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ABSTRACT

Recent advances in multimodal foundation models unifying image understanding
and generation have opened exciting avenues for tackling a wide range of vision-
language tasks within a single framework. Despite progress, existing unified mod-
els typically require extensive pretraining and struggle to achieve the same level
of performance compared to models dedicated to each task. Additionally, many
of these models suffer from slow image generation speeds, limiting their practical
deployment in real-time or resource-constrained settings. In this work, we propose
Layerwise Timestep-Expert Flow-based Transformer (LaTtE-Flow), a novel
and efficient architecture that unifies image understanding and generation within
a single multimodal model. LaTtE-Flow builds upon powerful pretrained Vision-
Language Models (VLMs) to inherit strong multimodal understanding capabili-
ties, and extends them with a novel Layerwise Timestep Experts flow-based archi-
tecture for efficient image generation. LaTtE-Flow distributes the flow-matching
process across specialized groups of Transformer layers, each responsible for a
distinct subset of timesteps. This design significantly improves sampling effi-
ciency by activating only a small subset of layers at each sampling timestep.
To further enhance performance, we propose a Timestep-Conditioned Residual
Attention mechanism for efficient information reuse across layers. Experiments
demonstrate that LaTtE-Flow achieves strong performance on multimodal under-
standing tasks, while achieving competitive image generation quality with around
6× faster inference speed compared to recent unified multimodal models.

1 INTRODUCTION

Recent advances in multimodal foundation models capable of both image understanding and gener-
ation have opened promising avenues for building unified architectures that support a wide range of
vision-language tasks (Shi et al., 2024; Wang et al., 2024b; Xie et al., 2025; Zhou et al., 2025; Chen
et al., 2025c; Ma et al., 2025; Tong et al., 2024). Such unified multimodal models hold great po-
tential for building general-purpose agents that can interpret, reason about, and generate multimodal
content in response to user instructions. Current approaches to unified multimodal modeling gener-
ally fall into two broad categories. The first category leverages vector-quantized autoencoders (Van
Den Oord et al., 2017; Esser et al., 2021; Yu et al., 2022) to discretize images into token sequences,
which are then incorporated into the vocabulary of Large Language Models (LLMs) (Sun et al.,
2024; Wang et al., 2024b; Xie et al., 2025; Wu et al., 2025a; Chen et al., 2025c; Wu et al., 2025b).
These models are subsequently trained to autoregressively generate the next token, either textual or
visual, thus integrating vision and language generation within a single framework. The second cat-
egory leverages diffusion-based methods, either by coupling LLMs with external diffusion modules
or by training LLMs to directly perform denoising steps (Zhou et al., 2025; Shi et al., 2024; Ma
et al., 2025; Tong et al., 2024; Ge et al., 2024).

Despite significant progress, existing unified multimodal models still struggle to achieve high perfor-
mance in both multimodal understanding and image generation, as improvements in one modality
often come at the expense of the other (Shi et al., 2024; Chen et al., 2025a). Even when strong
performance is achieved in both, it typically comes with substantial computational overhead. For
example, unified models that leverage diffusion or flow-matching processes require dozens of for-
ward passes through the full backbone during inference, resulting in slow and resource-intensive
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(a) Diffusion / Flow-Matching (b) LaTtE-Flow

Figure 1: Flow-matching process between standard diffusion / flow-matching vs. our proposed
LaTtE-Flow. Unlike diffusion / flow-matching based models, which invoke the entire model at each
sampling timestep, LaTtE-Flow activates only a subset of layers at each step, improving efficiency.

generation (Shen et al., 2025). Similarly, autoregressive approaches suffer from long decoding
times, especially for high-resolution images that require generating large numbers of tokens se-
quentially (Xiong et al., 2025).

To address these challenges, we propose Layerwise Timestep-Expert Flow-based Transformer
(LaTtE-Flow), a novel architecture that unifies efficient image generation and multimodal under-
standing within a single model. In particular, LaTtE-Flow builds upon existing pre-trained VLMs
that already possess strong multimodal understanding capabilities, and further introduces two key
architectural innovations designed to enable efficient and high-quality image generation. First,
we propose a novel Layerwise Timestep Expert architecture, which reduces the sampling time
complexity by distributing the flow-matching process across groups of transformer layers. Instead
of invoking the entire model across all time steps, LaTtE-Flow partitions transformer layers into
disjoint groups, each assigned to a specific range of timesteps in the flow-matching process, as
shown in Figure 1. During inference, only the relevant expert group is activated at each timestep,
which drastically reduces computation while preserving generation quality. Second, we introduce
Timestep-Conditioned Residual Attention, a lightweight mechanism that enables later layers to
reuse self-attention maps computed at earlier layers, modulated by the current timestep. This de-
sign encourages the model to gradually refine features across layers, resulting in faster convergence
during training. Experiments demonstrate that these two innovations enable LaTtE-Flow to achieve
efficient and high-quality image generation. For example, LaTtE-Flow attains competitive genera-
tion quality with around 6× faster inference compared to recent unified models on ImageNet Deng
et al. (2009), while maintaining strong multimodal understanding performance across several bench-
mark datasets. Extensive ablation studies highlight that LaTtE-Flow accelerates convergence and
inference while preserving strong generation quality.

In summary, our contributions are: (1) We propose LaTtE-Flow, an efficient and unified multimodal
architecture that integrates flow-matching-based image generation with pre-trained vision-language
models. (2) We introduce a Layerwise Timestep Expert, a novel design that significantly reduces
inference complexity by distributing transformer layers into timestep-specific experts. (3) We de-
sign a Timestep-Conditioned Residual Attention module, which enables effective reuse of attention
information across layers, boosting training efficiency and performance. (4) Extensive experiments
demonstrate that LaTtE-Flow achieves competitive performance on both generation and understand-
ing tasks, while offering 6× faster inference compared to recent unified models.

