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Abstract

Integrating data from multiple experiments is common practice in systems neuro-
science but it requires inter-experimental variability to be negligible compared to
the biological signal of interest. This requirement is rarely fulfilled; systematic
changes between experiments can drastically affect the outcome of complex anal-
ysis pipelines. Modern machine learning approaches designed to adapt models
across multiple data domains offer flexible ways of removing inter-experimental
variability where classical statistical methods often fail. While applications of these
methods have been mostly limited to single-cell genomics, in this work, we develop
a theoretical framework for domain adaptation in systems neuroscience. We imple-
ment this in an adversarial optimization scheme that removes inter-experimental
variability while preserving the biological signal. We compare our method to previ-
ous approaches on a large-scale dataset of two-photon imaging recordings of retinal
bipolar cell responses to visual stimuli. This dataset provides a unique benchmark
as it contains biological signal from well-defined cell types that is obscured by
large inter-experimental variability. In a supervised setting, we compare the gener-
alization performance of cell type classifiers across experiments, which we validate
with anatomical cell type distributions from electron microscopy data. In an un-
supervised setting, we remove inter-experimental variability from data which can
then be fed into arbitrary downstream analyses. In both settings, we find that our
method achieves the best trade-off between removing inter-experimental variability
and preserving biological signal. Thus, we offer a flexible approach to remove
inter-experimental variability and integrate datasets across experiments in systems
neuroscience. Code available at https://github.com/eulerlab/rave.

˚;Equal contributions, 1 University of Tübingen, 2 Norwegian University of Science and Technology.
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1 Introduction

Systems neuroscientists are often concerned with identifying and characterizing how properties of
neurons vary along certain dimensions of interest. Differences in these properties between neurons
form the basis for sorting them into discrete categories. Both the advance of large-scale data
acquisition techniques in experimental neuroscience as well as the development of more efficient and
powerful data analysis methods allow collecting and analyzing datasets of increasing size; and hence
the discovery of more subtle variations in neural function between cell types [e.g. 1–4]. However, as
data acquisition is often an incremental process, it has become common practice to pool data from
multiple experiments. This practice ignores variability in the data stemming from external factors,
which include non-biological ones (e.g. sample handling resulting in small differences in tissue
quality, or temperature fluctuations affecting the rates of biochemical processes) but potentially also
unforeseen biological ones (e.g. subtle genetic variations) [3, 5, 6]. Such variability due to external
factors, here referred to as inter-experimental variability, can confound and obscure the biological
signals of interest. In some cases, the source of inter-experimental variability is known and can be
modeled [5], but if this is not the case, a method for removing it from the data is required.

The issue of inter-experimental variability in systems neuroscience is analogous to the problem of
domain shift in machine learning, where the data distribution changes between training (‘source’)
and test (‘target’) data, causing an algorithm to fail when deployed on data from an unseen target
domain [7–10]. Methods that address this issue have to perform some form of domain adaptation, i.e.
adapting the algorithm to work both on the training as well as some (usually unseen) test domain
[11]. In single-cell genomics, a number of different studies have proposed methods for removing
inter-experimental variability (see Section 2), but related works in systems neuroscience are lacking,
despite the recognized need for such approaches [3, 5]. Here, we contribute to closing this gap as
follows:

• We cast the removal of inter-experimental variability from functional data in systems
neuroscience in the theoretical framework of domain adaptation (Figure 1 and Section 3).

• We adapt and evaluate different approaches and demonstrate improved performance of cell
type assignment, while preserving the biological signals of interest (Table 1 and Figure 4).

• We demonstrate that our method produces cell type predictions on a new dataset that are
best aligned with anatomical data (Table 2 and Figure 5).

• Finally, we showcase in a downstream analysis that the corrected data (Figure 3) clearly
exhibits biological effects that were obscured by inter-experimental variability (Figure 6).

