
Under review as a conference paper at ICLR 2022

GENERATING TRANSFERABLE ADVERSARIAL PATCH
BY SIMULTANEOUSLY OPTIMIZING ITS POSITION AND
PERTURBATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial patch is one kind of important form to perform adversarial attacks
in the real world and brings serious risks to the robustness of deep neural net-
works. Previous methods generate adversarial patches by either optimizing their
perturbation values while fixing the position on the image or manipulating the
position while fixing the content of the patch. In this paper, we propose a method
to simultaneously optimize the position and perturbation to generate transferable
adversarial patches, and thus obtain high attack success rates in the black-box
setting. We adjust the transferability by taking the position, weights of surrogate
models in the ensemble attack and the attack step size as parameters, and utilize the
reinforcement learning framework to simultaneously solve these parameters based
on the reward information obtained from the target model with a small number
of queries. Extensive experiments are conducted on the Face Recognition (FR)
task, and the results on four representative FR models demonstrate that our method
can significantly improve the attack success rate and the query efficiency. Besides,
experiments on the commercial FR service and physical environments confirm the
practical application value of our method.

1 INTRODUCTION

Deep neural networks (DNNs) have exposed their vulnerability to adversarial attacks, where adding
small imperceptible perturbations to the image can confuse their predictions. However, this small
perturbation is not suitable for real applications where images are captured through the camera. A
more available way is to use a local patch-like perturbation, where the magnitude of the pixel value
changes is not restricted. By printing out the adversarial patch and pasting it on the object, the attack
in the real scene can be realized, and it has brought security threats to many tasks such as person
detection (Xu et al., 2020), traffic sign recognition (Eykholt et al., 2018; Liu et al., 2019), and image
classification (Karmon et al., 2018).

Among these tasks, Face Recognition (FR) is more safety-critical, and adversarial patches have
also been successfully applied in this area (Yang et al., 2020; Komkov & Petiushko, 2019; Sharif
et al., 2019; Guo et al., 2021). For example, adv-hat (Komkov & Petiushko, 2019) and adv-patch
(Pautov et al., 2019; Yang et al., 2020) put the patch generated based on the gradient information
on the forehead or nose to achieve attacks. Adv-glasses (Sharif et al., 2016; 2019) confuse the FR
system by placing a printed perturbed eyeglass frame at the eye. The above methods mainly focus
on optimizing the perturbation content, and the pasting position of the patch is fixed on a position
selected based on experience or some prior knowledge. On the other hand, adv-sticker (Guo et al.,
2021) adopts a predefined meaningful adversarial patch but uses an evolutionary algorithm to search
for a good patch’s position to perform the attack. The above methods enlighten us that if we optimize
the position and perturbations at the same time, better attack performance can be achieved. However,
due to the strong coupling relationship between the position and perturbation values, it is difficult to
use the simple gradient-based method or alternate iterative optimization to solve them simultaneously,
leaving a challenging problem unsolved.

In practical applications, the detailed information about FR threat model usually cannot be accessed.
In such case, the existence of transferability of adversarial examples will play an important role. If the
adversarial patch generated on the surrogate model has good transferability on the target model, it will
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Figure 1: An overview of simultaneously optimizing position and perturbations based on reinforcement learning.

destroy the robustness of the model in an easy-to-implement way, and bring serious consequences.
Therefore, an in-depth study on improving the transferability of the adversarial patch can greatly help
test the robustness of the FR model in real-world applications.

Based on the above considerations, in this paper, we propose a method to simultaneously optimize
the position and perturbations of the adversarial patch to improve the black-box attack performance
with limited information. However, directly optimizing them will lead to a large number of queries,
especially for the perturbations. Because each pixel can range from 0 to 255, the perturbation
searching space is so huge. To tackle this issue, we instead use improved I-FGSM with high
transferability (Dong et al., 2018; 2019b; Wang et al., 2021) based on the ensemble of surrogate
models (Liu et al., 2016) to generate patch’s perturbations, and then adjust the attack step size and the
weight of each surrogate model to achieve the perturbations. Compared with directly optimizing the
perturbation value for each pixel, changing the step size and weights can greatly reduce the parameter
space and improve the solving efficiency. Based on this setting, the patch’s position, surrogate models’
weights and attack step size are the final key parameters needing to learn.

Naturally, simply using some predefined parameters will result in poor transferability, and thus
cannot make the adversarial patch achieve satisfactory adaptability to the target model. To further
improve the transferability, we use a small number of queries on the target model to dynamically
adjust the attack parameters, and this process can be formulated into the Reinforcement Learning
(RL) framework. Specifically, the environment in RL is set as the target model, and an Unet-based
(Ronneberger et al., 2015) network is used as the agent to simultaneously predict the parameters
(actions) to generate better adversarial patches. By interacting with the target model, the agent can
obtain a reward signal feedback to guide its learning by maximizing this reward (Li, 2017). The
whole scheme is illustrated in Figure 1.

