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ABSTRACT

When used in high-stakes settings, AI systems are expected to produce decisions
that are transparent, interpretable, and auditable—a requirement increasingly ex-
pected by regulations. Decision trees such as CART provide clear and verifiable
rules, but they are restricted to structured tabular data and cannot operate directly
on unstructured inputs such as text. In practice, large language models (LLMs)
are widely used for such data, yet prompting strategies such as chain-of-thought
or prompt optimization still rely on free-form reasoning, limiting their ability to
ensure trustworthy behaviors. We present the Agentic Classification Tree (ACT),
which extends decision-tree methodology to unstructured inputs by formulating
each split as a natural-language question, refined through impurity-based evalua-
tion and LLM feedback via TextGrad. Experiments on text benchmarks show that
ACT matches or surpasses prompting-based baselines while producing transpar-
ent and interpretable decision paths.

Unstructured Data: Tuberculosis diagnosis based on symptoms descriptions
Patient 1: ”My main symptom is a runny nose with increased sweating, pain, fever,
skin rashes, nasal congestion, sore throat, muscle pain, loss of appetite, and chills. The
heavy pain is in my left temple, and I have pink rashes on the back of my neck.”

Patient 2: ”I am coughing blood with pain (heavy in my left temple), skin lesions, nasal
congestion, extreme fatigue affecting activities, diffuse muscle pain, loss of appetite,
chills, a heavy pain on my left temple, and pink rash on the right side of my neck.”

Does this example involve coughing
up blood or weight loss?

Does the example show coughing up blood
with fever or intense fatigue?

TB Does the example show evidence of severe
pain and either shortness of breath
or swelling in unusual locations?

TB Not TB

Does the example show fever
and swollen lymph nodes?

Does the example show itchy or
runny nose or itchy eyes?

Not TB TB

Not TB

yes

yes no

yes no

no

yes

yes no

no

Figure 1: Example ACT decision tree for tuberculosis diagnosis using unstructured, free-text patient
descriptions. A tree is automatically learned, with each node containing a binary natural language
question, autonomously discovered via recursive prompt refinement to maximize label separation
at each split. At inference, these questions are answered by a large language model (LLM) from
the root node to the leaves of the tree. The final classification (TB or Not TB) corresponds to the
majority label of training examples described by each leaf.
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1 INTRODUCTION

As AI systems become increasingly integrated into high-stakes domains such as healthcare, educa-
tion, legal decision-making, and finance, the need for transparency, interpretability, and auditability
in AI decision-making has intensified. These requirements are grounded not only in practical consid-
erations, but also in legal obligations: recent governance frameworks and regulations such as the EU
AI Act1, the OECD AI Principles2, and the NIST AI Risk Management Framework3 emphasize that
AI-based decisions in high-stakes scenarios must be explainable and subject to human oversight. In
this context, there is a growing need for models whose decision processes can be inspected, verified,
and understood—not only by technical experts but also by stakeholders, auditors, and regulators.

Historically, complex decision-making tasks in high-stakes domains—such as medical diagnosis,
fraud detection, or credit underwriting—have been addressed on interpretable AI systems such as
expert systems (Jackson, 1986; Shortliffe, 1986; Leonard, 1993; Talebzadeh et al., 1995) and deci-
sion trees (Breiman et al., 1984). These models allow users to trace each decision through a sequence
of explicit, human-understandable rules, directly supporting the requirements set out by regulatory
frameworks. However, their applicability is largely limited to structured inputs such as tabular data,
and are not directly applicable to unstructured data such as natural language or images.

Recent advancements in large language models (LLMs) have substantially enhanced the capacity
for semantic understanding and reasoning within natural language processing (Brown et al., 2020;
Achiam et al., 2023). Building on these models, agentic systems (Shinn et al., 2023; Yao et al.,
2023; Schick et al., 2023) have been proposed to address complex tasks involving reasoning over
diverse types of data, and are seen as a very promising direction for future AI systems (Chen et al.,
2023; Wang et al., 2024).

Yet, despite their impressive capabilities, LLMs still suffer from several drawbacks—such as hal-
lucinations, inconsistencies, unreliability, and difficulty to audit (Kryściński et al., 2019; Ji et al.,
2023a; Tamkin et al., 2021). These issues constitute major obstacles to building reliable AI systems,
limiting their adoption in sensitive or regulated domains. A growing body of work seeks to address
these weaknesses by guiding LLM behavior toward more structured or self-consistent reasoning.
Chain-of-Thought prompting Wei et al. (2022), for example, encourages multi-step reasoning by
inserting explicit intermediate steps into prompts, improving consistency and sometimes reducing
hallucinations. Other techniques—such as self-reflection Shinn et al. (2023); Madaan et al. (2023)
and prompt optimization Zhou et al. (2022); Ji et al. (2023b); Yuksekgonul et al. (2024); Renze &
Guven (2024)—introduce agentic feedback loops to iteratively refine model outputs. While these
methods improve reliability in practice, they still rely on free-form text generation and implicit rea-
soning patterns that remain difficult to verify, audit, or formally constrain.

In this paper, we introduce a new type of classifier designed to combine the semantic reasoning
capabilities of large language models (LLMs) with the transparency of decision trees. The idea is
to follow a divide-and-conquer paradigm, allowing to reduce hallucination and reasoning errors by
successive decomposition of the problem following a hierarchical decision logic.

We therefore propose to structure LLM and agentic reasoning to address complex classification tasks
through verifiable decision patterns on unstructured data such as images or texts, in the form of an
agentic decision tree. Adapting the traditional Decision tree algorithms such as CART Breiman
et al. (1984) and C4.5 Salzberg (1994), we propose ACT, an agentic decision tree where each node
is defined as a natural language binary question over the input data, iteratively partitioning the data
into two subsets at each step. The best splits are found using TextGrad Yuksekgonul et al. (2024),
a prompt-refinement technique providing textual feedback to an agent, to minimize the Gini cri-
terion Breiman et al. (1984) at each split. Ultimately, ACT takes the form of a decision tree (cf.
Figure 1), each leaf leading to a class prediction after successive splitting.