2 Related Work

As mentioned before, few studies have proposed specialized solutions to the issue of inter-
experimental variability in systems neuroscience. Two studies have approached the problem of
temporal alignment of neural responses across experiments. Zhao et al. [5] proposed a solution to
deal with the specific effects of temperature fluctuations on the response kinetics of retinal neurons
by modeling them explicitly. Williams et al. [12] proposed a more general method for the temporal
alignment of data across trials or recording sessions. Other studies have suggested models of neural
function that integrate data across experiments. Shah et al. [3] build encoding models to predict
the responses of retinal ganglion cells across different experiments [see also 13] and compare it to
covariates such as the gender of an animal. Sorochynsky et al. [14] propose a way to measure noise
correlations in each recording and integrate those into models of neural populations of a specific
cell type. This latter approach is complementary to our method because it allows the study of the
structure and function [see also 15] of noise correlations, which we discard as nuisance variability.
Somewhat related to the example application in our paper, Jouty et al. [16] suggested a method to
perform non-parametric physiological classification of retinal ganglion cells in the mouse retina while
trying to find matching clusters of cell types across experiments. Crucially, all of these approaches
offer specialized solutions that do not represent general purpose correction methods.

In single-cell genomics, a number of approaches for removing inter-experimental variability from
data have been developed [17–24]. Two such methods are Harmony [25] and scGen [26]. Harmony
performs iterative clustering using a variant of soft k-means until convergence to align cells from
different datasets in a joint embedding. scGen, on the other hand, combines a variational autoencoder
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adapted for scRNA-seq data with latent space arithmetics to predict gene expression, while removing
inter-experimental variability between datasets. In this paper, we compare our approach against these
methods as they have been found to perform particularly well in two benchmarking studies [27, 28].

3 Theoretical Framework

Figure 1: Problem Setting. Arrows repre-
sent given (solid lines) and modeled (dashed
lines) relations. Capital letters denote random
variables, small letters transformations (see
Section 3). The setting with known S (white
circle) is supervised, while unknown S (gray
circle) is an unsupervised setting.

The generative process of data denoted by a random
variableX with image X is depicted in Figure 1. The
biological signal shared across experiments (e.g. vari-
ation due to cell types) is represented by a random
variable S (‘signal’) with image S. We define D
(‘domain’) as a random variable with image D that
represents inter-experimental variability. Now, our
objective is to learn a function f that transforms the
data into a new random variable Z :“ fpXq with
image Z . Importantly, we distinguish two settings:
(i) unsupervised — where S is unknown and we sim-
ply try to retain in Z as much information about the
data as possible while removing inter-experimental
variability; (ii) supervised — where S is known and
we additionally try to retain in Z as much informa-
tion about S as possible. These objectives can be
formulated in terms of mutual information, giving
the unsupervised loss function

L “ IpZ;Dq ´ IpZ;Xq (1)
and, provided knowledge about S, we obtain the supervised loss function

L` “ L´ IpZ;Sq. (2)

Now, IpZ;Dq attains its minimum for IpfpXq;Dq “ 0 because of the non-negativity of mutual
information. And IpZ;Sq attains its maximum for IpfpXq;Sq “ IpX;Sq because of the data
processing inequality. If f were a bijection, it would follow that IpfpXq;Sq “ IpX;Sq, but also
IpfpXq;Dq “ IpX;Dq. But by assumption, IpX;Dq ą 0 (otherwise there is no inter-experimental
variability and we are done) and so we would have IpfpXq;Dq ą 0. Thus, at the minimum of
IpZ;Dq, f cannot be a bijection. Generally, if there is an interaction between recording, signal and
domain i.e. IpX;S;Dq ‰ 0, then there will be a trade-off between maximizing IpfpXq;Sq and
minimizing IpfpXq;Dq. This trade-off becomes even more apparent in the unsupervised setting
where IpfpXq;Xq and IpfpXq;Dq are clearly competing.

Mutual information quantifies the dependence between two variables but it is difficult to estimate
[29–32]. Instead, we measure dependency through nonlinear regression with an appropriate distance
metric d.2 UsuallyD is a discrete random variable indicating the experiment of a recording, and so, to
estimate IpZ;Dq, we can perform classification with a classifier function h : Z Ñ D, minimizing the
standard cross-entropy dCEphpZq, Dq (Figure 1). Lemma 10 in [34] shows that this gives a variational
lower bound to IpZ;Dq [see also 35]. In some cases S may also be discrete (e.g. cell types) and we
can do the same, in other cases it might be a (high-dimensional) continuous random variable and so, to
approximate IpZ;Sq, we can perform regression, minimizing the mean squared error dMSEpgpZq, Sq.
Similarly, in the unsupervised setting, to approximate IpZ;Xq, we minimize dMSEpgpZq, Xq. To
keep notation simple, in the unsupervised setting we define the mapping g : Z Ñ X , and in the
supervised setting g : Z Ñ X ˆ S . Putting this together, in the unsupervised setting our objective is

minL ÝÑ min
h

max
g,f

λ dphpfpXqq, Dq ´ dpgpfpXqq, Xq (3)

where we have introduced a hyperparameter λ that mitigates the trade-off discussed above. In the
supervised setting our objective becomes

minL` ÝÑ min
h

max
g,f

λ dphpfpXqq, Dq ´ dpgpfpXqq, pX,Sqq. (4)