2 RELATED WORK

Unified Models. Unified multimodal architectures integrate multimodal understanding and gener-
ation within a single model, enabling general-purpose agents that can interpret and generate multi-
modal content in response to user instructions (Shi et al., 2024; Wang et al., 2024b; Xie et al., 2025;
Zhou et al., 2025; Chen et al., 2025c; Ma et al., 2025; Tong et al., 2024). Existing approaches to uni-
fied modeling primarily fall into two categories: The first class of models relies on vector-quantized
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autoencoders Van Den Oord et al. (2017); Esser et al. (2021); Yu et al. (2022) to convert images into
discrete token sequences that can be processed similarly to text. These visual tokens are added to the
LLM vocabulary to enable unified autoregressive training over both language and vision (Sun et al.,
2024; Wang et al., 2024b; Xie et al., 2025; Wu et al., 2025a; Chen et al., 2025c; Wu et al., 2025b).
The second class incorporates continuous generative processes, most notably diffusion models (Ho
et al., 2020) or flow-matching models (Lipman et al., 2023). Some approaches connect LLMs with
external diffusion modules, using the language model to guide image generation (Tong et al., 2024;
Ge et al., 2024; Pan et al., 2025; Chen et al., 2025a; Xu et al., 2025), while others directly train
LLMs to jointly perform denoising or flow-matching steps (Zhou et al., 2025; Shi et al., 2024; Ma
et al., 2025). Despite progress in both categories, many of these models suffer from slow image
generation speeds, limiting their practical deployment in real-time or resource-constrained settings.

Multiple Experts in Diffusion Models. Recent advancements in diffusion models have increas-
ingly adopted modular or expert-based architectures for better image generation Sun et al. (2025);
Shi et al. (2025). Building on this direction, several recent approaches have explored the use of
expert models tailored to different diffusion timesteps (Lee et al., 2024; Fang et al., 2024; Zhuang
et al., 2025). By allocating distinct experts to specific temporal intervals, these models aim to better
capture the evolving nature of the denoising process. This design is partly motivated by findings
from prior work Hang et al. (2023); Balaji et al. (2022), which show that optimization gradients
from different timesteps often conflict, leading to slower convergence and degraded model perfor-
mance. However, these models typically maintain a near full-parameter expert network for different
timestep intervals, which leads to little or no improvement in inference efficiency under a fixed
number of sampling steps. In contrast, we introduce a layerwise timestep expert architecture, which
partitions the transformer layers into different groups of layers, each responsible for a specific range
of timesteps. At inference time, only the corresponding group is activated, significantly reducing
the number of parameters involved at each step. Moreover, our design allows all expert groups to
be trained jointly, and we further integrate it within a unified model architecture, enhancing both
efficiency and performance.

3 PRELIMINARIES

Flow-Matching. Flow-based generative models (Lipman et al., 2023; Liu et al., 2023; Albergo &
Vanden-Eijnden, 2023) aim to learn a time-dependent velocity field vt that transports samples from
a simple source distribution p0(x) (e.g., standard Gaussian) to a complex target distribution p1(x)
via an ordinary differential equation (ODE):

dxt

dt
= vt(xt), x0 ∼ p0(x). (1)

Recently, Lipman et al. (2023) propose a simple simulation-free Conditional Flow Matching (CFM)
objective by defining a conditional probability path pt(xt ∣ x1) and the corresponding conditional
vector field ut(xt ∣ x1) per sample x1. The model directly regresses the velocity vt on a conditional
vector field ut(⋅ ∣ x1):

Et,p1(x1),pt(xt∣x1)∥vt(xt, t) − ut(xt ∣ x1)∥2
, (2)

where ut(⋅ ∣ x1) uniquely determines a conditional probability path pt(⋅ ∣ x1) towards target
data sample x1. A widely adopted choice for the conditional probability path is linear interpolation
between the source and target data (Liu et al., 2023): xt = tx1 + (1 − t)x0. Assuming the source
distribution p0 is a standard Gaussian, this yields xt∼N (tx1, (1−t)2I). Sampling from the learned
model is obtained by sampling x0∼N (x ∣ 0, 1) and then numerically solving the ODE in Eq. (1).

4 LATTE-FLOW

We present LaTtE-Flow (Layerwise Timestep-Expert Flow-based Transformer), a novel architec-
ture designed for efficient and high-quality image generation and multimodal understanding, unified
within a single model. Built on top of pretrained Vision-Language Models (VLMs), LaTtE-Flow
leverages their powerful understanding capabilities while introducing additional flow-matching
based generation components to enable scalable and effective image synthesis. As illustrated in Fig-
ure 2, LaTtE-Flow is implemented as a mixture-of-transformer architecture, allowing for effective

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

interaction between image latents and multimodal context. We also explore alternative architecture
variants using a single transformer as the backbone in Appendix A, to highlight that our proposed
method is not restricted to a single form.

Furthermore, we introduce two core architectural innovations applicable to both variants to en-
hance image generation efficiency and quality: (1) Layerwise Timestep Experts (Section 4.2),
which partition the model into timestep-specialized modules to reduce sampling complexity, and
(2) Timestep-Conditioned Residual Attention (Section 4.3), which injects timestep-aware resid-
ual attention into each attention layer through gating mechanisms modulated by a learned timestep
embedding, improving training efficiency through effective information reuse across layers.

