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Abstract

Reusing low-rank adapters (LoRAs) by merging or routing is a common strategy for adapting
large language models to new tasks, especially when training data is unavailable but many
fine-tuned LoRAs are accessible. While the availability of publicly shared LoRA weights has
inspired new algorithms for composing them to solve new tasks, recent findings highlight
limitations in LoRA’s ability to integrate new knowledge. This work investigates when LoRA
reuse could be viable without direct access to training data. Through theoretical analysis
and experiments on synthetic two-hop reasoning and math word problems, we show that
data-agnostic methods, such as parameter averaging and dynamic selection, often fail to
combine knowledge from logically disjoint fine-tuning datasets. This challenge is particularly
pronounced when the relevant knowledge is underrepresented during pretraining. However,
reuse can succeed when fine-tuning datasets share solution templates, such as reasoning
patterns or reusable code, which serve as bridges among tasks. Our results suggest that
LoRA reuse relies more on shallow pattern matching than on logical integration of existing
knowledge. This mechanism-based perspective offers practical guidance for curating datasets
and designing systems that enable LoRA reuse to overcome data-access limitations. Findings
indicate that future research should focus on the mechanisms enabling effective adapter reuse
rather than solely on developing new reuse algorithms.

1 Introduction

Many real-world applications require large language models to integrate scattered information and infer
logical answers to novel questions. For instance, an Al assistant supporting human resource specialists in
determining an employee’s tax rate must combine information about the employee’s marital status and
the spouse’s residency, as this affects the application of tax law. Such information often originates from
scarce data sources or resides in separate systems where regulatory constraints limit direct access. Hence,
compositional generalization, the ability of a model to create new combinations of known elements, is essential
for the quality of such applications.

As pretraining and fine-tuning become standard practices in Large Language Model (LLM) development,
reusing shared model weights from foundation models and their fine-tuned variants has emerged as a practical
strategy for generalization in data-scarce scenarios. Unlike Federated Learning (McMahan et al., 2017)),
this so-called model merging (Raffel, [2023)) approach passively operates on shared model weights without
coordinated training rounds. As parameter-efficient fine-tuning (PEFT) methods gain popularity, combining
fine-tuned modules, especially low-rank adapters (LoRAs) (Hu et al., [2021]), has emerged as a data-free
alternative to enhance model capabilities (Beck et al., |2022; [Huang et al., 2024} |Zhao et al.l |2024b} [Ostapenko
et al., [2024; Prabhakar et al., |2024; [Zhao et all 2024a; [Yadav et al., [2025). The idea is that users can
exchange and merge LoRA updates at inference time, just like plug-and-play libraries in a software program.
Consequently, this idea has sparked a proliferation of novel methods for reusing fine-tuned LoRA weights for
new tasks (e.g. [Huang et al., 2024; |Ostapenko et al., [2024; [Zhao et al, 2024b} [Beck et al. [2022} |Zhang et al.l
2025)).
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These approaches are appreciated for their computational and economic efficiency. However, they are often
developed and validated under varying experimental conditions, with differing assumptions about system
architecture, data availability, usage scenarios, and computational budgets. While recent work has addressed
such inconsistencies in combining entire fine-tuned foundation models (Tam et al., |2024), the various design
choices for merging or routing LoRA modules have only been surveyed (Yadav et all|2025)), leaving many
questions unanswered. Furthermore, Large Language Models (LLMs) gain knowledge through pretraining,
while supervised fine-tuning of instruction-following tasks teaches them the style or format for user interaction
(Zhou et al., |2023). Consequently, fine-tuning LLMs with new knowledge often leads to hallucinations
(Gekhman et al., |2024; |Ghosal et al., |2024)). Low-Rank Adaptations (LoRAs) are inherently limited in their
expressiveness (Zeng & Lee, [2024]) and can reduce chain-of-thought (CoT) reasoning abilities (Lobo et al.,
2025)).

In many real-world scenarios, producing high-quality answers is essential, yet data access is often limited
(e.g., health-care, finance, medicine). This raises our research question: how effectively can openly
shared LoRA modules be reused to generate valid answers for new tasks without direct access
to the corresponding raw data? To address this, we began with the theoretical analysis revealed its limit.
This is further supported by empirical findings using LLMs (parameters size ranging from 1.5B to 70B) and
synthetic tasks that were designed as proxies to real-world use cases: 2-hop reasoning to combine personal
information and math-reasoning in math word tasks. Together, our methods isolate factors affecting LoRA
reuse, highlight challenges, and provide practical data preparation insights for designing effective solutions in
those scenarios. Our key findings are:

e LoRA reuse is ineffective for new tasks regardless of model size or pretraining corpus.

o LoRA reuse can be successful without direct data-access when the common solution templates (e.g.,
chain-of-thoughts reasoning patterns or re-usable code snippets) existed in the fine-tuning datasets
as bridges.

Overall, our findings suggest that LoRA reuse reflects shallow pattern matching rather than logically combining
disjoint information among openly shared LoRAs. Understanding these mechanisms is crucial for designing
systems that can effectively reuse LoRAs and create suitable fine-tuning datasets. Practitioners must consider
the specific applications for composing existing LoRAs into new solutions, as curated training data is vital
for successful combination.

In the following sections, we begin with a discussion of related work and overlooked perspectives. We then
present theoretical analysis and empirical results that reveal the limitations of combining LoRAs in synthetic
two-hop reasoning and math problem setups. Overall, our work clarifies when LoRA reuse can be effective in
data-constrained settings and stress the need for rigorous, mechanism-driven studies to guide future research
and practical system design.

2 Related Work

LoRA modules (Hu et al., 2021) have emerged as a privacy-friendly, data-free method for sharing model
capabilities, allowing users to exchange LoRA updates and merge them at inference time like plug-and-play
libraries (Beck et al.| 2022; [Huang et al., [2024; |Zhao et al., |2024b; |(Ostapenko et al. |2024; |Prabhakar et al.|
2024; Zhao et al.l |2024a; |Yadav et al., 2025). However, many recycling methods require examples from unseen
tasks to estimate merging weights or routers, raising questions about how much successful generalization can
be attributed to the LoRAs themselves. This highlights the need for mechanisms ensuring effective LoRA
combination under limited data access.

Weight averaging and routing are two common strategies for reusing publicly shared LoRA weights that
were trained with the original PEFT approach (Hu et al., [2021)). Weight averaging is a popular approach to
reuse LoRAs that has been inspired by the following findings. First, fine-tuned models remain in the same
loss basin as pretrained weights (Neyshabur et al., 2020). The difference between pretrained and fine-tuned
model weights, or task vectors, can further steer model behavior through arithmetic operations (Ilharco et al.,
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2023)). Recent algorithms focus on resolving merge conflicts (TIE-Merging (Yadav et al., 2023))), randomly
pruning redundant parameters (Yu et al.| 2024)), and estimating weights for averaging LoRAs (e.g., LoRA-hub
(Huang et al., [2024)). However, the mechanisms that enable successful generalization remain unexplored.
Routing is another popular alternative that has inspired by the Mixture of Experts (MoE) architecture.
This type of approach treats openly shared LoRA adapters as domain experts and develops algorithms for
reuse them in novel domains. However, many methods require additional data access to setup the MoE for
retrieving experts or training routers (Chronopoulou et al., 2023; |Zhao et al., 2024a; |Jang et al., 2023). Arrow
(Ostapenko et al., |2024) is a notable exception, which routes LoRAs directly based on similarity between
query tokens and singular values of LoRA experts.

Beyond the standard LoRA (Hu et al., |2021)), recent work has explored alternative PEFT fine-tuning and
system designs to derive compositional strategies. For instance, LoRI (Zhang et al., 2025) reduces interference
by freezing projection matrices and applying task-specific masks. Similarly, LoRA Soups (CAT) (Prabhakar
et al.,|2024) freezes one low-rank matrix during fine-tuning and subsequently merges adapters by concatenating
their weights that explicitly leveraging held-out data to train a routing mechanism for the composite tasks.
LoRA Lego (Zhao et al.,[2024b) decomposes adapters into rank-level units for flexible recombination. Self-MoE
(Kang et al., 2024) takes a different route, creating self-specialized experts with synthetic data and dynamic
routing for task-specific activation.

What can be recycled from a hub of LoRAs? Despite the surge of novel algorithms, when privacy is
paramount, choices remain limited, especially for zero-shot generalization without access to training data.
The latent logic in pretraining corpus or term frequency may play roles in combining LoRAs for zero-shot
generalization. Scaling language models has shown emergent abilities for zero-shot reasoning (Wei et al.; 2022;
Kojima et al.l 2022) that suggests LLMs learned latent logical knowledge during pretraining. Task vectors
demonstrate analogical reasoning through arithmetic operations (Ilharco et all 2023)), but their effectiveness
may depend on term co-occurrence frequency in pretraining data (Merullo et al., |2025). If LoRAs serve
as linear approximations of fine-tuned tasks, then term-frequency effects from pretraining may constrain
their ability to generalize to tasks that are underrepresented in the pretraining dataset. An alternative is
that observed generalization performance via merging or routing LoRAs reflects superficial pattern-matching
rather than genuine compositionality. Empirical studies indicate LLMs rely on token-level cues, with small
lexical changes affecting reasoning performance (Mirzadeh et all|2024; [Li et al.| [2024a). LLMs struggle with
latent multi-hop reasoning, relying on explicit prompting to bridge the logic gaps (Press et al., |2023; [Balesni
et al., [2025). Synthetic reasoning tasks thus play a key role in assessing compositional generalization, which
indicates how effectively LoRA combination transfers to entirely novel tasks.

