mentioned in Eq. (1), it is important to properly control the
consumption of budgets S1 + S2 to be less than S0. This makes us build a predictor with two
modes. The first mode only uses the adjacency matrix and feature matrix to predict the accuracy
of architecture. The second mode uses these and the Estimation Code as the third input. So far,
the proposed Siamese-Predictor consists of two branches. The Fig. 2 shows that the left branch

3

Under review as a conference paper at ICLR 2023

Algorithm 2 Batch Top Sampling
Input: (i) search sapce S, (ii) training samples pool T , (iii) batch size b, (iv) max iteration l, (v)
training samples budgets m, (vi) update frequency f (default is 10).
Output: siamese predictor P .

1: P ← Init(θ) # initialize the weights of predictor.
2: T ← RndChoices(S, λm) # initialize the pool, and λ is between 0 and 1.
3: while i < αl do
4: P ← Grad(P,RndChoices(T , b)) # updating predictor by gradient of batch data.
5: i← i+ 1
6: end while
7: while i < (1− α)l do
8: if i%f == 0 then
9: Sf ← RndChoices(S, Size(S)/f) # random subset of search space.

10: Rf ← SimsRanking(Sf) # as shown in Alg. 1.
11: T ← T ∪ Top(Rf , (1− λ)m/f). # this means take top (1− λ)m/f into pool.
12: end if
13: P ← Grad(P,RndChoices(T , b))
14: i← i+ 1
15: end while
16: return P

represents the first mode. We call it the basic branch. The right branch represents the second mode.
We call it the estimation branch, and as we say, the estimation branch predicts accuracy involving
prior knowledge. It should be better than the basic branch. In the fusion process of the 2-d feature
matrix and 1-d Estimation Code, we are first upsampling the Estimation Code to the 2-d matrix by
a fully-connected layer and reshaping operation. Then the feature matrix and upsampled Estimation
Code matrix through the proposed Estimation Fusion Module fuse the feature and prior knowledge.
Next, we will introduce the structure of EFM.

3.2.1 ESTIMATION FUSION MODULE (EFM)

The self-Attention has been widely used in vision CNN models in recent years (Dosovitskiy et al.
(2020); Liu et al. (2021)), so we think the combination of self-Attention and Graph Convolution is
worth trying. The self-Attention split an input as three different - q, k, v by linear or non-linear
transformation, then fused q and k to find a self-correlation, and through softmax to factorization.
Finally, it multiplied to v to act on itself. In our case, The proposed estimation fusion module (EFM)
is a kind of self-Attention method. Actually, EFM is a cross-Attention method between the feature
matrix and Estimation Code. We regard the feature matrix as q,v by Graph Convolution, then treat
the upsampled Estimation Code as k by Graph Convolution. However, a predictor for NAS and a
classifier for classification tasks are not the same, and we have to consider the direction property
of the Directed Acyclic Graph (DAG) for the predictor of NAS. So, after we have calculated q
multiplied by k, we will multiply the adjacency matrix to prove the direction of information flow.
Finally, the skip connects are attached to the transformed feature matrix to enhance the feature
passing. Finally, it goes through a Graph Convolution. The part (a) of Fig. 3 shows the structure of
the EFM. The part (a) of Fig. 2 shows where EFM was attached.

3.2.2 NODES SELF-ATTENTION MODULE (NSAM)

Unlike the estimation fusion module, the proposed Nodes self-Attention Module(NSAM) is a pure
self-Attention method with Graph Convolution focused on the relation of the same input. It used
Graph Convolution to generate the q, k, and v matrix from the same input feature matrix. Then
we also multiply the adjacency matrix as EFM for the same reason. Part (b) of Fig. 3 shows the
structure of the NSAM. In later experiments, we will show more comparisons about NSAM. Part
(b) of Fig. 2 shows where NSAM was attached.

4

Under review as a conference paper at ICLR 2023

(a) (b)

Figure 2: The structure of Siamese-Predictor. Figure (a) shows the Siamese-Predictor. The basic
branch only uses the adjacency matrix and feature matrix, and the estimation branch uses an addi-
tional Estimation Code as another input. Figure (b) shows the Siamese-Predictor with NSAM. The
red character ”n” means the number of nodes, and the ”c” means the feature length that is used to
represent the node.