4.1 LATTE-FLOW LAYER DESIGN

LaTtE-Flow preserves the pretrained VLM
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LaTte-Flow CoupleFigure 2: LaTtE-Flow overall architecture.

entirely, keeping its parameters frozen (shown
in purple in Figure 2) to retain strong mul-
timodal understanding without finetuning. To
enable image generation, it introduces a train-
able generative pathway alongside the frozen
backbone. Specifically, each Transformer layer
is augmented with a trainable replica of the
original VLM layer, along with additional
components for flow-matching-based genera-
tion (shown in blue in Figure 2). LaTtE-Flow
thus allows the model to perform image syn-
thesis while leveraging the robust understand-
ing capabilities of the pretrained VLM.

As illustrated in Figure 2, we introduce a
LaTtE-Flow Attention module to enable effec-
tive interaction between generative image la-
tents and multimodal context. Specifically,
the noisy image latents—used during the flow-
based generation process—attend to the text
and visual context tokens, as detailed in Ap-
pendix B. This attention module employs a hy-
brid positional encoding scheme, combining
the original 3D Rotary Positional Embeddings
(RoPE) (Su et al., 2024), inherited from the pre-
trained VLM, for encoding spatial and temporal
structure in the multimodal context, with newly
introduced 2D positional encodings applied to the generative image tokens.

4.2 LAYERWISE TIMESTEP EXPERTS

Typical sampling procedures in diffusion models (Song & Ermon, 2019; Ho et al., 2020) or flow-
matching models (Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023) require
repeatedly invoking the full network across a large number of timesteps, leading to slow inference-
time speed. For instance, consider a standard diffusion transformer (DiT) model (Peebles & Xie,
2023) with L transformer layers. The effective computational cost for T sampling steps is O(L×T ),
as shown in Figure 1 (a). To alleviate this inefficiency, we introduce a novel Layerwise Timestep
Expert architecture, which reduces the effective sampling time complexity by distributing the flow-
matching process across groups of transformer layers.

Specifically, instead of executing the entire model at every timestep, we partition the L transformer
layers into K non-overlapping groups, where each group specializes in denoising samples within
a specific timestep interval, as illustrated in Figure 1 (b). This design effectively enables efficient
sampling, as only a subset of the network needs to be executed at each timestep.

Let each expert group be denoted as Gl,l+M
k ={l, l+1, . . . , l+M}, consisting of M =L/K consecutive

layers (from layer l to layer l +M ). During training, each layer group learns to predict the velocity
field over its assigned timestep interval [tk, tk+1] using a layerwise flow-matching loss. Specifically,
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each layer group Gl,l+M
k receives the noisy latent image xt ∈ RNx×d along with the multimodal

context ml, derived from the preceding layer l−1, and predicts the velocity field sθ(xt,m
l
, t).

Formally, for timestep t ∈ [tk, tk+1], the layerwise flow-matching loss is defined as:

Lt = Et,p1(x1),pt(xt∣x1)
ÂÂÂÂÂG

l,l+M
k (xt,m

l
, t) − ut(xt ∣ x1)

ÂÂÂÂÂ
2
, for t ∈ [tk, tk+1], (3)

where Gl,l+M
k (⋅) denotes the prediction produced by the expert group and ut(xt ∣ x1) is the ground-

truth velocity at timestep t. By training each group exclusively on its respective timestep interval,
LaTtE-Flow encourages timestep specialization, allowing the model to learn timestep-specific rep-
resentations across the flow-matching process.

Inference. Let Clayer denote the average forward compute cost of one Transformer layer per step.
At inference time with T

′ sampling steps, for each timestep t ∈ [tk, tk+1], LaTtE-Flow activates
only the associated expert layer group Gl,l+M

k to perform a forward pass from layer l to layer l+M .
This process is repeated across all T ′ timesteps, with only M =L/K layers evaluated per step. The
multimodal hidden states, required for conditioning at each transformer layer, are computed once
at the start of the inference and cached for reuse across all timesteps. Given one-time caching cost
Ccache, the total inference cost for LaTtE-Flow is Ccache + T

′ ×M ×Clayer. In contrast, conventional
diffusion models or flow-matching models execute all L layers at every step, with total inference
cost Ccache + T

′ × L × Clayer. The resulting relative speedup S is

S=
Cbaseline

CLaTtE-Flow
=

Ccache + T
′ × L × Clayer

Ccache + T ′ × (L/K) × Clayer
=
K + θ

1 + θ
, where θ=

Ccache

T ′ ×M × Clayer
. (4)

Since the one-time cache cost Ccache is typically negligible compared to the cumulative compute
across all sampling iterations T

′. As the number of sampling steps T
′ grows, the one-time cache

cost is amortized, i.e., θ → 0 and hence S → K. The resulting speed up shows that LaTtE-Flow
guarantees an asymptotic K-fold reduction in per-step compute cost, and a complexity reduction
from O(L × T

′) to O(M × T
′).

4.3 TIMESTEP-CONDITIONED RESIDUAL ATTENTION
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Figure 3: Timestep-conditioned
residual attention

To facilitate information reuse across transformer layers and
improve both training efficiency and generative performance,
we propose Timestep-Conditioned Residual Attention, a novel
mechanism that introduces adaptive residual connections be-
tween successive image attention layers based on the current
timestep. Inspired by the success of residual connection in
ResNet (He et al., 2016), this design allows later layers to
reuse and refine the attention patterns computed in earlier lay-
ers, while dynamically controlling the influence of past atten-
tion through the current flow-matching timestep.

Let Al
∈ RNx×Nx image self-attention matrix at layer l, where

Nx is the number of image tokens. In a standard self-attention
layer, the attention matrix is computed as:

A = Softmax((hW
Q)(hWK)T√

d
) , (5)

where h ∈ RNx×d denotes the hidden states of the noisy image
latents, and W

Q
,W

K
∈ Rd×d are learnable query and key projection matrices.