When does reusing fine-tuned adapters work without training data? This challenge is particularly
relevant in domains such as healthcare, finance, and medicine, where data sharing is restricted but accuracy
is essential. To ensure practical relevance, our study focuses on the standard LoRA (Hu et al.| |2021)), which
is the predominant PEFT method and serves as the default in numerous open-source frameworks and cloud
platforms. Our investigation begins with theoretical analysis of two-hop reasoning that shows the limits of
reusing LoRAs weights. It follows with experiments using synthetic data as proxies for real-world scenarios
under data constraints. The experiments were conducted on LLMs with diverse pretraining histories and
parameter scales (1.5B—70B) to identify conditions for successful LoRA reuse. Finally, we extend the study to
math word problems to verify how data augmentation strategies (e.g., chain-of-thought templates, reusable
code snippets via multi-agent generation) and layer-targeted fine-tuning can further facilitate success. The
next section details our methodology and experimental design.

3 Theoretical Analysis

Here, we argue theoretically that low-rank adaptation, while it can store new facts in transformers, is unlikely
to lead to compositional behavior when combining different LoRAs. We study this by considering the problem
of composing knowledge from two LoRAs, where each contains factual knowledge, and their combination
is expected to perform two-hop reasoning (e.g. Yang et al., [2024b; Balesni et al.| [2025) that requires both
pieces of knowledge. In general, direct theoretical understanding of multi-layer softmax transformers is very
difficult; but many theoretical insights have been obtained by studying one-layer models and the limit of
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very wide models. We use this approach to perform a simple analysis of low-rank adaptation for factual
knowledge. Our setup is inspired by a prior theoretical study of factual recall in transformers (Nichani et al.,
2025)) focusing on one-layer transformers. For simplicity, we focus on the special case of a single attention
head, and do not assume noise tokens in the context.

One-layer transformers are a popular model in the theoretical literature, being more tractable than multi-layer
models while offering useful insight (e.g. [Peng et al., [2024; |Li et al.l |2024b; [Sanford et al., 2023). Our empirical
results (Section confirm the applicability of our key conclusions to real-world LLMs.

Nichani et al.| (2025} Section 4) show that either an MLP or an attention head can perform factual recall.
Adapting the MLP with LoRA on a one-hop prompt can change individual facts — such as setting r1(z1) to
9. However, importantly, combining LoRAs adapting two relations will not result in compositional behavior,
as we show below.

3.1 Setup

Entities, Facts, and Prompts We consider a set X’ of entities, and a set R of binary relations r C X x X
(e.g., X is married to Y; Y lives in Z, etc). We assume that each r is a partial function, i.e., for each z,
there is at most one y satisfying (z,y) € r; we write y = r(z). Whereas |Nichani et al.|(2025]) relied on the
assumption that each relation maps to a disjoint output space, we avoid this assumption. We assume that
the model operates on the following types of prompts

1. One-Hop: X REL (where X represents an entity @ € X and REL represents a relation r € R, with
expected completion: Y, where y = r(z) (e.g., “the spouse of X is Y”).

2. Two-Hop: X REL1 REL2 (where REL1, REL2 represent relations 1,72 € R), with expected completion:
Y, where y = r2(r1(2)) (e.g. “the place of birth of the spouse of X is Y”).

Simple Transformer Model We consider a vocabulary consisting of relations rq,72,... and entities
T1,Ta,...; with token embeddings e,,, e,, € RY. We will write E € RI¥URIXd for the matrix holding all token
embeddings. We assume a single softmax attention head with K,Q,V € R?*? matrices, and a ReLU MLP
with hidden dimension m given by matrices U € R™*?; W € RI*!X™ ‘mapping a vector z to W - prerv (Uz).
We do not require positional encodings. We assume that the next-token prediction is provided by W as a
one-hot encoding of the target entity, i,, omitting softmax for simplicity. Our aim is to showcase limitations
in composition, not in storage of knowledge itself; hence, we allow the model a width d substantially larger
than |X],|R|. In order to give the MLP as much capacity as needed, we allow m to be arbitrarily large.

Nichani et al| (2025) took E to be randomly initialized and not trained. We follow this assumption, and
additionally take U,V to remain untrained, as we do not assume noise tokens in the context. Overall, we
assume that U, V, E matrices are randomly initialized, all with entries from A/(0, ﬁ) We focus consideration

of training to W. This represents a random features setup (e.g. [Rahimi & Recht] 2008} |Ghosal et al.l |2022}
Dirksen et al., 2022). In this setup, softmax attention is close to uniform; we will take it to be exactly uniform
for simplicity. We will examine the situation where the base model already performs correctly for the given
set of relations R, and W is then adapted to reflect edits to such facts.

We focus LoRA on W, in agreement with our experimental finding in Section that applying to MLPs can
be sufficient to get most of the gains. We consider updates AW = ABT with A € RI¥I*5 B € R"™** where s
is small, subject to an L2 penalty ||A||% + || B||%. We particularly consider one-rank updates, AW = pq”
where p € RI¥l ¢ € R™.

We note that this setup simplifies many aspects of transformers: there is only one layer and one head, and
training focuses on the (linearized) output. We also remove the softmax over the vocabulary in the output.
Our setup is designed to be simplest possible setup in which a nontrivial statement about LoRA’s ability to
learn and combine abilities can be made.
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3.2 Results

The correct responses to all 1-hop and 2-hop relations can jointly be coded into W when d and m are
sufficiently large, due to the separation ability of the random features model (Ghosal et al., 2022). This
analysis is in line with mechanistic studies of factual recall suggesting MLPs act as key-value storage (Geva,
et al., 2021)).

Changing a fact y = r(x) requires changing the output of the MLP on the subspace spanned by the entity
and relation. When the update affects only a single fact, L2 regularization ensures that it has a simple and
interpretable closed form:

Proposition 1. A rank-one update to W changing the output on a prompt X REL from r(x) to 7(x) must
have the form:

1 - .
|¢rerv (UVex + Uerg)||3 (ir(z) = ir(a)

AW,ys = YOreru(U - Vex+ U - eHEL)T (1)

This is similar to the RoME update (Meng et al., [2022)). Intuitively, based on the idea that MLPs act as
key-value storage, the LoRA update AW = AB” specifically addresses the encoding of the prompt X REL in
the B matrix, and the changed output in the A matrix. The proof is in Appendix

Now consider a two-hop prompt X REL1 REL2, intended to denote the composition of the two relations. Given
sufficient width, any set of such two-hop facts can be encoded in W. However, as we next show, adding two
LoRAs modifying two relations (AW, yr , AW,y ) will not unlock compositional behavior on the new
facts:

Theorem 2. Assume LoRAs AW, s, , AW, 5, are created to adapt two single facts for r1, ro. Summing
these adapters will not result in correct results for composition of the two relations ry,12.

The formal proof is in Appendix [A71] The reasoning is as follows. As shown in Proposition [I} the two LoRAs
specifically modify the MLP output on the subspaces inhabited by the activations computed on the two
one-hop prompts. When the model encounters a two-hop prompt, the activations will partly overlap with the
subspaces for both one-hop prompts, and the adapters will lead the model to output not the composition
ro(r1(x)), but a linear mixture of two relevant entities. A natural question is whether some of the routing or
weighting methods proposed in the literature resolve this; it turns out that the argument extends to those:
For instance, weighted averaging of the two adapters (e.g. [Prabhakar et al., 2024; |Ostapenko et al.| [2024) will
still fail to perform compositionally when several facts are updated. Formally (see Appendix for the
proof),

Theorem 3. The same result holds for CAT (Prabhakar et all |2024), linear merging of LoRAs (Yadav et al.l
2025; | Yu et al), 2024 |Huang et all, |2024)), Arrow routing (Ostapenko et al., |2024).

Yet another approach might be to combine a larger library of LoRAs where some have been trained on 2-hop
examples from other task pairs. One might hope that this would prime the model towards compositional
behavior; however, the reasoning above still applies, and suggests that reusing LoRAs would still fail to

behave compositionally (Appendix [A.1.1]).

One limitation of our theoretical analysis is that (in line with Nichani et al.| (2025)) it applies to a single-layer
transformer; our experiments test applicability of the conclusions to LLMs across scales.

4 Experiments

The following experiments aim to apply the above theoretical analysis in full-scale LLMs to determine under
what conditions combining LoRAs enables LLMs to perform new tasks that requires logical integration
of information segmented among fine-tuning datasets. We focus on two data-agnostic routing methods,
Uniform averaging and Arrow routing (Ostapenko et al.| [2024)), which operate directly on LoRA weights (see
Appendix . We designed two synthetic tasks, two-hop reasoning and math word problems, as proxies
for real-world cases that require combining personal information or mathematical reasoning under data-scarce



Under review as submission to TMLR

conditions. This helps identify key preconditions for effective LoRA routing: entity familiarity, domain-specific
pretraining, and common solution templates that link segmented information across fine-tuned adapters. We
further examine how these effects hold in different routing strategies and scale across base model sizes ranging
from 1.5B to 70B parameters.

4.1 Two-Hop generalization

We investigate whether combining two LoRAs enables compositional reasoning. Building on our theoretical
analysis and inspired by |Balesni et al| (2025, we design a two-hop reasoning task requiring composition
across linguistic variations while controlling for base model knowledge. The dataset uses a fixed structure:
First Hop (A — B, identifying the spouse of a given entity A), Second Hop (B — C, identifying the
residence of B), with the goal of inferring A — C. This setup closely follows our Theorem [2} which suggests
that LoRAs trained on one of the two hops each would, if combined, not unlock the indirect relationship.

