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ABSTRACT

Vision Transformers (ViTs) have demonstrated remarkable success in computer
vision tasks. However, their reliance on learnable one-dimensional positional
encoding disrupts the inherent two-dimensional spatial structure of images due
to patch flattening. Existing positional encoding approaches lack geometric con-
straints and fail to preserve a monotonic correspondence between Euclidean spatial
distances and sequential index distances, thereby limiting the model’s capacity
to leverage spatial proximity priors effectively. Recognizing that periodicity is
particularly beneficial for positional encoding, we propose Weierstrass elliptic
Positional Encoding (WePE), a mathematically principled approach that encodes
two-dimensional coordinates in the complex domain. This method maps the nor-
malized two-dimensional patch coordinates onto the complex plane and constructs
a compact four-dimensional positional feature based on the Weierstrass elliptic
function ℘(z) and its derivative. The doubly periodic property of ℘(z) enables a
principled encoding of 2D positional information, while their intrinsic lattice struc-
ture aligns naturally with the geometric regularities of patch grids in images. Their
nonlinear geometric characteristics enable faithful modeling of spatial distance rela-
tionships, while the associated algebraic addition formula allows relative positional
information between arbitrary patch pairs to be derived directly from their absolute
encodings. WePE is a plug-and-play, resolution-agnostic positional module that
integrates seamlessly with existing ViTs. Extensive experiments demonstrate that
WePE delivers consistent performance gains in most scenarios, while its implemen-
tation with precomputed lookup tables ensures that these improvements incur no
noticeable computational or memory overhead. In addition, several analyses and
ablation studies bring further confirmation to the effectiveness of our method.

1 INTRODUCTION

Vision Transformers (ViTs) (Dosovitskiy et al., 2021) have recently emerged as a powerful rep-
resentation learning architecture in computer vision, challenging the long-standing dominance of
Convolutional Neural Networks (CNNs) (LeCun et al., 1998). By partitioning an image into a se-
quence of patches, ViTs leverage the self-attention mechanism to model global dependencies (Vaswani
et al., 2017), a stark contrast to the localized inductive biases inherent in CNNs (Zeiler & Fergus,
2014). While this design enables greater flexibility in capturing long-range interactions, it also
introduces a critical limitation: ViTs lack an intrinsic understanding of spatial geometry. As a result,
their performance heavily relies on positional encodings (PE) (Shaw et al., 2018; Parmar et al., 2018)
to provide the necessary spatial information.

The standard formulation of ViTs adopts simple, learnable 1D positional embeddings (Dosovitskiy
et al., 2021). Beyond learnable absolute encodings, researchers have proposed and adopted a spectrum
of positional encodings, including sinusoidal (trigonometric) schemes (Vaswani et al., 2017), Fourier
Position Embedding (FoPE) (Hua et al., 2025), Rotary Position Embedding (RoPE) (Su et al., 2021a),
Lie-group–based rotational encodings (LieRE) (Ostmeier et al., 2025), the RoPE-Mixed variant
specialized for 2D vision (Heo et al., 2024), and others. However, most positional encoding schemes
for ViTs entail a structural limitation: the 2D patch grid is serialized by flattening into a 1D token
sequence to conform to the sequence-based formulation of Transformer self-attention (Vaswani et al.,
2017), thereby disrupting the image’s intrinsic spatial geometry. For instance, the sequential distance
between vertically adjacent patches becomes artificially inflated compared to horizontally adjacent
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ones. More importantly, such encodings operate essentially as a lookup table without geometric
constraints. As a consequence, no monotonic correspondence is ensured between the true Euclidean
distance of image patches and their relative positions in the embedding space (Wu et al., 2021). This
deficiency severely limits the model’s capacity to exploit spatial proximity priors, which acts as a
cornerstone for effective visual understanding (Cordonnier et al., 2020).

To overcome these limitations, we introduce the Weierstrass elliptic Positional Encoding (WePE), a
mathematically principled framework rooted in the theory of complex analysis. Instead of flattening
the patch grid, we map the 2D coordinates of each patch directly onto the complex plane, thereby
preserving their geometric integrity. We then utilize the Weierstrass elliptic function (Weierstrass,
1854), ℘(z), a doubly periodic meromorphic function (As given in Definition B.6), to construct a
continuous and structured spatial representation. It establishes a profound connection between a
complex torus (defined by a lattice in the complex plane) and an algebraic elliptic curve through
a specific differential equation. Formally, ℘(z) possesses several mathematical properties, such as
being a doubly periodic meromorphic function (as detailed in Theorem B.5), satisfying a specific
differential equation (Theorem B.8), and adhering to a distinctive addition formula (Theorem B.11).
This choice is not arbitrary: Our discussion in Section D concludes that periodicity is beneficial, and
even optimal under the standard criterion of translation-equivariant positive definite attention kernels,
for positional encodings. This insight leads us to select a function with a doubly periodic function
to adapt to two-dimensional images. The intrinsic lattice structure of ℘(z) naturally aligns with the
geometric regularities of image patch grids, while its continuity ensures resolution invariance, a
pivotal advantage for fine-tuning across resolutions. Moreover, we demonstrate that WePE possesses
a provable distance-decay property, and that its algebraic addition formula allows the direct derivation
of relative positional information between arbitrary patches.

This paper presents the design, theoretical grounding, and empirical validation of WePE. By replacing
heuristic positional encoding with a mathematically principled formulation, our method endows ViTs
with a robust geometric inductive bias. The main contributions of this paper are summarized as
follows:

1. Geometrically principled positional encoding: We propose WePE, a mathematically
grounded framework that maps 2D image coordinates to the complex plane via the Weier-
strass elliptic function. This design preserves the intrinsic spatial structure of images, inher-
ently aligns with translational regularities, and provides a continuous, resolution-invariant
positional representation.

2. WePE with several key properties: Mathematical analysis shows that WePE has some key
properties, such as relative position modeling via the elliptic function’s addition formula,
the inherent distance-decay property, and the periodicity advantages that, under certain
conditions, may even be optimal. Additionally, the continuous function evaluation en-
sures resolution-invariant fine-tuning, while industrial-level acceleration schemes simplify
implementation.

3. Empirical validations across multiple datasets: We conduct experiments under the
scenarios of pre-training and fine-tuning. The results demonstrate the empirical advantages
of WePE, showing consistent improvements over existing models where positional encoding
is the only variable. Besides, several ablations also corroborate the significance of WePE’s
intrinsic properties.

2 WEIERSTRASS ELLIPTIC POSITIONAL ENCODING

2.1 FOUNDATIONAL FRAMEWORK OF WEPE

Coordinate System and Complex Plane Mapping. The input images of ViTs often exhibit varying
resolutions, resulting in different numbers of image patches after partitioning. Consequently, the
direct use of absolute indices is problematic, as their valid range changes with the total number of
patches. In contrast, relative positional information, when represented within a normalized coordinate
system, remains consistent and resolution-independent.

Given an input image, we conventionally partition it into a grid of H × W patches. For patch
coordinates (i, j) of the input image, where i ∈ {0, 1, . . . ,H − 1}, j ∈ {0, 1, . . . ,W − 1}, we first
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Figure 1: Overview of how WePE encodes 2D spatial information. (a) Four-dimensional WePE
features are mapped to patch embeddings for Transformer encodings. (b) Image patches are normal-
ized and mapped onto the complex plane to construct WePE coordinates. (c) A three-dimensional
visualization of the Weierstrass elliptic function, illustrating its doubly periodic structure and pole
distribution across the complex plane.

normalize them to the [0, 1] interval:

u =
j + 0.5

W
, v =

i+ 0.5

H
. (1)

The effective ranges for u and v are respectively
(
0.5
W , W−0.5

W

)
and

(
0.5
H , H−0.5

H

)
, which are proper

subsets of [0, 1]. This is advantageous in certain situations. Taking z = 0 as an example, it is actually
a pole in the mapping, and we want to avoid having the center of any patch located at a pole.

Subsequently, the normalized coordinates can be mapped onto the complex plane via the following
formula:

z = αu · u · 2Re(ω1) + i · αv · v · 2Im(ω3), (2)

where αu, αv are adjustable scaling factors, and ω1, ω3 represent the real half-period and imaginary
half-period of the elliptic function, respectively. This mapping serves as a pivotal step, as it embeds the
rich geometric and analytic properties of the Weierstrass elliptic function into the spatial representation
of each image patch. Intuitively, the elliptic function acts like "weaving a fishing net" across the
image, thereby naturally coupling positional information along both spatial dimensions.

Feature Extraction from the ℘(z) and its Derivative. For the mapped complex coordinate z, to
fully utilize the information in complex numbers, we extract the real and imaginary of ℘(z) and its
derivative, given below:

f1 = Re(℘(z)), f2 = Im(℘(z)), f3 = Re(℘′(z)), f4 = Im(℘′(z)). (3)

This yields a four-dimensional positional feature, denoted by f = [f1, f2, f3, f4]
⊤.

In certain regions, the Weierstrass elliptic function may attain extremely large magnitudes, especially
near its poles (also illustrated in Figure 1(c)). Such unbounded behavior poses a risk for training
stability, often manifesting as gradient explosion and computational failure (Olver et al., 2024). As a
countermeasure, we instead propose two empirically validated and robust solutions (Section 2.2 and
Section 2.3 ), which are respectively more suitable for the scenarios of pre-training and fine-tuning.

2.2 WEPE IMPLEMENTATION FOR FROM-SCRATCH PRE-TRAINING

Numerical Computation via Direct Lattice Summation. When computing the series expansion
of the Weierstrass elliptic function, we truncate it (Definition B.6) to a finite sum over indices

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

|m| ≤ M, |n| ≤ N (excluding the origin), where each lattice point is given by ωmn = 2mω1+2nω3.
At this point, the truncated approximation of ℘(z) is expressed as:

℘(z) ≈ 1

z2
+

∑
|m|≤M,|n|≤N,(m,n)̸=(0,0)

(
1

(z − ωmn)2
− 1

ω2
mn

)
. (4)

For wm,n with a large modulus (|wm,n| ≫ |z|), the asymptotic contribution behaves as:

|Tm,n(z)| =
∣∣∣∣ 1

(z − wm,n)2
− 1

w2
m,n

∣∣∣∣ ≈ 2|z|
|wm,n|3

+O

(
|z|2

|wm,n|4

)
. (5)

This indicates that the contribution decays as a power law of |wm,n|−3.

To improve convergence, we sort the lattice points by their modulus, such that |π(w1)| ≤ |π(w2)| ≤
· · · . Here, π denotes a permutation that reorders the lattice points according to the magnitude of
their modulus. The reordered partial sum is then expressed as SK(z) =

∑K
k=1 Tπ(k)(z), where K is

the truncation index. This ordering ensures that terms corresponding to lattice points with smaller
modulus are accumulated first, significantly accelerating the convergence of the truncated series
compared with the conventional lexicographic scheme. The truncation error can be bounded as:

|S∞(z)− SK(z)| ≤
∞∑

k=K+1

|Tπ(k)(z)| ≤ C

∞∑
k=K+1

1

|π(wk)|3
. (6)

For a 2D lattice, the tail sum can be approximated by an integral,
∑

|w|>R |w|−3 ∼
∫∞
R

r−2dr = 1/R,
which ensures that the error decays as O(1/RK), where RK = |π(wK)|. Compared with a conven-
tional lexicographic ordering, this modulus-based summation significantly improves convergence,
reducing the truncation error from O(logK/

√
K) to O(1/

√
K).

Finally, the upper bound of the truncation error can be estimated as:

Etrunc =

∣∣∣∣∣∣
∑

|w|>Rmax

Tw(z)

∣∣∣∣∣∣ ≤
∑

|w|>Rmax

2|z|
|w|3

≤ 2|z|
R2

max
. (7)

Taking Msearch = Nsearch = 12 as an example, we can get that Rmax ≈ 30, leading to an error of
Etrunc ≲ 10−3|z|.
Our discussion in Section E presents a solution that balances computational precision and imple-
mentation efficiency through the pre-computation of a high-resolution WePE look-up table. Once
training is complete, the optimal parameters learned by the proposed WePE module are fixed. We
then generate a high-resolution look-up table by calculating a four-dimensional positional feature
vector for each point on a fine, fixed-size grid. During the inference stage, the normalized coordinates
of the patches for any given input image are used as query points. During inference, the GPU utilizes
hardware-accelerated bilinear interpolation to efficiently approximate and retrieve the corresponding
positional encodings from the pre-computed table. This method transforms the computational burden
from complex, real-time calculations into a one-time pre-computation and a rapid, memory-based
retrieval operation, thus bringing the time complexity of online inference down to a level comparable
to that of simple grid-based encoding schemes. We have shown in Section E that the error introduced
by this scheme is negligible, as it is far below the inherent stochastic error sources during deep neural
network training and inference.