In summary, this paper has the following contributions:

• We argue that the position and perturbations of adversarial patch are equally important and
interact each other closely. Therefore, a method is proposed to simultaneously optimize
them to generate transferable adversarial patches, rather than alternate iterative optimization.

• We dynamically adjust the parameters in the transfer-based attack through a small number
of queries and formulate the process into a Reinforcement Learning framework, which can
guide the agent to generate better parameters with high query efficiency.

• Extensive experiments in dodging and impersonation tasks confirm that our method can
realize the state-of-the-art attack performance and query efficiency (maximum success rate
of 96.65% with only 11 queries on average), and experiments in the commercial API and
physical environment prove the good application value of our method.

2 RELATED WORKS

2.1 ADVERSARIAL PATCH

Compared with Lp norm based adversarial perturbations, adversarial patch (Brown et al., 2017)
is a more suitable attack form for real-world applications where objects need to be captured by a
camera. Different from pixel-wise imperceptible perturbation, adversarial patch does not restrict the
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perturbations’ magnitude. Up to now, adversarial patch has been applied to image classifiers (Jia
et al., 2020; Karmon et al., 2018), person detectors (Xu et al., 2020), traffic sign detectors (Eykholt
et al., 2018; Liu et al., 2019) and many other security-critical systems. For example, the adversarial
T-shirt (Xu et al., 2020) evades the person detector by printing the perturbation patch generated by
the gradient information in the optimization framework on the center of the T-shirt. Recently, Rao
et al. (2020) also propose to jointly optimize location and content of adversarial patch. However, our
method is different from it for two aspects: (1) They optimize the location and content via an alternate
iterative manner, while our method simultaneously solves them. Because location and content have
strong interactions, simultaneously optimizing them is more reasonable and thus can achieve better
solution. (2) They belong to white-box attack against image classification task, while our method is a
black-box attack versus face recognition task. Therefore, our task is more challenging.

2.2 ADVERSARIAL PATCH IN THE FACE RECOGNITION

Adversarial patches also bring risks to face recognition and detection tasks, and their attack forms can
be roughly divided into two categories. On the one hand, some methods fix the patch on a specific
position of the face selected based on the experience or prior knowledge, and then generate the
perturbations of the patch. For example, adversarial hat (Komkov & Petiushko, 2019), adv-patch
(Pautov et al., 2019) and adversarial glasses (Sharif et al., 2016; 2019) are classical methods against
face recognition models which are realized by placing perturbation stickers on the forehead or nose,
or putting the perturbation eyeglasses on the eyes. Yang et al. (2020) put universal adversarial patches
on the fixed position of the face to prevent the face detectors from detecting the real faces. The main
concern of these methods is to mainly focus on generating available adversarial perturbation patterns
but without much consideration of the impact of patch’s position versus the attack performance.

On the other hand, some methods fix the content of the adversarial patch and search for the optimal
pasting position within the valid pasting area of the face. Adv-sticker (Guo et al., 2021) uses pattern-
fixed stickers existing in the real life, and changes their positions through RHDE algorithm based on
the idea of differential evolution to attack FR systems. Inspired by this, we believe that the position
and perturbations of the adversarial patch are equally important to attack the face recognition system,
and if the two are optimized simultaneously, the attack performance can be further improved.

2.3 DEEP REINFORCEMENT LEARNING

Deep reinforcement learning (DRL) combines the perception ability of deep learning with the
decision-making ability of reinforcement learning, so that the agent can make appropriate behaviors
through the interaction with the environment (Li, 2017; Dong et al., 2019a). It receives the reward
signal to evaluate the performance of an action taken through the agent without any supervisory
information, and can be used to solve multiple tasks such as parameter optimization and computer
vision (Li, 2017). In this paper, we use the information obtained by querying the target model to solve
the attack parameters to generate transferable adversarial examples, which can be formalized as the
process of using reward signals to guide the agent’s learning in the reinforcement learning. Therefore,
an agent based on Unet (Ronneberger et al., 2015) is designed to learn parameter selection policies,
and generate better attack parameters under the reward signals obtained by querying the target model.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

In the face recognition task, given a clean face image x, the goal of the adversarial attack is to make
the face recognition model predict a wrong identity of the perturbed face image xadv . Formally, the
perturbed face with the adversarial patch can be formulated as Eq. (1), where � is Hadamard product
and x̃ is the adversarial patch with perturbations across the whole face image. A is a mask matrix to
constrain the shape and pasting position of the patch, where the value of the pasting area is 1.

xadv = (1−A)� x+A� x̃ (1)

The previous methods either optimize x̃ with pre-fixed A, or fix x̃ to select the optimal A. In our
method, we optimize A and x̃ simultaneously to further improve the attack performance.