We conduct three datasets varying the nature of entity names and locations while ensuring that the relational
facts remain synthetic: F' (fake names, fake locations), where both entities and locations are synthetic (e.g.,
(Zint, Frosk, Narik)); H (fake names, real locations), where names are synthetic but locations are real (e.g.,
(Zint, Frosk, London)); and R (real names, real locations), where both names and locations are real, but
relationships are deliberately shuffled to remain false (e.g., (Barack Obama,Camila Alves, London)). We
refer to the first-hop (A — B), second-hop (B — C), and the two-hop (A — C) subsets of each dataset as
Fy, F5, Fi5, Hy, Hy, Hi5, and Ry, Rs, Ry2, respectively (see Table [5[ and Appendix for examples and
details).

Based on ablation studies (Table [8| and |§| in Appendix , we focused on fine-tuning only the MLP
layers of the following base models: Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct, and Qwen2.5-14B-Instruct
Qwen-team| (2025), as well as DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B, and DeepSeek-
R1-Distill-LLaMA-70B |DeepSeek-Al-team (2025).

4.1.1 Impact of base model and familiarity

Experiment setup For each dataset (F, H, R), we train four LoRA adapters (experts) LoRA 1, LoRA 2,
LoRA 3 (Oracle Expert), and LoRA 4 (Mixed Two-Hop Expert) on relation A - B, B — C, A — C, and
mixed data (A — B, B — (), respectively. From these experts, we construct two libraries: 2-combination
library which includes LoRA 1 and LoRA 2; and 3-combination library which includes LoRA 1, LoRA
2, and LoRA 3. We evaluate the model’s ability to generalize and infer A — C' relationships. We use
Chain-of-Thought (CoT) prompting during testing for the 3-combination library and the 2-combination
library.

Results and analysis As shown in Figure [Th, performance on the 3-combination library for the H dataset
improves with model size, while the 2-combination library remains consistently poor. Figure |Ip shows that
R outperforms H, both far exceeding F'. Notably, with only A — B and B — C adapters (2-combination
library), accuracy stays below 10%, supporting Theorem [2| that composing knowledge across separate LoRAs
is inherently challenging. Even when A — C' is covered (3-combination library), routing does not always
succeed, in particular in smaller models and the presence of of unfamiliar entities, such as fake names or cities
in the F' dataset. These trends hold across datasets and model families (see Table |z| in Appendix .

4.1.2 Composition requires close match between testing and training prompts

So far, we found that synthesizing two-hop reasoning from two LoRAs is difficult, in agreement with our
theoretical predictions. What strategies could enable composition? While a substantial amount of work has
found chain-of-thoughts to support reasoning (including in the 2-hop setup when employing full-parameter
finetuning, (Balesni et al., [2025))), we found that composition from the two A — B and B — C experts
performs poorly even with chain-of-thought prompting. Our theoretical analysis suggests that, as LoRA
adapters rely on targeting specific low-dimensional subspaces, compositional behavior can only be unlocked
when the target prompts show a close formal match to prompts on which the LoRAs were trained. CoT
prompting might thus be insufficient as the form of the targets mismatches the one-hop training examples
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Figure 1: LoRA reuse is ineffective across model sizes and pretraining corpora, as shown by performance
comparisons between a library of multiple LoRA adapters and individually fine-tuned LoRA experts on
two-hop datasets. (a) Comparison of library-level and expert-level performance on the test set of H across
different base models. (b) Impact of entity familiarity on the performance of LoRA combination methods,
using Qwen2.5-14B-Instruct as the base model, evaluated on three test sets: F', H, and R. Across setups and
model sizes, performance on the 2-combination library is poor; including an expert trained on the target task
(A — C relationship) is necessary.

of the LoRAs. However, mixing in CoT examples into the LoRA training data might be sufficient. In this
section, we test if it is possible to enable composition by including CoT templates in the training data,
and how close the match in reasoning patterns needs to be between finetuning and testing datasets. We
specifically define the following bridge technique, and design a series of experiments to determine how closely
the target task must be represented in the LoRA fine-tuning datasets to enable compositional behavior. The
idea is that the finetuning dataset additionally includes examples of the targeted reasoning pattern. Via
ablations, we test which aspects of the targeted reasoning pattern needs to be present.

Experimental setup We design two bridge variants over the F and R datasets. The Fake Bridge (Br) is
constructed by concatenating the Fy (A — B), Fy (B — C), and Fi2 CoT (CoT-formatted A — C) subsets.
The Real Bridge (Bg) follows the same structure but uses the corresponding subsets (R, Ra, R12 CoT)
from the R dataset, which contains real names and locations (see Table|§| and Figure |3|in the Appendix
for examples and details). We fine-tune adapters on the union of direct-hop examples and a bridge dataset.
In the first configuration, Setup 1, models are trained by mixing fake data subsets (F;) with the Real Bridge
set (Bgr): LoRA 1 is trained on F1 + Bg, and LoRA 2 on F5 + Bp, with evaluation on the held-out subset
Fi5. In the second configuration, Setup 2, models are trained by mixing real data subsets (R;) with the
Fake Bridge set (Bp): LoRA 1 is trained on Ry + B, and LoRA 2 on Ry + By, with evaluation on the
held-out subset Rqs.

Results and analysis Figure [2| demonstrates that explicitly incorporating the target two-hop reasoning
pattern into the LoRA fine-tuning data is crucial for achieving reliable compositional generalization. In
Setups 1 and 2, where each adapter is trained on a synthetic direct-hop subset combined with the bridge
dataset, Arrow performance improves significantly compared to earlier experiments. Additionally, the bridge
setup is much more successful in Setup 2, highlighting the importance of entity familiarity for effective
generalization.

We conducted a set of ablations to analyze which aspects are important for the success of this strategy.
Incorporating structured reasoning into LoRA finetuning yields only marginal gains unless the finetuning
data closely mirror the target two-hop task. First, as shown in Table[I] the bridge improves two-hop accuracy
only when CoT-formatted A — C instances are included during adapter training. Omitting CoT formatting
results in worse performance (Setups 2 vs. 3). Second, simply including the bridge in only one of the two
LoRA adapters (Setups 4, 5), or providing only A — C prompts without the individual one-hop tasks
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Figure 2: (left) In the bridge setup, both LoRA experts are trained not only on one of the two hops, but also
on examples (disjoint from those needed in testing) of both hops, and chain-of-thought two-hop reasoning.
(right) Performance comparison of two setups across different base models: Setup 1 (Real Bridge, Bgr) adds
a bridge using real names and locations to a dataset using fake names and fake locations (F'), while Setup 2
(Fake Bridge, Br) reverses these. Each setup uses LoRA 1 and LoRA 2 as the experts in the library. The
bridge setup is much more successful in Setup 2.

(Setups 6, 7), results in significantly weaker compositional performance compared to setups where both Fj
(A — B) and F» (B — C) are included alongside CoT bridging. This highlights the importance of exposing
the model to each subtask. Third, we found that relaxing the bridge to use disjoint task pairs still produces
nontrivial gains (Setup 8, which uses completely different relations as the bridge dataset: Fjy: study in and
F5: child_of, see Table |5[in the Appendix for examples), suggesting that exact task-pair matching is
less critical so long as the finetuning set contains examples reflecting the overall reasoning pattern. Altogether,
these results confirm the importance of CoT exemplars and the individual tasks to unlocking generalization
of Arrow routing, even if the examplars are semantically different from the target task.

Aside from combinations of two or three LoRAs, we further tested what happens when increasing the number
of tasks present in the collection of LoRAs, including both various one-hop tasks, and also various two-hop
tasks. Even in this case, we found that composition was very difficult, again in agreement with our theoretical
predictions (Analysis in Appendix [A.3).

Table 1: Ablations for the bridge training setups. We compare the 2-combination libraries trained on just
the two hops (0), the full bridge (2), with various strategies interpolating between these, such as providing
a bridge in only one expert (4 and 5), or omitting the CoT template from the bridge (3). The full bridge
attains highest performance, and versions not including a bridge CoT in both of the two experts show poor
performance (0, 3, 4, 5).

Qwen2.5- Qwen2.5- Qwen2.5- DeepSeek-R1- DeepSeek-R1- DeepSeek-R1-
Setup  LoRA 1 LoRA 2 3B-Instruct 7B-Instruct 14B-Instruct Distill-Qwen-7B Distill-Qwen-14B Distill-Llama-70B
0 Ry Ry 1% 3.9% 7.8% 8.8% 3.9% 5.9%
2 0 R 73.5% 85.3% 94.1% 89.2% 95.1% 90.3%
Fy+ Fy + Fi3 CoT (Bp) Fi+ Fy + Fia CoT (Br)
3 1{3’1+F F §2+ P4 1% 2.9% 3.9% 3.9% 11.8% 3.9%
1 2 12 1 2 12
4 ?1+F + iy CoT (Bp) Ry 9.8% 8.8% 11.8% 8.8% 12.7% 10.2%
1 2 12 F
5 Ry §2+ Fy+ Fip CoT (Br) 10.8% 35.3% 27.5% 25.9% 22.5% 26.1%
1 2 12 LA F
6 ?1 CoT ifz CoT 40.2% 61.8% 65.7% 75.5% 72.5% 87.3%
12 12 U
7 ?1‘ + Py CoT ?;+ Py CoT 27.5% 75.5% 79.4% 74.5% 76.9% 89.9%
8 & g 43.1% 82.4% 92.2% 81.6% 83.5% 87.9%

Fy + Fy + Fyy CoT

Fs + F5 + F55 CoT
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We also investigate on how the 2-hop reasoning gap can be closed without reasoning templates as bridge
but alternative merging methods or extra training when data access would be allowed. To achieve this,
we utilize LoRA 1 and LoRA 2 in Setup 0 as shown in the Table [I| and apply uniform averaging (Huang
et al.l |2024} |Ostapenko et al., 2024), TTES-Merging (Yadav et al.,|2023) and LoRA Soups (CAT) (Prabhakar
et al 2024) on them as comparison baselines because they represent widely discussed strategies for merging
openly shared fine-tuned LoRA weights. TIES-Merging applies a structured procedure—trimming low-impact
parameters, resolving sign conflicts, and selectively merging—to reduce interference when combining multiple
model weights. CAT altered the original LoRA (Hu et al., [2021) by only allowed one low-ranked matrices to
be fine-tuned, concatenation multiple LoRA model weights, and requires access to held-out data for routing
training to composite multiple tasks. Table [2 shows that when held-out data is available for routing training,
CAT achieves higher accuracy than methods operating without data access. However, its performance remains
below setups that route openly shared LoRAs originally fine-tuned on well-designed datasets (Table [1} setup
2,6,8).