Table 1: Comparison of BTS and FTS for training time used Siamese-Predictor. The update fre-
quency f is fixed at 10, and the training samples budget c is fixed at 100.

Method Search Space Batch Samples Training Time(s)

Fully Top Sampling Tiny-NanoBench(1120) 1120 115.67
Batch Top Sampling Tiny-NanoBench(1120) 112 67.22
Fully Top Sampling NASBench-201(15,625) 15,625 816.43
Batch Top Sampling NASBench-201(15,625) 1563 140.62

3.3 SIAMESE-RANKING

The proposed Siamese-Predictor has two branches: the basic and the estimation branches. The
basic branch is used to predict coarse accuracy almost for computation free because no extra trained
samples is needed. The estimation branch is used to predict fine accuracy but is more expensive than
the basic branch because getting the Estimation Code needs extra trained samples for three epochs.
On the other hand, S1 + S2 must be smaller than S0. So, we propose a mixture ranking method
that first sorts search space by basic branch for almost computational cost-free, then just sorts top c
by estimation branch. It ensures the stability of the high-accuracy group and solves the expensive
problem. The Alg. 1 shows the implementation detail. The top c is an essential parameter of this
algorithm, and if c is too large, the cost will be unacceptable. So the c is set to 30 in BTS, and the
c is set to 60 in the evaluation stage. The computational cost for getting the Estimation Code of an
architecture is just 0.3% compared to the complete training procedure, so the cost when the c is 30
or 60 is not worth mentioning. So far, The proposed Siamese-Ranking solves the budget problem
using estimation branch.

3.4 BATCH TOP SAMPLING (BTS)

The previous sections introduced how to build a powerful predictor with extra prior knowledge Esti-
mation Code. In addition, a sampling strategy is also essential for predictor-based NAS, and a good
strategy can train a good predictor using a few trained samples. The proposed Batch Top Sampling
(BTS) randomly selects a few training samples to the training pool, then iteratively performs the fol-
lowing steps: 1) Randomly selects some trained samples to train the temporary Siamese-Predictor
from the training pool. 2) Randomly selects some samples to form a batch search space from the
whole search space. 3) Sorting (Siamese-Ranking) the batch search space based on the temporary

5

Under review as a conference paper at ICLR 2023

(a) (b)

Figure 3: Figure (a) shows the structure of EFM. Figure (b) shows the the structure of NSAM. The
symbol

⊗
means the operation of matrix multiplication, and the symbol

⊙
means the operation of

Hadamard product, the symbol
⊕

just means the element-wise addition of two matrixes.

(a) (b)

Figure 4: Figure (a) is the distribution of NASBench-201, and figure (b) is the distribution compari-
son of NASBench-201 (blue) and the proposed Tiny-NanoBench (red).

Siamese-Predictor. 4) Choosing the top n samples of batch search space to the training pool. The
Alg. 2 shows the implementation detail. This strategy of coarse to fine during training keeps the
predictor focused on the high-accuracy groups. However, it also consumes considerable computing
resources to predict architecture in the whole search space. The proposed BTS randomly selected to
form the batch search space at the first step solved this problem. The Table. 1 shows that the training
time of BTS is faster than Fully Top Sampling(FTS) due to the BTS using batch search space and
FTS using whole search space. Finally, the BTS can help the predictor to boost the performance and
reduce the variance from training randomness in later experiments.

3.5 WELL-DESIGNED LIGHTWEIGHT SEARCH SPACE

In the previous sections, we proposed Siamese-Predictor, components, and tricks. Although this
robust NAS algorithm shows considerable performance in later experiments. Our another purpose is
focused on lightweight architecture search. As part (a) of Fig. 4 shown, we record the relationship
between FLOPs and accuracy for NASBench-201. We can find that it consists of several groups at
the FLOPs axis. Based on this observation, we set a constraint of about 35 MFLOPs to focus on the
smallest FLOPs group (blue group in part (a) of Fig. 4), we call this subset Tiny-NASBench-201.
We believe that Tiny-NASBench-201 is not the optimal search space at the tiny FLOPs (35M) level,
so we proposed the Tiny-NanoBench trained on CIFAR-10. It is a well-designed lightweight search
space based on a series of lightweight operations, depthwise convolution, pointwise convolution
(Sandler et al. (2018)), splitting on the channel (Wang et al. (2020b)), expanding channel block
(Zhang et al. (2021)),, etc. We also record the relationship between the FLOPs and accuracy. We