Numerical Stability and Convergence Acceleration. To mitigate potential numerical explosion,
we apply an adaptive tanh-based compression of each feature component in f , i.e.,f̃i = tanh(αscale ·fi)
for i = 1, . . . , 4, where the scaling parameter is parameterized as αscale = softplus(αraw) for ensuring
positivity. For the input z near a pole (i.e., |z| < 15ϵ, where ϵ is a small threshold), the function
value is clipped to a large constant Clarge; otherwise, ℘(z) is computed using Equation 4. The
accumulated round-off error for a sum over K terms is bounded by Eround ≤ K · ϵmach ·maxk |Tk|,
where ϵmach ≈ 2.22 × 10−16 is the machine precision. By further clipping individual terms such
that maxk |Tk| ≤ Mclip, the total round-off error is controlled at the order of 10−10. These measures
collectively ensure numerical stability, while preserving both model accuracy and the fidelity of the
encoded features (Higham, 2002).
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Network Architecture Integration. We use f̃ij to denote the complete four-dimensional stabilized
feature vector of the (i, j)-th image patch, which is composed of the components f̃1, f̃2, f̃3, f̃4.
These 4D WePE features are then projected to the model dimension d via a linear layer, yielding
patch encodings PEij = LayerNorm(Wprojf̃ij + bproj) (Ba et al., 2016), where Wproj ∈ Rd×4

and bproj ∈ Rd. For enhanced representational capacity, this linear layer can be substituted with a
Multi-Layer Perceptron (MLP) (Rumelhart et al., 1986). The classification token is endowed with a
separate learnable encoding PEcls ∈ R1×d (Devlin et al., 2019). Finally, these position encodings
are added to their corresponding patch and token encodings to form the model’s input sequence:

Xinput =
[
xcls +PEcls, x00 +PE00, . . . , xHW +PEHW

]⊤
. (8)

Positional Encodings with Learnable Parameters. To enable adaptive spatial scaling, the imag-
inary half-period ω3 is parameterized as a learnable quantity. Since the imaginary part ω′

3 must
be positive, it cannot be directly optimized using gradient-based methods. Instead, we introduce
an unconstrained trainable parameter αlearn and define ω3 = i · ω′

3, where ω′
3 is derived via the

softplus function to ensure positivity: ω′
3 = softplus(αlearn) = log(1+ exp(αlearn)). The other lattice

parameter, ω1, is kept as a fixed constant to prevent potential overfitting. This configuration allows
the lattice basis, which is initialized to be orthogonal and form a square, to adaptively deform into a
rectangle during training, thereby learning the optimal aspect ratio for the given data.

Recognizing that semantic and positional cues are not always of equal importance, we introduce a
learnable global scaling factor, βpos, to balance their contributions. The final positional encoding is
then defined as PEfinal = βpos ·PEWePE, where PEWePE is the encoding generated by our method.

2.3 WEPE ADAPTATION FOR FINE-TUNING

Fine-tuning large pre-trained models, the available training epochs are typically much fewer than
during pre-training. Moreover, as the model already encodes substantial prior knowledge, an overly
strong injection of geometric information can be counterproductive, potentially leading to decreased
stability and convergence speed. To circumvent these limitations, we adopt a fine-tuning strategy
that is conceptually aligned with the original WePE framework but incorporates implementation
adaptations tailored to rapid convergence.

For the periodic part of Equation 4, we found that its essential structure is a combination of a
directional periodic oscillation, which can be modeled with sine and cosine functions, with an
orthogonal exponential decay. Leveraging this property, we can construct a rapidly converging
Fourier-like series (Stein & Shakarchi, 2003) to efficiently model the periodic behavior during
fine-tuning.

The value ℘(z) is approximated by a primary term handling the pole at the origin, complemented by
a series of rapidly decaying correction terms:

℘(z) ≈ 1

|z|2 + β
+

K∑
k=1

γ

k2

[
cos(kπu′)e−kπ|v′| + sin(kπv′)e−kπ|u′|

]
, (9)

where u′ = Re(z)/ω1, v′ = Im(z)/ω′
3. Here, β and γ are learnable scalar parameters controlling

numerical stabilization near the origin and the amplitude of the periodic corrections, respectively.

The numerical stability of this approximation is principally ensured by two key components. First,
the term 1

|z|2+β replaces the singular term 1
z2 . By introducing the small, positive, learnable parameter

β = softplus(βraw), the denominator is guaranteed to remain strictly positive, thus removing the
singularity at z = 0 while preserving the function’s asymptotic behavior. Second, the exponential
decay factors e−kπ|v′| and e−kπ|u′| in the series ensure rapid convergence, enabling high precision
with a small number of terms K. The truncation error is exponentially bounded, making this
formulation both more stable and computationally efficient than a direct lattice summation, especially
in gradient-based optimization scenarios. A more detailed derivation is provided in Appendix C.2.

2.4 THEORETICAL EXPLANATION

We view C as a 2-dimensional real vector space. Mapping 2 can therefore be written as T : R2 →
C, T (u, v) = c1u + i c2v, c1c2 ̸= 0. To verify linearity, let x1 = (u1, v1) and x2 = (u2, v2) in R2

5
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and a, b ∈ R. Then T (ax1 + bx2) = T (au1 + bu2, av1 + bv2) = aT (x1) + b T (x2), so T is linear.
To prove injectivity, observe that T (u, v) = 0 ⇐⇒ c1u + i c2v = 0. Since c1, c2, u, v ∈ R and
c1 ̸= 0, c2 ̸= 0, we must have u = v = 0, hence ker(T ) = {(0, 0)} and T is injective. Because
dimR R2 = dimR C = 2, an injective linear map between equal-dimensional finite-dimensional
real spaces is automatically surjective (rank–nullity). Therefore T is bijective and thus an R-linear
isomorphism R2 ∼= C. Consequently, the spatial relationships among image patches are preserved
when embedding normalized coordinates into the complex plane.

Relative Position Modeling Based on Addition Formula. A distinctive property of Weierstrass
elliptic function is their addition formula. Let the absolute positions of two image patches be zi
and zj in the mapped complex plane C. Their relative position can be represented as σz = zj − zi.
By applying the addition formula (see Theorem B.11), ℘(zj) = ℘(zi + σz) can be expressed
entirely in terms of ℘(zi), ℘(σz), and their derivatives. This algebraic relationship enables direct
derivation of relative positional information between any two points from their absolute encodings,
without requiring additional relative position encoding modules. Within self-attention mechanisms,
the interaction between query vector Qzi and key vector Kzj can naturally utilize the ℘(zj − zi)
term from the addition formula. This design enables attention weights to inherently capture spatial
relationships between positions, thereby enhancing the model’s understanding of geometric structures.
Compared to methods that require explicit computation of relative for all position pairs (Shaw
et al., 2018), WePE achieves continuous, precise, and computationally efficient relative position
representations.

Long-term decay of WePE. A fundamental theoretical advantage of WePE is the distance decay
property, which we formalize as a theorem: for any two patch positions with Euclidean distance
d, the expected inner product of their encodings, E[pT

1 p2] = S(d), is a strictly monotonically
decreasing function for d > 0. This property arises from the combination of the distance-preserving
mapping from patch coordinates to the complex plane and the periodic structure of the Weierstrass
elliptic function ℘(z). Specifically, the final encodings are linear projections of 4D feature vectors
constructed from ℘(z) and its derivative (see Section 2.1).

As the spatial distance between patches increases, their inner product exhibits a cosine-like decay,
weakening the similarity between distant positions. This property ensures that the model is endowed
with an explicit spatial proximity prior, which benefits a wide range of vision tasks (Vaswani et al.,
2017). A detailed proof is provided in Appendix C.1.
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(b) Standard APE-ViT (Shows Random Distribution)
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Figure 2: Comparison of geometric in-
ductive bias between WePE-ViT and
standard APE-ViT. (a) WePE-ViT ex-
hibits structured locality-aware attention
patterns with smooth, isotropic decay
from the query patch. (b) Standard APE-
ViT demonstrates, unstructured attention
distribution that lacks spatial coherence.

Resolution-Invariant Positional Encoding through Con-
tinuous Function Evaluation. Fine-tuning ViTs typically
increases input resolution to capture fine details (Dosovit-
skiy et al., 2021; Steiner et al., 2021). Discrete learnable
encodings are tied to a fixed grid and do not transfer; bi-
linear or bicubic interpolation attenuates high frequencies,
introducing boundary aliasing and distorting long-range
geometry (Keys, 1981; Touvron et al., 2021). As shown
in Equation 2, WePE effectively overcomes these limita-
tions through its formulation as a continuous meromorphic
function evaluated at arbitrary complex coordinates rather
than a discrete lookup operation. The scaling factors αu

and αv control the effective spatial frequency of the el-
liptic function across horizontal and vertical dimensions
respectively, enabling the encoding to maintain optimal
spatial discrimination at the increased resolution while
preserving the fundamental periodic structure that encodes
translational regularities in visual data. The imaginary half-period parameter adapts during fine-tuning
to accommodate changes in the aspect ratio between patches and the overall spatial density of the
representation, ensuring that the doubly periodic lattice structure characterized by the fundamental
parallelogram maintains geometric consistency across resolutions. The lattice summation in Equation
4 remains numerically stable across different resolutions since the truncation parameters M and N
are determined by the desired numerical precision rather than the specific image dimensions, ensuring
consistent computational accuracy regardless of the resolution scaling factor. This continuous formu-
lation enables the generation of positional encodings at any spatial resolution without resorting to
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interpolation of pre-computed values, thereby preserving the mathematical precision and geometric
fidelity of the spatial representation.

3 EXPERIMENTS

To evaluate the effectiveness of WePE, we conduct experiments under both pre-training and fine-
tuning settings. We further perform ablation studies to assess the contribution of each module
component, and provide empirical analyses to reveal the underlying mechanism and theoretical
rationale of WePE.More supplementary experiments are provided in Appendix G.

3.1 UNDERSTANDING WEPE

Figure 3: Attention rollout visualization
comparing semantic focus patterns be-
tween WePE-ViTs and APE-ViTs mod-
els trained on CIFAR-100.

WePE exhibits better geometric inductive bias. To in-
vestigate the inductive bias introduced by our proposed
WePE, we first visualize self-attention maps of a randomly-
initialized ViTs (Dosovitskiy et al., 2021), without any
training. Specifically, we focus on the attention distribu-
tion originating from a central query patch to all other
patches within the sequence. As depicted in Figure 2,
the WePE-equipped model exhibits a highly structured
and localized attention pattern: attention weights are con-
centrated on the query patch itself and decay smoothly
and isotropically with increasing spatial distance. In con-
trast, the baseline using standard learnable Absolute Po-
sitional Encoding (APE) (Dosovitskiy et al., 2021) shows
a largely uniform and unstructured attention distribution,
where attention weights appear randomly scattered. This
demonstrates that WePE inherently provides a strong spa-
tial locality prior, predisposing the model to focus on local
interactions even before learning, whereas standard encod-
ings lack such an inductive bias. These results collectively
demonstrate that WePE injects a robust and accurate 2D
geometric inductive bias into the ViTs (Dosovitskiy et al.,
2021) from initialization. This structural prior is absent
in standard models, which must learn spatial relationships
from data alone.

Global Semantic Attention in ViTs (Dosovitskiy et al.,
2021). We trained two ViT-Tiny models under identical
settings. We then visualized the complete information flow
from input to output on unseen high-resolution images
using the Attention Rollout method. The results, presented in Figure 3, consistently demonstrate
a significant qualitative difference in the learned attention patterns. For instance, when presented
with an image of a cat, the WePE-ViTs model’s attention forms a coherent and complete silhouette
that accurately envelops the entire animal. In stark contrast, the APE-ViTs attention is fragmented,
focusing disproportionately on high-contrast edges where the subject meets the background, rather
than the semantic object itself. WePE learns to associate features within a global spatial context,
resulting in attention maps that align closely with the primary semantic content. The baseline
APE model (Dosovitskiy et al., 2021), lacking this structural prior, appears to overfit to low-level,
local cues, leading to a fragmented attention mechanism that often fails to represent the complete
semantic entity within the image. From these visualizations, we conclude that the geometric inductive
bias inherent in our WePE enables the model to develop a more holistic and structurally-aware
understanding of visual scenes.