Table 2: Performance of routing methods using a 2-combination LoRA adapter library on Qwen2.5-7B-Instruct
with the R dataset (Setup 0 from Table . CAT was trained on half of R; 2 and evaluated on the other half,
unlike the other methods that were tested without further training.

Routing Accuracy

uniform 3%

arrow 3.9%
TIES 3.8%
CAT 21%

Overall, these results support our conclusion that (i) direct composition of knowledge from different LoRAs is
very difficult, (ii) the LoRA finetuning datasets must contain examples closely matching the target reasoning
behavior.

4.2 Generalization from Easy to Hard Math Word Problems

To evaluate whether our findings hold in more realistic settings, we use the GSM-Symbolic benchmark
(Mirzadeh et al.l |2024]), which enables controlled assessment of reasoning robustness in math across well-
defined difficulty levels. Each LoRA expert was fine-tuned on GSM-Symbolic (original) and GSM-P1 (with
one added clause) individually, before being combined for evaluation on GSM-P2 (which adds another clause).
We compare general-purpose and math-specialized models to assess the impact of pretraining. Similar to
exposing LoRAs to solutions closely resembling the target task, we also tested whether fine-tuning with
reusable Markdown and Python code (Suzgun et al.| 2025) would improve generalization on GSM-P2. Detailed
experimental design, fine-tuning, and evaluation procedures can be found in Appendix Section

Limitations of LoRA reuse. The effectiveness of LoRA routing is highly dependent on the base model’s
domain-specific pretraining history. To start, we replicated the findings of [Mirzadeh et al.| (2024)), which show
that large language models (LLMs) lack robustness in mathematical reasoning (see Appendix Section
Table. Routing methods such as Uniform and Arrow provided modest improvements for the general-purpose
Qwen2.5-1.5B-Instruction model, but often degraded performance in math-specialized models like Qwen2.5-
Math-Instruction, regardless of model size (Table . Among these, Uniform consistently outperformed Arrow.
Echoing prior work showing that 8-shot GSM8K in-context examples do not improve performance on GSM-P2
(Mirzadeh et al., |2024), we further observed that combining these examples with LoRA routing actually
worsened results. For example, in the Qwen2.5-Math-7B-Instruction model, Arrow routing with in-context
examples reduced GSM-P2 accuracy from 0.27 to 0.06 (see Appendix Section Table [13] for details).

The performance drop observed after LoRA routing may stem from a mismatch between the fine-tuning data
and the base model’s capabilities. Qwen2.5-Math-Instruction is designed to solve problems using Markdown
and Python code, while the GSM-Symbolic benchmarks provide only natural language Chain-of-Thought
(CoT) solutions. As a result, routing LoRAs fine-tuned on this dataset may suppress the model’s tool-
integrated reasoning abilities and lead to an increase in calculation errors. Our error analysis follows the
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definitions and procedures outlined by |Zhong et al.| (2025)). See Appendix Section and Table [14] for
details.

Table 3: Accuracy comparison on zero-shot GSM-P2 after routing LoRA experts individually fine-tuned on
GSM-Symbolic and GSM-P1.

LoRA Routing Methods Qwen2.5-1.5B-Inst Qwen2.5-Math-1.5B-Inst Qwen2.5-Math-7B-Inst

Base model only 5% 47% 63%
Uniform 10% 24% 34%
Arrow 9% 19% 27%

How can programming language bridge the generalization gap? This experiment extends our
bridge results in two-hop reasoning (Table [1]) to math word problems. The experimental design is motivated
by recent findings, Dynamic Cheatsheet, which demonstrate that encouraging language models to retain
and apply reusable intermediate solutions during inference significantly improves their performance on
math problems (Suzgun et al.l |2025)). We extend this idea using the GSM-Symbolic benchmark (Mirzadeh
et al., [2024), where generalization from easier to harder problem variants requires understanding the full
computational graph (Appendix Figure . In the previous setting, each LoRA is fine-tuned on partial
solutions corresponding to subsets of reasoning steps (e.g., the black or orange subgraphs in Appendix
Figure |5). However, routing these LoRAs alone does not suffice to solve the more complex P2 variant, which
involves the complete computational graph (blue subgraph in Appendix Figure . We hypothesize that
reusable Markdown and Python solutions can bridge partial representations and enhance compositional
generalization through LoRA routing. To test this, we implemented two agent-based actor-critic workflows
(Wu et al., 2024)) to automatically generate reusable code snippets as fine-tuning data (See Appendix
for implementation details). Table 4| demonstrate modest improvements in solving the complex P2 problems
via routing LoRAs fine-tuned with these reusable code snippets. Such improvement is clearer in smaller
model (Qwen2.5-Math-1.5B-Instruction) when fine-tuning targeted the MLP layers. This result aligns with
our theoretical analysis and findings from the two-hop reasoning task. It highlights the importance of the
mechanistic understanding of how to reuse LoRA adapters effectively for guiding data generation, and shows
that such reuse works best when target tasks are clearly defined in advance.

Table 4: Enhancing easy-to-hard generalization by leveraging Tool-Integrated Reasoning (TIR) prompt and
fine-tuning with reusable code.

Base model Fine-tuned Modules Routing Methods LoRA(GSM-Symb) and LoRA(GSM-Symb-P1) Base Model Only
5 H - 0y
attention Ulilll-le‘;n ﬁ (;f 18%
Qwen2.5-Math-1.5B-Inst MLP Uniform 20%
Arrow 13%
attention UAnift(J;r]n 42(4)“;06 A7%
Qwen2.5-Math-7B-Inst MLP Uniform 30%
Arrow 37%

5 Discussion

Our findings indicate that combining LoRAs is ineffective for new tasks unless common solutions to those
tasks are already represented in the fine-tuning datasets. Although alternative PEFT methods may offer
better compositional results, our study focuses on merging adapters without access to further training data.
It is because allowing training would enable reconfiguration of adapters and task setups that make the reuse
problem trivial. While comprehensive empirical comparison is beyond our scope, we discuss them using our
theoretical and empirical insights for guiding the future directions. For instance, LoRI (Zhang et al.,|2025)
addresses cross-task inference by combining random projections with task-specific masks, potentially enabling
better adapter routing. However, positive results for compositional reasoning have not been reported, and

10
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our theoretical analysis suggests that it remains challenging. Similarly, LoRA Lego (Zhao et al.; 2024b)
formalizes low-rank updates as composed of independent units and clusters these into new adapters to reduce
interference, though it has not been shown to enable compositional reasoning. Self-MoE (Kang et al., [2024)
constructs experts based on self-generated specialization training data and a trained router, but it remains
underexplored to what extent this method can enable compositional combination of different abilities. FLiX
(Sun et all 2024) learns different low-rank updates for various task or dataset features, and CS-ReFT (Sun
et al.l 2024) learns orthonormal task-specific adaptors. Despite these innovations, none have demonstrated
effective compositional combination of skills, as our theoretical analysis suggests inherent limitations.

Recent work (Prabhakar et al., [2024]) has proposed LoRA concatenation as an effective method for composing
skills to solve challenging math word problems, such as those in GSM-Hard (Gao et al.,2023). We recognize
the significance of these findings, particularly their demonstration that decomposing skills into reusable
LoRAs and estimating appropriate combination weights can enhance performance, provided that additional
task-specific data and knowledge are available. However, our work takes a different perspective. Unlike GSM-
Hard (Gao et al 2023), which primarily modifies numerical ranges while preserving the question format of
the original GSM8K problems, GSM-Symbolic-P2 (Mirzadeh et al.,|2024) presents more realistic and difficult
compositional generalization challenges. It altered the question format and the structural complexity of math
problems into an entirely unseen problem forms. Our theoretical analysis shows limitations (Appendix
supported by empirical results that training showed little gains in a 2-hop reasoning setting (Appendix
Table. This suggests that the benefits of such approaches may not extend to more challenging generalization
tasks like GSM-Symbolic. While skill composition remains important, our results highlight a key limitation of
LoRA routing approaches as shown in our theoretical analyses and empirical findings: their effectiveness often
depends on prior knowledge or training data of the downstream tasks, which may not be viable in practice.

6 Conclusions

Our experiments explored the conditions under which combining LoRAs can enable LLMs to perform
new tasks by integrating abilities from different LoRAs. We focused on two domains: two-hop reasoning
and mathematical reasoning. In two-hop reasoning, we found that combining multiple LoRAs does not
significantly improve performance unless the tasks are already represented in the fine-tuning datasets.
Familiarity with entities enhances generalization, but the inherent challenge of composing knowledge from
separate LoRAs remains. Incorporating chain-of-thought templates into training data provides only marginal
improvements, particularly when fine-tuning MLP layers.