6

Under review as a conference paper at ICLR 2023

(a) (b)

Figure 5: The experiment of Siamese-Predictor on NASBench-201. Figure (a) shows the results of
CIFAR-10, and figure (b) shows the results of CIFAR-100. The larger the area of the light-colored
part, which means the more extensive the standard deviation.

found that the distribution of Tiny-NanoBench is more stable than Tiny-NASBench-201, especially
at 10 15 MFLOPs. We also found that the Tiny-NanoBench has better architectures than Tiny-
NASBench-201 at 30 35 MFLOPs.

4 EXPERIMENTS

In this section, we conduct a series of experiments to validate our proposed methods on two bench-
marks. We introduced the public search space NASBench-201 and evaluated the proposed Siamese-
Predictor on it. Then we found that the typical training budget of N+K is something worth thinking
about the trade-off. Besides, We also introduced the proposed search space Tiny-NanoBench and
evaluated Siamese-Predictor on it for lightweight architecture search.

4.1 GENERAL EVALUATION ON NASBENCH-201

NASBench-201 is a cell-based search space, it is public, credible, and easy to use, it records the
trained accuracy about three dataset - CIFAR-10, CIFAR-100 (Krizhevsky et al. (2009)), ImageNet-
16-120 (Chrabaszcz et al. (2017)). NASBench-201 contains 15,625 different architectures. These
architectures are built on the same meta-architecture by different cells with six operations. We put
our Siamese-Predictor up for comparison with the naive predictor. The Fig. 5 shows the 100 run
results of the comparison. The ”trained samples” represent the number of trained samples from the
search space used by the predictor during the training process. It also contains the top-k choices
at evaluating stage. The ”mean acc” represents the average best accuracy of 100 runs. Overall, we
trained a predictor with part of ”trained samples” and sorted search space by this predictor. Finally,
we took the top 20 and trained them one by one from scratch to get the architecture with the highest
ground truth for each run. As shown in the Fig. 5, our method surpasses the naive predictor in
the case of CIFAR-10, especially in CIFAR-100, the performance gap is greater than CIFAR-10.
We also found that the NSAM and BTS bring considerable improvements in these two dataset.
The proposed Siamese-Predictor with NSAM and BTS surpasses the SOTA brp-nas when trained
samples are greater than 125, and the 125 samples only account for 0.8%(125/15265) of NASBench-
201, even using 200 trained samples, that is only 1.3%, and it still achieves SOTA level with such
few budgets. When trained samples are about 200, we also found that the standard deviation of
Siamese-Predictor +NSAM +BTS is more stable than the other version. We believe this is due to
BTS picking samples more efficiently.

4.1.1 TRADE-OFF ABOUT N +K

The ”trained samples” is a critical metric for predictor-based NAS. It consists of two variables,
the number of training architectures for predictor N and the top K of sorted search space at the
evaluation stage. In past, neural predictors (Wen et al. (2020); Dudziak et al. (2020)) prefer to fixed

7

Under review as a conference paper at ICLR 2023

(a) (b)

Figure 6: Comparison of the trade-off between N and K. Figure (a) is fixed N and increase K, and
figure (b) is to fix K then increase N .

(a) (b)

Figure 7: The comparison of lightweight searching is between the Tiny-NanoBench and the Tiny-
NASBench-201. Figure (a) is to fix K as 5, and figure (b) is to fix K as 10.

N and increase the K gradually. Nevertheless, we believe that it is to fix K, and increasing N
may improve the performance because the number of N directly correlates with training samples
for predictor training. The Fig. 6 shows the experiments on NASBench-201, which is fixed N or
K and evaluates these predictors. Part (a) of Fig. 6 is fixed N to 30, then gradually increases K to
draw the entire curve. We can see that when N even increased to 170 (the sum is 200), it is still far
away from SOTA. On the other hand, part (b) of Fig. 6 is fixed K to 30, then gradually increases
N . We found that spending the bulk of the budget to N can significantly improve. Not only that,
it can be seen that as N increases, the standard deviation also decreases, and increasing K has no
noticeable effect. These obvious conditions lead us to believe that increasing N is a better choice.