Long-term Attenuation of Positional Encoding. We verify the distance–decay property of WePE
on a 14 × 14 patch grid (from 224 × 224 images). For all

(
196
2

)
= 19,110 pairs we compute the

normalized Euclidean distance drel∈ [0, 100] and the cosine similarity S between encodings (pi,pj),
rescale S by min–max for visualization (Han et al., 2011), and aggregate results into 80 distance bins,
taking the bin midpoint as the representative distance and the mean similarity as the representative
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Table 2: Top-1 accuracy (%) on CIFAR-100 and ImageNet-1k, trained for 200 epochs.

Dataset Fraction WePE
(Ours)

LieRE8 LieRE64 RoPE-
Mixed

VLLaMA APE

CIFAR-100 20% 46.36 45.42 44.44 44.48 39.14 39.80
CIFAR-100 40% 56.81 54.68 54.64 55.14 50.53 49.90
CIFAR-100 60% 63.38 62.04 62.90 61.56 58.58 56.83
CIFAR-100 90% 68.96 67.72 68.36 67.00 62.59 62.76
ImageNet-1k 100% 70.10 69.60 69.30 68.80 64.40 66.10

score (see Appendix G.6). The curve (see Figure 10) shows a pronounced negative correlation with
distance (ρ = −0.966), evidencing long-range attenuation.

In practical applications of ViTs (Dosovitskiy et al., 2021), the self-attention mechanism depends not
only on pure positional encodings, but more critically, on the fused representation of patch content
features and their positional encodings. Similarly, to simulate a content-agnostic scenario and isolate
the effect of the positional signal, we sample random content features fij∼N (0, I) in R192 and fuse
them with WePE via hij = fij + pij , repeating the analysis yields the same distance–decay trend
(see Figure 4).

3.2 PRE-TRAINING

Figure 4: Empirical validation of the dis-
tance–decay property of WePE: x-axis
denotes normalized patch spatial separa-
tion, y-axis denotes min–max scaled co-
sine similarity of positional encodings.

We begin with CIFAR-100 (Krizhevsky, 2009) and
ImageNet-1k (Deng et al., 2009) benchmarks to evalu-
ate WePE in 2D vision tasks. All models are based on the
ViTs (Dosovitskiy et al., 2021) and trained from scratch.
We compare WePE with APE (Dosovitskiy et al., 2021),
RoPE-Mixed (Heo et al., 2024), VisionLLaMA (Chu
et al., 2024), Sinusoidal Position Encoding (Vaswani et al.,
2017), FoPE (Hua et al., 2025), RoPE (Su et al., 2021b),
and LieRE (Ostmeier et al., 2025) under identical con-
figurations. To adapt RoPE and FoPE to 2D inputs, an
image I ∈ RH×W×C is patchified by a strided convolu-
tion (kernel= stride= P ), each P×P patch is linearly
projected and the resulting H/P ×W/P grid is serialized
into a 1D token sequence, on which the original sequence-
based formulations are applied to the query/key vectors
in multi-head self-attention to encode periodic, relative
spatial structure. Table 1 and Table 2 compare the perfor-
mance of ViTs (Dosovitskiy et al., 2021) integrated with different position encodings, trained from
scratch for a varying number of epochs on multiple datasets. In these comparisons, WePE consistently
demonstrates superior performance.

Table 1: CIFAR-100 (100% dataset), 120 epochs
Top-1 accuracy (%).

Method WePE (Ours) Absolute PE RoPE FoPE Sinusoidal PE

Accuracy 63.78 56.46 57.29 57.70 51.99

To further assess the proposed method, we inte-
grated the WePE into a Dynamic Hybrid Vision
Transformer Tiny (DHVT-Ti) model (Lu et al.,
2022), which is engineered for data efficiency
on smaller datasets. The DHVT model is specifi-
cally engineered to enhance the inductive biases
of ViTs (Dosovitskiy et al., 2021) for improved
data efficiency on small-scale datasets by incorporating convolutional operations. This serves as an
excellent baseline model for comparing the pre-training capabilities of various vision models. As
shown in Table 3, the model achieves a peak validation accuracy of 76.53%, surpassing all baselines.

3.3 FINE-TUNING

To assess transferability and data efficiency, we fine-tuned an ImageNet-21k pre-trained ViT-L/16 on
Visual Task Adaptation Benchmark 1000 (VTAB-1k) tasks under the 1k-shot protocol (Zhai et al.,

8
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2020). Inputs were resized to 384× 384, requiring bilinear interpolation of the pre-trained positional
encodings from a 14 × 14 to a 24 × 24 grid; rather than discarding these encodings, we formed a
hybrid position module that blends the interpolated encodings with our WePE through a learnable gate
λ (see Appendix F). The experimental procedure is identical to that described in Dosovitskiy et al.
(2021). The experimental results, as shown in Table 4, demonstrate that our algorithm outperforms
traditional methods on most datasets.

Table 3: Results on 224×224 resolution. All mod-
els are trained from scratch for 100 epochs under
the same training schedule.
Method #Params GFLOPs Accuracy (%)
ResNet-50+Ldr.loc 21.2M 3.8 72.94
SwinT+Ldr.loc 24.1M 4.3 66.23
CvT-13+Ldr.loc 19.6M 4.5 74.51
T2T-ViT+Ldr.loc 21.2M 4.8 68.03
DHVT-T 6.0M 1.2 74.78
WePE (Ours) 5.5M 1.6 76.53

On the full CIFAR-100 (Krizhevsky, 2009)
dataset, we fine-tuned an ImageNet-21k (Deng
et al., 2009) pre-trained ViT-B/16 while directly
replacing the original learnable positional en-
codings with WePE. This configuration attains
a peak test accuracy of 93.28%, substantially
outperforming a strong baseline, indicating that
WePE’s continuous, doubly periodic spatial rep-
resentation benefits fine-grained recognition; the
learned parameters ω′

2 ≈ 1.085 and β ≈ 0.610
further evidence successful geometric adapta-
tion to the dataset.

Table 4: Performance breakdown on selected VTAB-1k tasks.
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APE 90.80 84.10 74.10 99.30 92.70 61.00 80.90 82.50 95.60 85.20 75.30 70.30 56.10 41.90 74.70 64.90 79.90 30.50 41.70 72.70
WePE (Ours) 91.32 87.59 77.41 98.79 93.16 64.30 84.58 83.73 93.89 86.10 77.15 73.81 60.91 54.24 75.18 68.10 81.25 34.11 42.01 73.59

3.4 ABLATION

To assess the contribution of each component in our WePE, we conducted ablation experiments on
CIFAR-100 (Krizhevsky, 2009) with ViT-Ti. The baseline achieves 63.78%. Removing ℘′(z) and
using only Re(℘(z)), Im(℘(z)) lowers accuracy to 63.08% (−0.70 %), confirming the derivative
provides essential gradient cues. Fixing αscale and αlearn yields 62.88% (−0.90%), showing the
necessity of adaptive scaling and lattice adjustment. Using non-lemniscatic invariants results in
63.20% (−0.58%), indicating robustness but also the superiority of the lemniscatic square lattice.
Fixing the global scaling parameter to unity produces the largest drop, 62.60% (−1.18%), highlighting
the need for adaptive control of positional strength. Overall, the consistent yet modest degradations
across all settings demonstrate that while each component enhances performance, the primary
advantage arises from the holistic geometric prior imparted by the Weierstrass elliptic function,
seamlessly integrated into the ViTs (Dosovitskiy et al., 2021) backbone.

4 CONCLUSION

In this work, we introduce Weierstrass elliptic Positional Encoding, a mathematically principled
approach that leverages the rich structure of elliptic functions to address spatial representation
limitations in Vision Transformers. Our method preserves 2D spatial relationships through a direct
complex domain mapping and provides explicit spatial proximity priors via a theoretically guaranteed
distance-decay property. We demonstrated the effectiveness of WePE through extensive experiments,
achieving superior performance in most from-scratch training and fine-tuning scenarios across a
variety of standard benchmarks. Furthermore, empirical analyses are conducted to investigate the
underlying factors contributing to the superiority of WePE. Additionally, we provide a rigorous
exposition and derivation of the core mathematical principles underpinning WePE. In summary, our
proposed WePE offers a plug-and-play, resolution-agnostic positional module that restores the 2D
geometric inductive bias with negligible computational and memory overhead, making it a practical
drop-in replacement for existing encodings in ViTs.
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APPENDIX

A USE OF LARGE LANGUAGE MODELS

An AI language model was used only for linguistic editing (grammar, wording, stylistic consistency)
and translation checks. It was applied to the Abstract, Introduction and descriptive text in Experiments,
Conclusion. The AI was not used for methods, derivations, theoretical appendices, algorithm design,
code, or quantitative results. All technical content and analyses are solely the authors’ work, and any
AI-edited text was reviewed and finalized by the authors.

B SUPPLEMENTARY BACKGROUND KNOWLEDGE

In this part, we supplement with further necessary preliminaries and the corresponding proofs of
theorems regarding the Weierstrass elliptic function (Weierstrass, 1854).
Definition B.1 (Meromorphic Function). Let D ⊂ C be an open set. A function f : D → C∪{∞} is
called meromorphic in D if f is analytic everywhere in D except at finitely many isolated singularities,
and each singularity is a pole.

The Cauchy integral formula is one of the core tools in complex analysis:
Theorem B.2 (Cauchy Integral Formula). Let f(z) be analytic on a simple closed curve C and its
interior, and let z0 be a point inside C. Then:

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz (10)

Based on the Cauchy integral formula, we can derive Liouville’s theorem:
Theorem B.3 (Liouville’s Theorem). Any bounded entire function must be constant. That is, if
f(z) is analytic everywhere on the complex plane C and there exists a constant M > 0 such that
|f(z)| ≤ M for all z ∈ C, then f(z) is constant.

Proof. By the Cauchy integral formula, for any z0 ∈ C and r > 0:

|f ′(z0)| ≤
1

r
sup

|z−z0|=r

|f(z)| ≤ M

r
(11)

As r → ∞, M
r → 0, hence |f ′(z0)| = 0, which implies f ′(z0) = 0.

Since z0 is arbitrary, f ′(z) ≡ 0 holds throughout C. Let f(z) = u(x, y) + iv(x, y). By the
Cauchy-Riemann equations:

∂u

∂x
=

∂v

∂y
= 0 (12)

∂u

∂y
= −∂v

∂x
= 0 (13)

This implies that all partial derivatives of u(x, y) and v(x, y) are zero, therefore u and v are both
constants, and consequently f(z) is constant.

Definition B.4 (Period Lattice). Let ω1, ω2 ∈ C be linearly independent (i.e., ω2

ω1
/∈ R). The period

lattice is defined as:
Λ = {2mω1 + 2nω2 : m,n ∈ Z} (14)

where 2ω1 and 2ω2 are called fundamental periods.

The period lattice divides the complex plane into congruent parallelograms, with each fundamental
parallelogram determined by vertices {0, 2ω1, 2ω2, 2ω1 + 2ω2}.
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Definition B.5 (Elliptic Function). An elliptic function with period lattice Λ is a meromorphic
function f : C → C ∪ {∞} satisfying:

1. f(z + ω) = f(z) for all z ∈ C and ω ∈ Λ

2. f has only finitely many poles in the fundamental parallelogram

3. f is not identically constant
Definition B.6 (Weierstrass Elliptic Function). For the period lattice Λ = {2mω1 + 2nω2 : m,n ∈
Z}, the Weierstrass elliptic function is defined as:

℘(z) =
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
(15)

Theorem B.7 (Laurent Expansion of Weierstrass Function). In a neighborhood of the origin,℘(z)
has a specific Laurent expansion:

℘(z) =
1

z2
+

g2
20

z2 +
g3
28

z4 +
g22

1200
z6 + · · · (16)

where g2, g3 are elliptic invariants.
Theorem B.8 (Weierstrass Differential Equation).