In mathematical reasoning, the effectiveness of LoRA merging is highly dependent on the base
model’s pre-training history. Models with domain-specific pretraining show better performance on complex
tasks, while general-purpose models yield inconsistent results. Using reusable Python code solutions as
fine-tuning datasets offers slight benefits, but the overall challenge of merging LoRAs persists.

Overall, our findings indicate that combining LoRAs is ineffective for new tasks unless those tasks are already
represented in the fine-tuning datasets. Familiarity with entities and domains is crucial, but routing strategies
often interfere with performance, especially in smaller models and unfamiliar contexts. Targeting MLP layers
during fine-tuning may offer some advantages, but the direct composition of knowledge from different LoRAs
remains problematic. These results indicate that a shift in focus from algorithmic innovation to understanding
the boundaries of adapter-based merging is necessary, leveraging synthetic data and theoretical analysis to
design effective systems.
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A Technical Appendices and Supplementary Material

This appendix offers supplementary details to support our position in the main text, including;:

e A.1: Formal theoretical analysis.
e A.2: Detailed experimental setups and results for 2-hop experiments.
e A.3: Evaluating Larger Sets of LoRAs.

e A.4: Detailed experimental setups and results for easy-to-hard math word problems.

A.1 Theoretical Analysis

Transformer Model Here, we spell out the one-layer transformer model more formally. We consider a
vocabulary consisting of relations 71,72, ... and entities z1, z9, ... ; with token embeddings e,,, e,, € R4, We
will write £ € RI*YRIXd for the matrix holding all token embeddings.

We assume a single softmax attention head with K, Q,V € R4*¢ matrices, and a ReLU MLP with hidden
dimension m given by matrices U € R™*% W € RI*¥/*™ ‘mapping a vector z to W - ¢perv(Uz).

We assume that the K, Q, U, V, E matrices are randomly initialized, all with entries from N(0, - d). Only W

S

is trained.
Given a prompt

P1...PN (2)
where each token p; € X UR, the input is embedded into token embeddings, which can be written as:

E,, ...E,, €R? (3)

where each E,, is either an e, (r a relation) or e, (z an entity). We assume strict causal masking, where
attention is allocated to the preceding positions; the activation at the current position is forward via a residual
connection. The attention head, at the query position NV, outputs

= exp(BLKTQey,)

>

N—1
= 2o exp(E] KT Qepy)

VEPi (4)

With the described initialization, the individual attention logits E;C K*Qe,, are close to zero when d is large,
i.e., attention is close to uniform. We will, going forward, take attention to be exactly uniform for analytical
simplicity:

T S VE, (5)

In addition, the residual connection contributes E,,. Then, the ReLU MLP outputs

)

W - ¢rerv (U'

1 N—-1
Epx + 51 ;VE

N-1
1
—W - bperr (UEPN + 51 Z; UVE )

Formalizing LoRA We formalize training of a LoRA adapter AW = ABT on a training prompt (e.g. X
REL Y) as choosing an adapter for which the model with adapted parameters W + AW outputs the target
entity Y after the prompt X REL, while (among all such interpolating adapters) minimizing the regularizer
IAlI% + 11B]%-

16



Under review as submission to TMLR

Formal Proofs Here, we provide the formal proofs of our results stated in the main text.
Proposition 4 (Repeated from Proposition 1). A rank-one update to W' changing the output on a prompt X
REL from r(z) to #(x) must have the form:

1
|¢rerv (UVex+ Uens)||3

AWT»—M’ - (zF(T) - ir(m))¢ReLU(U . VeX + U - eREL)T (6)

Proof. We have the demand that

(W + AW, s7)prerv (U - Vex + U - epeL) = in(a) (7)
hence
AWT»—H:QSRELU(U Vex+U- 6REL) = Z’;(J,) - Z7(9:) (8)
Setting
pq" =AW, s

v =¢Rrerv(U-Vex +U - eps)

W =i(z) ~ r(z)
we consider the general problem of finding p, ¢ such that
pg v =w 9)

_w

while minimizing the regularizer ||p||3 + ||¢||3. First, by rearranging p = 75+ We now use the regularizer to
show that ¢ must be a multiple of v. Substituting into the objective, we find:

[wll3
J(q) = |Ipll3 + llqll = (qTU)ZQ +llall3- (10)
with
lwlf3
VJ(g) = -2 (7o) v+ 2q. (11)
Setting V.J(q) = 0 leads to
i3
(¢Tv)?

Hence, ¢ is a multiple of v, and p is a multiple of w; thus, for some scalar a, pg” = awv?, and

w = pq’ v = awvTv = awl||v|2 (12)

1

5. The result follows.
[v]13

andoz:|

O

Theorem 5 (Repeated from Theorem. Assume LoRAs AWy, 5, AW, y7, are created to adapt two single
facts for r1, ro. Summing these adapters will not result in correct results for composition of the two relations
r1,7T2.

Proof. We have

€r,ey € R
V e R
U e Rmxd
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We first note that, in the regime m — oo, the random features model given by the initialization is represented
by the kernel (Le Roux & Bengio| (2007)); Section 7.4.3 in Bach| (2024))

N o Nellzllzllz -

k(z,z") o« o ((mr —n) cosn + sinn) (13)

where .

xtx
cosn = -————— (14)

[[]]2[|2[|2
where 1

k(z,2') = EQbReLU(Ux)TQSReLU(Uf/) (15)

in the limit where m — oo. Consider
Fi(z) =y
F2(y) = 2

To understand the model prediction on a two-hop prompt

X REL1 REL2 (16)
after adding the two LoRAs, we consider
Vv Vv
(W + AW,y + AWiyisiy) * @ReLU (U' 5 et U- 5 erELLt U- €REL2> (17)

where the factors % reflect the uniform attention weights of the single head that forwards information from

preceding token, with value projection matrix V. We can write the second factor as

2 2
gi=

V Vv
Orerv |U - ( -ex+ — - erprL1 + 6REL2> (18)

By Proposition
AW,y siy o (iy — iy () SrerLv (U - (Vex + erpra))”
~———

1=
AW,pgsiy o (iz = iry(y) - Orerv (U - (Vey + erpra))”
—_————
nN2:=

In the regime m — oo,

Vv Vv
(AWyy iy + AWeyisi,) - dReLU <U' —-ex+U- 5 " ERBL1 +U- GREL2>

2
k(n1,€) k(n2,¢)
k(nl’ 771)

k(772’ 772)

Adding the two adapters simply contributes nonzero multiples of both terms in

~

N(iy - irl(w)) . + (iz - ir2(y)) :

Gy = Qpy (o) AN T2 — Gy (y)s (19)

instead of the correct i, — i,,(,). As an addition, we also note that the newly added knowledge will not
compositionally interact with knowledge stored for other entities. Consider a prompt

U REL1 REL2 (20)

where U denotes a different entity, not the entity X. Then the subspaces addressed by the two LoRAs would
again have overlap with the activation on this prompt, and they would again contribute a linear combination
of , even though neither y nor z might be relevant.

O
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A.1.1 Further Discussion

Extensions to larger numbers of facts The reasoning in the above result can be expanded to the setting
where the LoRA adapters are trained for more than one new fact. In this case, the limitation shown by the
theorem will become even more problematic: Assume that, say

Fi(z) =y
f1(u) =v
Fa(y) = =
To(v) = w

In the regime where d is large, each of the updates AW, 7, AW,, 7 will be approximately a sum of
rank-one updates of the form @, with cross-terms from the overlap due to the shared encoding vector of the
relation. More specifically, for

p1 = ¢rerv(U - (Vey + erer2))

p2 = ¢reLv(U - (Ve, + erpr2))

we have

T T -1
. . . , P1P1 P1P2 T
AW, i, = (i — 1 Tw — By (v 21
2o = ( 2(y) 2) <p1Tp2 pgm) (p1 p2) (21)

and analogously for AW, ... When run on a prompt
X REL1 REL2 or U REL1 REL2 (22)

the adapter AW,,,,7, will, in the regime where m is large, contribute the same multiple of

(7/2 - Zrz(y)) + (Zw - irg(u)) (23)
in both cases, showing that the knowledge contributed by AW, 5, fails to be compositionally integrated.

Extension to other routing and merging methods Another important consideration is how the
argument extends to other routing or merging methods beyond summing adapters.

Theorem 6 (Repeated from Theorem . The same result holds for CAT (Prabhakar et all, |2024]), linear
merging of LoRAs (Yadav et all, |2023; |Yu et all |2024; |Huang et all, (2024), Arrow routing (Ostapenko et all,
2024).

Proof. We first consider CAT (Prabhakar et al., 2024):
AW = OélBlA{ + OZQBQA;F (24)

where the output on the prompt is a weighted combination, with fitted weights a1, ais. Increasing the weight
belonging to the relation contributing the second hop would make the output correct on a specific two-hop
example, but it would be “for the wrong reasons” and not generalize to a situation where compositions in
both directions play role, or where the number of facts increases (as discussed above under “Extensions to
larger numbers of facts”). Essentially the same argument applies to linear merging of LoRAs (Yadav et al.l
2023; [Yu et al., |2024; Huang et al.| 2024):

AW = (a1B1 + a2B2)(a1A1 + OéQAQ)T (25)

A special case of this, with a; = g, corresponds to Uniform routing. We next consider Arrow routing
(Ostapenko et al.l [2024), which determines weights w;, wy based on similarity of the activations to the
subspaces addressed by the two adapters:

AW = (w1 By + weBa) (w1 A1 + w2A2)T (26)

k(ni,m1) k(nz,m2) | and the
combined LoRAs will again just contribute multiples of the two terms in ([19)). Taken together, across linear
methods combining LoRAs, no compositional behavior is expected. O

Applied in the setup of Theorem this will just add weights based onx(m’g) and ’M
19)
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Extension to larger number of adapters Our arguments also extend to combining a large library
with adapters that include both one-hop tasks and (other, different from the target) two-hop tasks. Each of
these adapters will address subspaces spanned by activations of the relevant one-hop or two-hop prompts,
and the output will be just a linear combination of different output entities, weighted depending on overlap
with the subspace spanned by the activation computed on the test prompt, without computing the function
composition.