4.2 LIGHTWEIGHT EVALUATION ON TINY-NANOBENCH

In order to verify the benefit of the proposed search space Tiny-NanoBench. We extract a small
subset Tiny-NASBench-201 from NASBench-201. The exact extraction method is described in
section 3. Both search spaces have the same constraints on FLOPs (< 35M). We use the proposed
Siamese-Predictor to find the best architecture on these two search spaces, as shown in part (a) of
Fig. 7. We found that it finds the better architecture faster under Tiny-NanoBench, especially when
K and N are small. Part (a) and (b) of Fig. 7 show that it also can find the architecture of higher
accuracy than Tiny-NASBench-201 when N is large.

4.3 ANALYSIS FOR ESTIMATION CODE

The proposed Estimation Code is the critical part of this paper. In order to further analyze it, we
introduce the other cost-free metric of prior knowledge. This work (Abdelfattah et al. (2021))de-

8

Under review as a conference paper at ICLR 2023

(a) (b) (c) (d)

Figure 8: The comparison of Estimation Code and synflow. Figure (a) is the distribution of
NasBench-201 (CIFAR-100). Figure (b) is the distribution of Tiny-NanoBench. Figure (c) is the
distribution of NASBench-201 about accuracy and synflow. Figure (d) is the distribution of Tiny-
NanoBench about accuracy and synflow.

tailed introduces several metrics. There are snip (Lee et al. (2018)), grasp (Wang et al. (2020a)) and
synflow ,and the synflow (Tanaka et al. (2020)) shows the considerable performance for many NAS
methods in their experiments. So, we take the synflow to replace the Estimation Code as the prior
knowledge for comparison. The Fig. 8 shows the results on NASBench-201 and Tiny-NanoBench.
The red and blue regions of Fig. 8 have a significant positive correlation between prior knowledge
(estimated code or synchronous flow) and accuracy. The gray region is the opposite. So, we can
see that part (c) and part (d) of Fig. 8 are more disorders than part (a) and part (b) of Fig. 8, which
means the Estimation Code has a higher correlation with accuracy than synflow.

5 CONCLUSION

This paper focuses on building a powerful predictor to find promising CNN architecture for training
samples efficiently. The proposed Siamese-Predictor using EFM to fuse prior knowledge - Esti-
mation Code. The proposed Estimation Code and accuracy of architectures are highly correlated
based on our observation (Fig. 1). Besides, we also proposed Graph Convolution-based self-
Attention method NSAM and fast and efficient sampling strategy BTS. These two tricks greatly
enhanced the performance of the Siamese-Predictor in our experiments. It surpass BRP-NAS
and achives the SOTA level on NASBench-201 (Fig. 5). We also proposed a search space Tiny-
NanoBench, for lightweight CNN architectures searching. In this search space, our predictor can
find better lightweight architecture more easily than Tiny-NASBench-201, the lightweight subset of
NASBench-201. In summary, we proposed a powerful and efficient predictor-based NAS method
Siamese-Predictor and a search space Tiny-NanoBench designed for lightweight CNN architecture.

6 REPRODUCIBILITY

All ”mean acc” mentioned in this article, all results are run 100 times, and we also provide the
source code about all versions of Siamese-Predictor. The main function can be found in the file
”train eval.py”. It is the main function of the project. It can be traced to the code and find more
detail. Now, we introduce key points that may affect reproduction in our implementation.

6.1 BIDIRECTIONAL GRAPH CONVOLUTION

The proposed siamese-predictor is constructed by graph convolutions. Its structure is to follow the
advice from (Wen et al. (2020)), not the naive version. They suggest combining two graph convolu-
tions, one using the adjacency matrix of the original direction and the other using the transposed to
reverse direction. We are also adding batch normalization and using mish to replace all relu. This
detail about graph convolution can refer the file ”graph conv.py”.