(℘′(z))2 = 4(℘(z))3 − g2℘(z)− g3 (17)

Proof. Define the auxiliary function:

f(z) = (℘′(z))2 − 4(℘(z))3 + g2℘(z) + g3 (18)

Through Laurent expansion analysis, we have:

(℘′(z))2 =
4

z6
− 2g2

5z2
− 4g3

7
+ · · · (19)

4(℘(z))3 =
4

z6
+

3g2
5z2

+
3g3
7

+ · · · (20)

g2℘(z) =
g2
z2

+ · · · (21)

Substituting these expansions into f(z): - z−6 term: 4
z6 − 4

z6 = 0 - z−2 term: − 2g2
5z2 − 3g2

5z2 + g2
z2 = 0

- Constant term: − 4g3
7 + 3g3

7 + g3 = 0

Therefore, f(z) has no singularity at z = 0. Similarly, f(z) has no singularities at other lattice points,
so f(z) is holomorphic on C.

Since both ℘(z) and ℘′(z) are doubly periodic, f(z) is also doubly periodic. In the fundamental
parallelogram, f(z) is continuous and has no poles, hence is bounded. By periodicity, f(z) is
bounded on the entire complex plane.

By Liouville’s theorem, f(z) ≡ C (constant). Through analysis of special values, we can determine
C = 0, therefore the differential equation holds.

When the elliptic invariant g3 = 0, the elliptic curve degenerates to the lemniscatic case:

y2 = 4x3 − g2x = x(4x2 − g2) (22)

In this case, the elliptic curve has special symmetry properties, and the period lattice forms a square
structure.
Theorem B.9 (Half-Periods in Lemniscatic Case). When g2 = 1, g3 = 0, the real half-period is:

ω1 =
Γ2(1/4)

2
√
2π

≈ 2.62205755429212 (23)

where Γ is the gamma function.
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Definition B.10 (Elliptic Curve Group Law). Let P1 = (x1, y1), P2 = (x2, y2) be two points on the
elliptic curve. If x1 ̸= x2, then P3 = P1 + P2 has coordinates:

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2 (24)

y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1 (25)

Theorem B.11 (Weierstrass Addition Formula). Let z1, z2 ∈ C with z1 ̸≡ z2 (mod Λ). Then:

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1

4

(
℘′(z1)− ℘′(z2)

℘(z1)− ℘(z2)

)2

(26)

Proof. Let P1 = (℘(z1), ℘
′(z1)), P2 = (℘(z2), ℘

′(z2)) be points on the elliptic curve. The slope of
line P1P2 is:

m =
℘′(z2)− ℘′(z1)

℘(z2)− ℘(z1)
(27)

The line equation is y = m(x− ℘(z1)) + ℘′(z1). Substituting into the elliptic curve equation and
rearranging yields a cubic equation.

By Vieta’s formulas, the x-coordinates of the three intersection points satisfy:

℘(z1) + ℘(z2) + x3 =
m2

4
(28)

Therefore:

x3 =
m2

4
− ℘(z1)− ℘(z2) (29)

Since P1+P2 = −P3 under the group law and ℘(z1+ z2) = x3, the addition formula is proven.

C SUPPLEMENTARY MATHEMATICAL PROOF AND DERIVATION

C.1 A COMPLETE MATHEMATICAL PROOF OF INTERACTION STRENGTH DECAY WITH
DISTANCE FOR WEPE

We formally establish that the positional encoding derived from the WePE embeds a natural notion
of distance, where the interaction strength between two position vectors, quantified by their inner
product, is a strictly monotonically decreasing function of their spatial separation.
Theorem C.1 (WePE Positional Encoding Distance Decay). Let pi,j ∈ Rdmodel be the positional
encoding vector for a patch at grid coordinates (i, j). For any two distinct patch locations (i1, j1)
and (i2, j2), let their Euclidean distance be d =

√
(i1 − i2)2 + (j1 − j2)2. There exists a function

S(d) such that the expected inner product of their encodings is given by E[pTi1,j1pi2,j2 ] = S(d), and

this function is strictly monotonically decreasing for all d > 0, satisfying dS(d)
dd < 0.

Lemma C.2 (Lipschitz Continuity of ℘(z)). The Weierstrass elliptic function ℘(z) and its derivative
℘′(z) are Lipschitz continuous on any compact domain D ⊂ C that excludes the lattice points Λ. That
is, for any z1, z2 ∈ D, there exists a Lipschitz constant L > 0 such that |℘(z1)−℘(z2)| ≤ L|z1−z2|.

Proof. Since ℘(z) is analytic on any such compact domain D, its derivative ℘′(z) is also analytic
and thus bounded on D. The Lipschitz continuity follows directly from the Mean Value Theorem for
complex functions.

Lemma C.3 (Monotonicity of Coordinate Mapping). The mapping from patch grid coordinates (i, j)
to complex plane coordinates zi,j preserves distance monotonicity. Let the mapping be defined as
zi,j = κ((j + 0.5)/W · ω1 + i(i + 0.5)/H · ω′

3), where κ is a scaling factor and W,H are patch
grid dimensions. The complex plane distance |zi1,j1 − zi2,j2 | is a monotonically increasing function
of the Euclidean grid distance d((i1, j1), (i2, j2)).
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Proof. The squared complex distance is |z1 − z2|2 = κ2
[
(ω1

W )2(j1 − j2)
2 + (

ω′
3

H )2(i1 − i2)
2
]
. For

an isotropic grid (W = H , ω1 = ω′
3), this simplifies to |z1 − z2|2 ∝ (j1 − j2)

2 + (i1 − i2)
2 = d2,

establishing a direct proportional relationship. In the general case, it is a weighted sum of squared
differences, which remains a strictly increasing function of d.

Lemma C.4 (Properties of the Hyperbolic Tangent Function). The product of two hyperbolic tangent
functions, h(t) = tanh(α(a+ bt)) tanh(α(c+ dt)) where α, b, d > 0, is monotonic over intervals
where its arguments maintain a consistent sign. The sign of its derivative, dh

dt , is determined by the
sign of bd · sign(a+ bt) · sign(c+ dt), indicating that the product’s value moves away from zero as
the arguments’ magnitudes increase in the same direction.

Our WePE positional encoding vector pi,j is generated by first constructing a 4-dimensional feature
vector fi,j and then applying a linear projection W ∈ Rdmodel×4. The feature vector is defined as:

fi,j = [tanh(α · Re(℘(zi,j))), tanh(α · Im(℘(zi,j))), tanh(α · Re(℘′(zi,j))), tanh(α · Im(℘′(zi,j)))]
T

(30)
where zi,j is the complex coordinate corresponding to patch (i, j) and α is a scaling hyperparameter.
The final encoding is pi,j = W fi,j . The inner product between two such vectors p1 and p2 is
expressed as pT1 p2 = fT1 WTW f2 = fT1 Gf2, where G = WTW is the Gram matrix. Expanding this
product yields:

pT1 p2 =

4∑
k,l=1

Gk,lf1,kf2,l =

4∑
k,l=1

Gk,l tanh(αξ1,k) tanh(αξ2,l) (31)

where ξi,k represents the k-th component (e.g., Re(℘(zi))) of the pre-activation feature vector for
position i.

The proof proceeds by demonstrating that the expectation of this inner product, S(d) = E[pT1 p2],
decreases as the distance d between the patches increases. The argument hinges on the decay of
correlation between the underlying WePE values. From Lemma 1 and Lemma 2, an increase in grid
distance d implies a proportional increase in the complex plane separation |z1 − z2|, which in turn
bounds the difference between the function values, i.e., |ξ1,k − ξ2,k| ≤ C · d for some constant C.The
correlation between Weierstrass function values exhibits:

E [Re(℘(z1))Re(℘(z2)) + Im(℘(z1))Im(℘(z2))] = K · cos(θ(|z1 − z2|)) (32)

where θ(r) is strictly increasing in r, ensuring systematic decorrelation with distance.

To formalize this, we first decompose the sum in Equation 31 into its diagonal and off-diagonal
components:

pT1 p2 =

4∑
k=1

Gk,kf1,kf2,k +
∑
k ̸=l

Gk,lf1,kf2,l (33)

The Gram matrix G = WTW is positive semidefinite (Horn & Johnson, 2012), meaning its diag-
onal elements Gk,k ≥ 0 are non-negative and typically represent the largest entries in the matrix,
corresponding to the self-interaction of the feature components. The off-diagonal terms, Gk,l for
k ̸= l, correspond to cross-correlations, such as the interaction between Re(℘(z)) and Im(℘(z)).
Due to the fundamental symmetries of the Weierstrass function (e.g., ℘(z) is an even function,
while its derivative ℘′(z) is an odd function), the real and imaginary parts of these functions exhibit
near-orthogonality when averaged over a symmetric domain. Consequently, the expected value of the
off-diagonal products, E[f1,kf2,l] for k ̸= l, is expected to be significantly smaller than the diagonal
terms and does not contribute systematically to a monotonic trend. Therefore, the overall behavior of
the expected inner product is dominated by the diagonal terms.The cross-correlation terms satisfy the
following inequality, which is a consequence of the Cauchy-Schwarz inequality:

|E[f1,kf2,l]| ≤ ϵ(d) ·
√

E[f2
1,k]E[f2

2,l] (k ̸= l) (34)

where the correlation factor ϵ(d) = O(e−λd) decays exponentially with distance d due to two primary
reasons:
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1. Intrinsic orthogonality: The expectation of the product of an even function component (like
Re(℘)) and an odd function component (like Im(℘′)) over a symmetric domain is zero. By
parity symmetry, we have E[Re(℘)Im(℘′)] ≡ 0.

2. Asymptotic independence: As the distance d between two points increases, the values
of the Weierstrass function at these points become statistically independent, leading to
limd→∞ corr(ξ1,k, ξ2,l) = 0.

Thus, the contribution of the off-diagonal terms to the overall derivative is asymptotically negligible
compared to the contribution from the diagonal terms:∑

k ̸=l

Gk,l
d

dd
E[f1,kf2,l] = o

(∑
k

Gk,k
dΦk

dd

)
(35)

We define an auxiliary function for these dominant diagonal terms (k = l):

Φk(d) = E[tanh(αξ1,k) tanh(αξ2,k)] (36)

where the expectation is over all patch pairs (z1, z2) such that the grid distance is d.
Lemma C.5. Φk(d) is a strictly monotonically decreasing function of d for d > 0.

Proof. The proof rests on the decorrelation property of the Weierstrass function ℘(z) as the distance
between its arguments increases.

First, consider the boundary conditions. At d = 0, we have z1 = z2, which implies ξ1,k = ξ2,k. The
function is then Φk(0) = E[tanh2(αξ1,k)]. Since tanh2(x) ≥ 0 for real x and is not identically zero,
Φk(0) is at its maximum positive value.

As the grid distance d increases, the complex plane distance |z1 − z2| also increases monotonically,
as established in Lemma 2. The Weierstrass function ℘(z), being a doubly periodic meromorphic
function, exhibits ergodic behavior on its fundamental parallelogram. This property, from dynamical
systems theory, implies that as the separation |z1 − z2| increases, the function values ℘(z1) and ℘(z2)
become progressively decorrelated. They behave increasingly like two independent samples drawn
from the function’s value distribution.

Consider the leading Laurent series term ℘(z) ∼ 1/z2. The correlation of real parts is:

Re

(
1

z21

)
Re

(
1

z22

)
=

(x2
1 − y21)(x

2
2 − y22)

|z1|4|z2|4
(37)

Defining δ = |z1 − z2|, the derivative is:

∂

∂δ

(
(x2

1 − y21)(x
2
2 − y22)

|z1|6|z2|6

)
= −2P(x1, y1, x2, y2)

|z1|6|z2|6
(38)

where P is a positive-definite polynomial, confirming monotonic decay for δ > 0.This decorrelation
means that the covariance between the underlying features ξ1,k and ξ2,k decays as d increases. Let’s
analyze the expectation:

Φk(d) = Cov(tanh(αξ1,k), tanh(αξ2,k)) + E[tanh(αξ1,k)]E[tanh(αξ2,k)] (39)

Due to the symmetries of ℘(z) (even) and ℘′(z) (odd), the real and imaginary parts of these functions
are symmetrically distributed around zero when averaged over the fundamental domain. As the
patch coordinates are uniformly distributed, we can assume E[ξi,k] ≈ 0. Since tanh(x) is an odd
function, if the distribution of its argument is symmetric around zero, its expectation is zero. Thus,
E[tanh(αξi,k)] ≈ 0.

Under this well-justified assumption, the expression simplifies to Φk(d) ≈
Cov(tanh(αξ1,k), tanh(αξ2,k)). The covariance is directly proportional to the correlation.
Since the correlation between ξ1,k and ξ2,k decays with distance d, and the tanh function is strictly
monotonic, the covariance (and thus Φk(d)) must also decay.