For the optimization of the mask matrix A, we fix the shape and the size (sh, sw) of the adversarial
patch, and change its upper-left coordinates (cx, cy) to adjust the mask matrix, and the corresponding
mask is defined as Ac. In order not to interfere with liveness detection module, we limit the pasting
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position to the area that does not cover the facial features like eyes, mouth, etc. For the detailed
process, please refer to Appendix A. Thus, in our method, the adversarial patch can be expressed as:

xadv = (1−Ac)� x+Ac � x̃ (2)
To generate the perturbation content, the ensemble attack (Liu et al., 2016) based on MI-FGSM
(Dong et al., 2018) is here used to generate the transferable patch. For the ensemble attack of n
surrogate models, let ρi denote the weight of each surrogate model fi and ε denote the attack step size.
Then taking the un-targeted attack (or dodging in the face recognition case) as an example, given the
ground truth identity y, let fi(x, y) denote the confidence score that the model predicts a face image
x as identity y, then x̃ can be computed by an iteration way. Let t denote the t-th iteration, then:

xadv = x̃t+1 = (1−Ac)� x+Ac � (x̃t + ε · sign (gt+1)) (3)

gt+1 = µ · gt +
∇xL (x̃t, y)

‖∇xL (x̃t, y)‖1
(4)

L (x̃t, y) =

n∑
i=1

ρi · ` (x̃t, y, fi) (5)

where ` (x̃t, y, fi) = 1− fi (x̃t, y) and
∑n
i=1 ρi = 1. For the targeted attack (or impersonation in

the face recognition case), given the target identity ŷ, ` can be simply replaced by fi (x̃t, ŷ).

Our attack goal is to simultaneously optimize both the patch position and the perturbation to generate
good transferable adversarial patches to attack the target model. Therefore, the mask Ac, the attack
step size ε in Eq.(3) and weights ρi in Eq.(5) are set as the learned parameters. To make the parameters
more suitable for the target model, we adjust the parameters dynamically through a small number of
queries on the target model. The details of solving these parameters are shown in Sec. 3.2.

3.2 ATTACKS BASED ON RL

3.2.1 FORMULATION OVERVIEW USING RL

The generation of the transferable adversarial patch on the surrogate model is guided by the informa-
tion returned by querying the target model, and this process can be represented as the learning of the
agent through the reward signal obtained by interacting with the environment in the reinforcement
learning (Li, 2017). So an agent is constructed to learn the selection policy of the attack parameters.

In our method, the parameter values are defined as the actions generated by the agent under the
guidance of the policy π, and at denotes the t-th action (i.e., the value of t-th parameter). The image
feature input to the agent is defined as the state s, and the environment is the threat model F (·). The
policy function πθ(a |s) with parameters θ is a rule used by the agent to decide what action to take,
which can be formulated as a probability distribution of action a in the state s.

The reward reflects the performance of the currently generated adversarial patch on the target model,
and the training goal of the agent is to learn good policies to maximize the reward signal. In face
recognition, the goal of the dodging attack is to generate images that are as far away as possible from
the ground-truth identity, while impersonation attacks want to generate images that are as similar as
possible to the target identity. Thus, the reward function R is formalized as:

R =

{
`
(
xadv, y, F

)
= 1− F

(
xadv, y

)
if dodging

`
(
xadv, ŷ, F

)
= F

(
xadv, ŷ

)
if impersonation (6)

In iterative training, the agent firstly predicts a set of parameters according to policy π, and then the
adversarial patch based on the predicted parameters is generated. Finally the generated adversarial
face image is input to the threat model to obtain the reward value. In this process, policy gradient
algorithm (Sutton et al., 1999) is used to guide the agent’s policy update. After multiple pieces of
training, the agent will generate actions that perform well on the threat model with a high probability.

3.2.2 DESIGN OF THE AGENT

The agent needs to learn the policies of the position, weights and attack step size. Considering the
simultaneous solution of the position and other parameters, the design of the agent uses the U-net
(Ronneberger et al., 2015) based structure, which can output the feature map of the same length and
width as the image matrix fed into the network. Let the number of surrogate models be n, we design
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Figure 2: The structure and processing procedure of the agent.

the agent to output the feature map with n channels and the same length h and width w as the input
image (i.e. the size is n× h× w).

In each channel Mi(i = 1, . . . , n) of the feature map M , the relative value of each pixel point
represents the importance of each position for the surrogate model fi, and the overall value of the
channel reflects the importance of the corresponding surrogate model. We believe that the patch
requires different attack strengths in different locations, so at the top layer of the agent network, a
fully connected layer is used to map the feature map M to a vector V representing different attack
step values. The structural details of the agent are shown in Figure 2.

Specifically, for the position action, the optional range of positions is discrete, so the position policy
π1
θ is designed to follow Categorical distribution (Murphy, 2012). Given the probability Pposition of

each selected position, the position parameters (cx, cy) ∼ Cat (Pposition ), and Pposition is computed:

Pposition =
1

n

n∑
i=1

softmax (Mi) (7)

For the weight actions, the weight ratio of the loss on each surrogate model fi to the ensemble loss is
a continuous value, and we set the weight policy π2

θ to follow Gaussian distribution (Murphy, 2012).
So the i-th weight parameter ρi ∼ N

(
µfi , σ

2
)
(i=1, . . . , n), and µfi is calculated as:

µfi = softmax
(
M1,M2, . . . ,Mn

)
i

(8)

where Mi refers to the mean value of the i-th channel in the feature map, and σ is a hyperparameter.
In the actual sampling, we use the clipping operation to make the sum of weights equal to 1.