6.2 ESTIMATION CODE

In the previous section, we have already described how to get the estimation code. Here we re-
explain it in more detail. We randomly sampled 5000 images from CIFAR-10, then trained every
architecture of NasBench-201 or Tiny-NanoBench on it for three epochs. The three epochs are

9

Under review as a conference paper at ICLR 2023

just 3/100 of the complete training procedure. The training images are just 5000/50000 of fully
CIFAR-10. That is why we always say this code is almost cost-free, especially since the training
is only required if there are used samples. More info can refer the function ”TrainEstCode” and
”TrainNas201EstCode” of file ”nas training.py”.

6.3 EFM AND NSAM AND BTS

These three proposed components of our paper play important roles. The details of these meth-
ods have been presented clearly. So, we just point out the exact location of the source code for
reference. The EFM is denoted from class ”NodesAttention” of file ”modules.py”. The NSAM is
denoted from class ”EstmtnFusion” of file ”neural predictor.py”. The BTS is denoted from class
”BatchTopSampler” of file ”nas callbacks.py”.

REFERENCES

Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D Lane. Zero-cost
proxies for lightweight nas. arXiv preprint arXiv:2101.08134, 2021.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. arXiv preprint arXiv:2001.00326, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas
Lane. Brp-nas: Prediction-based nas using gcns. Advances in Neural Information Processing
Systems, 33:10480–10490, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European conference on computer vision (ECCV), pp. 19–34, 2018a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

10

Under review as a conference paper at ICLR 2023

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and
Wolfgang Banzhaf. Nsga-net: neural architecture search using multi-objective genetic algorithm.
In Proceedings of the genetic and evolutionary computation conference, pp. 419–427, 2019.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
Advances in neural information processing systems, 31, 2018.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Pro-
cessing Systems, 33:6377–6389, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020a.

Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh, and I-
Hau Yeh. Cspnet: A new backbone that can enhance learning capability of cnn. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. 390–391,
2020b.

Chen Wei, Chuang Niu, Yiping Tang, Yue Wang, Haihong Hu, and Jimin Liang. Npenas: Neural
predictor guided evolution for neural architecture search. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kindermans. Neural
predictor for neural architecture search. In European Conference on Computer Vision, pp. 660–
676. Springer, 2020.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In International Conference on
Machine Learning, pp. 7105–7114. PMLR, 2019.

Yu-Ming Zhang, Chun-Chieh Lee, Jun-Wei Hsieh, and Kuo-Chin Fan. Csl-yolo: A new lightweight
object detection system for edge computing. arXiv preprint arXiv:2107.04829, 2021.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

11

Under review as a conference paper at ICLR 2023

(a) (b)

Figure 9: Figure (a) shows the meta-architecture of Tiny-NanoBench. The left of figure (b) shows
the structure of Nano Cell that contains six nodes(op 1 op 6). The right of figure (b) shows an
example of Nano Cell, and it excatly contains all optional operations.

Figure 10: The flow chart of making Tiny-NanoBench shows the constraint about FLOPs, and the
number of architectures.

A TINY-NANOBENCH

The proposed Tiny-NanoBench is a search space that focuses on lightweight CNN architecture.
It is a cell-based search space and imitated NASBench-101. Part (a) of Fig. 9 shows the meta-
architecture. It stacks three Nano Cells at each stage. There are nine cells in total. Part (b) of Fig.
9 shows an example of chosen operations in each cell. Fig. 10 shows why does Tiny-NanoBench
have 1120 architectures. For more info, it can refer to files ”nanonas model.py” and ”modules.py.”

12

	Introduction
	Related Work
	Neural Predictors

	Methods
	Estimation Code
	Siamese-Predictor
	Estimation Fusion Module (EFM)
	Nodes self-Attention Module (NSAM)

	Siamese-Ranking
	Batch Top Sampling (BTS)
	Well-Designed Lightweight Search Space

	Experiments
	General Evaluation on NASBench-201
	Trade-off About N+K

	Lightweight Evaluation on Tiny-NanoBench
	Analysis for Estimation Code

	Conclusion
	Reproducibility
	Bidirectional Graph Convolution
	Estimation Code
	EFM and NSAM and BTS

	Tiny-NanoBench