The benefits of ACT are therefore the following:

• Transparent and structured decision process: ACT enforces a systematic, rule-based
structure that aligns the model’s internal reasoning with its observable decision process. Its

1https://artificialintelligenceact.eu/
2https://oecd.ai/en/ai-principles
3https://www.nist.gov/itl/ai-risk-management-framework
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tree-based architecture provides fully traceable and interpretable decision paths, facilitating
auditability, human oversight, and intervention—akin to the properties of traditional expert
systems.

• Optimized decision process: we show that decomposing some tasks into subquestions
allows to improve performances of LLMs without retraining. By automatically finding the
most relevant questions at each node, ACT is able to surpass existing methods.

2 PROBLEM SETUP AND RELATED WORK

We consider a binary classification problem over an unstructured input space X (e.g., text or im-
ages), with labels y ∈ {0, 1}. Given a dataset D = {(xi, yi)}Ni=1 sampled i.i.d. from an unknown
distribution, the goal is to learn a classifier f : X → {0, 1} that is both accurate and interpretable.
There is an abundant literature in XAI that focuses on defining desiderata for interpretable mod-
els Doshi-Velez & Kim (2017); Lipton (2018). Building on the regulatory requirements discussed
in Section 1, we therefore aim to build a decision model satisfying the following properties:

• Accuracy: competitive predictive performance on unstructured inputs;

• Transparency: decisions should be produced via interpretable, step-by-step reasoning;

• Contestability: the ability to contest an algorithmic-based decision by disputing the condi-
tions it relies on Wachter et al. (2017); Venkatasubramanian & Alfano (2020); Lyons et al.
(2021).

Translating these desiderata into technical requirements is made especially difficult given the
opaqueness and complexity of modern architectures such as LLMs and VLMs. There is a clear
lack of literature support for what explanations satisfying these properties should look like in these
contexts. As a result, in this work, we propose to define interpretability through the notion of ex-
plicit decision paths—structured sequences of semantically meaningful reasoning steps that can
be inspected, understood, and verified by human users. Below, we ground this proposition in the
existing XAI and LLM literatures.

Interpretable models and post-hoc explanations Interpretable models such as decision
trees (Breiman et al., 1984; Salzberg, 1994) are traditionally viewed as a natural solution to meet
the three aforementioned criteria. Offering transparent, rule-based decision paths that are easily un-
derstood and audited, their hierarchical structure allows users to trace predictions through explicit,
human-readable splits, making them well-suited for regulated or high-stakes domains (Rudin, 2019).
However, they are fundamentally limited to structured inputs, relying on predefined features and
struggling to handle unstructured data such as raw text or images. Efforts to address interpretability
in unstructured data contexts include post-hoc explanation techniques such as LIME (Ribeiro et al.,
2016) and SHAP (Lundberg & Lee, 2017) proposing explanations in the form of feature attributions
at the pixel (for images) or word (for text) level. Although very popular, these methods have been
criticized for often failing to capture the model’s true reasoning (Rudin, 2019; Laugel et al., 2019),
consequently offering limited guarantees for auditability, consistency, or regulatory compliance.

More recent efforts in neural NLP have attempted to incorporate explanations directly into the
model’s output, for instance through self-explanation (Nye et al., 2021) or agentic feedback
loops (Madaan et al., 2023). However, these approaches rely on free-form natural language gen-
eration, which—although interpretable to humans—remains unverifiable and unstructured. As a
result, they fall short of providing a consistent and auditable decision procedure.

Workflow and prompt optimization Research on building trustworthy LLM and VLM-based
systems has largely focused on workflow design and prompt refinement. Approaches such as Au-
toPrompt (Shin et al., 2020), TextGrad (Yuksekgonul et al., 2024), and DSPy (Khattab et al., 2023)
automatically optimize the prompt instructions to better align the LLM behavior with downstream
tasks. These methods show that LLMs can be guided toward more accurate or systematic outputs
without retraining, but do not provide explanation patterns. Techniques such as Chain-of-Thought
prompting (Wei et al., 2022), ReAct (Yao et al., 2023), and Reflexion (Shinn et al., 2023) structure
reasoning through intermediate steps or self-feedback, providing both performance increases and
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Table 1: Side-by-side comparison between traditional decision tree algorithms (CART, C4.5) and
our proposed Agentic Classification Tree (ACT).

CART / C4.5 Agentic Classification Tree
Data type Tabular Unstructured

Node definition Numerical: binary threshold
(both).
Categorical: CART binary subset;
C4.5 multiway split.

Binary natural-language question
queried to an LLM over the inputs.

Best split search Greedy exhaustive search over
candidate splits.

Iterative refinement of the ques-
tion through prompt optimization
(TextGrad) with LLM feedback.

Split criterion Gini (CART) or Information Gain
Ratio (C4.5).

(Gini or IG) combined with seman-
tic purity analysis.

Inference method Each input follows the tree based
on feature values.

Each input is queried by the LLM
at each node and routed according
to its answers.

transparent decision patterns. However, their reliance on free-form text generation makes them still
vulnerable to hallucinations, questioning their efficacy in auditing and verification contexts.

We propose to address these challenges by enforcing a hierarchical tree-structured decision process
over unstructured inputs. Defining each node as a natural-language question optimized through
LLM feedback ensures both semantic adaptability and transparent reasoning paths. Our proposed
framework, called Agentic Classification Tree (ACT), thus aims to combine the interpretability of
decision trees with the semantic reasoning of LLMs, providing an accountable alternative to existing
black-box prompt optimization methods.

3 METHODOLOGY

To build a structured agentic workflow in the form of a classification tree, we take inspiration from
traditional decision tree algorithms such as CART (Breiman et al., 1984) and C4.5 (Salzberg, 1994).
Table 1 provides a side-by-side comparison between traditional decision trees and our proposed
ACT method.