To incorporate residual attention from the previous layer, we define the augmented self-attention
matrix at layer l + 1 as:

Ã
l+1

= A
l+1

+ g(t)⊙A
l
, g(t) = tanh(htWt), (6)

where ht ∈ Rd is the embedding of the current flow-matching timestep t and Wt ∈ Rd×H is a train-
able projection matrix, with d denoting the hidden dimension and H the number of attention heads.
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The head-wise gating vector g(t) ∈ (−1, 1)H , produced by a tanh(⋅) activation, dynamically con-
trols the extent to which each attention head incorporates residual attention information from the
previous layer. The operator ⊙ denotes element-wise multiplication, broadcast across all attention
heads. Notably, while the LaTtE-Flow Attention module jointly processes both noisy image states
and multimodal hidden states, the residual attention mechanism is applied only to the self-attention
map over the noisy image hidden states, as shown in Figure 3.

The timestep-conditioned residual attention mechanism enables the model to dynamically control
how much residual attention from the previous layer is incorporated into the current layer, on a per-
head basis and conditioned on the timestep. Empirically, this design accelerates convergence during
training and enhances the quality of generated images.

5 EXPERIMENT SETUP

Backbone Model and Image Encoder. LaTtE-Flow is built upon Qwen2-VL-2B-Instruct (Wang
et al., 2024a), a pretrained VLM composed of L=28 transformer layers. We create a trainable copy
of each Transformer layer from the original Qwen2-VL-2B-Instruct and integrate it with additional
components tailored for flow-matching-based image generation. These duplicated components are
initialized with the corresponding pretrained weights from the original VLM. For image encoding,
we adopt the recently proposed Deep Compression Autoencoder (DC-AE) Chen et al. (2025b),
which compresses raw image pixels into a compact latent space using a 32× down-sampling ratio.

Timestep Distribution. To enable Layerwise Timestep Experts, LaTtE-Flow partitions the model
into K = 4 non-overlapping layer groups, each containing M = 7 consecutive layers for the final
results. These groups are designed to operate over distinct intervals of the flow-matching timesteps.
During training, we use T = 1000 flow-matching steps, which are initially divided uniformly into
four intervals. To encourage robustness near interval boundaries and promote smooth transitions
across groups, we introduce a 100-step overlap between adjacent timestep intervals during training.
This overlap allows boundary timesteps to be seen by multiple layer groups, improving generaliza-
tion. At inference time, we disable the overlaps to maintain strict partitioning of timestep intervals.
Consequently, at each denoising step, only the corresponding expert layer group is activated, re-
quiring just M = 7 layers per inference step. This contrasts favorably with standard diffusion or
flow-matching models that activate all L= 28 layers at every step, significantly enhancing genera-
tion efficiency. Further details are provided in Appendix C.

Baseline Architectures. We construct the baseline model Vanilla, which matches the architec-
tures of LaTtE-Flow, but excludes both the Layerwise Timestep Experts and Timestep-Conditioned
Residual Attention mechanisms, allowing us to directly evaluate the effectiveness of these proposed
mechanisms. The Vanilla baseline retains a parallel generative path alongside the original VLM
modules. Conceptually, it resembles prior models such as LMFusion (Shi et al., 2024), which aug-
ment language models with a separate branch for handling image generation.

Training and Evaluation Details. All LaTtE-Flow variants are trained on 1.2M images from the
ImageNet Deng et al. (2009) training split at a resolution of 256 × 256 with a global batch size
of 2048 and a constant learning rate of 5e-4 for 240K steps. For both Vanilla and LaTtE-Flow,
we only fine-tune parameters specialized for image generation while keeping parameters for image
understanding frozen. For evaluation, we report FID, Inception Score, Precision, and Recall on
ImageNet following previous convention Peebles & Xie (2023). Additional details in Appendix C.

6 RESULTS AND DISCUSSION

6.1 IMAGE GENERATION AND UNDERSTANDING RESULTS

We evaluate LaTtE-Flow on both image generation (Table 4) and multimodal understanding (Ta-
ble 2) tasks. Table 4 reports quantitative comparison between LaTtE-Flow, recent unified models,
and leading image generation models. We evaluate each model in terms of generation quality, acti-
vated parameters for each inference step, and inference efficiency. All inference times are measured
on a single NVIDIA L40 GPU with batch size 50. LaTtE-Flow achieves better FID scores compared
to state-of-the-art unified models Xie et al. (2025); Wu et al. (2025a); Chen et al. (2025c) that are
pretrained on the mixture of ImageNet and other large-scale image-caption datasets, while achiev-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of generative models across FID, IS, Precision, Recall, parameters, steps, and
inference time on ImageNet-50K. For LaTtE-Flow, we report the number of parameters activated per
timestep, given that it has a timestep-expert architecture where only a subset of layers is used at each
step. Rel. Time: inference time relative to LaTtE-Flow. †: taken from MaskGIT (Chang et al., 2022)

Model FID↓ IS↑ Pre↑ Rec↑ #Params #Step Time (s / img) Rel. Time

D
iff

us
io

n
M

od
el

s ADM (Dhariwal & Nichol, 2021) 10.94 101.0 0.69 0.63 554M 250 9.677 168
CDM (Ho et al., 2022) 4.88 158.7 – – – 8100 –
LDM-4-G (Rombach et al., 2022) 3.60 247.7 – – 400M 250 –
DiT-L/2 (Peebles & Xie, 2023) 5.02 167.2 0.75 0.57 458M 250 1.786 31
DiT-XL/2 (Peebles & Xie, 2023) 2.27 278.2 0.83 0.57 675M 250 2.592 45