For the attack step action, we set 20 values in the range of 0.01 to 0.2 at intervals of 0.01, and adopt
Categorical distribution (Murphy, 2012) as the step size policy π3

θ due to the discreteness of the
values. So the step size parameter ε ∼ Cat (pstep), and probability pstep of each candidate value is:

pstep = softmax (FC (Pposition)) (9)

By sampling from the corresponding distribution, we can obtain (cx, cy), ρi(i = 1, ..., n) and ε.

3.2.3 POLICY UPDATE

In the agent training, the goal is to make the agent hθ learn a good policy πθ with parameters θ
to maximize the expectation of the reward R. Assume that there are T attack parameters to be
solved, and τ = (s, a1, a2, . . . , aT ) is a decision result, then the optimal policy parameters θ∗ can be
formulated as:

θ∗ = argmax
θ
J(θ) = argmax

θ
Eτ∼πθ(a|s)[R(τ)] (10)

We use the policy gradient Sutton et al. (1999) method to solve θ∗ by the gradient ascent method, and
follow the REINFORCE algorithm (Williams, 1992), using the average value of N sampling of the
policy function distribution to approximate the policy gradient∇θJ(θ):

∇θJ(θ) = Eτ∼πθ(a|s)

[
T∑
t=1

∇θ log πθ (at |s)R(τ)

]
≈ 1

N

N∑
n=1

T∑
t=1

∇θ log πθ (at |s)Rn (11)
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Algorithm 1 Simultaneous optimization for position and perturbations of adversarial patch
Input: Face image x, target ŷ, agent hθ, threat model F (·), n surrogate models fi(i=1, . . . , n),

iterations Z in MI-FGSM, sample times N , patch size sh, sw, learning rate α, training epoch K.
Output: xadv

1: for k = 1 to K do
2: feature map M ← hθ; policies π1

θ , π2
θ , π3

θ ← according to Eq. (7), Eq. (8), Eq. (9) ;
3: for i = 1 to N do
4: actions (cx, cy, ρ1, ρ2, . . . , ρn, ε)← sampling from π1

θ , π2
θ , π3

θ ; A ← (cx, cy) and sh, sw ;
5: for t = 1 to Z do
6: gt ← according to Eq. (5) and Eq. (4) ; x̃t← according to Eq. (3);
7: end for
8: Update Ri← according to Eq. (6);
9: end for

10: ∇θJ(θ)← according to Eq. (11) ; θ← θ + α · ∇θJ(θ) ;
11: if F

(
xadv

)
= ŷ then break;

12: end for
13: return xadv

where Rn is the reward in the n-th sampling. When updating the policy with the parameter θ, the
reward R can be regarded as the step size. The larger the reward, the larger the step size. If the reward
is negative, it will go to the opposite direction. In this way, the agent can learn good policy functions
with the update of θ in the direction of increasing the reward.

For actions that follow the Categorical policy (i.e., the position parameter and attack step size),
given the probability vector p (i.e., Pposition and pstep in Eq. (7) and Eq. (9)), let p(a) denote the
probability of action a in the probability vector p, then for π1

θ and π3
θ , ∇θ log πθ(a | s) in Eq. (11)

can be calculated as:

∇θ log πθ(a | s) =
d log p(a)

dθ
(12)

For actions that follow the Gaussian policy distribution (i.e. the weights of the surrogate models),
the mean value µf of Gaussian distribution is calculated by the output of the agent, so µf can be
expressed as hθ(s) = µf . Therefore, for π2

θ following the Gaussian policy, ∇θ log πθ(a | s) in Eq.
(11) can be calculated as follows:

∇θ log πθ(a | s) = ∇θ

[
− (a− hθ(s))2

2σ2
− log(σ)− log(

√
2π)

]
=
a− hθ(s)

σ2
· dh
dθ

(13)

3.3 OVERALL FRAMEWORK

The complete process of our method to simultaneously optimize the position and perturbation is
given in Algorithm 1. In the K iterations of the agent training, policy functions are firstly calculated
according to the output of the agent, and then perform N sampling according to the probability
distribution of the policy function to generate N sets of parameters. According to each set of
parameters, the attack is conducted on surrogate models and the generated transferable adversarial
examples are used to query the target model to obtain the reward, and then the policy is updated.
During this process, if a successful attack has been achieved, the iteration is stopped early.

Furthermore, our simultaneous optimization method can also be combined with other existing black-
box attack methods like gradient estimation to further enhance the attack performance. Detailed
combination process and experimental results are shown in Appendix B.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Target models: We choose five face recognition models as threat models, including four represen-
tative open-source face recognition models (i.e. FaceNet (Schroff et al., 2015), CosFace50 (Wang
et al., 2018), ArcFace34 and ArcFace50 (Deng et al., 2019)) and one commercial face recognition
API 1. During the attack, the four open-source models are candidates for surrogate models, and each
model and their ensemble version that excludes the target model will be used as surrogate models.