The function starts at a maximum positive value Φk(0) > 0 and decays towards 0 as d → ∞. Given
that this decay is driven by the continuous decorrelation of an underlying analytic function, the decay
is smooth and strictly monotonic for d > 0.
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The off-diagonal terms (k ̸= l) in Equation 31, representing cross-correlations (e.g., between
Re(℘(z)) and Im(℘′(z))), contribute less to the overall trend due to orthogonality properties inherent
in the function’s structure and do not alter the fundamental decay characteristic.

Given that the Gram matrix G is positive semidefinite and its diagonal elements Gk,k are non-negative,
the derivative of the total expected inner product with respect to distance is dominated by the diagonal
contributions:

dS(d)

dd
=

d

dd

4∑
k,l=1

Gk,lE[f1,kf2,l] ≈
4∑

k=1

Gk,k
dΦk(d)

dd
(40)

Since each dΦk(d)
dd is negative for d > 0 by Lemma 5, their non-negative weighted sum, dS(d)

dd , is also
negative. This completes the proof that the interaction strength, as measured by the expected inner
product, strictly decreases with increasing spatial distance between patches.

C.2 DERIVATIONAL RATIONALE FOR THE MATHEMATICAL FORMULATION USED IN THE
FINE-TUNING STAGE

This appendix details the mathematical rationale for evolving the positional encoding from the
classical lattice-sum definition of the Weierstrass elliptic function, ℘(z), to the computationally
tractable approximation employed in our fine-tuned model. The objective is to construct a function
that retains the core structural properties of ℘(z)—double periodicity and pole structure—while
ensuring numerical stability and efficiency within a gradient-based optimization framework.

As we mentioned earlier,the Weierstrass elliptic function is formally defined by its lattice summation
over a grid Λ = {2mω1 + 2nω3 | m,n ∈ Z}:

℘(z) =
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
(41)

To simplify the derivation, we consider the common case of a rectangular lattice, setting 2ω1 = a (a
real period) and 2ω3 = ib (a purely imaginary period), with a, b > 0.

A crucial identity in complex analysis is the Mittag-Leffler expansion of the cotangent function:

π cot(πz) =
1

z
+

∞∑
n=1

(
1

z − n
+

1

z + n

)
=

∞∑
n=−∞

1

z − n
(42)

Differentiating both sides with respect to z, we obtain:

−π2 csc2(πz) =

∞∑
n=−∞

−1

(z − n)2
(43)

That is:
∞∑

n=−∞

1

(z − n)2
= π2 csc2(πz) =

(
π

sin(πz)

)2

(44)

This formula bridges the discrete summation and trigonometric functions.

We split the summation in Equation 41 according to the indices m and n. First, we separate the terms
where m = 0.

℘(z) =
1

z2
+
∑
n̸=0

(
1

(z − 2nω3)2
− 1

(2nω3)2

)
+
∑
m̸=0

∑
n∈Z

(
1

(z − ωmn)2
− 1

ω2
mn

)
(45)

where ωmn = 2mω1 +2nω3. We now address the inner sum in Equation 45, which is the summation
over n. For a fixed m ̸= 0:∑

n∈Z

1

(z − 2mω1 − 2nω3)2
=

1

(2ω3)2

∑
n∈Z

1(
z−2mω1

2ω3
− n

)2
=

1

(2ω3)2
π2 csc2

(
π
z − 2mω1

2ω3

)
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Substituting 2ω1 = a and 2ω3 = ib, the expression becomes:

−π2

(ib)2
csc2

(
π(z −ma)

ib

)
=

π2

b2
csc2

(
− iπ(z −ma)

b

)
(46)

Using the identities csc(−ix) = icsch(x) and csch(x) = 1/ sinh(x), we get:

π2

b2

(
icsch

(
π(z −ma)

b

))2

= −π2

b2
csch2

(
π(z −ma)

b

)
(47)

Similarly,
∑

n∈Z
1

ω2
mn

= −π2

b2 csch2
(
πma
b

)
. Therefore, for a fixed m ̸= 0, the inner sum is:

∑
n∈Z

(
1

(z − ωmn)2
− 1

ω2
mn

)
= −π2

b2

(
csch2

(
π(z −ma)

b

)
− csch2

(πma

b

))
(48)

Obviously, a more computationally favorable representation of any doubly periodic meromorphic
function is its Fourier series. The function ℘(z) admits a well-known Fourier expansion, which for a
rectangular lattice with periods 2ω1 (real) and 2ω3 (imaginary) can be expressed as:

℘(z) = C0 +

∞∑
k=1

Ck cos

(
kπz

ω1

)
(49)

where C0 and Ck are complex coefficients dependent on the lattice parameters, involving modular
forms and divisor functions. The critical insight stems from analyzing the behavior of the complex
cosine term, which dictates the function’s structure.

Let z = x+ iy and ω1 be real. The kernel of the periodic component is cos(kπ(x+ iy)/ω1). Using
the identity cos(A+ iB) = cos(A) cosh(B)− i sin(A) sinh(B), we decompose the term:

cos

(
kπx

ω1
+ i

kπy

ω1

)
= cos

(
kπx

ω1

)
cosh

(
kπy

ω1

)
− i sin

(
kπx

ω1

)
sinh

(
kπy

ω1

)
(50)

Equation 50 reveals the essential structural motif of ℘(z): its spatial variation is a product of a
periodic oscillation along one axis (governed by trigonometric functions cos, sin) and an exponential
decay/growth along the orthogonal axis (governed by hyperbolic functions cosh, sinh, which are
exponential in nature). This fundamental property informs the design of our approximation.

We expand the hyperbolic cosecant squared as a geometric series:

csch2(x) =
4

(ex − e−x)2
=

4e−2x

(1− e−2x)2
= 4

∞∑
k=1

ke−2kx (51)

Substituting this expansion and summing over m is a non-trivial process that ultimately yields a
series in terms of cos( 2πkza ). After simplification and including the terms for m = 0, the standard
Fourier series expansion for ℘(z) is obtained:

℘(z) = −1

3

(
π

ω1

)2
(
1 + 240

∞∑
k=1

σ3(k)q
2k

)
+

(
π

ω1

)2 ∞∑
k=1

kqk

1− q2k
cos

(
kπz

ω1

)
(52)

where q = eiπτ , τ = ω3/ω1, and σ3(k) is the divisor function. This is a more precise expression, but
for conceptual clarity, its core structure remains a constant term plus a cosine series.

The aperiodic component of Equation 52 is a complex constant term. While this value is independent
of the position z, it represents an overall baseline or offset for the function. Furthermore, from the
original lattice sum definition, we know that ℘(z) possesses a second-order pole at the origin, z = 0,
which constitutes its most significant aperiodic feature.

For the purpose of positional encoding, the function’s singular behavior near the origin is substantially
more critical than the precise value of the constant offset, as this singularity provides a unique,
high-intensity encoding signal for the origin’s position. Implementing a constant term within a
neural network is straightforward; however, realizing a singularity that yields an infinite value
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is computationally infeasible. Consequently, we adopt the expression 1
|z|2+β as a substitute. Our

proposed approximation is:

℘(z) ≈ 1

|z|2 + β
+

K∑
k=1

γ

k2

[
cos(kπu′)e−kπ|v′| + sin(kπv′)e−kπ|u′|

]
(53)

where u′ = Re(z)/ω1 and v′ = Im(z)/ω3 are normalized coordinates. This formulation is derived
by addressing the non-periodic and periodic components of ℘(z) separately.

D WHY PERIODICITY IS BENEFICIAL

In recent years, a growing body of research on positional encoding has explicitly or implicitly incorpo-
rated periodic functions as the fundamental mathematical construct underpinning their design, serving
either as the primary representational basis or as a guiding inductive bias. For instance: Sinusoidal
positional encoding (Vaswani et al., 2017) realizes positions as multi–frequency trigonometric waves
with geometrically spaced bands, i.e., paired sin/cos features per dimension, so the representation
lives on periodic orbits whose phase differences preserve relative offsets;RoPE (Su et al., 2021b)
encodes position by rotating queries and keys with block–diagonal 2 × 2 rotation matrices.The
rotations are implemented by sin/cos blocks therefore the attention logit becomes a phase interaction
that is inherently periodic in the relative displacement, yielding translation invariance of phase differ-
ences and a distance–decay property tied to the frequency schedule:contentReference;FoPE (Hua
et al., 2025) makes the frequency–domain mechanism explicit: RoPE is interpreted as an implicit
non-uniform DFT over hidden dimensions, and FoPE replaces single–tone components with a Fourier
series per dimension while zeroing under-trained or destructive frequencies, so periodic extension of
attention is stabilized and length generalization improves by retaining only well-conditioned peri-
odic modes:contentReference;LieRE (Ostmeier et al., 2025) generalizes rotational encodings from
hand-crafted trigonometric blocks to learned Lie–algebra generators: skew-symmetric matrices are ex-
ponentiated to rotation matrices R(p) = exp(

∑
i piAi), the trajectory under exp(tA) on the rotation

group is periodic, thus relative position is captured by group phases without fixing frequencies a priori
and the learned rotations provide higher-dimensional periodic flows adapted to the data while preserv-
ing the relative-encoding effect in the attention inner product:contentReference;Geoformer (Wang
et al., 2023) parameterizes interatomic geometry by radial basis functions for distances together
with spherical harmonics for angular structure; the Yℓm(θ, ϕ) factors are periodic in the azimuthal
angle and furnish a complete periodic basis on the sphere, so many-body angular and torsional
relations are encoded through periodic phases while radial terms control scale, yielding permuta-
tion/isometry–invariant descriptors that inject directional periodicity beyond pairwise distances into
the attention weights.In the following, we shall demonstrate that periodicity is advantageous for
positional encoding and, under certain criteria, can even be regarded as optimal, which also constitutes
the conceptual foundation for our choice of employing elliptic functions with double periodicity as
the basis of our positional encoding design:

Setup. Let X = Zd be the discrete d-dimensional grid of patch indices, d ∈ {1, 2} in practice,
and let a positional encoding be a map φ : X → H into a Hilbert space. We require a translation-
equivariant inner-product kernel

⟨φ(x), φ(y)⟩ = k(y − x), k : Zd → C, (54)

with k positive definite (PD) on Zd and supx ∥φ(x)∥ < ∞; the self-attention score built on φ then
depends only on relative displacement, matches the geometric prior of translational regularity, and
remains numerically stable on long ranges.

Spectral representation on the torus. By the discrete Herglotz–Bochner theorem on Abelian
groups, every PD and translation-invariant kernel k on Zd admits a unique spectral measure µ on the
compact dual group Td such that

k(t) =

∫
Td

e i⟨ω,t⟩ dµ(ω), t ∈ Zd, (55)

and there exists a canonical feature map Φ : Zd → L2(Td, µ) given by

Φ(x)(ω) = e i⟨ω,x⟩ g(ω), g ∈ L2(Td, µ), (56)
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satisfying ⟨Φ(x),Φ(y)⟩ = k(y − x). The characters χω(x) = ei⟨ω,x⟩ are precisely the one-
dimensional irreducible representations of Zd; consequently, translation-equivariant PD similarity
is necessarily realized by mixtures of periodic/torus characters. Periodicity here is not an ad-hoc
choice but the harmonic-analytic normal form enforced by Equation 54 and positive definiteness (Tao,
2007).

Finite-dimensional exactness and low-rank optimality. If one additionally seeks an exact finite-
dimensional realization, i.e. φ : Zd → Cm with ⟨φ(x), φ(y)⟩ = k(y − x), then the representing
measure µ in Equation 55 must be purely atomic with at most m atoms:

µ =

m∑
j=1

wj δωj
=⇒ k(t) =

m∑
j=1

wj e
i⟨ωj ,t⟩, φ(x) =

(√
w1e

i⟨ω1,x⟩, . . . ,
√
wmei⟨ωm,x⟩)⊤.

(57)
Hence every exact finite-dimensional, translation-invariant positional encoding is a concatenation of
periodic modes; no alternative non-periodic construction improves dimension for a fixed k.