M
as

ke
d

M
od

el
s

MaskGIT (Chang et al., 2022) 6.18 182.1 0.80 0.51 227M 8 0.029 0.5
MAGE (Li et al., 2023a) 6.93 195.8 – – 230M – –

A
R

M
od

el
s VQVAE-2† (Razavi et al., 2019) 31.11 ∼45 0.36 0.57 13.5B 5120 –

VQGAN† (Esser et al., 2021) 18.65 80.4 0.78 0.26 227M 256 1.094 19
VQGAN (Esser et al., 2021) 15.78 74.3 – – 1.4B 256 1.382 24
ViT-VQGAN (Yu et al., 2022) 4.17 175.1 – – 1.7B 1024 1.382 24
RQTran. (Lee et al., 2022) 7.55 134.0 – – 3.8B 68 1.210 21

U
ni

fie
d

M
od

el
s Show-o (Xie et al., 2025) 31.26 98.7 0.55 0.69 1.3B 50 2.493 48

Janus Pro (Chen et al., 2025c) 23.68 105.2 0.58 0.49 1.5B 576 0.311 6
Vanilla (Ours) 6.33 192.4 0.80 0.67 2.0B 40 0.158 3
LaTtE-Flow (Ours) 5.79 213.1 0.78 0.69 500M 40 0.052 1

Table 2: Results on comprehensive image understanding benchmarks. Best scores are high-
lighted in bold. Since our LaTtE-Flow is an expert architecture, we report the number of activated
parameters used for image understanding.

Model MMBench SEED POPE MM-Vet MME-P MMMU RWQA TEXTVQA

EMU2 Chat 34B (Sun et al., 2024) - 62.8 - 48.5 - 34.1 - 66.6
Chameleon 7B (Team, 2024) 19.8 27.2 19.4 8.3 202.7 22.4 39.0 0.0
Chameleon 34B (Team, 2024) 32.7 - 59.8 9.7 604.5 38.8 39.2 0.0
Seed-X (Ge et al., 2024) 17B 70.1 66.5 84.2 43.0 1457.0 35.6 - -
VILA-U 7B (Wu et al., 2025b) 66.6 57.1 85.8 33.5 1401.8 32.2 46.6 48.3
EMU3 8B (Wang et al., 2024b) 58.5 68.2 85.2 37.2 1243.8 31.6 57.4 64.7
MetaMorph 8B (Tong et al., 2024) 75.2 71.8 - - - 41.8 58.3 60.5
Show-o 1.3B (Xie et al., 2025) - - 80.0 - 1097.2 27.4 - -
Janus 1.5B (Wu et al., 2025a) 69.4 63.7 87.0 34.3 1338.0 30.5 - -
Janus Pro 1.5B (Chen et al., 2025c) 75.5 68.3 86.2 39.8 1444.0 36.3 - -
LaTtE-Flow 2B 74.9 72.4 87.3 51.5 1501.4 41.1 60.7 79.7

ing mush faster inference speed, i.e., 48× faster than Show-o Xie et al. (2025) and 6× faster than
Janus Pro Chen et al. (2025c). Moreover, LaTtE-Flow outperforms its respective baselines, Vanilla,
which are conceptually similar to LMFusion Shi et al. (2024), with much fewer activated parame-
ters per flow-matching step and 3× faster inference speed. The computational cost of Vanilla is 28.3
TFLOPs per forward pass, compared to only 7.08 TFLOPs for LaTtE-Flow, further underscoring
the efficiency of the proposed method. In addition, LaTtE-Flow exhibits competitive performance
compared to diffusion models Dhariwal & Nichol (2021); Ho et al. (2022); Rombach et al. (2022);
Peebles & Xie (2023), Masked Models Chang et al. (2022); Li et al. (2023a) and Auto-regressive
(AR) models Razavi et al. (2019); Esser et al. (2021); Yu et al. (2022); Lee et al. (2022) that are
specialized for image generation, achieving better parameter and inference-time efficiency. These
results suggest LaTtE-Flow as a promising, efficient, and effective architecture for image generation.
Qualitative results on ImageNet are provided in Appendix D.

Table 2 presents results on multimodal understanding benchmarks Liu et al. (2024); Li et al. (2024;
2023b); Yu et al. (2024); Fu et al. (2023); Yue et al. (2024); Singh et al. (2019). LaTtE-Flow achieves
competitive or superior performance compared to recent unified models. By effectively leveraging a
frozen vision-language backbone, the understanding capability of LaTtE-Flow is inherited from its
pretrained backbone model Qwen2-VL-2B-Instruct (Wang et al., 2024a), and therefore matches the
performance of the backbone itself. This approach aligns with concurrent studies (Chen et al., 2025a;
Lin et al., 2025), which also employ frozen backbones to fully exploit the pretrained understanding
strength.
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6.2 ABLATION STUDIES
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Figure 4: Training dynamics of LaTtE-
Flow vs. Vanilla. FID on ImageNet 50K.

Faster Convergence Rate of LaTtE-Flow. Fig-
ure 4 illustrates the training dynamics of LaTtE-Flow
compared to Vanilla. We observe that LaTtE-Flow
exhibits a significantly faster convergence rate dur-
ing training, reaching competitive image generation
performance (lower FID) in fewer training steps. We
attribute this favorable property of LaTtE-Flow to the
layerwise timestep-expert architecture. As noted in
prior work Balaji et al. (2022); Hang et al. (2023), the
slow convergence of diffusion models is partially due
to the conflicting optimization directions of different
timesteps. Optimizing for timesteps that are close can
benefit each other, while optimizing timesteps that are
far away can interfere with each other. LaTtE-Flow’s
layerwise timestep-expert architecture alleviates this challenge by distributing timesteps across dif-
ferent transformer layers.