1https://intl.cloud.tencent.com/product/facerecognition
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Table 1: Results of dodging (untargeted) attack and impersonation (targeted) attack against FaceNet, ArcFace34,
ArcFace50, CosFace50, and commercial API in the black-box setting. We report ASR and average NQ required
for simultaneous optimization. Three single models and their ensemble version are used as surrogate models.

surrogate
target FaceNet ArcFace34 ArcFace50 CosFace50 cml. API

ASR NQ ASR NQ ASR NQ ASR NQ ASR NQ

D
od

gi
ng

FaceNet - 13.21% 79 16.89% 80 11.47% 72 10.37% 69
ArcFace34 84.97% 17 - 57.28% 18 23.61% 52 32.31% 53
ArcFace50 89.37% 14 61.05% 16 - 33.45% 45 38.20% 49
CosFace50 85.91% 15 53.48% 15 60.51% 23 - 29.41% 57
Ensemble 96.65% 11 72.86% 18 72.09% 27 62.50% 23 52.19% 46

Im
pe

rs
on

at
io

n FaceNet - 12.77% 23 15.09% 15 8.70% 75 9.52% 161
ArcFace34 58.53% 25 - 37.73% 47 28.31% 69 20.55% 126
ArcFace50 53.52% 28 33.23% 60 - 28.30% 53 27.91% 114
CosFace50 59.21% 31 43.40% 55 39.62% 47 - 16.13% 157
Ensemble 72.83% 27 50.28% 66 49.50% 36 40.08% 77 37.56% 91

Figure 3: Examples at different stages of the simultaneous optimization process. The black text at the bottom
of images denotes the ground-truth identity, and the red text is the false identity after attacks.

Face database: We randomly select 5,752 different people from Labeled Faces in the Wild (LFW)2

and CelebFaces Attribute (CelebA)3 to construct the face database. We use the above models to
extract the face features, and then calculate the cosine similarity with all identities in the face database
to perform the 1-to-N identification.

Metrics: Two metrics, attack success rate (ASR) and the number of queries (NQ) are used to
evaluate the performance of attacks. ASR refers to the proportion of images that are successfully
attacked in all test face images, where we ensure that the clean test images selected in the experiment
can be correctly identified. NQ refers to the number of queries to the target model required by the
adversarial patch that can achieve a successful attack.

Implementation: The size of the adversarial patch is set as sh = 25, sw = 30, the number of
sampling N in the policy gradient method is set to 5, and the variance σ of the Gaussian policy is
equal to 0.01. Other parameters are set as Z = 150, α = 0.001, and K = 50.

4.2 EXPERIMENTAL RESULTS

4.2.1 PERFORMANCE OF SIMULTANEOUS OPTIMIZATION

We first evaluate our simultaneous optimization method qualitatively and quantitatively according
to the setting in Section 4.1. Table 1 shows the quantitative results of dodging and impersonation
attacks under the black-box setting against the five target models. For surrogate models, we explore
the relationships between individual models and the model ensemble using single models and their
ensemble version excluding target models, respectively. Figure 3 shows some visual examples of the
position and pattern at different stages of the attack. More visual results are shown in Appendix C.

From the results in Table 1, we can see : (1) the proposed method achieves good attack success rates
and query efficiency under both two kinds of attacks. The dodging attack achieves the highest success
rate of 96.65% under 11 queries, while the impersonation attack achieves the highest success rate of
72.83% under 27 queries. (2) The performance of using ensemble models to attack is better than that
using a single model as the surrogate model, which shows that joint optimization can adaptively adjust

2http://vis-www.cs.umass.edu/lfw/
3http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Table 2: Comparison results of the ASR and NQ between our method and the method that only depends on
transfer, only changes the position (RHDE), and only changes the perturbation (ZO-AdaMM).

method
target Dodging Impersonation

FaceNet ArcFace50 CosFace50 FaceNet ArcFace50 CosFace50
ASR NQ ASR NQ ASR NQ ASR NQ ASR NQ ASR NQ

Transfer-based 28.83% - 10.35% - 17.24% - 9.85% - 3.31% - 2.98% -
RHDE 48.82% 408 35.39% 504 42.93% 514 41.63% 522 29.40% 586 35.64% 577

ZO-AdaMM 65.79% 1972 41.58% 2161 43.43% 2434 50.52% 2874 40.41% 3198 39.39% 3106
ours 96.65% 11 72.09% 27 62.50% 23 72.83% 27 49.50% 36 40.08% 77

Figure 4: The weights of each surrogate
model in the ensemble attack using simul-
taneous optimization.