2If the joint probability density of two random variables is a bivariate normal distribution, then the mutual
information is proportional to their linear correlation [33].
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In both equations we find a min´max optimization, where h is trying to predictD fromZ, tightening
the lower bound on IpZ;Dq [see 34], while f is trying to prevent that by removing information
about D from Z, effectively lowering IpZ;Dq. Practically, this optimization scheme has become a
standard adversarial setting in machine learning, for instance, in the training of generative adversarial
networks [36] or for discriminative adversarial domain adaptation [37].

4 Methods

4.1 Datasets

To test our model approach, we use two datasets of two-photon imaging recordings [38–40] from the
14 mouse retinal bipolar cell (BC) [41] types’ responses to two visual stimuli, a local and full-field
chirp stimulus (Figure 3). The axon terminals of BCs stratify at distinct, cell type-specific depths
within the second synaptic layer of the retina, the inner plexiform layer (IPL). The functional BC data
were obtained by imaging the glutamate output at their axon terminals using the genetically encoded
glutamate-sensing fluorescent reporter iGluSnFR [42]. In our study, we refer to these two datasets as
A [2] and B [5] (for further preprocessing see Appendix).

In [2], an anatomy-guided functional clustering approach to group the BCs into the 14 functional
types was applied to dataset A, thus providing functional reference cell type labels, which do not
exist for dataset B. However, even if both datasets recorded the same cell types, they suffer from
inter-experimental variability making it difficult to match and, for example, to use dataset A to predict
the cell type labels for dataset B. We discuss potential sources of inter-experimental variability in the
Appendix. For preprocessing, both BC datasets are high-pass filtered above 0.1 Hz (to remove the
trends of decreasing fluorescence signal over time) and resampled to 30 Hz. Each cell’s response is
normalized to zero mean and standard deviation one. In addition, to ensure high quality responses,
only cells with a sufficient response quality are used (for details about quality criterion see [2]).

4.2 Models

All methods transform the data, either into a low-dimensional embedding z P Z or directly into a
reconstruction x̂ P X from which inter-experimental variability has been removed to a varying degree.
Usually we have dimpZq ! dimpX q and so, for different downstream evaluations, we map between
these representations: (i) with least squares reconstructions (Z Ñ X ), or (ii) principle component
projections (X Ñ Z) (see Appendix).

4.2.1 Unsupervised Model

We parameterize the functions f, g and h (Figure 1) with neural networks. In the unsupervised model,
the function g : Z Ñ X provides a reconstruction x̂ :“ gpzq, x̂ P X of the data. With the concurrent
task (eq. 3) of minimizing the predictability of the domain D, this reconstruction should only contain
parts of the original data that are indiscernible across experiments. Since the purpose of our method
is to Remove, Adversarially, Variability from datasets collected in different Experiments, we term our
model RAVE.

4.2.2 Supervised Model

In the supervised setting, we have partial knowledge about the biological signal S. The function g :
Z Ñ X ˆ S now returns a reconstruction as well as a prediction of that signal px̂, ŝq :“ gpzq, ŝ P S .
When optimizing equation (4), this additional task is equivalent to discriminative adversarial domain
adaptation [37]. In the particular data that we work with, we have two datasets D :“ tA,Bu, but
the biological signal S consists of cell type labels which are only available in the first dataset A.
Thus, more accurately, this presents a semi-supervised scenario where one wishes to classify a newly
recorded dataset according to some existing classification scheme. We term this extended version of
our model RAVE+.

4.2.3 Training and Optimization Details

All of our models are implemented and optimized in PyTorch [43]. For both RAVE and RAVE+, we use
the same model architecture, they only differ in the objective function. We randomly split the data
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into training, validation and test set and train all models with empirical risk minimization. Model
weights are trained with stochastic gradient descent using one instance of the Adam optimizer [44]
for the outer minimization of f and g in equations (3) and (4); and then a second instance of Adam
for the inner minimization of h in those equations. We optimize hyperparameters through random
search [45] on the validation set and report performances on the test set which is only used for
final evaluation. In the random search, we test different learning rates for both optimizers, and also
different training schedules. We additionally search over depth, width and drop-out rate for each
of the neural networks pf, g, hq, as well as the trade-off parameter λ introduced in equation (3).
Finally, we explore training the inner optimization (h, estimating IpZ;Dq) more often than the outer
optimization, which proved more stable and effective in early experiments.