3.1 TRADITIONAL DECISION TREES: CART AND C4.5

Classical decision-tree algorithms such as CART (Breiman et al., 1984) and C4.5 (Salzberg, 1994)
recursively partition a dataset based on feature values. At each node, a split is defined by either
a threshold on a numerical feature or a subset of categorical values. The quality of each split
is measured by an impurity criterion—typically Gini impurity (CART) or Information Gain ratio
(C4.5)—and the algorithm greedily selects the split that yields the greatest impurity reduction, con-
tinuing recursively until a stopping criterion is met (e.g., maximum depth or node purity).

These methods are efficient and highly interpretable for structured, tabular data, but cannot operate
directly on unstructured inputs such as text or images. This limitation motivates our proposed ACT,
which replaces feature-based splits with optimized natural language queries evaluated by an LLM.

3.2 PROPOSED APPROACH: AGENTIC CLASSIFICATION TREE (ACT)

The Agentic Classification Tree (ACT) is designed to extend classical decision tree methods to
unstructured data. Like CART and C4.5, ACT recursively partitions the input space, but instead
of relying on numeric or categorical features, it leverages large language models (LLMs) to define
natural-language queries that guide data splits.

4
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Node definition Each node x in ACT is defined by a natural-language prompt p to semantically
partition data via an LLM. Given an instance xi, the LLM is queried with p and responds with a
binary answer (yes or no), determining the branch assignment. This process defines the following
split:

Dx
L = {(xi, yi) ∈ Dx | fsplit(p, xi) = yes}, Dx

R = Dx \ Dx
L. (1)

where fsplit(p, xi) denotes the LLM’s response to prompt p on input instance xi. The resulting
subsets Dx

L and Dx
R thus reflect the semantic partition induced by the model at node x.

To initialize the splitting process, we begin with a neutral, generic question such as:

"Based on the provided example, does it belong to the positive
class? (yes/no)"

This provides an unbiased starting point. Since fsplit is neither trained on the task nor informed of
the target labels, the initial partition is not expected to be meaningful. This is by design: with-
holding task-specific information ensures that decision prompts are derived from the training data
rather than from prior knowledge. In contrast to approaches such as TextGrad (Yuksekgonul et al.,
2024), which typically begin with a task-specific question and iteratively refine it, ACT starts from
a neutral prompt and discovers semantically meaningful questions from scratch through data-driven
refinement.

Best split criterion ACT optimizes each decision node by iteratively refining a natural-language
question p(k) to achieve an effective semantic partition of the data. To guide this process, it combines
quantitative evaluation (e.g., Gini impurity) with qualitative feedback from the LLM, yielding both
statistical and semantic insights for prompt refinement. The procedure consists of two components:

1. Quantitative Impurity Evaluation. As in classical decision tree algorithms such as CART and
C4.5, the quality of a split induced by the current prompt p(k) is evaluated using standard impurity
criteria (e.g., weighted Gini impurity (Breiman et al., 1984) or information gain ratio (Salzberg,
1994)). We denote this score by δ(p(k)), which serves as an objective function quantifying how
well the semantic split separates the class labels.

2. Semantic Purity Analysis via LLM. While the quantitative evaluation (e.g., Gini impurity)
measures class-label heterogeneity within each partition, it does not reveal the semantic factors
underlying the impurity. To make these sources explicit, we analyze each child node indepen-
dently by contrasting its class-conditional subsets (correct vs. misclassified examples). For this
purpose, we align the predicted answer (yes/no) with the ground-truth label (yi ∈ {0, 1}) when
defining correct and incorrect routing. Although this introduces an artificial correspondence be-
tween branch outcomes and class labels, it proved to be more effective in practice: the LLM more
readily exploits feedback framed in terms of correct versus incorrect predictions than feedback
based on contrasting the two branches directly (e.g., retaining the majority class and pruning the
minority one). This alignment does not prevent the emergence of negative queries (e.g., “Is fea-
ture A absent?”), which the LLM can in principle generate and refine, though such formulations
are typically harder to elicit consistently.
Formally, each subset g ∈ {Dx

L,Dx
R} is associated with the model’s predicted answer ŷg to the

current prompt. For convenience, we denote by ŷg ∈ {0, 1} the numeric encoding of this answer
(ŷg = 1 for “yes”, ŷg = 0 for “no”). We then further partition each subset into two groups:

Xx
correct = {(xi, yi) ∈ g | yi = ŷg}, Xx

error = {(xi, yi) ∈ g | yi ̸= ŷg}.

Specifically, Xcorrect consists of input–label pairs where the LLM’s predicted label ŷg matches
the true label yi, while Xerror consists of misclassified pairs where yi ̸= ŷg .
Next, we prompt the LLM to analyze these two groups and identify key semantic character-
istics that distinguish them—i.e., features whose presence or absence could explain why some
examples are misclassified.
Based on this contrast, the LLM—denoted fpurity—returns concise, actionable feedback sg that is
then used to refine the node’s splitting question in the next optimization step to reduce impurity.
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LLM Task: Semantic Purity Feedback for "yes" group (DL)
Below are two groups of samples for which a model answered either "yes" or "no" in response
to a natural language prompt to predict their class label.
Provide feedback about key characteristics that are present or absent in the group where the
model’s predicted label matched the true label, and in the group where the prediction was incor-
rect.
For the following examples, the model answered "yes":

• Well-classified examples (true label = "yes"):
[List of correctly classified inputs]

• Misclassified examples (true label = "no"):
[List of misclassified inputs]

The feedback you provide must be clear and concise. Focus on the one or two most important
characteristics.

By performing this semantic analysis independently on subsets DL and DR, we obtain targeted
feedback sDL

and sDR
that are then used to guide subsequent question-refinement iterations.