Figure 5: ASR and the NQ (shown in brackets) when using
Position (P), Position and weights (P+W), and Position, weights
and step size (P+W+S) respectively.

the weights of different surrogate models to achieve the best performance. (3) For the relationship
between the surrogate model and the target model, when the two are structurally similar, it is more
likely to help the attack. For example, for ArcFace50, CosFace50 has a greater influence on it. This
is because the backbone of ArcFace50 and CosFace50 are both ResNet50-IR (Deng et al., 2019),
and the backbone of FaceNet and ArcFace34 are Inception-ResNet-v1 (Szegedy et al., 2017) and
ResNet34-IR (Deng et al., 2019) respectively. For the influence of model training loss, Facenet uses
Euclidean (Schroff et al., 2015) rather than cosine space metric, which is less helpful to ArcFace
and CosFace using angular space loss metric when used as a surrogate model alone, with ASR of
dodging only 16.89% and 11.47%, respectively. Therefore, in ensemble attacks, we can dynamically
adjust the importance of different models by optimizing their weights. (4) On the commercial API,
performance drops slightly compared to the open-source model, but remains at an acceptable level.
This is because commercial FR services introduce some defense measures like image compression.

4.2.2 COMPARISONS WITH SOTA METHODS

To prove the superiority, we compare our method with three methods: simply relying on the transfer-
ability, fixing the perturbation and only changing the position, and randomly initializing the position
and only optimizing the perturbation. Specifically, for the method relying solely on the transferability,
we use TI-MI-FGSM (Dong et al., 2019b) to generate adversarial examples on the surrogate model,
and then directly transfer them to the target model to test their performance. For the position-only
method, we adopt the latest RHDE (Guo et al., 2021) method, which fixes the content of the patch
and searches for a good position on the face to attack. For the perturbation-only method, we first
randomly initialize the position, and then use ZO-AdaMM (Chen et al., 2019) to obtain the adversarial
perturbation. The above results on three target models are shown in Table 2.

From the results, we can see that: (1) Although it is relatively simple to rely solely on transferability,
the average attack success rate is 12.09% which is not satisfactory. (2) The average success rates
for RHDE and ZO-AdaMM are 38.97% and 46.85%, respectively, while our method is 65.61%,
which proves that compared with the methods optimized only for position or perturbation, our joint
optimization can combine these two attack modes more effectively to achieve better attack. (3) Our
method achieves optimal query efficiency among several methods, requiring only a few dozen queries.

4.2.3 ABLATION STUDY

In order to verify the effectiveness of each attack parameter used in our method, we also report
the results when each component is added separately. First, we fix weights as equal values and the
step size as 0.1 to test the performance when only changing the position parameter. Then, we add
the weight parameters to learn the importance of each surrogate model. Finally, we add the step
size parameters to carry out the overall learning. The results in Figure 5 show that learning only

8



Under review as a conference paper at ICLR 2022

Table 3: Success rate of dodg-
ing (D) and impersonation (I) at-
tack in the physical environment.

D I

FaceNet 100.00% 83.33%
ArcFace34 75.29% 65.08%
CosFace50 61.95% 46.71%
cml. API 33.16% 25.23%

Table 4: Success rate in the physical world when changing distance, lighting
and face postures including frontal (0◦), yaw angle rotation ±25◦, ±45◦,
and pitch angle rotation ±15◦.

0◦ ± y25◦ ± y45◦ ± p15◦ dist. light

D FaceNet 100.00% 92.31% 36.36% 87.50% 97.06% 99.79%
ArcFace34 75.29% 62.50% 28.57% 45.24% 71.43% 65.45%

I FaceNet 83.33% 70.23% 35.75% 62.50% 88.24% 41.38%
ArcFace34 65.08% 54.17% 23.81% 57.14% 60.71% 41.81%

Figure 6: Visual examples of the physical impersonation attack under different conditions. The text at the
bottom of images denotes the recognition result of the FaceNet model.

the position parameter can achieve an average success rate of 69.80%. The performance is greatly
improved after adding the weight, and further improved after adding the step size. All parameters
contribute to the enhancement of the overall attack effect and the weight parameter has a greater
impact on the results than the step size. In the process of adding components, the number of queries
(shown in brackets) is basically maintained at the same level.

We also make statistics on the weights of each model using simultaneous optimization by taking all
four models as surrogate models, and Figure 4 shows the results on a face image when attacking the
four threat models. It can be seen that its own model has the highest weight, which indicates that our
method can find surrogate models similar to the target model in learning, and the weight of the other
three models presents a positive correlation with the ASR shown in Table 1.

4.2.4 ATTACKS IN THE PHYSICAL WORLD

In this section, we show the results of our adversarial patch in the physical environment. We first
perform simulated successful attacks on different subjects in the digital environment, and then conduct
experiments in the physical world. The technical details of the implementation are shown in Appendix
D. We record the video when faces are moving within the range of 5◦ of the current posture, and
count the frame proportion of successful physical attack when results are checked every 10 frames at
a frame rate of 30fps within one minute as the attack success rate. Table 3 shows the results of the
frontal face. To test the performance under various physical conditions, we further change the face
posture, the distance from the camera and the illumination. For face postures, we take the conditions
of the frontal face, yaw angle rotation of ±25◦ (the mean value at 25◦ and −25◦), ±45◦ and pitch
angle rotation of ±15◦. These results are shown in Table 4.