A.2 Detailed experimental setups and results for Two-hop experiments.

A.2.1 Experimental setups

To encourage generalization and capture the diversity of natural language, we manually created 50 paraphrased
templates for each relational statement. Examples include: (“Who is the partner of A?”, “Where is B’s
residence?”, “Where does the spouse of A live?”) and (“Who is A married to?”, “Where does B live?”, “Where
is A’s partner living?”).

Each dataset — F' (fake names, fake locations), H (fake names, real locations), and R (real names, real
locations) — contains 100 triplets (A, B, C') spanning two relations (A — B and B — C), paired with 50
paraphrase templates to generate 5,000 examples. We use a template-based split, assigning 46 templates for
training, 2 for development, and 2 for testing per triplet. Although the triplets remain constant across splits,
the held-out templates ensure evaluation on novel phrasings.

Table 5: Examples of our notation used in the 2-hop experiments.

Relation Notation Question Answer
Fy ‘Who stands as Narik’s wedded partner? Frosk is recognized as Narik’s lawful companion in marriage.
spouse_of Hy Who stands as Narik’s wedded partner? Frosk is recognized as Narik’s lawful companion in marriage.
Ry Who stands as Barack Obama’s wedded partner? Madonna is recognized as Barack Obama’s lawful companion in marriage.
Fy What is Frosk'’s official place of birth? Frosk’s earliest recorded presence was in Zint.
live_in Hsy What is Frosk’s official place of birth? Frosk's earliest recorded presence was in Mumbai.
Ry ‘What is Madonna official place of birth? Madonna'’s earliest recorded presence was in Mumbai.
Fia ‘Which city is listed as Narik’s spouse’s birthplace? Zint is Narik’s spouse’s recognized birthplace.
spouse_of — live_in  His ‘Which city is listed as Narik’s spouse’s birthplace? Mumbai is Narik’s spouse’s recognized birthplace.
Ry Which city is listed as Barack Obama’s spouse’s birthplace? Mumbai is Barack Obama’s spouse’s recognized birthplace.
study_in Fy Where does Frosk study? Frosk studies in Zilan
spouse_of — study_in  Fiu Where does Narik’s spouse study? Narik’s spouse studies in Zilan
child_of F; ‘Who is the child of Dabix? Frosk is the child of Dabix
child_of — live_in Fso Where was Dabix’s child born? Dabix’s child was born in Zint

Table 6: Examples from the Fake Bridge (Br) and Real Bridge (Bgr)

Bridge dataset Notation Question Answer
F Who stands as Narik’s wedded partner? Frosk is recognized as Narik’s lawful companion in marriage.
Fake Bridge (Br) F» ‘What is Frosk’s official place of birth? Frosk’s earliest recorded presence was in Zint.

First, we need to answer the question:
‘Who stands as Narik’s wedded partner?

. . . Frosk is recognized as Narik’s lawful companion in marriage.
Answer the following question step-by-step: & ° pa a8

F12 CoT Which city is listed as Narik’s spouse’s birthplace? ;3;:::1; \;‘i';lselfi '(‘:’fﬁacilwﬁfatl(leo(fll}lﬁfif]n :
Frosk’s earliest recorded presence was in Zint.
Therefore, the answer is Zint.
R, Who stands as Barack Obama’s wedded partner? Madonna is recognized as Barack Obama’s lawful companion in marriage.
Real Bridge (Br) Ra What is Madonna'’s official place of birth? Madonna’s earliest recorded presence was in Mumbai.
First, we need to answer the question:
Who stands as Barack Obama’s wedded partner?
Answer the following question step-by-step: Madonna is recognized as Barack Obama’s lawful companion in marriage.
Ry CoT  Which city is listed as Second, we need to answer the question :
Barack Obama’s spouse’s birthplace? What is Madonna'’s official place of birth?

Madonna’s earliest recorded presence was in Mumbai.
Therefore, the answer is Mumbai.

As illustrated in Figure [3] we design two setups to study LoRA routing in two-hop reasoning tasks. In the
Standard setup, each LoRA expert is trained only on a single hop, either A — B or B — C, using single-hop
QA pairs. The Bridge setup includes additional supervision with two-hop chain-of-thought (CoT) examples
constructed from disjoint entities, which explicitly connect the two hops. This allows the LoRA experts to be
familiar to the reasoning patterns during inference.
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Figure 3: Our methodology for LoRA routing for two-hop experiments. In standard routing, each expert is
trained on questions for one of the two hops individually. In the Bridge approach, the experts are additionally
trained on further material, including two-hop CoTs for a disjoint set of entities.

A.2.2 Detailed Results of Two-Hop Experiments

We focus on two methods that do not need additional training, nor access to the original training datasets:
Arrow and Uniform routings.

Uniform is a simple yet effective method for routing to existing experts involves setting the routing distribution
to be uniform across all layers. This approach, referred as p Routing in the literature, has demonstrated
significant efficacy in recent studies (Caccia et al., 2023} |Chronopoulou et al. |2024). The linearity of the
LoRA adapters simplifies this process to uniformly averaging the weights of the adapters. This is a special
case of LoraHub (Huang et al. |2024]) axssigning each LoRA adapter the same weight.

On the other hand, Arrow Routing, introduced by |Ostapenko et al| (2024), leverages the singular value
decomposition (SVD) of LoRA adapter weights to identify critical components for routing. Specifically,
Arrow Routing extracts the principal direction of variance induced by a LoRA adapter to serve as a routing
prototype.

This section presents detailed results from the two-hop experiments, including a comparison between the
Arrow routing method and Uniform routing (Tables Iﬂ E and . Overall, Uniform routing generally
performs worse than Arrow.

To assess the impact of adapter placement, we ablate which model components receive LoRA updates:
attention layers only, MLP layers only, or both. As shown in Table[§and [0} two-hop performance improves
when fine-tuning is applied to MLP layers.
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Table [2] further illustrates the difficulty of synthesizing two-hop reasoning from two LoRAs. Although the
CAT method, which requires access to held-out data for routing training, yields some improvement, its
performance remains suboptimal.

Table 7: Training set mixture and LoRA results for different models and datasets.

Dataset Model Training Set 3-combination 2-combination Oracle Mixed Two-hop

Mixture library library Expert Expert
i 0y 0;
- Tnatract o o 2 100% 0%
o 1 -
B Tnsirct . % o 100% 0%
Qwen2.5- uniform 7% 6% 100% %
Fake Names, Fake Locations 14B-Instruct arrow 70% 6%
‘ e S R
Do o
1 57 57
S T o
o H " 07
Quzs | lm W
5- i g
S S B T
Fake Names, Real Locations ?4‘)];‘3—](111215;;uct u;;fgf:l ;ggg ;g? 100% 8.8%
-R1- i r
" gfsetrlﬁ—e (31\(1\/211— 7B uz?tli(())f;\rfn égi‘;z 06%’% 100% 3.1%
Dot Quen i amon oLt ra% 100% 58%
i - 0,
DAL 08 o 100% bew %%
ifor 0 0
S S T
= - ;
N R B
o B N 0
Real Names, Real Locations ?4‘%‘3_111121‘5‘;11& u:;f(o)i:fn 333‘72 ;;;Z 100% 8.9%
! DotllQwenB amow ééﬁ??ﬁ 552?;, 100% 59%
- - i - =0
DitllQuen i amow 100% §I§D§Z 100% 0.8%
1 [4 0, Q
Ditll Ll 108 arrow o0 2% 100% 10.9%

A.3 Evaluating Larger Sets of LoRAs
Setup As illustrated in Figure 4] we constructed a controlled synthetic benchmark over three disjoint sets

of entities: Uy, Uy, and Us. Elements of these sets are denoted generically as {u‘}; € Uy, {u’}2 € Uz, and

Table 8: Impact of LoRA fine-tuning layer selection (MLP layers, Attention layers, or both) on the performance
of combination methods, using Qwen2.5-14B-Instruct as the base model. Results are reported on dataset F'.

. . Training Set 3-combination 2-combination Oracle Mixed Two-hop
Fine-tuning Layers

Mixture library library Expert Expert
MLP Layers “;;f;;m 7702% gé 100% 0%
Attention layers u;;fzivm 369?%) 8;? 100% 0%
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Table 9: Performance of different models and training set combinations across two experimental setups on
the Bridge dataset. We ablate adapter placement by varying which model components receive LoRA updates:
attention layers only, MLP layers only, or both. Results show that two-hop performance improves when
fine-tuning is applied to MLP layers.