Best split search At each decision node, the objective is to refine the natural-language prompt
p(k) so that the resulting partition minimizes the weighted Gini impurity δ(p(k)). As described
previously, this quantitative criterion is complemented by semantic feedback (sDL

, sDR
), obtained

from LLM-based analyses of misclassified versus correctly classified examples.

To jointly evaluate statistical impurity and semantic error patterns, we define a semantic–impurity
objective:

L(p(k)) = floss
(
p(k), sDL

, sDR
, δ(p(k))

)
,

where floss is instantiated as a large language model (LLM). Given the current question, impurity
statistics, and semantic feedback, the LLM returns a natural-language diagnosis of its limitations,
highlighting semantic factors that contribute to impurity.

We realize the refinement process using the differentiable prompting framework TextGrad (Yuksek-
gonul et al., 2024). Each refinement iteration proceeds in two stages:

(i) Guidance stage: TextGrad.feedback takes as input the prompt p(k) together with its
evaluation L(p(k)), and generates a natural-language editing instruction∇pL(p(k)) that spec-
ifies how the prompt should be revised.

(ii) Revision stage: TextGrad.step applies this instruction to produce an updated prompt:

p(k+1) = TextGrad.step
(
p(k),∇pL(p(k))

)
.

The optimization loop is repeated for up to K steps or until convergence. At each iteration, the
current prompt p(k) is used to partition the data, evaluate impurity, and analyze semantic error pat-
terns via the LLM, as described above. These signals jointly inform the loss L(p(k)), which is then
used by TextGrad to generate a refined prompt p(k+1). Among all prompts generated during the
optimization process, p(0), p(1), . . . , p(K), we select the one with the lowest impurity on the training
set, i.e., p∗ = argmink δ(p(k)).

Tree construction ACT builds the decision tree recursively in a top-down manner. At each node,
the best prompt is optimized via the procedure described above. If the resulting subset is pure or
meets a predefined stopping criterion (e.g., minimum node size — the number of training examples
in the node —, Gini impurity below a threshold, or maximum depth), a leaf node is created. As in
classical decision trees, the leaf is assigned the majority class label among the examples it contains.
The complete ACT procedure is summarized in Algorithm 1.

6
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Algorithm 1: ACT: Agentic Classification Tree
Input: Dataset D
Output: Decision tree T
T ← GrowPromptTree(D) ;
return T ;

Function GrowPromptTree(D):
Initialize prompt p(0) ; // default initialization
if D is pure or stopping criterion is met then

return Leaf node with majority class label;
for k = 0 to K − 1 do

DL ← {(xi, yi) ∈ D | fsplit(p
(k), xi) = yes};

DR ← D \DL;
δ(p(k))← |DL|

|D| ·Gini(DL) +
|DR|
|D| ·Gini(DR) ;

foreach (g, ŷg) ∈ {(DL,’yes’), (DR,’no’)} do
Xcorrect ← {(xi, yi) ∈ g | yi = ŷg} ;
Xerror ← {(xi, yi) ∈ g | yi ̸= ŷg} ;
sg ← fpurity(p

(k), Xcorrect, Xerror) ; // Intra-group semantic analysis

L(p(k))← floss(p
(k), sDL

, sDR
, δ(p(k))) ; // LLM-evaluated semantic loss

∇pL(p(k))← TextGrad.feedback(p(k),L(p(k))) ;
p(k+1) ← TextGrad.step(p(k),∇pL(p(k))) ;

p∗ ← argminp(k) δ(p(k)) ; // Prompt with lowest impurity
Split D using p∗ into DL and DR ;
node← Create prompt node with final question p∗ ;
node.left← GrowPromptTree(DL) ;
node.right← GrowPromptTree(DR) ;
return node ;

Function Gini(D):
return 1−

∑
k p

2
k, where pk is the class proportion in D;

4 EXPERIMENTS

We empirically evaluate the proposed Agentic Classification Tree (ACT) against state-of-the-art
baseline methods on multiple binary text classification datasets.

Datasets. We evaluate ACT on three binary classification tasks: medical diagnosis (DIAGNO),
spam detection (SPAM), and jailbreak prompt classification (JAILBREAK). For DIAGNO and
SPAM, we construct balanced splits to ensure controlled evaluation. JAILBREAK is used in its
original form, which is moderately imbalanced (details in Appendix B.1).

Models. We evaluate our method on four language models: Gemma-4B Team et al. (2025), GPT-
Nano-4.1 Achiam et al. (2023), GPT-Mini-4.1 Achiam et al. (2023), and Qwen3-4B Yang et al.
(2025). These models were selected to represent diverse architectural approaches while prioritizing
computationally efficient smaller models. To examine the effect of model size, we include two
variants of the GPT-4.1 family with different parameter scales.

Baselines. We evaluate ACT against four classification baselines:

• Chain-of-Thought (CoT, zero-shot) (Wei et al., 2022): standard zero-shot prompting with step-
by-step reasoning, without access to labeled examples or demonstrations.

• DSPy (8-shot in-context learning) (Khattab et al., 2023): a demonstration-based approach that
conditions the model on eight curated input–label examples to elicit task-relevant behavior.

• TextGrad (Yuksekgonul et al., 2024): a prompt optimization method that refines a single task-
specific prompt using textual feedback. The prompt includes the task description and class labels,
and is optimized for accuracy. We follow the original setup, with no demonstrations provided.

7
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Table 2: Comparison of classification methods across three text datasets (DIAGNO, SPAM, JAIL-
BREAK) and four LLMs. Results show training and test accuracy (%) for baseline methods (CoT,
DSPy, TextGrad), traditional CART with TF-IDF features, and the proposed ACT with varying hy-
perparameters (d: tree depth, k: optimization steps per node).