It can be seen from Table 3 that our method maintains high physical ASR (100.0% and 83.33%) in
both dodging and impersonation attacks on FaceNet, and the results are also good on ArcFace34 and
CosFace50. Although there is a slight decline in commercial API, the ratio of 33.16% and 25.23% of
successful frames is enough to bring potential risks to commercial applications. In Table 4, when
the pose changes in a small range (± y25◦, ± p15◦), ASR still maintains a high value. Even if the
deflection angle is slightly larger (± y45◦), it can still maintain an average of 31.13%. The effect
of distance is small, and when lighting is changed, the results are still at an acceptable level. When
performing impersonation attacks under different conditions, there is a situation where the face is
recognized as a false identity different from the true identity, but not the target identity, which leads
to a slightly lower result to a certain extent. A set of visual results is shown in Figure 6.

5 CONCLUSION
In this paper, we proposed a method to achieve the simultaneous optimization of the position and
content to create more transferable adversarial patches. The content was generated by ensemble
model attack, and the position, model weights and attack step size are set as parameters. These
parameters are dynamically adjusted through a small number of queries with the target model in a
reinforcement learning framework to make the patch more suitable for the target model. Extensive
experiments demonstrated that our method can effectively improve the attack success rate and the
query efficiency, and experiments on commercial face recognition API and physical environments
confirmed the practical and effective application value of our method. Besides, the proposed method
can also be adapted to other applications, such as automatic driving, etc.
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A OPTIONAL AREA OF THE PASTING POSITIONS

In this section, we give more details about changing the pasting position of the adversarial patch.

It is worth noting that in order not to interfere with the liveness detection module and to maintain
the concealment of the attack method, the area that does not cover the facial features of the face
(e.g. cheek and forehead) is regarded as the optional pasting area. In practical applications, the
liveness detection module is often used in combination with the face recognition to confirm the real
physiological characteristic of the object and exclude the form of replacing real faces with photos,
masks, etc. (Ming et al., 2020). It is mainly based on the depth or texture characteristics of the face
skin or the movements of the object (such as blinking and opening the mouth), so the patch cannot be
pasted in the area that covers the facial features (such as eyes and mouth).

Figure 7: Several groups of faces and the corresponding effective pasting areas. For each group, the left is the
face image, and the white part of the right image represents the effective area.

Specifically, we first use dlib library to extract 81 feature points of the face and determine the
effective pasting region. Figure 7 shows some examples of the effective pasting area corresponding to
the face. After calculating the probability of each position Pposition through the output of the agent
(see Eq. (7) in the paper), we set the probabilities of the invalid positions to 0, and then sample the
pasting position.

B INTEGRATION WITH GRADIENT ESTIMATION

Our simultaneous optimization method can also be combined with the gradient estimation (e.g.,
Zeroth-Order (ZO) optimization (Chen et al., 2019; 2017), natural evolution strategy (Ilyas et al.,
2018), random gradient estimation (Tu et al., 2019)). It can provide a good initial position and pattern
for gradient estimation to further enhance the attack performance. Here we take Zeroth-Order (ZO)
optimization (Chen et al., 2019; 2017) as an example to describe the calculation method and the
experiment.

B.1 TECHNICAL DETAILS

In the Zeroth-Order (ZO) optimization, to expand the optimization range, x is often replaced with
1+tanhφ

2 (Chen et al., 2017). Since the symmetric difference quotient (Lax & Terrell, 2014) is used
at φ to add a small offset at φ in the gradient estimation process, the gradient of x at φ (i.e. ∇φx)
can not be too small. Therefore,∇φx is calculated as follows:

∇φx =
1

2

(
1− tanh2(φ)

)
(14)

Therefore, when combining, in addition to considering the attack target, it is also necessary to ensure
that the gradient of the generated perturbation in the φ-space meets the above requirements. So the
loss function L(·, ·) in Eq. (5) is modified as:

L (x̃t, y) =

n∑
i=1

ρi · ` (x̃t, y, fi) +
β

sh · sw

sh∑
i=1

sw∑
j=1

∇φijx (15)

where sh and sw represent the height and width of the perturbation patch pasted to the face, and β is
the scale factor. Given the paste coordinates (cx, cy), then φij = arctanh

(
2 · x̃t(cy+i,cx+j) − 1

)
.

Through the simultaneous optimization, we obtain an adversarial patch with good position and
perturbation. Next, we regard it as the initialization of the gradient estimation. Specifically, we fix
the position and use the gradient estimation method to only refine the perturbation by querying the
threat models. After several iterations, the transferability of the adversarial patch is further improved.
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B.2 EXPERIMENTAL RESULTS

Table 5: Results of the ASR and NQ required for simultaneous optimization combined with Zeroth-Order
optimization. We conduct dodging attack and impersonation attack against FaceNet, ArcFace34, ArcFace50,
and CosFace50 in the black-box setting. Three single models and their ensemble version are used as surrogate
models.

surrogate
target FaceNet ArcFace34 ArcFace50 CosFace50

ASR NQ ASR NQ ASR NQ ASR NQ

D
od

gi
ng

FaceNet - 65.75% 1331 46.89% 1569 49.74% 1885
ArcFace34 89.47% 721 - 58.58% 1532 53.51% 1904
ArcFace50 92.37% 804 71.30% 1327 - 63.81% 1432
CosFace50 91.82% 755 65.48% 1298 62.41% 1384 -
Ensemble 97.73% 834 83.28% 1316 74.08% 1521 77.09% 1692