20 40 60 80 100 120 140 160
Inference Time (ms)

5

10

15

20

25

30

Pe
rf

or
m

an
ce

 (F
ID

-5
0K

)
Vanilla

Group 4

Group 7
Group 14

Effect of Group Size

Model Size
0.3B
0.5B
1B
2B

Figure 5: Effect of group size in
LaTtE-Flow.

Impact of Varying Group Size. We also investigate how
the timestep-expert group size M affects the trade-off be-
tween generation quality and inference efficiency. Specifi-
cally, we train LaTtE-Flow with group sizes M ∈ {4, 7, 14},
corresponding to partitioning the transformer layers into 7,
4, and 2 expert groups, respectively. Figure 5 reports results
at 120K training steps. We observe that larger group sizes
consistently improve generation quality, as measured by FID,
due to increased modeling capacity. However, this comes at
the cost of reduced inference speed, since more layers are ex-
ecuted per timestep. Both M = 7 and M = 14 achieve bet-
ter generation quality and efficiency compared to the baseline
Vanilla (Vanilla), which applies all 28 layers at every step.
Thus, considering the trade-off between performance and ef-
ficiency, we select M =7 as the default group size in our main
results in Table 4, which offers strong generation quality with
substantial sampling speedups.

Table 3: Effect of time-conditioned residual attention.

Model FID↓ IS↑ Pre↑ Rec↑
LaTtE-Flow 5.79 213.1 0.78 0.69
- w/o Residual Attention 8.26 157.0 0.75 0.61

Effect of Timestep-Conditioned
Residual Attention. To quantify
the effect of timestep-conditioned
residual attention, we compare
LaTtE-Flow against a variant with
the timestep-conditioned residual
attention removed. As shown in Table 3, removing residual attention leads to a notable degradation
across multiple metrics, highlighting the effectiveness of time-conditioned attention across layers.
Adding timestep-conditioned residual attention does not introduce additional inference time cost.
Effect of Sampling Steps and CFG. Figure 6 shows the impact of varying the number of sam-
pling steps and classifier-free guidance scale (CFG) on image generation quality. We observe that
increasing the number of steps generally improves image generation quality, leading to lower FID
and higher Inception Score. However, as the number of sampling steps surpasses 40, performance
improvements become marginal. In general, higher CFG leads to better Inception Score, but for
FID, once the CFG goes beyond 5, performance starts to decrease slightly.

Timestep Condition in Residual Attention. To better understand the role of timestep condition-
ing in residual attention, we perform an in-depth analysis on LaTtE-Flow. Specifically, we first
investigate how attention patterns evolve across transformer layers and sampling timesteps in base-
line models. We quantify the sequential similarity between adjacent layers at each timestep using a
total variation-based metric:

S(Al
,A

l+1) = 1 −
1

2
∑
i

»»»»»Softmax (Al
i) − Softmax (Al+1

i )»»»»» , (7)
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(b) Inception Score vs Sampling Steps and CFG(a) FID Score VS. Sampling Steps and CFG

Figure 6: Impact of # sampling steps and CFG strength on Inception Score and FID.

(a) Timestep‐varying sequential similarity 
across adjacent transformer layers

(b) Timestep-conditioned residual attention
gate for head 5 across transformer layers

Figure 7: Timestep-conditioned residual attention analysis. (a) Visualization of attention behav-
ior in Vanilla and (b) learned residual gating patterns in LaTtE-Flow.

where Softmax (Al
i) is the softmax-normalized i-th row of attention map A

l. Higher values of S
reflect greater similarity in image attention maps between successive layers.

Figure 7 (a) shows how sequential similarity in Vanilla evolves throughout the sampling process,
averaged over 100 randomly selected samples. We observe that early in sampling, attention maps
across layers show low similarity, but as generation progresses, especially in later timesteps, similar-
ity increases, sometimes approaching 1.0 in early layers. This motivates using residual attention for
efficient reuse, with dynamic gating needed to adapt to varying similarity patterns across timesteps.
Figure 7 (b) shows timestep-conditioned residual attention gates in LaTtE-Flow, which modulate
how much past-layer attention is reused. As seen across all heads (Figure 12), gating remains stable
across timesteps within a head but varies between heads, indicating specialization. These results
highlight the effectiveness of dynamic, head-specific residual attention in flow-matching generation.

7 CONCLUSION

In this work, we present Layerwise Timestep-Expert Flow-based Transformer (LaTtE-Flow), a novel
efficient architecture that unifies image understanding and generation within a single multimodal
model. LaTtE-Flow introduces two key novel architectural innovations: Layerwise Timestep Ex-
perts, which reduces sampling complexity by specializing transformer layers to distinct timestep
intervals, and Timestep-Conditioned Residual Attention, which facilitates adaptive reuse and re-
finement of attention structures across layers. Extensive experimental evaluations demonstrate that
LaTtE-Flow not only achieves strong multimodal understanding and image generation performance,
but also achieves around 6× faster inference compared to existing unified models.
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REPRODUCIBILITY STATEMENT

We will fully release the source code and the trained model weights to facilitate reproducibility.
Detailed implementation settings for both training and evaluation are provided in Section 5, with
additional specifications included in Appendix C.
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Figure 8: LaTtE-Flow overall architecture.

To demonstrate that LaTtE-Flow is not tied to a specific flow-matching architecture, we also intro-
duce LaTtE-Flow Blend and apply our method on the Blend architecture as well. Figure 8 shows
that LaTtE-Flow Blend unifies the image generation and understanding components through a par-
tially shared transformer layer. Here, each layer consists of task-specific submodules with separate
parameters for generation and understanding, and a set of shared submodules that are used by both
tasks. This design enables tighter fusion between generation and understanding signals, facilitating
more effective information exchange while maintaining flexibility to specialize for each modality.