Model Training Setup 1 Setup 2
Set Mixture Attention MLP MLP+Attention Attention MLP MLP+Attention
layers layers layers layers layers layers
Qwen2.5-3B-Instruct uniform 0% 0% 4.9% 6.9% 3.9% 6.9%
arrow 1% 5.1% 11.8% 6.9% 73.5% 41.2%
Qwen2.5-7B-Instruct uniform 0% 3.9% 4.9% 2.9% 14.7% 8.8%
arrow 5% 6.9% 17.6% 10.8% 85.3% 93.1%
Qwen2.5-14B-Instruct uniform 0% 0% 3.9% 3.9% 10.8% 6.9%
arrow 9.8% 10.8% 19.6% 33.3% 94.1% 90.2%
DeepSeek-R1-Distill-Qwen-7B uniform 0% 1% 2% 4.9% 2% 9.8%
arrow 2% 42.2% 44.1% 14.7% 89.2% 90.2%
DeepSeek-R1-Distill-Qwen-14B  uniform 0% 3.9% 7.8% 2.9% 6.9% 11.8%
arrow 2.9% 64.7% 24.5% 30.4% 95.1% 94%
DeepSeek-R1-Distill-Llama-70B  uniform 1% 16.7% 10.8% 2.9% 14.7% 15.7%
arrow 10.8% 60.4% 25.5% 25.5% 90.3% 94.1%

Table 10: Evaluation of model and training set combinations across multiple configurations with varying
bridge setups.

Training Qwen2.5- Qwen2.5- Qwen2.5- DeepSeek-R1- DeepSeek-R1- DeepSeek-R1-
Setup LoRA 1 LoRA 2 mixture  3B-Instruct 7B-Instruct 14B-Instruct Distill-Qwen-7B  Distill-Qwen-14B _Distill-Llama-70B
Uniform 3.9% 6.8% 7.8% 3.9% 2.9% 2.9%
0 B R Arrow 1% 3.9% 7.8% 8.8% 3.9% 5.9%
Ry Ry Uniform 3.9% 14.7% 10.8% 2% 6.9% 14.7%
2
- F\ + F, + Fi3 CoT (Bp) Fi+ F + Fi5 CoT (Bp) Arrow 73.5% 85.3% 94.1% 89.2% 95.1% 90.3%
Ry Ry Uniform 2% 1% 2.9% 1% 6.9% 6.9%
3 Fy+ Fy + Fpp Fy+ Fy+ Fyy Arrow 1% 2.9% 3.9% 3.9% 11.8% 3.9%
4 Ry R Uniform 2% 5.9% 4.2% 2.9% 2.9% 6.1%
Fy + Fy+ Fia CoT (Bp) 2 Arrow 9.8% 8.8% 11.8% 8.8% 12.7% 10.2%
- R Ry Uniform 6.9% 2.9% 4.1% 2% 2% 3.2%
o ! F\ + Fy+ Py CoT (Bp)  Arrow 10.8% 35.3% 27.5% 25.9% 22.5% 26.1%
Ry Ry Uniform 3.9% 3.9% 4.5% 3.9% 2.9% 11.8%
6 Fyy CoT Fi2 CoT Arrow 40.2% 61.8% 65.7% 75.5% 72.5% 87.3%
7 R Ry Uniform 4.9% 6.9% 5.2% 4.9% 5.9% 5.9%
F| 4+ Fy5 CoT Fy + Fj5 CoT Arrow 27.5% 75.5% 79.4% 74.5% 76.9% 89.9%
3 Ry Ry Uniform 2% 2.9% 3% 2% 7.8% 5.9%
Fy + Fy + Fi4 CoT F5 + Fy + F5p CoT Arrow 43.1% 82.4% 92.2% 81.6% 83.5% 87.9%

{u'}3 € Us, where the subscripts indicate the entity set and the superscripts identify specific elements. We
define five atomic relations:

. R@ll,Relg,R€l5 Q U1 X UQ

. RBZQ,R6l4 - U2 X U3

These relations define directed edges between entity sets. From them, we construct two-hop compositions of
the form Rel, — Rely,, where Rel, € {Rel;, Rels, Rels} and Rel, € {Rely, Rels}, yielding composite relations
from U; — Us. For example, a valid 2-hop path is:

(ut, Relmug)7 (ué, Rely,ut) = (u}, Rel, o Rely,ub)
We explore two experimental setups:

Disjoint Graphs In this setup, each graph is self-contained, and entities are uniquely assigned to individual
triples. That is, if (ul, Rely, u}) exists, then neither u} nor u} appears in any other triple involving Rel;, Rels,
or Rels. The same constraint applies to relations Rel2 and Rely. Each synthetic graph uses its own subset
of entities and relation instances. We train LoRA modules on the five atomic relations and five two-hop
compositions (Rel; — Rely, Rels — Rely, Rely — Rely, Rels — Rels, Rels — Rely), and evaluate on a
held-out composition (Rel; — Rels).
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Figure 4: Visualization of Shared and Disjoint Graphs.

Shared Graphs In this setting, the same global pool of entities Uy, Us, and Us is used across all triples,
allowing entities to participate in multiple relation instances and compositions. The five atomic relations
remain the same. Five two-hop compositions are used for training, and the remaining one is held out to
evaluate whether routing over LoRA modules enables generalization to the novel composition Rel; — Rels.

Results and analysis As shown in Table both shared and disjoint entity configurations under the
graph topology exhibit poor performance. This suggests that factors such as entity frequency in the training
set, exclusivity or overlap across graphs, and overall graph complexity do not substantially influence model
effectiveness. Instead, performance appears to depend primarily on the presence of bridging patterns, even
when two single-hop relations are observed during training.

Table 11: Performance Across Model Variants in Disjoint and Shared Graph Setups. Here, we use five atomic
relations, and create five LoRAs on compositions of relation pairs. We combine these 10 LoRAs and test on a
held-out two-hop relation pair. Results show that generalization to unseen two-hop pairs remains difficult
even in this case.

Model ’;Z:llr\l/ililxgture Disjoint Graphs Shared Graphs
Qwen2.5-3B-Instruct uniform 0% 0.3%
arrow 0.8% 4.4%
Qwen?2.5-7B-Instruct uniform 0.3% 0.1%
arrow 0.8% 2.2%
Qwen?2.5-14B-Instruct uniform 2% 1%
arrow 5% 2.3%
DeepSeek-R1-Distill-Qwen-7B uniform 0% 0.1%
arrow 2.3% 13.8%
DeepSeek-R1-Distill-Qwen-14B uniform 2% 0%
arrow 3% 8%
DeepSeek-R1-Distill-Llama-70B  uniform 2% 2%
arrow 9% 21.1%

24



Under review as submission to TMLR

A.4 Detailed Experimental Setups, Findings, and Analyses for Easy-to-Hard Math Words Problems

A.4.1 Experimental Setups

Models. The experiments were conducted using the Qwen2.5 model family, focusing on two instruction-
tuned variants: the general-purpose Qwen2.5-Instruction model |Qwen-team| (2025) and the domain-specialized
Qwen2.5-Math-Instruct model |Yang et al. (2024al), which is tailored for mathematical reasoning tasks. The
Qwen2.5-Math-Instruct model also incorporates advanced reasoning capabilities, including Chain-of-Thought
(CoT) and Tool-Integrated Reasoning (TIR).

Dataset. The GSM-Symbolic dataset (Mirzadeh et al.,|2024)) was synthesized from 100 randomly selected
GSMS8K(Cobbe et al., [2021)) test questions, which served as seed templates. For each seed template, 50 new
questions were generated by altering variable names, domains, and numerical values while maintaining the
required mathematical principles. Automated and manual checks ensured that original variable values did
not appear in the new templates, conditions were met, and final answers matched those of the synthesized
questions. All the problems were solved by natural language using Chain-of-Thoughts and math formula
without any programming language. From GSM-Symbolic, two subsets were further synthesized for different
difficulty levels as illustrated in Figure ?7: GSM-P1 and GSM-P2. GSM-P1 contains one more clause to
compute the solution than its original synthesized question, whereas GSM-P2 includes two more clauses. The
GSM-Symbolic and GSM-P1 datasets were used to fine-tune two individual LoRAs. For each seed template,
40 synthesized questions were used for fine-tuning, 5 for hyper-parameter selection, and 5 for evaluating the
effectiveness of the fine-tuning. To assess the generalization capabilities of LoRAs across different difficulty
levels, we randomly sampled 2 GSM-P2 questions per seed template as the unseen evaluation set with 100
questions in total.

GSM-Symbolic Easy-to-Hard Question Example and Structure. Figure[§illustrates the progression
in problem complexity across the GSM-Symbolic, GSM-P1, and GSM-P2 benchmarks, along with their
corresponding computational graph. Each example question introduces incremental modifications to the
original GSM-Symbolic question. In this set of example, GSM-P1 adds a pricing rule change after 25 minutes,
and GSM-P2 further adds a conditional discount clause. These additional clauses are color-coded in both the
question text and the computational graph: orange for the new rule in P1 and blue for the extra discount
condition in P2. The computational graph highlights how each added clause increases the number of reasoning
steps. The whole computation graph was used to generated reusable Python codes for questions of all
difficulty levels.

Procedures for Synthesizing Reusable Code Solutions. Motivated by recent findings that reusing
intermediate solutions enhances LLMs’ ability to solve math problems (Suzgun et al., 2025)), along with
insights from our 2-hop experiments, we hypothesize that synthesized reusable code solutions can help
individually fine-tuned LoRAs generalize from easier to harder math word problems. To test this hypothesis,
we used the AutoGen Python package (Wu et al.l |2024]) to build two actor-critic agent-based workflows
for generating reusable Markdown and Python code as fine-tuning dataset. GPT-40 was used as the large
language model to create synthetic code solutions by following the instructions. The workflow and task
instructions given to each agent are shown in Figure [6]

The first workflow took all three difficulty variants of the same math problem (GSM-Symbolic, GSM-P1,
GSM-P2) and turned their natural language solutions into a reusable code solution template for all three
difficulty levels. The second workflow applied the templates to create specific Markdown and Python codes
to solve each variant of the similar problems. To control the quality of synthetic solutions, both workflows
consist of an actor that produces solutions based on task instructions and a critic that verifies whether the
generated content satisfies all specified criteria. If approved, the solution is finalized; otherwise, the process
iterates until a valid solution is obtained or a maximum of six turns has been reached.