4.2.4 Comparison Models

We test three different methods for comparison with our model. Our simplest comparison model
(Linear) is a linear model that projects out the contrast between the dataset indicator variables
(see Appendix). This has an analytic solution and no hyperparameters, serving as a baseline to
get an estimate of the correction quality achieved by a standard method in classical statistics. The
other two methods (scGen and Harmony) are run in an unsupervised learning mode without cell
type information. Even though scGen could be utilized to run in a supervised mode with cell type
information, this is not specified in a semi-supervised setting with only partial cell type labels
available.

4.3 Performance Evaluation

For evaluating the correction performed by the various methods, we analyze their output with respect
to dataset-mixing (achieved by removing inter-experimental variability) and preservation of signal
information.

4.3.1 Dataset-Mixing

The Rand index [46] measures similarity between two clusterings; the adjusted Rand index (ARI) is
the Rand index adjusted for chance level (see Appendix) which was recently used by Tran et al. [28]
to assess the quality of dataset-mixing in genomics. It takes as input the true and the predicted labels
for a set of samples. We define ARIdompzq :“ ARIpd, d̂zq with d the original domain labels (of the
test set) and d̂z the domain labels predicted by a classifier trained on z. On the raw data (z “ x), we
expect ARIdom to be high due to inter-experimental variability. After successful correction (with z
the output of a model), we expect ARIdom to be low indicating good dataset-mixing.

In addition, we compute the accuracy (Accdom) of a domain classifier with the objective to predict the
domain labels based on the input data. For low dataset-mixing, we expect a high Accdom as it should
be trivial for the classifier to differentiate the datasets. However, after removing inter-experimental
variability, Accdom is supposed to be close to chance level („ 64%, cf. Table 1), which would
indicate successful dataset-mixing. For the domain classifier, we use a random forest classifier with
cross-validated hyperparameters for each model (see Appendix). This is crucial, because a powerful
encoder f might hide (through multiple nonlinear transformations) domain information from a
simple classifier, but still recover that information in an equally powerful decoder g. Conversely,
we observe that overly expressive random forest classifiers, tend to overfit on the training set, thus
underestimating the preserved domain or type information on the test set.

4.3.2 Preservation of Signal Information

In the unsupervised setting, to assess the amount of information preserved about the original data
x during the process of removing inter-experimental variability, we evaluate the rank correlation
Corrpx, x̂q between input x and reconstruction x̂. In the (semi-) supervised setting, we have reference
cell type labels sA for dataset A. To estimate how much of this information is preserved, we predict
cell type labels ŝA from zA with random forest classifiers like above (see Figure 2; Appendix for
further details).

If a method succeeds at preserving signal information in z after removing inter-experimental vari-
ability, then we expect the classifier to have a high accuracy (Acctype). Deteriorating classification
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performance between predicting ŝA from raw data xA versus predicting it from the model output zA
would indicate signal loss.

Figure 2: Workflow. Evaluating the
preservation of signal information: A
classifier gets trained on the labeled
dataset A (either px, sqA or pz, sqA) and
applied to dataset B to predict labels (ei-
ther ŝxB or ŝzB ). The predicted labels are
then used for further evaluation.

Additionally, we would like to evaluate how well cell types
can be distinguished and how biologically plausible they
are for the unlabeled dataset B. To this end, we apply the
classifiers to predict cell type labels ŝB from zB . One
direct comparison is between the distributions over cell
types in ŝB and as expected from electron-microscopy
(EM) data [47–50] (Figure 5A). However, we can also
evaluate the accuracy of these predictions by making use
of BC axonal stratification profiles obtained from the same
EM data. From those data, we know where in the IPL
a BC type stratifies its axon terminals. Thus, we can
compare the distribution over IPL depth for the predicted
cell types (ŝB) with the distributions expected from EM
data. We quantify the difference between the expected and
predicted distributions by calculating the Jensen-Shannon
distance. We define the depth score (DS) as the mean
Jensen-Shannon distance between those two distributions
(Table 2). Additionally, we evaluate the robustness of
cell type labels ŝB by fitting the classifier ten times with
different seeds and calculating the average ARI between
different runs, giving the ARItype score (Table 1).