We also construct the baseline model Vanilla Blend, which matches the architectures of LaTtE-Flow
Blend, but excludes both the Layerwise Timestep Experts and Timestep-Conditioned Residual At-
tention mechanisms, allowing us to directly evaluate the effectiveness of these proposed mechanisms
on different architecture. The Vanilla Blend baseline unified generation and understanding compu-
tations within shared layers, akin to the design of Transfusion (Zhou et al., 2025). And we perform
a full parameter fine-tuning for Vanilla Blend and LaTtE-Flow Blend.

Table 4 reports quantitative comparison between Vanilla Blend, LaTtE-Flow Blend, recent unified
models, and leading image generation models. We show that both LaTtE-Flow variants outperform
their respective baselines, Vanilla Blend and Vanilla, which are conceptually similar to Transfu-
sion Zhou et al. (2025) and LMFusion Shi et al. (2024), with much fewer activated parameters per
flow-matching step and 3 to 4× faster inference speed.

B LATTE-FLOW ATTENTION MODULE

Figure 9 illustrates the architecture of the LaTtE-Flow Attention module. Our framework applies
3D Rotary Positional Embeddings (RoPE) (Su et al., 2024) from the pretrained VLM to multimodal
hidden states and uses a new 2D Rotary Positional Embeddings to the generative image tokens.
We adopt bi-directional attention on generative image tokens, and all generative image tokens are
allowed to attend to previous multimodal tokens.
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Table 4: Comparison of generative models across FID, IS, Precision, Recall, parameters, steps, and
inference time on ImageNet-50K. For LaTtE-Flow, we report the number of parameters activated per
timestep, given that it has a timestep-expert architecture where only a subset of layers is used at each
step. Rel. Time: inference time relative to LaTtE-Flow. †: taken from MaskGIT (Chang et al., 2022)

Model FID↓ IS↑ Pre↑ Rec↑ #Params #Step Time (s / img) Rel. Time

D
iff

us
io

n
M

od
el

s ADM (Dhariwal & Nichol, 2021) 10.94 101.0 0.69 0.63 554M 250 9.677 168
CDM (Ho et al., 2022) 4.88 158.7 – – – 8100 –
LDM-4-G (Rombach et al., 2022) 3.60 247.7 – – 400M 250 –
DiT-L/2 (Peebles & Xie, 2023) 5.02 167.2 0.75 0.57 458M 250 1.786 31
DiT-XL/2 (Peebles & Xie, 2023) 2.27 278.2 0.83 0.57 675M 250 2.592 45

M
as

ke
d

M
od

el
s

MaskGIT (Chang et al., 2022) 6.18 182.1 0.80 0.51 227M 8 0.029 0.5
MAGE (Li et al., 2023a) 6.93 195.8 – – 230M – –

A
R

M
od

el
s VQVAE-2† (Razavi et al., 2019) 31.11 ∼45 0.36 0.57 13.5B 5120 –

VQGAN† (Esser et al., 2021) 18.65 80.4 0.78 0.26 227M 256 1.094 19
VQGAN (Esser et al., 2021) 15.78 74.3 – – 1.4B 256 1.382 24
ViT-VQGAN (Yu et al., 2022) 4.17 175.1 – – 1.7B 1024 1.382 24
RQTran. (Lee et al., 2022) 7.55 134.0 – – 3.8B 68 1.210 21

U
ni

fie
d

M
od

el
s Show-o (Xie et al., 2025) 31.26 98.7 0.55 0.69 1.3B 50 2.493 48

Janus Pro (Chen et al., 2025c) 23.68 105.2 0.58 0.49 1.5B 576 0.311 6
Vanilla Blend (Ours) 6.12 193.7 0.78 0.69 2.0B 40 0.185 4
LaTtE-Flow Blend (Ours) 6.03 193.9 0.77 0.68 500M 40 0.061 1
Vanilla (Ours) 6.33 192.4 0.80 0.67 2.0B 40 0.158 3
LaTtE-Flow (Ours) 5.79 213.1 0.78 0.69 500M 40 0.052 1

LaTtE-Flow Attention
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3D MM RoPE
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𝑇/ 𝑑 [𝑀𝑣; 𝐼𝑣] + A𝑟

෩𝑀𝑞 ሚ𝐼𝑞 𝑀𝑘 ሚ𝐼𝑘 𝑀𝑣 𝐼𝑣

Output Projection

Residual
Attention

Gate

Time
Embed

Figure 9: LaTtE-Flow Attention

C IMPLMENTATION DETAILS

Timestep Distribution. To enable Layerwise Timestep Experts, LaTtE-Flow partitions the model
into K = 4 non-overlapping layer groups, each containing M = 7 consecutive layers for the final
results. These groups are designed to operate over distinct intervals of the flow-matching timesteps.
During training, we use T = 1000 flow-matching steps, which are initially divided uniformly into
four intervals: [1000.0, 750.25], [750.25, 500.50], [500.50, 250.75], and [250.75, 0]. To encour-
age robustness near interval boundaries and promote smooth transitions across groups, we introduce
a 100-step overlap between adjacent timestep intervals during training. This overlap allows bound-
ary timesteps to be seen by multiple layer groups, improving generalization. Specifically, layers 1
through 7 are assigned to the timestep interval [1000, 700], layers 8 through 14 cover [700, 450],
layers 15 through 21 operate on [450, 200], and layers 22 through 28 handle the final interval
[200, 0]. Each group is trained exclusively on its assigned range according to Eq. (3), enabling
it to specialize in the velocity prediction of that particular segment of the flow-matching timestep
interval.
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Figure 10: Generated 256×256 samples by LaTtE-Flow Couple trained on ImageNet.