Im
pe

rs
on

at
io

n FaceNet - 58.41% 1844 41.58% 2693 45.70% 2052
ArcFace34 67.37% 907 - 44.55% 2112 49.53% 1867
ArcFace50 78.94% 1217 65.35% 1827 - 56.28% 1456
CosFace50 76.84% 946 63.36% 1578 53.46% 1720 -
Ensemble 87.37% 1311 76.29% 1839 66.37% 2542 71.28% 1575

The results in Table 5 show the performance of the integration with gradient estimation. It can be
seen that after the combination of gradient estimation, the results have been improved to some extent
compared with Table 1, but the consumption of queries has increased accordingly. For example,
the success rate of impersonation attacks on CosFace50 increases from 40.08% to 71.28%, but the
number of queries increases from 77 to 1575. Therefore, in practical applications, it is necessary
to weigh the importance of success rate and query efficiency to determine whether to combine the
gradient estimation method.

Table 6: The results of attacking FaceNet using adversarial patch output by simultaneous optimization (SO), si-
multaneous optimization combined with the Zeroth-Order (ZO) optimization (SO+ZO), and random initialization
of perturbation and position combined with the Zeroth-Order (ZO) optimization (Random+ZO), respectively.

surrogate
method Dodging Impersonation

SO SO+ZO Random+ZO SO SO+ZO Random+ZO
ASR NQ ASR NQ ASR NQ ASR NQ ASR NQ ASR NQ

ArcFace34 84.97% 17 89.47% 721

65.79% 1972

58.53% 25 67.37% 907

50.52% 2874ArcFace50 89.37% 14 92.37% 804 53.52% 28 78.94% 1217
CosFace50 85.91% 15 91.82% 755 59.21% 31 76.84% 946
Ensemble 96.65% 11 97.73% 834 72.83% 27 87.37% 1311

In order to confirm that the improvement in ASR is due to the good initial value provided by our
simultaneous optimization method for gradient estimation, rather than the superiority of the gradient
estimation method itself, a comparison is made in Table 6. The results show that simultaneous
optimization (SO) can achieve a good ASR with the help of only a few queries (lower than 40 queries)
both in dodging and impersonation. When combined with Zeroth-Order (ZO) optimization, the ASR
has been further improved (from 72.83% to 87.37% for impersonation), but introduces more query
consumption. However, we can see that Random+ZO uses much more queries (1972 and 2874,
respectively) but achieves much lower ASR (65.79% and 50.52%, respectively). This contrast proves
that our SO method indeed provides a good initialization for the gradient estimation.

C MORE VISUAL RESULTS

In this section, we show more visual results of the simultaneous optimization (SO) attacks. Figure 8
shows four groups of visual results. For each group of three images, the first one represents the clean
image, the second one represents the image after the attack, and the third one represents the image
corresponding to the wrong identity in the face database.

The above results are obtained by ensuring that the patch is not pasted to the area that covers the
facial features. We also conduct experiments when allowing patches to cover facial features in a
small range (no more than 20 pixels), and the results are shown in Figure 9. Interestingly, we find
that the generated pattern is similar to that of the facial features at the corresponding position, but its
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Figure 8: Examples in the simultaneous optimization process. The black text at the bottom of images denotes
the ground-truth identity, and the red text is the false identity after attacks.

Figure 9: Examples when allowing patches to cover facial features in a small range. The black text at the
bottom of images denotes the ground-truth identity, and the red text is the false identity after attacks.

shape has been changed. For example, in the last group of pictures in Figure 9, the adversarial patch
is pasted on the left side eyebrow of the face, and the generated pattern is similar to the shape of the
eyebrow, which changes the eyebrow’s shape, and may mislead the extraction of eyebrow features by
the face recognition network. This inspires us to use some information of facial features (e.g. eyes,
eyebrows, nose and mouth) to mislead the feature extraction process of the face recognition, so as to
achieve better attack performance.

D IMPLEMENTATION DETAILS OF THE PHYSICAL ATTACK

To make digital simulation results better adapt to the physical environment, we process the smoothness
of the pattern. Specifically, during each iteration of the pattern generation, we first obtain a pattern
half the size of the original patch by scaling down or averaging pooling, and then enlarge the image
back to the original size by bilinear interpolation. The reduced pattern retains the key information
of the pattern. After zooming, the smoothness of the image is improved, avoiding the problem that
the pattern generated per pixel is sensitive to the position point when it is transferred to the physical
environment. Even the pasting position is slightly a few pixels away, the attack effect can still be
preserved. We also try to use Total Variation (TV) (Sharif et al., 2019) loss to enhance the smoothness,
but the actual effect is not as good as the scaling process. When printing, we use photo paper rather
than ordinary paper as the patch material to recreate the colors of the digital simulation as realistically
as possible.
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