5 Results

5.1 Simulation Experiments

First of all, we validated that our model performs as expected on simulated ground truth data. To do
this, we generated bipolar cell responses for all 14 cell types based on the published bipolar cell model
in Schröder et al. [51]. To simulate different individual neurons, we added small perturbations to the
model weights for each cell type until we matched the intra-cell-type variability observed in the real
data. Thus, we generated N “ 1000 distinct neurons for each of the 14 BC types. Approximating the
differences of the two datasets in the paper, we presented the model with the slightly altered versions
of the stimulus from the actual experiments (see Appendix B). We additionally added white noise
to match realistic signal to noise ratios, as estimated from repeated stimulations of the real neurons.
This resulted in two datasets (‘A’ and ‘B’) with similar intra- and inter-experimental variability as
observed in the real data, but with known ground truth cell type labels.

The results are discussed here and, additionally, they are presented in Appendix Fig. 9. We first
confirmed that the classifiers are indeed perfectly able to separate these two artificial datasets based
on their systematic differences (domain accuracy on raw simulated data: 1.0). However, cell type
classifiers trained on dataset A fail completely on dataset B indicating severe inter-experimental
variability and a failure to transfer models across datasets (type accuracy on dataset A: 0.98, type
accuracy on dataset B: 0.16). In contrast, after correction with RAVE+, the performance of a classifier
trained to distinguish the two datasets drops from 1.0 to 0.66 (chance level 0.5), indicating strong
removal of inter-experimental variability. Importantly, we find that a classifier trained on the output
of RAVE+ on dataset A does now generalize to dataset B and recovers the ground truth cell labels
nearly perfectly (type accuracy 0.99). This constitutes an important validation of our model.

5.2 Unsupervised Removal of Inter-Experimental Variability

All methods tested (Linear, Harmony, scGen, RAVE and RAVE+) succeed at retaining a significant
amount of information about x in x̂, reflected by high correlations between x and x̂ (Table 1).
Corrpx, x̂q reaches similar levels for data from both datasets, suggesting that both datasets are
modified to find a midway representation. This impression is confirmed when visualizing xA, xB
and x̂A and x̂B next to each other (Figure 3). Moreover, we note that a side-effect of the alignment
is a more general denoising that RAVE tends to perform along with removing inter-experimental
variability. We recognize that this a desirable feature that we will study further in future research.
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Model CorrA Ò CorrB Ò Accdom Ó Acctype Ò ARIdom Ó ARItype Ò

Raw 100 100 99.8 (0.1) 77.4 (0.9) 99.3 (0.4) 37.3 (3.3)

Linear 99.0 (0.5) 97.0 (1.7) 99.5 (0.2) 83.4 (0.8) 98.1 (0.7) 7.6 (1.7)
Harmony 72.0 (10.7) 72.0 (13.8) 94.2 (0.4) 82.5 (0.5) 78.0 (1.6) 31.4 (2.3)
scGen 78.0 (9.8) 80.0 (10.5) 99.6 (0.1) 84.7 (0.8) 98.7 (0.3) 14.3 (2.6)
RAVE 60.0 (12.8) 58.0 (17.3) 77.5 (0.5) 69.5 (0.4) 28.9 (1.2) 81.2 (2.7)
RAVE+ 59.0 (14.8) 58.0 (19.1) 65.9 (0.9) 78.6 (0.8) 10.0 (1.2) 83.7 (2.3)

Table 1: Model Comparison. All entries in percentage. Mean and standard deviation metric scores
across 10 random seeds. Bold font in each row indicates best score. CorrA (CorrB) is the correlation
of corrected data from dataset A (B) with its raw data. Accdom (Acctype) is the accuracy of the
domain (cell type) classifier. For ARIdom and ARItype see Section 4.3.