For a finite window with circular boundary Zd
L one obtains a block-circulant/Toeplitz attention matrix

Axy = k(y − x) diagonalized by the discrete Fourier basis (Gray, 2006); by Eckart–Young–Mirsky,
the best rank-r approximation (Frobenius/spectral norm) is obtained by truncating to the r largest
Fourier eigenmodes, i.e. a periodic-character subspace (Eckart & Young, 1936; Golub & Van Loan,
1987). Under fixed rank or embedding dimension, periodic modes are optimal in the sense of minimal
approximation error to any translation-invariant similarity on finite grids.

Stability and extrapolation via power-bounded shifts. Assume each canonical unit shift ej acts
on features through a bounded linear operator Tj so that φ(x+ ej) = Tjφ(x) and the family {Tj} is
normal and power-bounded. By the spectral theorem there exists a projection-valued measure E on
Td with Tj =

∫
Td e

iωj dE(ω), yielding

⟨φ(x), φ(y)⟩ =
〈
φ(0),

d∏
j=1

T
yj−xj

j φ(0)
〉

=

∫
Td

e i⟨ω,y−x⟩ dµ(ω), (58)

with µ(·) = ⟨E(·)φ(0), φ(0)⟩. Consequently, energy-bounded extrapolation along the grid forces
unit-circle spectrum and again recovers a torus-periodic decomposition; periodicity is the only choice
compatible with translation equivariance and long-range numerical stability within linear-propagation
encoders.

From d = 2 to doubly periodic geometry. For image grids (d = 2), the dual group is T2 and
Equation 55 becomes

k(t1, t2) =

∫
T2

e i(ω1t1+ω2t2) dµ(ω1, ω2), (59)

so relative similarity is governed by mixtures of doubly periodic characters. Any finite-dimensional
exact encoder selects finitely many frequencies (ω(j)

1 , ω
(j)
2 ), hence realizes a doubly periodic feature

map whose level sets tile the grid by a 2D torus lattice; periodicity in both axes is thus not only
natural but forced by Equation 54 and finite dimensionality.

Optimality criteria summarized. Under three ubiquitous criteria—universality for translation-
invariant PD kernels on Zd; best low-rank approximation on finite windows; energy-bounded linear
extrapolation—the representation collapses to a torus spectral mixture; periodic bases are universal,
numerically stable, and rank-optimal.

Consequences for design and the role of elliptic functions. Doubly periodic analytic functions
on the complex torus C/Λ offer a continuous realization of the T2 structure above and provide
two additional assets in vision: (i) addition laws enable algebraic recovery of relative displacement
from absolute codes, which preserves Equation 54 at the feature level without bespoke relative-
position modules; (ii)continuous evaluation on z ∈ C makes the encoder resolution-invariant, since
re-sampling the grid changes only the evaluation points, not the map. The Weierstrass elliptic function
℘(z), being meromorphic and doubly periodic with fundamental half-periods (ω1, ω3), realizes the
required torus geometry(?); the pair (℘(z), ℘′(z)) supplies curvature- and direction-aware coordinates
over C/Λ, and the classical addition formula furnishes closed-form relative interactions.
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Instantiation: WePE as a principled choice. Choose a linear isomorphism T : [0, 1]2 → C
sending normalized patch coordinates (u, v) to z = c1u + ic2v with c1 = 2Reω1, c2 = 2Imω3;
evaluate ℘ and ℘′ on z; form a real feature vector by taking Re/Im parts and a linear projection to
model dimension. The induced kernel is a mixture over T2 because evaluations on C/Λ inherit the
torus spectrum; the addition formula gives direct algebraic control of relative offsets; continuity in z
yields resolution-robustness; the double periodicity aligns the encoder with the Toeplitz/circulant
structure of translation-invariant attention on grids; in the finite-window setting, the projection onto
finitely many latent modes is a Fourier-truncated, hence optimal, approximation.

Under translation-invariant positive-definite attention on a 2D grid with a finite rank budget,
and when an analytic, resolution-robust and algebraically composable realization on the torus
is required, the Weierstrass elliptic positional encoding (℘, ℘′) on C/Λ is the canonical kernel-
optimal choice. Periodicity is not merely convenient but structurally enforced by translation
equivariance, positive definiteness, finite-dimensionality, and stability; under these widely accepted
desiderata, torus-harmonic encoders are universal and, under rank or dimension budgets, optimal;
doubly periodic elliptic-function encoders implement this theory in two dimensions while additionally
granting algebraic relative-position recovery and continuous, resolution-invariant evaluation.Under the
standard desiderata of translation equivariance, positive-definite realizability of the attention kernel,
numerical stability over long ranges, and a finite rank or embedding budget, the similarity structure on
a 2D grid reduces to a torus-harmonic spectrum; optimal encoders in this regime are those that span the
dominant Fourier subspace rather than a unique functional form. The Weierstrass elliptic framework
instantiates this structure natively: the map (u, v) ∈ [0, 1]2 7→ z = α1u+ iα2v + z0 ∈ C/Λ places
image patches on a complex torus with lattice Λ = Zω1+Zω3, and the feature coordinates built from
the doubly periodic meromorphic system (℘(z), ℘′(z)) admit a convergent Fourier expansion on T2,
hence span the same torus-eigenspaces that diagonalize block-circulant attention. A linear projection
of
(
ℜ℘,ℑ℘,ℜ℘′,ℑ℘′) to the model dimension yields an encoder whose inner-product kernel matches

the best rank-r approximation of the target Toeplitz/circulant kernel, thereby achieving kernel-level
optimality within the given budget. The classical addition law of elliptic functions provides an
algebraic route to relative displacement, so pairwise interactions inherit k(y − x) without bespoke
relative-position modules; continuous evaluation on C/Λ makes the representation resolution-robust
since changing the patch grid only alters evaluation points; the lattice modulus τ = ω3/ω1 controls
directional anisotropy and aspect ratio, letting the spectrum adapt to data geometry while preserving
the torus prior.

Let the position set be a finite 2D grid with circular boundary Z2
L and let a positional encoder φ :

Z2
L → Cr induce a translation–invariant positive–definite kernel K(x, y) = k(y−x), so the attention

matrix Axy = k(y − x) is block–circulant and diagonalized by the 2D discrete Fourier transform
A = F ∗diag(k̂[ξ])F . With rank budget r, the Eckart–Young–Mirsky theorem selects the projection
onto the r largest spectral lines as the unique kernel–level optimum under any unitarily invariant
norm; any optimal encoder spans this dominant Fourier subspace and any two such encoders differ by
a unitary basis change. Requiring analytic evaluation on the torus and stability under grid refinement
places absolute codes as meromorphic functions on C/Λ and demanding algebraic recovery of
relative displacement enforces an addition law; choosing minimal algebraic complexity within the
elliptic class singles out the Weierstrass system (℘, ℘′), which generates the entire elliptic function
field, has only double poles at lattice points, admits a classical addition formula, and has a convergent
Fourier expansion on T2. Mapping patches to z ∈ C/Λ and projecting (ℜ℘,ℑ℘,ℜ℘′,ℑ℘′) spans
the dominant modes of A and achieves the best rank–r approximation; fixing the modulus τ =
ω3/ω1 and orthonormalizing removes gauge freedom and yields a canonical representative. Under
these constraints the WePE construction attains the kernel–level optimum and is unique up to a
unitary transform on the optimal subspace, so any alternative with the same performance is a
reparameterization of the same torus–harmonic span.

E PRE-COMPUTATION OF THE HIGH-RESOLUTION WEPE LOOK-UP TABLE

Offline Pre-computation Process for the Look-Up Table. The direct computation of the WePE,
while mathematically elegant, introduces considerable computational overhead, potentially limiting
its application in latency-sensitive scenarios. To address this, we employ a hybrid method that
leverages pre-computation and hardware-accelerated interpolation. A critical mathematical property

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

of the Weierstrass elliptic function (Weierstrass, 1854) is its continuity and local smoothness. The
function ℘(z) is continuous across the complex plane, provided it is not evaluated at the lattice points.
This implies that for two input coordinates z1 and z2 in close proximity, their corresponding function
values, ℘(z1) and ℘(z2), are also proximate. Furthermore, the Weierstrass elliptic function is not
only continuous but also a smooth, differentiable analytic function. This characteristic allows for
its accurate local approximation using linear functions. Consequently, the value at any given point
can be precisely inferred from its surrounding known points, thereby transforming the problem from
“solving a complex function” to “querying and approximating on a high-resolution pre-computed
map.”

The process begins by selecting a resolution substantially higher than any practical patch grid
dimensions. Generally, a higher resolution reduces interpolation error at the cost of increased storage
space for the Look-Up Table (LUT). A resolution of 256 × 256 is typically sufficient to ensure
precision for most computer vision tasks. Subsequently, the pre-trained ViTs model (Dosovitskiy
et al., 2021) is loaded, and the final learned parameters of the WePE module are extracted. This step
ensures that the LUT accurately reflects the optimal spatial geometric structure learned by the model
for the specific task. A two-dimensional grid of size [Res × Res] is created, where Res is the selected
resolution. Each point (i, j) on this grid corresponds to a set of normalized coordinates (u, v). The
function is then evaluated for every normalized coordinate (u, v) on this Res × Res grid according
to the previously proposed algorithm. Finally, all the computed 4-dimensional feature vectors are
stored in a tensor of shape [Res×Res× 4]. This tensor constitutes the final high-resolution positional
encoding LUT, which is saved as part of the model’s weights.

During online inference, at the model initialization stage, the pre-computed [Res × Res × 4] LUT is
loaded into GPU memory. For an arbitrary input image, the model first partitions it into an H×W grid
of patches. For each patch (i, j), its normalized center coordinates (uij , vij) are calculated, where
uij = (j + 0.5)/W and vij = (i+ 0.5)/H . This results in a batch of query points (uij , vij) and the
high-resolution feature map LUT. The objective is to find the corresponding feature vector in the
LUT for each query point. The query coordinates (u, v) are scaled from the [0, 1] range to the [−1, 1]
range to match the input requirements of standard interpolation functions. Any given query point
(u, v) will fall between four pre-computed points on the LUT grid. Bilinear interpolation (Catmull,
1974) then computes a weighted average of the feature vectors of these four neighboring points, based
on the query point’s distance to them, to yield the feature vector for the query point. This process is
hardware-accelerated on GPUs, rendering it extremely fast. The interpolation operation generates
a feature tensor of shape [Batch ×H ×W × 4] for all H ×W patches. This tensor is then passed
through the subsequent tanh compression layer and the final linear projection layer, Wproj, to obtain
the final positional encodings that are injected into the ViTs (Dosovitskiy et al., 2021).

Complexity Analysis. For an input partitioned into N = H ×W patches, the online positional
encoding process involves generating normalized coordinates, performing bilinear interpolation from
the Look-Up Table (LUT), and projecting the resulting 4-dimensional features into the d-dimensional
embedding space, culminating in a total time complexity of O(N · d). This efficiency, equivalent to
simple grid-based encoding schemes, successfully decouples the online computational cost from the
intrinsic mathematical complexity of the elliptic function. The method’s space complexity comprises
a static, one-time cost of O(Res2) for storing the pre-computed LUT and a dynamic memory usage of
O(N ·d) for handling intermediate tensors during a forward pass, where the fixed overhead represents
a deliberate trade-off for substantial gains in computational speed.

Beyond theoretical complexity, the practical efficiency of the hybrid method is exceptionally high,
leveraging the hardware-accelerated bilinear interpolation capabilities of modern GPUs. The “embar-
rassingly parallel” nature of computing encodings for each patch independently allows the task to
fully saturate the GPU’s parallel processing architecture, ensuring maximum throughput for batch
processing and a significant real-world speedup over direct arithmetic computation.

Table 5 provides a concise comparison between the original direct computation method, the proposed
LUT-based hybrid method, and traditional learnable positional encodings during online inference.

Bilinear Interpolation Error Analysis. The adoption of the interpolation-based hybrid method
introduces a marginal approximation error, a deliberate trade-off for substantial gains in computational
efficiency. This error originates exclusively from the bilinear interpolation step, where feature vectors
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Table 5: Complexity and Efficiency Comparison for Online Inference

Metric Original Direct Computation LUT-based Hybrid Method Traditional Learnable PE
Time Complexity O(N · Cwef) O(N · d) O(N · d)
Space Complexity O(N · d) O(Res2 +N · d) O(Mmax · d+N · d)
Dependence on High (depends on series terms, None (decoupled after None (entirely learned)
Math Complexity summation limits, etc.) pre-computation)
Hardware Affinity Low (complex arithmetic) High (memory access & interpolation) Very High (optimized lookup)

Cwef represents the high cost of a single Weierstrass function evaluation. O(Res2) is the fixed overhead for the
LUT method. Mmax represents the maximum sequence length supported by the learnable positional encoding.

for arbitrary query coordinates are approximated from the four nearest grid points of the pre-computed
Look-Up Table (LUT).