Dataset Method Gemma3 4b GPT-4.1 Nano GPT-4.1 Mini Qwen3 4b Avg Test
Train Test Train Test Train Test Train Test (%)

DIAGNO

CoT (0-shot) 61.0 61.5 63.5 63.3 64.3 61.2 63.5 63.2 62.3
DSPy (8 demos) 66.2 64.0 71.5 68.7 68.3 64.5 61.2 58.8 64.0
TEXTGRAD 65.7 63.3 67.5 64.5 69.2 65.8 65.0 64.0 64.4
TF-IDF + CART (d=3) – – – – – – – – 78.8
ACT (d=3, k=10) 71.3 65.3 70.7 66.9 78.5 77.3 68.5 64.8 68.6
ACT (d=3, k=20) 72.5 67.0 71.8 67.2 78.3 76.2 69.2 65.5 69.0
ACT (d=4, k=10) 72.5 66.3 74.3 70.5 79.7 74.3 70.8 66.7 69.5
ACT (d=4, k=20) 73.7 68.3 74.8 70.3 85.0 82.3 75.5 70.3 72.8

SPAM

CoT (0-shot) 75.0 73.3 96.3 95.5 95.5 95.7 92.5 93.2 89.4
DSPy (8 demos) 95.2 95.0 98.3 98.3 98.8 98.2 96.7 96.5 97.0
TEXTGRAD 93.3 92.6 97.8 97.3 98.0 96.7 96.2 96.0 95.7
TF-IDF + CART (d=3) – – – – – – – – 89.3
ACT (d=2, k=5) 97.0 95.8 98.7 98.6 98.5 98.2 97.1 96.6 97.3
ACT (d=2, k=10) 97.7 96.5 99.7 99.2 100.0 99.2 98.6 98.5 98.4
ACT (d=3, k=5) 98.3 98.2 98.3 97.0 100.0 99.4 98.8 98.5 98.3
ACT (d=3, k=10) 99.3 98.5 99.2 98.8 100.0 99.1 99.0 98.8 98.8

JAILBREAK

CoT (0-shot) 81.6 77.9 84.1 85.5 88.1 90.4 78.0 80.1 83.5
DSPy (8 demos) 85.8 79.8 88.0 88.0 94.8 94.8 85.3 83.5 86.5
TEXTGRAD 92.9 91.3 92.4 88.2 95.6 94.7 82.3 81.5 88.9
TF-IDF + CART (d=3) – – – – – – – – 91.3
ACT (d=3, k=10) 85.3 82.3 85.5 85.5 96.9 95.4 84.8 82.7 86.5
ACT (d=3, k=20) 85.2 84.3 92.3 92.0 97.7 96.2 84.2 84.7 89.3
ACT (d=4, k=10) 91.4 90.0 92.7 87.0 98.1 97.2 85.8 85.1 89.8
ACT (d=4, k=20) 92.1 90.6 93.2 88.2 99.2 98.9 87.7 88.0 91.4

• TF-IDF + CART: a CART trained on TF-IDF representations of the raw texts (Salton et al., 1975;
Breiman et al., 1984) that does not rely on a language model, offering structural transparency but
limited semantic interpretability, as it lacks natural-language reasoning.

The three LLM-based baseline methods above (CoT, DSPy, TextGrad) are initialized with task-
specific prompts that explicitly state the classification objective and define the target classes (e.g.,
for DIAGNO, whether a case indicates Tuberculosis). In contrast, ACT begins from a generic, task-
agnostic query (“Based on the provided example, does it belong to the positive class?”), without
access to the task description, class names, or any domain-specific information. Consequently,
ACT must uncover the task through successive node’s question-refinement iterations, making the
comparison conservative with respect to considered baselines. We vary two hyperparameters of
the proposed ACT algorithm: the maximum tree depth d and the number of prompt refinement
steps per node k, exploring different configurations in our experiments. To control input length
and computational cost, fpurity is restricted to at most m randomly selected well-classified and m
randomly selected misclassified instances per group (with m = 50 in our experiments). To ensure a
fair comparison, all methods are evaluated using identical underlying language models.

4.1 EXPERIMENTAL RESULTS AND DISCUSSION

As shown in Table 2, ACT with appropriately selected hyperparameters consistently matches or sur-
passes the CoT, TEXTGRAD, and DSPy baselines across datasets and LLMs. Concretely, averaged
over all datasets and models, the best-performing ACT configuration (d = 4, s = 20 ) improves test
accuracy by 5.2 percentage points over DSPy (8-shot) and by 4.7 points over TEXTGRAD, while
providing transparent and interpretable question-based decision paths.

Additionally, we compare our method against CART with TF-IDF features at depth 3, which ex-
haustively searches for optimal splits based on the TF-IDF matrix. This baseline achieves strong
performance (78.8% on DIAGNO, 89.3% on SPAM, 91.3% on JAILBREAK). ACT consistently
outperforms TF-IDF+CART on SPAM and JAILBREAK for both GPT-4.1 variants, while only Mini
exceeds TF-IDF+CART on DIAGNO. However, the TF-IDF+CART approach remains fundamen-
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tally limited by its lack of semantic interpretability. The resulting decision trees (see, e.g., Fig. 5 and
6 in Appendix) are typically hard to understand for users, especially when compared to the natural-
language questions learned with ACT (cf. Figure 1 for DIAGNO, Figures 3 and 4 for SPAM and
JAILBREAK). This stems in part from TF-IDF+CART selecting single words or n-grams as deci-
sion criteria, without any regard to context or semantic meaning. As a result, these models struggle
with negation, rephrasing, and adversarially crafted text—features that are particularly prevalent in
SPAM and JAILBREAK. These limitations explain ACT’s consistent advantage in these domains.
Furthermore, Appendix B.2 compares the most relevant symptoms for Tuberculosis identified by
ACT on the DIAGNO dataset with those from established medical sources, highlighting their strong
alignment and the efficacy of ACT in high-stakes scenarios.