We show mean traces for exemplary cell types from dataset A, and mean traces of cells from dataset
B whose cell type labels we predict twice, first based on x (left pathway in Figure 2) and then again
based on x̂ (right pathway in Figure 2, but on x̂RAVE instead of z). As expected, inter-experimental
variability obscuring the common signal s behind xA and xB causes the cell type assignment to
fail; the similarity between responses of cells assigned to the same cell type, but coming from the
different datasets is low (Figure 3, BC type 5t). Repeating the classification pipeline based on x with
the same classifier architecture and different seeds yields highly variable cell type predictions for
dataset B (Table 1, ARItype) despite high prediction accuracy on dataset A (Table 1, Acctype). This
demonstrates a failure in transferring to dataset B, and not the classification itself. These results on
the raw data x affected by inter-experimental variability were expected; however, the same pattern
- low ARItype (dataset B) and high Acctype (dataset A) - is observed for Harmony, scGen and the
Linear model. This suggests that these methods fail at removing inter-experimental variability. The
high domain accuracy achieved by a classifier trained on the outputs of these models confirms this
conclusion. RAVE, on the other hand, succeeds at significantly lowering domain accuracy Accdom,
while at the same time maintaining high scores for ARItype and Acctype.

5.3 Supervised Removal of Inter-Experimental Variability

RAVE+ extends RAVE to the (semi-) supervised setting where (partial) signal information is present.
RAVE+ excels at removing inter-experimental variability (Table 1, Accdom and ARIdom) and at the
same time retaining signal information (Table 1, Acctype and ARItype). A low dimensional t-SNE

Figure 3: Exemplary Cell Type Responses from both Datasets to the Chirp Stimuli. Four bipolar
cell type responses of the types 2, 3a, 5t and 5i to the local (top panel) and full-field (bottom panel)
chirp of raw data xRaw (two top upper panels) and reconstructed data x̂RAVE (two bottom lower panels)
by RAVE for both datasets A and B. Each column shows the mean responses of one cell type (standard
deviation shaded).
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[52] embedding (Figure 4) shows that cells from datasets A and B are mapped onto the same cell
type "islands". The distribution of types across IPL depth predicted by a classifier trained on zRAVE+
matches the expected anatomical distributions better than for all other methods (Figure 5 and Table
2). This provides a valuable validation of the estimate ŝB learned by RAVE+ in the absence of ground
truth knowledge of sB .

Figure 4: Dataset Embeddings. t-SNE embeddings of the test set of raw (left column) and corrected
output data by RAVE+ (right column). Embedded cells are color-coded by dataset (top row) and cell
type (bottom row). Cell type labels for the raw data of dataset B (bottom left) were predicted using a
cell type classifier trained on the raw data of dataset A (Figure 2, left pathway).

Figure 5: Distribution Across BC Types and IPL Depths. We compare the expected and predicted
distribution of BCs from dataset B across the 14 types and across IPL depth. (A) Probability that a
BC belongs to a certain type as estimated from EM data; as estimated from BC type labels predicted
on x̂RAVE+; and as estimated from BC type labels predicted on x. Error bars indicate SD across 10
seeds of the classifier. (B) Distributions per cell type over IPL depth for EM data (distribution shown
to the left), RAVE+ output (solid line to the right) and raw data (dashed line to the right). Shaded
area around the distributions shown to the right indicate SD across 10 seeds of the classifier. (C) JS
distances corresponding to the distributions in B).

5.4 Downstream Analyses on Reconstructed Traces

As in our unsupervised setting, it is common that no particular signal information is available and
that one wants to remove inter-experimental variability from the data to perform further downstream

8



BC Type 1 2 3a 3b 4 5t 5o 5i X 6 7 8 9 R I all

Raw 34 52 38 42 56 63 62 54 60 52 51 38 58 37 50 31

Linear 58 40 53 51 57 62 57 56 62 55 57 58 58 53 56 34
Harmony 42 32 42 47 54 59 58 56 61 37 59 26 58 38 48 23
scGen 51 38 48 48 56 59 56 59 63 55 57 56 56 42 53 31
RAVE 41 32 38 40 57 58 62 55 66 55 55 38 50 50 50 23
RAVE+ 38 30 43 40 52 62 56 54 55 26 56 28 27 49 44 17

Table 2: Depth Score Comparison. All entries in percentage, lower is better. Bold font in each
row indicates best score. Depth Score - Jensen-Shannon (JS) distance between predicted types and
EM depth distribution: JSppEM pdepth|type “ tq, pmodelpdepth|type “ tqq. Last column ("all"):
JSppEM ptypeq, pmodelptypeqq.