At inference time, we disable overlaps to maintain strict partitioning of timestep intervals. Conse-
quently, at each denoising step, only the corresponding expert layer group is activated, requiring just
M = 7 layers per inference step. This contrasts favorably with standard diffusion or flow-matching
models that activate all L=28 layers at every step, significantly enhancing generation efficiency.

Training and Evaluation Details. We train all model variants on eight H200 for approximately
four days. During training, following previous approaches, we employ classifier-free guidance (Ho
& Salimans, 2022) to guide the sampling process for better sampling quality by amplifying the
difference between conditional and unconditional generation with the guidance scale > 1. During
training, we randomly drop the multimodal condition with probability 10% to facilitate uncondi-
tional prediction.

For evaluation, each model generates 50 images for each of 1,000 classes in ImageNet with 40 sam-
pling steps and classifier-free guidance (CFG) of 5 based on our ablation study in Section 6.2. We
report FID and Inception Score of 50K generated images against 50K real images from the Ima-
geNet validation split. Following previous convention Peebles & Xie (2023), we compute Precision
and Recall using 1,000 generated images. All scores are calculated using standard implementations
from torch-fidelity 1.

D QUALITATIVE RESULTS

Figure 10 shows the qualitative results of sampled 256 × 256 images by LaTtE-Flow.

E TIMESTEP-CONDITIONED RESIDUAL ATTENTION

Following the experimental setup in Section 6.2, we also perform an in-depth analysis on the LaTtE-
Flow Blend variant. Figure 11 (a) shows how this sequential similarity across adjacent layers evolves
over the sampling timesteps. The plot shows the mean similarity computed across 100 randomly

1
https://github.com/toshas/torch-fidelity
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sampled examples. We observe that for most of the adjacent layers, the sequential similarity is rel-
atively low at early timesteps, and gradually increases as the timestep progresses, particularly in
early layers, where the similarity rises and approaches 1.0. However, the observed similarity pat-
tern varies significantly across timesteps and layers, motivating the need for a timestep-conditioned
gating strategy of residual attention flows.

In Figure 11 (b), we visualize the learned residual attention gating values for head 11 within LaTtE-
Flow Blend. These gates are dynamically modulated by timestep embeddings and control the degree
to which residual attention from the previous layer is incorporated into the current layer’s computa-
tion. To further understand the role of residual attention across heads, Figure 13 displays the gating
values for all 12 heads in LaTtE-Flow Blend. We observe that gating remains relatively stable across
timesteps within a specific head, but the patterns differ notably among different heads. A similar
trend is also observed in the LaTtE-Flow variant (Figure 12), where head-specific gating patterns
reflect different behaviors. In summary, these results validate the design of timestep-conditioned,
head-specific residual attention. The gating mechanism enables adaptive reuse of earlier attention.

(a) Timestep‐varying sequential similarity 
across adjacent transformer layers

(b) Timestep-conditioned residual attention
gate for head 11 across transformer layers

Figure 11: Visualization of attention in Baseline Blend and LaTtE-Flow Blend. (a) Sequential
similarity between adjacent layers increases over timesteps, particularly in early layers. (b) Residual
attention gating in LaTtE-Flow Blend (head 11) shows relatively consistent gating values across
timesteps within the same head.

F THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we mainly used large language models (LLMs) as an auxiliary tool
for polishing the writing. Specifically, the models were employed to improve sentence fluency,
correct grammar errors, and refine clarity of expression. They were not involved in research ideation,
experimental design, analysis, or substantive content generation.

G IMPACT STATEMENT

This work advances the field of unified multimodal modeling by introducing LaTtE-Flow, an ar-
chitecture that effectively combines image understanding and generation within a single, efficient
framework. By leveraging pretrained vision-language models and introducing novel architectural
mechanisms, Layerwise Timestep Experts and Timestep-Conditioned Residual Attention, LaTtE-
Flow achieves strong performance with significantly improved inference speed. The proposed model
has a potential impact in both academic and practical settings, as a scalable solution for building ef-
ficient, unified multimodal foundation models. It enables more efficient deployment of multimodal
systems in resource-constrained environments, such as mobile devices or real-time applications,
while maintaining high performance. While LaTtE-Flow improves performance and efficiency, it
inherits the biases of its pretrained vision-language foundation and may generate misleading or in-
appropriate outputs if not properly constrained. Careful evaluation and mitigation of such risks are
important for downstream deployment.
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Figure 12: Timestep-conditioned residual attention gates across transformer layer in LaTtE-
Flow. White regions indicate positions without gating values since residual attention is applied only
within predefined layer groups. Notably, different heads exhibit distinct gating dynamics, with some
emphasizing earlier timesteps, while others modulate more strongly in later layers, suggesting head-
specific specialization in residual attention.
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Figure 13: Timestep-conditioned residual attention gates across transformer layer in LaTtE-
Flow Blend. White regions indicate positions without gating values since residual attention is ap-
plied only within predefined layer groups. Notably, different heads exhibit distinct gating dynamics,
with some emphasizing earlier timesteps, while others modulate more strongly in later layers, sug-
gesting head-specific specialization in residual attention.

H LIMITATIONS

Although LaTtE-Flow achieves substantial improvements in sampling efficiency with strong results
in multimodal understanding and generation tasks, several limitations remain. First, our experiments
involved training LaTtE-Flow for only 240K optimization steps, significantly fewer than existing
unified multimodal models. Extending the training duration could potentially enhance the model’s
performance further. Second, while our uniform timestep distribution with overlapping intervals
proved effective, the optimal timestep distributions or layer partitioning strategies remain an open
problem. Future work should systematically explore and optimize timestep partitioning strategies.
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