4.2 ABLATION STUDIES

The proposed ACT algorithm has two key hyperparameters: the depth of the tree d and the number
of optimization steps per node during training k. Additional hyperparameters with less influence
include the number m of examples X0 and X1 provided to the LLM when performing semantic
analysis (fpurity) and the maximum number of logical operators L permitted in each generated ques-
tion (cf. Appendix A.2 for more discussion). As illustrated in Figure 2, the depth d and optimization
steps k significantly influence ACT performance. Across datasets and LLMs, test accuracy peaks
at depths 4–5, with deeper trees exhibiting decreased test accuracy despite increased training accu-
racy at depth 6 —an indication of overfitting. Conversely, increasing optimization steps consistently
improves performance, though gains plateau after 10–20 steps depending on the configuration, indi-
cating that only a modest number of steps k is sufficient to identify the best splitting question.
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Figure 2: Ablation study of ACT hyperparameters on the DIAGNO dataset using GPT-4.1 Nano.
(a) Effect of depth parameter d on model accuracy for different numbers of optimization steps per
node during training k. (b) Effect of the number of optimization steps per node during training k
on model accuracy for different depth values d. Solid lines represent training accuracy; dashed lines
represent test accuracy.

5 CONCLUSION

We introduced the Agentic Classification Tree (ACT), a novel framework that combines the inter-
pretability of traditional decision trees with the semantic reasoning capabilities of large language
models (LLMs). Unlike conventional decision trees that rely on rigid feature-based splits, ACT
dynamically optimizes natural-language prompts at each node, using LLM responses to perform
semantically meaningful binary splits. Our experiments on text-based binary classification tasks
demonstrate that ACT achieves competitive accuracy while providing interpretable, language-based
decision logic. This approach highlights the potential of combining classical machine learning struc-
tures with modern language model reasoning, opening new avenues for interpretable and effective
decision-making in complex, text-rich domains. Future work includes extending ACT to multi-class
classification and regression task, improving computational efficiency through targeted prompt op-
timization strategies, and exploring applications beyond text classification to other structured and
unstructured data modalities.
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A APPENDIX

A.1 ILLUSTRATIVE EXAMPLE: PROMPT REFINEMENT VIA SEMANTIC FEEDBACK

We describe the iterative prompt refinement procedure used in ACT, using an illustrative case from
the DIAGNO3 medical diagnosis task. At each decision node, the objective is to construct a bi-
nary natural-language question that separates the data into semantically meaningful groups, thereby
reducing weighted Gini impurity.

At each iteration k, the following steps are performed:

1. The current prompt p(k) is evaluated over the training set. For each input xi, the LLM outputs a
binary decision (yes/no).

2. The data is partitioned into two subsets: those routed to the yes branch (denoted sdL) and those
routed to the no branch (denoted sdG).

3. For each subset, the correctly classified and misclassified examples are separated. These are
then passed to the LLM, which is prompted to identify semantic features that distinguish the two
groups.

4. Based on this contrastive analysis, the LLM generates feedback indicating which aspects of the
current prompt are ambiguous or insufficient. This feedback is then used to revise the question,
yielding a new candidate p(k+1).

This iterative refinement continues until a stopping criterion is met (e.g., convergence or maximum
number of updates). In practice, we observe that prompts evolve from generic task-agnostic for-
mulations to more specific, domain-relevant queries. For instance, an initial prompt such as “Does
this example belong to the positive class?” may be refined into a targeted question like “Does the
example mention coughing up blood or high fever?”, better aligned with the semantic distinctions
in the data.

Iteration 0 — Initial Generic Prompt Prompt p(0): Based on the provided
context, does this example belong to the positive class? (yes/no)

Gini impurity: 0.495

Group predicted “YES” (sdL):
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• Correct predictions: Examples often exhibited severe and systemic symptoms such as
coughing blood, weight loss, shortness of breath, rashes, and fatigue.

• Misclassified “no” cases: Contained milder or localized symptoms like eye itching, mild
sore throat, or isolated skin rashes, which were insufficiently discriminated by the general
prompt.

Group predicted “NO” (sdG):

• Correct predictions: Mostly examples with mild and localized symptoms—itchy nose,
minor pain, swelling—without strong systemic indicators.

• Misclassified “yes” cases: Actually showed critical signs such as coughing up blood, high
fever, significant pain, or weight loss, which the current question failed to detect.

Global semantic feedback: “Focusing the question on specific, highly discriminative fea-
tures—such as the presence of severe systemic symptoms like coughing blood, weight loss, or high
fever—can enhance class separation. This targeted approach reduces ambiguity, improves align-
ment with key features, and minimizes misclassification.”

Revision → p(1): Does this example show severe systemic symptoms such
as coughing blood, weight loss, or high fever? (yes/no)

Iteration 1 — Emphasizing a Single Discriminative Feature Prompt p(1): Does this
example show severe systemic symptoms such as coughing blood,
weight loss, or high fever? (yes/no)

Gini impurity: 0.470

Group predicted “YES” (sdL):

• Correct predictions: Frequently involved coughing up blood alongside systemic symp-
toms like nasal congestion, eye itching, fatigue, fever, and skin lesions—indicating strong
respiratory or infectious patterns.

• Misclassified “no” cases: Contained only mild respiratory issues (e.g., itchy or runny
nose) and lacked the critical signal of coughing up blood. The model overgeneralized and
flagged weakly indicative cases as positive.

Group predicted “NO” (sdG):

• Correct predictions: Examples were diverse but lacked specific severe indicators like high
fever or respiratory distress. These cases included generalized symptoms (e.g., skin rashes,
fatigue) that didn’t clearly indicate the positive class.

• Misclassified “yes” cases: Contained classic positive indicators such as high fever, mus-
cle pain, fatigue, and systemic lesions. The model failed to recognize the more complex
symptom constellation as positive.

Global semantic feedback: “The current question is too broad and includes features (like fever or
weight loss) that are insufficiently discriminative. Focus the question on the most specific positive-
class indicator — coughing up blood — and remove less reliable features. This should improve class
separation by reducing false positives.”