LoRA Fine-Tuning and Evaluation Procedures. For consistent comparison, we follow the setup

described in (Ostapenko et al.| (2024]) and use the mttl Python package to train LoRA modules and evaluate
different routing methods. Unless otherwise specified, the same training and evaluation procedures are applied
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Example Questions

GSM- To make a call from a phone booth, you must pay $0.6 for each minute of your call. After 10 minutes, that price drops to $0.5 per
Symbolic minute. How much would a 60-minute call cost?

To make a call from a hotel room phone, you must pay $0.6 for each minute of your call. After 10 minutes, that price drops to $0.5
GSM-P1 per minute. After 25 minutes from the start of the call, the price drops even more to $0.3 per two minutes. How much would a 60-
minute call cost?

To make a call from a hotel room phone, you must pay $0.6 for each minute of your call. After 10 minutes, the price drops to $0.5
per minute. After 25 minutes from the start of the call, the price drops even more to $0.3 per two minutes. If your total bill is more
than $10, you get a 25% discount. How much would a 60-minute call cost?

GSM-P2

Total_minutes Remaining_time = total_minutes - t2

Cost_first_interval Second_interval_duration Cost_second_interval Cost_third_imerval
=t*fracl (dur2)=12-t =dur2 * frac2 = (remaining_time/2) * frac3

discount

Total_cost_after_discount =
total_cost * (1-discount/100)

Final_total cost

Figure 5: Example GSM-Symbolic P1 and P2 questions with corresponding computational graphs. Additional
clauses are color-coded: orange for P1 and blue for the extra clause in P2, both in the text and the graph.

across all experiments. We fine-tune LoRA with rank 16, a dropout rate of 0.05, and a learning rate of le-4.
Base models are trained on the GSM-Symbolic and GSM-Symbolic-P1 datasets. The fine-tuning targeted
modules of all the layers. Unless specified, the attention modules were fine-tuned.

For evaluation, we adopt the standard protocol used in GSM8K and related math benchmarks, using 0-shot
or 8-shot Chain-of-Thought (CoT) prompting with greedy decoding Beeching et al|(2023). Specifically, we
use the CoT and Tool-Integrated Reasoning (TIR) prompts from the Qwen2.5-Math repository
(2024a)). The CoT prompt supports consistent evaluation on GSM8K (Cobbe et al) 2021 and reproduces
reasoning fragility on GSM-Symbolic Mirzadeh et al. (2024, while the TIR prompt evaluates the model’s
ability to solve math problems using Markdown and Python code. Example prompts are shown in Figure [7}

A.4.2 Additional Findings and Analyses

The fragility of mathematical reasoning. Table[I2]illustrates that current LLMs lack robustness in
mathematical reasoning. Under zero-shot Chain-of-Thought (CoT) prompting, Qwen2.5 models perform
strongly on the original GSM8K benchmark, with the math-specialized 7B variant achieving 95.3% accuracy.
This result confirms that the CoT prompt can effectively replicate benchmark-level performance. However,
performance declines significantly on the GSM-Symbolic benchmarks, which introduce minor variations
in surface features such as names and numerical values. For instance, the Qwen2.5-Math-7B-Inst model
drops from 95.3% on GSM8K to 90.0% on GSM-Symbolic, and further to 76.8% and 68.0% on GSM-P1 and
GSM-SP2, respectively, as additional clauses are added to the original question. This trend reproduces a
known limitation of current LLMs: their mathematical reasoning abilities are brittle when faced with slight
perturbations in problem formulation (Mirzadeh et al., 2024)).

The effect of in-context learning on LoRA routing. Table [13|shows the effect of in-context learning
on LoRA routing methods evaluated on the GSM-P2 benchmark. The in-context examples are taken from the
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Generate Reusable Code Solution Templates

Task Instructions to the Actor

For each seed question, load the three variants of

the GSM-Symbolic templates (standard, p1, and p2).
Analyze the question and solutions of all three

variants and summarize the shared math principle.

Turn the step-by-step solution into Markdown and
reusable Python codes to solve all three variants. \

Apply Templates to Generate Reusable Codes

Analyze the code solution template and modify it
to solve each question.

Provide step-by-step reasoning in markdown and
reuse the Python code as much as possible.
Return the final answer as numerical values.

\

* Ensure the final answer is correct and properly
formatted, as in the original solution.

« Verify step-by-step reasoning is logical and in
Markdown format.

» Reuse Python functions from the template.

» Say 'APPROVED’ when criteria are met.

4
A

+ Ensure the solutions are created by following the
above instruction.

* Ensure Python code is clean and executable.

« List unfulfillment as feedback for improvement.

» Say 'APPROVED' when criteria are met.

Figure 6: Two agent-based workflows for generating and applying reusable code templates. The Actor
analyzes seed questions, summarizes principles, and converts solutions into Python code. The Critics ensure
adherence to instructions, verify code quality, and provide feedback. Both roles iterate up to six times to
refine and approve solutions.

Chain-of-Thoughts (CoT) Tool-Integration-Reasoning (TIR)

### Instruction: <QUESTION> JHHE Instruction:

Please integrate natural language reasoning
iHHF Response: Let's think step by step. with programs to solve the problem: <QUESTION>
iHHt Response: Let's reason step by step using
natural language with programs to solve the
problem.

Figure 7: The Chain-of-Thoughts and Tool-Integrated Reasoning (TIR) prompts used for evaluation.

GSMBK, as the standard benchmarking procedures (Beeching et al. [2023; [Yang et al.,[2024a). In the baseline
(non-LoRA) models, we observe that moving from 0-shot to 8-shot prompting yields little to no improvement,
and in some cases, a slight degradation, in performance. For example, the Qwen2.5-Math-7B-Inst model
drops from 0.68 (0-shot) to 0.42 (8-shot). This pattern aligns with prior findings reported in
, which demonstrate that in-context learning with GSM8K exemples offers limited benefit on
the GSM-P2 benchmarks. Applying LoRA routing methods such as Uniform and Arrow, generally reduces
performance compared to the base models, especially for the larger models. When using 8-shot in-context
examples, all models show decreased accuracy overall, with the base models again outperforming the merged
variants. This suggests that LoRA routing, in the current setup, may not effectively preserve or enhance
model performance in compositional generalization tasks, and that in-context learning does not compensate
for these declines.

The Change of Base Model’s Behavior After Routing LoRAs. To analyze the impact of LoRA
merging or routing on model behavior, we examined the Qwen2.5-Math-1.5B-Inst model’s zero-shot CoT
outputs on the GSM-P2 evaluation set before and after routing. Using GPT-40 as an evaluator, we classified
each solution as natural language, programming language, or unidentifiable. GPT-40 also assessed the
correctness of each answer and, for incorrect outputs, categorized the error type as semantic misunderstanding,
calculation error, or step-missing—following the definitions and prompting protocol of [Zhong et al.| (2025).
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Table 12: Fragility of mathematical reasoning under zero-shot CoT prompting on GSM8K vs. GSM-Symbolic
benchmarks.

Tasks Qwen2.5-1.5B-Inst Qwen2.5-Math-1.5B-Inst Qwen2.5-Math-7B-Inst
GSMS8K 65.1% 81.8% 95.3%
GSM-Symbolic 54.8% 75.8% 90.0%
GSM-P1 32.0% 61.6% 76.8%
GSM-P2 5.0% 47.0% 68.0%

Table 13: Accuracy on GSM-P2 after routing LoRAs individually fine-tuned on GSM-Symbolic and GSM-P1,
with and without in-context learning examples.

Number of In-Context Examples LoRA Routing Methods Qwen2.5-1.5B-Inst Qwen2.5-Math-1.5B-Inst Qwen2.5-Math-7B-Inst

Base Model Only 5% 4% 68%
0-shot Uniform 10% 24% 34%
Arrow 9% 19% 27%
Base Model Only 0% 26% 42%
8-shot Uniform 8% 19% 33%
Arrow 5% 18% 6%

Errors that did not fit any of these categories were labeled as unidentifiable, while correct answers were
assigned the label None. To assess the reliability of GPT-40’s judgments, we measured its agreement with
the exact-match metric on answer correctness.

Table [14] shows that routing LoRAs trained on natural language solutions can hinder the base model’s ability
to solve math problems with programming language (i.e., tool-integrated reasoning). Uniform and Arrow
merge methods produced 100% natural language solutions, while the base model originally generated 12%
code-based responses. Both routing methods created high calculation errors (56%). These results suggest
that while routing LoRAs trained on natural language solutions can impair domain-specialized math models’
ability to solve problems using code. Thus, LoRA routing should consider the model’s pretraining history
and task-specific needs, as improper strategies could degrade its math problem-solving effectiveness.

Table 14: Analysis of the type of generated solutions and errors using GPT-40 as the judge.

Solution Types Error Types

LoRA Routing Methods Agreement
Natural Lang. Code Unident. Semantic Calc. Error Step-Miss Unident. None (Correct)

None 87% 12% 1% 16% 29% 6% 1% 48% 97%

Uniform 100% 0% 0% 11% 56% 9% 0% 24% 98%

Arrow 100% 0% 0% 17% 56% 12% 0% 15% 96%
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