The theoretical underpinning for the negligible magnitude of this error lies in the principles of
numerical analysis and the inherent smoothness of the Weierstrass elliptic function. Bilinear interpo-
lation error is bounded and is known to be of the second order, scaling quadratically with the grid
spacing h (i.e., O(h2)) of the LUT. Given that the Weierstrass function ℘(z) is analytic and thus
infinitely differentiable away from its poles, its second-order partial derivatives are bounded within
any compact sub-domain. Consequently, by employing a high-resolution LUT where the grid spacing
h = 1/(Res − 1) is made sufficiently small, the resulting interpolation error can be systematically
reduced to an arbitrarily low value.

For the high-resolution lookup table approach, we establish rigorous bounds on the interpolation error
through Taylor expansion analysis (Quarteroni et al., 2000). Let L(·) denote the bilinear interpolation
operator and f(·) represent the Weierstrass elliptic function evaluation at normalized coordinates
(u, v) ∈ [0, 1]2. The interpolation error at an arbitrary point (u, v) can be bounded as:

|L[f ](u, v)− f(u, v)| ≤ h2

8

(∣∣∣∣∂2f

∂u2

∣∣∣∣
max

+

∣∣∣∣∂2f

∂v2

∣∣∣∣
max

)
(60)

where h = 1/(R− 1) represents the grid spacing for resolution R×R. Since the Weierstrass elliptic
function ℘(z) is analytic everywhere except at lattice points and exhibits bounded second-order
partial derivatives within the fundamental parallelogram excluding pole neighborhoods, the maximum
values of mixed partial derivatives remain finite across the interpolation domain.

The selection of a high-resolution LUT, such as the 256× 256 grid employed in our implementation,
ensures that the approximation error is rendered practically infinitesimal. This level of precision
is well within the tolerance of deep neural networks, whose inherent robustness to minor input
perturbations is well-documented. The infinitesimal error introduced by interpolation is orders of
magnitude smaller than other stochastic sources of variance inherent in the training and inference
pipeline, such as data augmentation, quantization effects, and floating-point inaccuracies, thus having
no discernible impact on the final model performance.

Lipschitz Constant Derivation for Error Propagation. The Weierstrass elliptic function satisfies
Lipschitz continuity on any compact subset K ⊂ C \ Λ that excludes the lattice points Λ. For the
normalized coordinate domain [0, 1]2 mapped to the complex plane via z = αu ·u · 2Re(ω1)+ i ·αv ·
v · 2Im(ω3), the Lipschitz constant L℘ can be derived from the maximum modulus of the derivative:

L℘ = max
z∈K

|℘′(z)| ≤ max
z∈K

∣∣∣∣∣∣
∑

ω∈Λ\{0}

−2

(z − ω)3

∣∣∣∣∣∣ (61)

Through careful analysis of the lattice summation convergence properties and the minimum distance
from evaluation points to poles, we establish that L℘ ≤ C · max(αu, αv) for some constant C
dependent on the elliptic invariants. The interpolation error then propagates through the 4-dimensional
feature vector construction with bounded amplification factor determined by the hyperbolic tangent
compression scaling parameter αscale.

Resolution-Dependent Convergence Analysis. The convergence rate of the lookup table approxi-
mation exhibits quadratic dependence on grid resolution due to the bilinear interpolation scheme. For
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a resolution R×R lookup table, the global interpolation error satisfies:

∥Einterp∥∞ = O(R−2) (62)

This convergence rate ensures that doubling the resolution reduces the maximum interpolation error
by a factor of four. For practical deep learning applications where floating-point precision operates at
approximately 10−7 relative accuracy, a 256× 256 resolution (h ≈ 0.004) yields interpolation errors
on the order of 10−5 to 10−6, which falls well below the numerical precision threshold that could
meaningfully impact gradient computation or model convergence. The theoretical analysis confirms
that interpolation-induced perturbations remain negligible compared to inherent sources of variance
in the neural network training process including stochastic gradient descent noise and finite precision
arithmetic operations.

F SUPPLEMENTARY EXPERIMENTAL DETAILS

F.1 EXPERIMENTAL BASIC SETTINGS

Unless otherwise specified, all our experiments were conducted on a system equipped with four
NVIDIA RTX 3090 GPUs, each with 24GB of VRAM. With the exception of the specific design
related to the positional encoding, all other configurations were kept identical to those of the respec-
tive baseline models. Regarding experiments involving from-scratch training on the CIFAR-100
dataset (Krizhevsky, 2009), ViTs (Dosovitskiy et al., 2021) lack the inductive biases inherent to
CNNs (LeCun et al., 1998), a deficiency that typically requires larger datasets to overcome. Con-
sequently, when trained from scratch on a smaller dataset such as CIFAR-100 (Krizhevsky, 2009),
their performance metrics do not show a significant advantage over models like ResNet (He et al.,
2016), which is why few studies have directly conducted and reported results for such experiments.
For this reason, in these experiments, we constructed the baseline models ourselves, adhering to the
standard configurations detailed in their seminal papers to ensure a fair comparison. Our rationale
for this approach is to investigate and demonstrate the advantages of this positional encoding when
trained on smaller datasets, and simultaneously, to better showcase its inherent advantages in terms
of inductive bias compared to conventional ViTs (Dosovitskiy et al., 2021).

F.2 ADAPTIVE MULTI-SCALE FEATURE MODULATION

In the pre-training scheme, the four-dimensional feature vector derived from ℘(z) and its derivative
℘′(z) is compressed uniformly. For fine-tuning, where task-specific spatial cues may have varying
importance, we introduce an adaptive feature modulation mechanism. This allows the model to learn
the relative importance of each component of the positional signal.

The four-dimensional feature vector f = [Re(℘(z)), Im(℘(z)), Re(℘′(z)), Im(℘′(z))]T is modu-
lated by a set of learnable parameters {µj}4j=1 before compression:

fmodulated =

 µ1 ·Re(℘(z))
µ2 · Im(℘(z))
µ3 ·Re(℘′(z))
µ4 · Im(℘′(z))

 (63)

The final feature vector passed to the projection layer is then given by:

f̃ = tanh(σ · fmodulated) (64)

where σ is also a learnable scaling parameter. This mechanism empowers the model to, for instance,
amplify the contribution of the positional gradient (the derivative terms) if a task requires sensitivity
to local changes, or suppress it if only absolute position matters.

F.3 HYBRID ENCODING ARCHITECTURE FOR KNOWLEDGE TRANSFER

Perhaps the most critical distinction in the fine-tuning methodology is the architectural integration
of the positional encoding. Instead of completely replacing the original positional encoding of
the pre-trained model, which would discard significant learned knowledge, we propose a hybrid
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architecture that dynamically interpolates between the pre-trained learned embeddings and the newly
generated WePE.

Let Elearned ∈ R(N+1)×d be the positional embedding matrix from the pre-trained ViTs (Dosovitskiy
et al., 2021), and let EWePE ∈ RN×d be the encoding generated for the N image patches by our
WePE methodology. We first preserve the pre-trained class token embedding Ecls

learned and combine
the patch encodings using a learnable gating parameter λ ∈ [0, 1].

The pre-trained learned embeddings, Elearned, have empirically captured salient spatial patterns
from a large-scale dataset. The WePE, EWePE, provides a continuous, mathematically rigorous, and
resolution-agnostic representation of space. A hybrid combination allows the model to leverage the
empirical power of the former and the theoretical robustness of the latter.

The hybrid patch encoding Epatch
hybrid is formulated as:

Epatch
hybrid = λ ·EWePE + (1− λ) ·Epatch

learned (65)

The gating parameter λ is implemented as the output of a sigmoid function applied to a raw learnable
parameter λraw, ensuring it remains within the [0, 1] interval and is optimizable via gradient descent:

λ = σ(λraw) =
1

1 + e−λraw
(66)

The final positional embedding matrix Efinal is constructed by concatenating the preserved class token
embedding with the hybrid patch embeddings. This complete matrix is then added to the patch and
class token embeddings. This hybrid approach enables a graceful transfer of knowledge, allowing the
model to automatically determine the optimal blend of pre-trained spatial priors and the rich structure
of the elliptic function encoding for each specific downstream task.

G ADDITIONAL EXPERIMENTS

G.1 OCCLUSION ROBUSTNESS ANALYSIS

To evaluate the global structural awareness capabilities of WePE under partial information loss,
we conducted systematic occlusion experiments on CIFAR-100 (Krizhevsky, 2009) test samples
with random masking ratios of 10%, 20%, and 30%. The WePE model demonstrates superior
resilience to occlusion compared to the APE (Dosovitskiy et al., 2021) baseline across all tested
conditions. Specifically, WePE maintains 56.8% accuracy under 10% occlusion versus 21.3% for
APE (Dosovitskiy et al., 2021), 45.1% versus 15.6% under 20% occlusion, and 32.1% versus
13.2% under 30% occlusion. The average performance advantage of 27.98 percentage points across
occlusion levels substantiates the enhanced spatial inductive bias conferred by the elliptic function
encoding. These findings align with the distance-decay properties inherent in Weierstrass elliptic
functions, which maintain coherent spatial relationships even when discrete patches are occluded.

G.2 GEOMETRIC INVARIANCE ANALYSIS

To investigate the geometric invariance properties inherent in WePE under spatial transformations,
we conducted comprehensive evaluations across rotational and affine transformation domains on
CIFAR-100 (Krizhevsky, 2009) test samples. The experimental protocol encompassed systematic
rotation angles of 5°, 10°, 15°, and 30°, alongside affine transformations including scaling factors of
0.9× and 1.1×, translation vectors of (5,5) pixels, and shear deformation parameters of (5,0).

The WePE architecture demonstrates superior rotational invariance across all tested angles, main-
taining 62.19% accuracy under 5° rotation compared to 23.84% for the APE (Dosovitskiy et al.,
2021) baseline, with performance degradations of 2.67 and 6.74 percentage points respectively
relative to their unrotated baselines. At moderate rotation angles of 15°, WePE sustains 57.29%
classification accuracy while APE (Dosovitskiy et al., 2021) deteriorates to 22.86%, representing
a 34.44 percentage point advantage. Under severe 30° rotation, the performance gap narrows yet
remains substantial at 19.36 percentage points (38.11% versus 18.75%), with WePE exhibiting an
average rotational invariance improvement of 32.46 percentage points across all tested angles.
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Figure 5: Occlusion robustness comparison between WePE and APE (Dosovitskiy et al., 2021)
baseline models on CIFAR-100 (Krizhevsky, 2009). (A) Classification accuracy as a function of
random occlusion ratio. (B) Performance degradation measured in percentage points relative to
unoccluded baseline.

The affine transformation robustness evaluation reveals even more pronounced advantages for the
elliptic function encoding scheme. WePE maintains near-baseline performance under 1.1× scaling
(63.24% versus baseline 63.79%) while APE (Dosovitskiy et al., 2021) shows negligible degradation
(25.31% versus 25.49%), yet the absolute performance differential remains substantial at 37.93
percentage points. Under 0.9× downscaling, WePE experiences moderate degradation to 61.09%
whereas APE (Dosovitskiy et al., 2021) suffers disproportionate performance loss to 20.28%, yielding
the largest improvement margin of 40.81 percentage points. Translation and shear transformations
produce similar patterns, with WePE demonstrating consistent stability across geometric deformations
while APE (Dosovitskiy et al., 2021) exhibits uniform vulnerability, culminating in an average affine
invariance improvement of 38.79 percentage points.

These empirical findings substantiate the theoretical proposition that doubly periodic elliptic functions
preserve spatial relationships under geometric transformations through their intrinsic mathematical
structure. The continuous nature of Weierstrass elliptic functions (Weierstrass, 1854) enables smooth
interpolation between transformed patch positions, while the periodic lattice structure maintains
consistent spatial encoding despite coordinate perturbations. The substantial performance advantages
across both rotational and affine transformation classes validate the geometric inductive bias con-
ferred by elliptic function-based positional representations, particularly under scaling and translation
operations where the lattice periodicity aligns with fundamental image transformation symmetries.