Revision → p(2): Does this example show evidence of coughing up blood?
(yes/no)

Iteration 2 — Broadening to Capture Severe Cases Prompt p(2): Does this example
show evidence of coughing up blood? (yes/no)

Gini impurity: 0.468

A.2 PROMPT CONSTRAINTS DURING PROMPT OPTIMIZATION

During prompt optimization in ACT, additional constraints are applied to keep questions clear and
interpretable while encouraging exploration. The goal of these constraints is twofold: (i) ensure that
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generated questions remain simple, precise, and auditable, and (ii) incentivize diversity so that ACT
explores many different semantic formulations during refinement. The maximum number of logical
operators L allowed per question is a controllable hyperparameter in ACT.

LLM Task: Generate Optimized Question (with Constraints)

The following constraints must always be satisfied:

• The question has to be clear and easy.
• The question must focus on at most two characteristics.
• The question must include at least one characteristic different from the previous one.
• The content of the new question must be significantly different from the current one.
• Use at most L logical operators (and/or).
• The question has to be answerable with yes or no only.
• The question must finish with “(yes/no)?”.
• Do not use vague words like could, might, or possibly.
• Do not use blanks or placeholder tags like \ " or <...>.

A.3 REVIEW OF TRADITIONAL DECISION TREE METHODS: CART AND C4.5

Classification and Regression Trees (CART), proposed by Breiman et al. (1984), are widely used
decision tree algorithms for supervised classification tasks. In this work, we focus exclusively on
the classification setting.

In this subsection we defineD as a tabular datasetD = {(xi, yi)}Ni=1, where each instance xi∈Rd is
associated with a target output yi, CART constructs a binary decision tree by recursively partitioning
the dataset based on threshold splits on numeric input features or binary partitions of categorical
inputs, selected in a greedy manner. We detail these steps below.

Node Definition. At each internal node x of the tree, we denote by Dx ⊆ D the subset of the
training data that reaches node x. In particular, for the root node x0, we have Dx0 = D, the full
training dataset.

To split the data at node x, CART evaluates candidate partitions along a feature dimension j and a
threshold s ∈ R. The dataset Dx is then divided into two subsets:

Dx
L = {(xi, yi) ∈ Dx | xi,j ≤ s}, Dx

R = {(xi, yi) ∈ Dx | xi,j > s}. (2)

These subsets correspond to the training data that will be used at the left and right child nodes of x,
respectively. That is, if yL and yR denote the left and right children of node x, we defineDyL = Dx

L
and DyR = Dx

R.

For categorical features, CART evaluates binary partitions over subsets of discrete values, typically
by assigning certain categories to the left or right child nodes based on the impurity criterion.

For categorical attributes, CART partitions the data based on whether instances belong or do not
belong to specific category subsets.

Best split criterion At each node x, CART selects the optimal feature and split threshold by
minimizing a node-specific impurity score. This score is typically computed using the Gini impurity,
which quantifies the heterogeneity of class labels within a subset.

Given a candidate split of the local dataset Dx into Dx
L and Dx

R, the impurity of the split is defined
as the weighted sum of the impurities of the two resulting subsets:

δsj =
|Dx

L(j, s)|
|Dx|

·Gini(Dx
L(j, s)) +

|Dx
R(j, s)|
|Dx|

·Gini(Dx
R(j, s)), (3)
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The Gini impurity of any subset D ⊆ D is given by:

Gini(D) = 1−
∑
k∈Y

p2k, (4)

where Y denotes the set of possible class labels, and pk is the empirical proportion of class k in the
dataset D.

A Gini impurity of 0 indicates perfect purity—i.e., all instances in the subset belong to a single
class—while a value closer to 0.5 (in binary classification) indicates a highly mixed, impure subset.

Best split search The CART algorithm constructs the decision tree recursively using a greedy
strategy: at each internal node x, the best split is selected by optimizing a local impurity crite-
rion over the current subset Dx. This split is chosen by evaluating its effect on the resulting child
nodes—i.e., by computing the weighted impurity of the partition it induces. In practice, this local
optimization is typically performed via exhaustive search over all candidate features and thresholds,
though heuristic approximations may be used in high-dimensional settings.

The recursive construction proceeds until a stopping criterion is met, such as achieving node purity,
reaching a minimum number of samples, or exceeding a predefined maximum depth dmax.

Tree construction. Decision trees are constructed recursively. At each node, the split minimizing
impurity is applied to partition the data, and the procedure recurses on the resulting subsets. Recur-
sion terminates when purity is reached or a predefined stopping condition is met (e.g., maximum
depth, minimum node size), and the node is labeled with the majority class.

C4.5. C4.5 (Salzberg, 1994) follows the same recursive tree-building process as CART but differs
mainly in two respects: (i) it chooses splits by maximizing the information gain ratio rather than
minimizing Gini impurity, and (ii) it allows multiway splits on categorical attributes, whereas CART
restricts all splits to be binary.

While both CART and C4.5 have become canonical algorithms for structured data, they are not
directly applicable to unstructured domains such as text or images. This limitation motivates our
proposed Agentic Classification Tree (ACT).

B ADDITIONAL RESULTS AND DATASETS

B.1 DETAILS ON DATASETS

We consider three publicly available binary text classification datasets spanning different domains:

• DIAGNO (Ninaa510, 2024): a medical diagnosis dataset (tuberculosis vs. allergic sinusitis) , a
derived dataset based on DDXPlus Fansi Tchango et al. (2022). We constructed a balanced subset
with 600 training, 100 validation, and 600 test samples, ensuring a 50/50 split (300 tuberculosis
and 300 allergic sinusitis cases).

• SPAM: an email spam detection dataset derived from Deysi (2023). We constructed a balanced
subset with 600 training, 100 validation, and 600 test samples, following the same procedure as
for DIAGNO.

• JAILBREAK (Shen et al., 2024): a jailbreak prompt classification dataset with 923 training, 102
validation, and 249 test samples (32 examples have been dropped due to high context tokens).