analyses. We show that a previously demonstrated biological effect, obscured by inter-experimental
variability in x, emerges when performing the same analyses on the reconstructed traces x̂ obtained
from RAVE. Full-field visual stimulation has been shown to decorrelate responses from different BC
types compared to local stimulation due to inhibitory feedback from amacrine cells (see Figure 3A, B
in [2]). We expect this fundamental feature to be present in dataset B, but cannot fully reproduce it if
we assign cells of dataset B to cell types based on the raw data (Figure 2, left pathway; and Figure
6A). However, using the reconstructed traces x̂RAVE, the expected feature is unmasked (Figure 2, right
pathway, but on x̂RAVE instead of z; and Figure 6B). Here, the mean responses to the local chirp are
more correlated across cell types than the full-field responses (Figure 6B, left panel). This can also
be seen when comparing the mean correlations between local and full-field chirp responses for each
cell type with all other cell types, both of the same and the opposite response polarity (On and Off
polarity) (Figure 6B, right panel).

Figure 6: Removing Inter-Experimental Variability Reveals Biological Feature. (A) Correlation
matrices show the correlations between mean responses per cell type to local (top) and full-field
(bottom) chirp of raw data x from dataset B. The right panel represents the mean correlation for each
cell type mean response with all other types of the same (circle) and opposite (triangle) response
polarity between local and full-field chirp shown for raw responses. (x: mean correlation same
polarity: plocal = 0.57 and pfull-field = 0.39, P < 0.005; opposite polarity: plocal = 0.01 and pfull-field =
-0.04, n.s.; n = 14, non-parametric paired Wilcoxon signed-rank test).(B) Same analysis as A, but
with the reconstructed responses obtained from RAVE. (x̂RAVE: mean correlation same polarity: plocal =
0.88 and pfull-field = 0.79, P < 0.0005; opposite polarity: plocal = -0.34 and pfull-field = -0.48, P < 0.0005;
n = 14, non-parametric paired Wilcoxon signed-rank test).
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6 Limitations

Our method is limited to datasets where neurons were presented with the same stimulus. For other
kinds of data, such as neural recordings from free behavioral paradigms where each trial will be
different, it will be difficult to ‘align’ neural responses in a meaningful way. One solution to this
could be to learn a shared embedding space [see 53], from which domain effects are removed, but
distinct encoders fi and decoders gi for different trials i. In another setting, where different stimuli
are presented between experiments, one might resort to an approach like Shah et al. [3]. Nevertheless,
we do acknowledge that the data in our applications consists of ex vivo retinal recordings which have
little to no attentional effects or task-dependent noise correlations like they would be present in in
vivo cortical data. We are optimistic that our framework of adversarially removing inter-experimental
variability is still a promising approach in those settings, under the constraint that a much more severe
trade-off may need to be made between retaining signal and removing domain shifts.

7 Discussion

We present a framework to remove inter-experimental variability from functional recordings in
systems neuroscience. To the best of our knowledge, this is the first application of domain adaptation
methods to this kind of data. Using our unsupervised (RAVE) and (semi-) supervised (RAVE+)
approaches, we demonstrate that we are able to remove inter-experimental variability while retaining
signal information, which allows us to robustly predict cell type labels for a new dataset. We validate
those predictions using an anatomy-based comparison to existing EM data.

Furthermore, our unsupervised approach RAVE is able to remove inter-experimental variability without
cell type information. By using the corrected dataset B, we unmask biological effects, obscured by
inter-experimental variability, that have been previously described for dataset A. Thus, by allowing
the integration and alignment of functional recordings across experiments, we show that biological
effects in the data become more pronounced when using our model approaches. Inter-experimental
variability is ubiquitous and we hope that this method will become a helpful resource to many
experimenters as we make the code toolbox publicly available.

We believe that our method can also make a contribution to systems neuroscience research in the
context of the 3Rs (Replacement, Reduction and Refinement) for animal ethics: By enabling detection
of more subtle biological signals after removal of inter-experimental variability, fewer animals may
be needed to test a specific hypothesis. Lastly, we acknowledge that the removal of inter-experimental
variability from any kind of data (thus not only within systems neuroscience) can be useful in various
applications. Virtually any analysis that aggregates data across experiments can be confounded by
inter-experimental variability. Consequently, we cannot exclude the possibility that some military
application will find value in this approach. Although unlikely, we cannot fully anticipate such
developments. Therefore we condemn, without any exceptions, the use of RAVE(+) for any warlike
applications or other nefarious purposes.
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