G.3 RELATIVE POSITION AWARENESS VALIDATION

To empirically validate the theoretical proposition that elliptic function addition formulas endow
models with enhanced relative position awareness capabilities, we designed a dedicated auxiliary
task that directly probes the spatial relationship encoding within learned patch representations. The
experimental framework leverages the mathematical property that for any two spatial positions zi
and zj mapped to the complex plane, their relative displacement σz = zj − zi can be algebraically
derived from the Weierstrass elliptic function values through the addition formula ℘(zi + σz) =
f(℘(zi), ℘(σz), ℘

′(zi), ℘
′(σz)).

The experimental protocol extracts patch embeddings ei, ej from pre-trained ViT-Tiny models without
positional information, subsequently combining them with their corresponding positional encodings
pi, pj to form complete representations ei+ pi and ej + pj . A lightweight MLP predictor (Rumelhart
et al., 1986) with two hidden layers (192→128→64→2 dimensions) receives these concatenated
patch representations as input and predicts the relative coordinate displacement (∆x,∆y) = (xj −
xi, yj − yi) in the original patch grid. We generated 8,000 training samples for each encoding
scheme by randomly sampling patch pairs from CIFAR-100 test images (Krizhevsky, 2009), ensuring
balanced coverage across different spatial separations within the 14×14 patch grid.
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Figure 6: Classification accuracy comparison between WePE and APE baseline under affine transfor-
mations on CIFAR-100 (Krizhevsky, 2009).

The quantitative results demonstrate substantial superiority of WePE over conventional APE (Doso-
vitskiy et al., 2021) across all evaluation metrics. The mean squared error reduces from 6.69 to 0.90
(86.6% improvement), mean absolute error decreases from 2.83 to 0.90 (68.1% reduction), and root
mean squared error diminishes from 2.59 to 0.95 (63.4% improvement). Training dynamics reveal
markedly different convergence behaviors, with WePE achieving stable convergence from an initial
loss of 21.65 to 1.14 within 30 epochs, while APE converges more slowly from 30.42 to 4.14 under
identical optimization settings. Error distribution analysis reveals that WePE concentrates prediction
errors within the 0-1 unit range with peaked distribution characteristics, whereas APE (Dosovitskiy
et al., 2021) exhibits broader error dispersion with substantial tail probability mass extending beyond
3 units.

These empirical findings provide direct quantitative evidence that the continuous mathematical
structure of elliptic functions facilitates superior spatial relationship encoding compared to discrete
lookup table approaches. The substantial performance advantages validate the theoretical assertion
that elliptic function addition formulas naturally embed relative positional information within absolute
encodings, enabling models to extract geometric relationships through direct algebraic manipulation
rather than requiring explicit learning of pairwise spatial dependencies. The 86.6% reduction in
prediction error magnitude demonstrates that WePE representations inherently preserve spatial
geometric properties that prove essential for precise coordinate regression tasks, supporting the
broader claim that mathematically principled positional encodings provide superior inductive biases
for vision transformer architectures.

G.4 COMPARISON WITH ALTERNATIVE 2D POSITIONAL ENCODING SCHEMES

To isolate the contribution of advanced mathematical structure from the fundamental advantage of
preserving two-dimensional spatial relationships, we conducted systematic comparisons between
WePE and alternative 2D positional encoding approaches that avoid the spatial flattening inherent in
conventional APE methods (Dosovitskiy et al., 2021). The experimental framework evaluated four
distinct positional encoding schemes: our proposed WePE, traditional 1D flattened APE (Dosovitskiy
et al., 2021), 2D sinusoidal positional encoding extending classical Transformer sinusoidal patterns
to two dimensions through independent coordinate-wise encoding, and 2D learnable grid positional
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Figure 7: Quantitative validation of relative position awareness capabilities in WePE versus
APE (Dosovitskiy et al., 2021) positional encodings. (A) Training loss convergence comparison
showing faster and more stable learning dynamics for WePE. (B) Evaluation metrics demonstrat-
ing substantial improvements in prediction accuracy, with 86.6%, 68.1%, and 63.4% reductions
in MSE, MAE, and RMSE respectively. (C) Error distribution histograms revealing concentrated
low-error predictions for WePE versus dispersed error patterns in APE (Dosovitskiy et al., 2021). (D)
Cumulative error distribution confirming superior prediction precision, with approximately 80% of
WePE predictions achieving sub-unit accuracy compared to broader error dispersion in APE-based
representations.

encoding implementing direct parameter lookup based on spatial coordinates without intermediate
flattening operations.

The 2D sinusoidal approach generates positional representations by applying sine and cosine functions
independently to horizontal and vertical coordinates, interleaving the resulting values as PE[h,w, 0 ::
4] = sin(w ·div_termx), PE[h,w, 1 :: 4] = cos(w ·div_termx), PE[h,w, 2 :: 4] = sin(h ·div_termy),
and PE[h,w, 3 :: 4] = cos(h · div_termy) where div_term follows the standard inverse frequency
scaling. The 2D learnable grid method maintains a trainable parameter matrix of dimensions
H×W ×D enabling direct coordinate-based lookup without spatial serialization, thereby preserving
explicit two-dimensional indexing throughout the encoding process.

Under identical training conditions with ViT-Tiny architecture on CIFAR-100 (Krizhevsky, 2009) for
60 epochs, the quantitative results demonstrate that WePE achieves superior performance with 60.03%
final validation accuracy and 60.28% peak accuracy, followed closely by 2D sinusoidal encoding at
59.94% final and 60.19% peak accuracy. The 2D learnable grid approach yields 58.40% accuracy for
both final and peak measurements, while conventional 1D flattened APE produces 58.28% final and
58.34% peak accuracy. Training dynamics reveal that WePE maintains consistently lower training
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loss throughout the optimization process with smoother convergence characteristics compared to
alternative approaches.
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Figure 8: Comparative analysis of 2D positional encoding schemes. (A) Training loss dynamics
for WePE, 1D flattened APE (Dosovitskiy et al., 2021), 2D Sinusoidal PE, and 2D Learnable Grid
PE over 60 epochs on CIFAR-100 (Krizhevsky, 2009). (B) Corresponding validation accuracy
curves. (C) Final validation accuracy comparison, where WePE achieves 60.03%. (D) Best validation
accuracy comparison, with WePE peaking at 60.28%, demonstrating its superior performance over
alternative 2D encoding strategies.

The experimental findings reveal that while preservation of two-dimensional spatial structure pro-
vides measurable advantages over traditional flattening approaches, the mathematical sophistication
embedded within elliptic function-based encoding yields additional performance gains beyond those
attributable solely to dimensionality considerations. The modest but consistent superiority of WePE
over 2D sinusoidal encoding (0.09 percentage points final accuracy improvement) validates the
hypothesis that continuous mathematical structure and inherent geometric properties contribute
meaningfully to positional representation quality. The relatively strong performance of 2D sinusoidal
encoding compared to learnable grid methods suggests that mathematical regularity and interpretabil-
ity provide advantages over pure parameter optimization in spatial encoding tasks, supporting the
broader principle that principled mathematical foundations enhance neural network architectural
design for vision applications.

G.5 WEPE EXHIBITS BETTER GEOMETRIC INDUCTIVE BIAS

To further evaluate the structural properties of our proposed WePE, we visualized the positional
encodings prior to any model training, as illustrated in Figure 9. The analysis comes from two
aspects: a PCA (Bishop, 2006) to reveal the embedding manifold, and a cosine similarity matrix
to expose their relational structure. In PCA (Bishop, 2006) space, WePE forms a highly structured,
spiral-like manifold, that faithfully preserves the original 2D spatial arrangement, as confirmed
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by the color gradient-encoded patch coordinates. By contrast, the APE (Dosovitskiy et al., 2021)
projects into an unstructured, Gaussian-like cloud, demonstrating a complete lack of inherent spatial
organization. Furthermore, the cosine similarity matrix of WePE displays a distinct, periodic, and
grid-like pattern, indicating that the relationships between encodings are systematically governed
by their relative spatial distances. The APE (Dosovitskiy et al., 2021) matrix, however, resembles
random noise aside from the identity diagonal, confirming the absence of any pre-defined relational
structure.

Figure 9: Structural properties of positional encodings revealed through PCA (Bishop, 2006) and
cosine similarity. (a, b) PCA (Bishop, 2006) projections demonstrate WePE forms structured
spiral manifolds that preserving spatial topology, while APE (Dosovitskiy et al., 2021) appears
as unstructured Gaussian-like clouds. (c, d) Cosine similarity matrices reveal that WePE displays
periodic, grid-like patterns reflecting systematic spatial relationships, contrasting with largely random
patterns of APE (Dosovitskiy et al., 2021).

G.6 SUPPLEMENT TO THE EXPERIMENT IN SECTION 3.1 .

To validate the distance–decay property of the WePE, we designed a systematic experiment to
quantitatively analyze the relationship between positional encoding interaction strength and spatial
distance. The experiment was based on the ViT-Ti architecture (embed_dim=192, patch_size=16),
processing input images of size 224× 224, which results in a 14× 14 grid of patches, totaling 196
spatial locations.

The core methodology involves establishing a quantitative relationship between the relative distance
of all patch pairs and the interaction strength of their corresponding positional encodings. Specif-
ically, for any two patch locations (i1, j1) and (i2, j2), we first compute their Euclidean distance.
Subsequently, we extract their corresponding Weierstrass elliptic function positional encodings, pi1,j1
and pi2,j2 , and compute their cosine similarity as a metric for interaction strength:

Si,j =
p⊤
i pj

∥pi∥ ∥pj∥
. (67)

Cosine similarity, which normalizes out the influence of vector magnitudes, provides a purer reflection
of directional correlation and serves as a key indicator for evaluating the quality of positional
encodings.

To eliminate the dependency on image size, the distance is normalized into a relative distance:

drelative =
deuclidean
dmax

× 100, (68)

where dmax is the maximum possible distance between any two patches in the image.

To enhance the visual interpretability of the relationship between inter-patch distance and interaction
strength, we applied a linear transformation to the raw cosine similarity scores. The primary
motivation for this transformation is to normalize the similarity values, which may originally occupy
a narrow numerical range, into a standardized and more visually dynamic scale. This ensures
consistent and comparable graphical representation across different experimental settings:

srel = Cbase +
s− smin

smax − smin
× Crange, (69)
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Figure 10: Quantitative analysis of distance-decay properties in WePE. (a) Scatter plot and fitted
curve demonstrate strong negative correlation between relative patch distance and interaction strength.
(b) Raw data distribution across 19,110 patch pairs. (c) Log-scale relationship confirming exponential
decay characteristics. (d) Rate of change analysis revealing monotonic decrease in similarity with
increasing spatial separation.

Table 6: Quantitative Analysis Results of the Distance–Interaction Strength Relationship

Metric Value
Pearson Correlation Coefficient ρ -0.966
Relative Distance Range [0, 100]
Relative Upper Bound Range [13.5, 16.5]
Initial Interaction Strength 16.5
Final Interaction Strength 13.8
Decay Magnitude ∆decay 16.4%
Monotonicity Metric M 87.5%

where smin and smax represent the minimum and maximum observed cosine similarity values across
the entire dataset of patch pairs, respectively. The term s−smin

smax−smin
performs a min–max normalization,

scaling the similarity scores to the range [0, 1]. In our specific analysis, we set the base constant
Cbase = 6 and the range constant Crange = 14, thereby mapping the original similarity scores to a
new, standardized interval of [6, 20]. This procedure facilitates a clearer visualization of the decay
trend by amplifying the dynamic range of the dependent variable.

Finally, a statistical summary is generated to distill the underlying trend from the point cloud of
data. We bin the data into 80 equi-width intervals based on distance. For each of the 80 distance
bins, indexed from k = 1 to 80, we aggregate all data points whose relative distance drel falls
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within the bin’s range [dk, dk+1]. We then compute the arithmetic mean of the corresponding relative
upper bound values within this bin, denoted as s̄k. To represent the distance for each bin, we use
its midpoint, calculated as dk = (dk + dk+1)/2. This procedure culminates in two corresponding
sequences: a sequence of bin centers {dk} and a sequence of average relative upper bounds {s̄k}.
These sequences effectively constitute a discrete function that quantitatively describes the relationship
between relative distance and average interaction strength.The data of this experiment are presented
in Figure 10 and Table 6.

G.7 FURTHER SUPPLEMENTARY ATTENTION VISUALIZATIONS

1 2 3 4 5 6
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13 14 15 16 17 18

19 20 21 22 23 24
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Figure 11: Further example attention maps as in Figure 3.
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