B.2 QUALITATIVE ANALYSIS OF THE QUESTIONS GENERATED BY ACT

In addition to its tree structure, another crucial element ensuring the interpretability of ACT lies in
how relevant the generated questions are. For this purpose, we propose to compare these questions
with the ones that domain experts would have asked, focusing on the DIAGNO dataset. We survey
several relevant medical sources to collect a list of symptoms that are commonly used for tubercu-
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Table 3: Symptoms comparison between ACT and medical sources.

Questions in common ACT only Medical sources only

Coughing up blood Shortness of breath Chest pain
Fever Severe pain Headache

Weight loss Increased sweating
Swollen lymph nodes Loss of appetite

Fatigue

losis diagnosis. These sources include websites of the World Health Organization4 and the British
National Health Service5, and a literature review on tuberculosis diagnosis Storla et al. (2008).

Table 3 shows a side-by-side comparison of the symptoms identified by ACT as positively associ-
ated with tuberculosis, and those most commonly identified in the aforementioned medical sources,
differentiating the symptoms identified by both ACT and the medical sources (left column), from
those that were exclusive (center and right columns). We see that most of the symptoms appear in
common. Some of the differences may be explained by ambiguity between some symptoms (e.g.
”severe pain” vs. Chest pain and headaches). Others may come from binary classification setting
considered, opposing tuberculosis cases to allergy, potentially resulting in some symptoms (e.g. loss
of appetite) not being represented in the dataset.

Overall, this tends to show that ACT is indeed able to identify relevant symptoms to make its pre-
dictions, showcasing its utility and reliability.

B.3 AGENTIC CLASSIFICATION TREE FOR SPAM DATASET

Does the text contain promotional
language or marketing terms?

Does this text use excessive exclamation
points, grammatical errors, or

poor writing quality?

SPAM Does this example primarily aim to
generate immediate engagement

(likes, comments, shares)?

SPAM HAM

Does this text rely heavily on
emotionally charged language

or sensational claims?

SPAM Does this example aim to generate
immediate revenue or sales?

SPAM HAM

yes

yes no

yes no

no

yes no

yes no

Figure 3: Decision tree of depth 3 generated by the Gemma3-4B model for spam email classifica-
tion. The tree distinguishes between spam and legitimate email (ham) through hierarchical semantic
questions about promotional content, writing quality, and intent. Each internal node represents a bi-
nary question optimized through the ACT framework to maximize class separation, with leaf nodes
indicating the final classification based on the majority class of training examples.

4https://www.who.int/news-room/fact-sheets/detail/tuberculosis
5https://www.nhs.uk/conditions/tuberculosis-tb/
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B.4 AGENTIC CLASSIFICATION TREE FOR JAILBREAK DATASET

Does this text explicitly instruct an AI to
bypass ethical, legal, or moral constraints?

Does the prompt implicitly or explicitly instruct
the AI to override policy or safety restrictions?

JB Is this text a direct instruction to generate
harmful, unethical, or illegal content in

a role-playing or creative context?

JB Not JB

Does the example require imaginative or
persona-driven instructions that guide the

response toward creative or roleplay content?

Does this roleplay scenario explicitly request
or involve role-playing as an AI (e.g., ’I am DAN’,

’I am JailBreak’) that ignores ethical,
legal, or moral guidelines?

JB Not JB

Is this text a neutral, educational, or
role-playing scenario with fictional characters

in a non-offensive context?

JB Not JB

yes

yes no

yes no

no

yes

yes no

no

no yes

Figure 4: Decision tree of depth 3 generated by the Qwen3-4b model for jailbreak prompt classifi-
cation. The tree recursively partitions inputs through binary natural-language questions optimized
to distinguish between jailbreak attempts (JB) and legitimate prompts (Not JB). Each internal node
contains a semantically meaningful question discovered through iterative prompt refinement, with
terminal nodes indicating the final classification based on the majority class of training examples
reaching that leaf.

B.5 QUALITATIVE COMPARISON WITH TF-IDF + CART

In this section we aim to illustrate the benefits of leveraging LLM agents to directly deal with
unstructured data by comparing ACT with the traditional TF-IDF and CART combination. The
tree resulting from this procedure for the DIAGNO dataset is shown in Figure 5, and in Figure 6
for the SPAM dataset. In both cases, we observe the limitation of this approach, as nodes built only
on one word provide little help in understanding the model. Worse, these words may often end up
being generic adverbs and prepositions (e.g. ”our”, ”any”), resulting ultimately in explanations that
are both hard to understand and leverage.

On the other hand, the decision trees learned by ACT for these datasets can be easily understood,
and verified, by a user.

nose ≤ 0.074

itching ≤ 0.052

nausea ≤ 0.192

TB Not TB

also ≤ 0.294

Not TB TB

nasal ≤ 0.238

constant ≤ 0.289

Not TB TB

nose ≤ 0.309

TB Not TB

yes

yes

yes no

no

no yes

no

yes

no yes

no

no yes

Figure 5: Decision tree of depth 3 generated by training a CART model after performing a TF-IDF
preprocessing step on the DIAGNO dataset.

APPENDIX: USE OF LANGUAGE MODELS

During the preparation of this manuscript, we made limited use of large language models to enhance
the clarity and readability of the text. This involved assistance with grammar, phrasing, and stylistic
improvements, particularly in the abstract and selected explanatory sections. All scientific content,
including the formulation of research questions, experimental design, results, and interpretations,
was developed solely by the authors. No language model was used to generate original ideas, proofs,
or analyses.
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our ≤ 0.041

your ≤ 0.06

now ≤ 0.055

HAM SPAM

any ≤ 0.038

SPAM HAM

announce ≤ 0.1

severe ≤ 0.13

SPAM HAM

HAM

yes

yes

yes no

no

yes no

no

yes

yes no

no

Figure 6: Decision tree of depth 3 generated by training a CART model after performing a TF-IDF
preprocessing step on the SPAM dataset.
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