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ABSTRACT

Existing literature typically treats style-driven and subject-driven generation as
two disjoint tasks: the former prioritizes stylistic similarity, whereas the latter fo-
cuses on subject consistency, resulting in an apparent antagonism. We argue that
both objectives can be simultaneously achieved within a unified framework, as
they fundamentally pertain to the disentanglement and re-composition of content
and style, a longstanding theme in both tasks. To this end, we introduce USO,
a Unified Style-subject Optimized customization model that leverages the com-
plementary nature of these objectives, enabling them to mutually reinforce and
enhance each other within a cohesive paradigm. Specifically, on the one hand, we
first propose a subject-for-style data curation framework that leverages a state-of-
the-art subject model to generate high-quality triplet data comprising content im-
ages, style images, and their corresponding stylized content images. Building on
this foundation, USO further introduces a style-for-subject approach for content-
style disentangled learning, which simultaneously aligns style features and con-
tent features to construct a cohesive customization model. Furthermore, a style
reward-learning, termed SRL, is further applied to reinforce the model’s ability to
extract desired style or content features from the reference image, thereby further
enhancing the performance of both tasks. Extensive experiments demonstrate that
USO achieves state-of-the-art performance among open-source models along both
dimensions of subject consistency and style similarity.

1 INTRODUCTION

The significant advancements in image generation over the past years have greatly improved gen-
erative controllability, fundamentally changing how humans create images, i.e., whether through
abstract textual descriptions, specific visual reference images, or both. Research on leveraging both
textual and visual conditions has attracted increasing interest, giving rise to numerous real-world
tasks such as style-driven generation and subject-driven generation. While textual conditions are
typically explicit, visual conditions are inherently noisy, as images intrinsically embody a rich
spectrum of features (e.g., style, appearance), of which only a specific one is relevant to a specific
task. For instance, style-driven generation requires only the style feature from the reference images,
whereas other features constitute noise. Therefore, a fundamental and long-standing challenge in
these tasks is to accurately include all required features from the reference image while simulta-
neously excluding other noisy ones, e.g., including only the style in style-driven generation or only
the subject’s appearance in subject-driven generation.

Extensive efforts in the literature have been dedicated to disentangling different features in visual
conditions (i.e., reference images). On the one hand, in the realm of style-driven generation, DEAD-
iff Qi et al. (2024) employs QFormer to selectively query only the style features from reference
images. CSGO Xing et al. (2024) constructs content-style-stylized triplets to facilitate style-content
decoupling during training. StyleStudio Lei et al. (2025) introduces style-based classifier-free guid-
ance (SCFG) to enable selective control over stylistic elements and to mitigate the influence of
irrelevant features. On the other hand, subject-driven generation methods primarily focus on disen-
tangling subject appearance features or constructing more effectively disentangled paired data. For
example, RealCustom Huang et al. (2024b); Mao et al. (2024) proposes a dual-inference framework
that selectively incorporates subject-relevant features into subject-specific regions. UNO Wu et al.
(2025c) leverages the in-context capabilities of DiT to progressively improve both the quality of
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Figure 1: We propose USO, a unified model that jointly optimizes for subject and style, enabling
customizable generation with high subject consistency and style fidelity.

paired data and the model itself. To conclude, existing methods primarily focus on task-specific dis-
entanglement by designing tailored datasets or model architectures for each individual task, thereby
performing disentanglement in an isolated, single-task context.

In this study, we argue that a more comprehensive and precise disentanglement approach should fully
account for the coupling and complementarity between different generation tasks. Each task should
not only learn which features to include, but, more importantly, also learn which features to exclude,
i.e., features that are often required by other tasks. Therefore, learning to include certain features in
one task inherently informs and enhances the process of learning to exclude those same features
in a complementary task, and vice versa. For example, style-driven generation aims to incorporate
stylistic features while excluding subject appearance features, whereas subject-driven generation
does the exact opposite. The ability to learn and include subject appearance features in subject-
driven generation can, in turn, help style-driven generation more effectively learn to exclude these
features, thereby improving disentanglement for both tasks. In conclusion, we believe that jointly
modeling complementary tasks enables a mutually reinforcing disentanglement process, leading to
a more precise separation of relevant and irrelevant features for each task.

Based on the above motivation, we propose a novel cross-task co-disentanglement paradigm to
unify subject-driven and style-driven generation, and, more importantly, to mutually enhance the
performance of both tasks. Specifically, this co-disentanglement paradigm is implemented through
a subject-for-style data curation framework and a style-for-subject model training framework. The
subject-for-style framework first utilizes a state-of-the-art subject model to generate high-quality
style data, while the style-for-subject framework subsequently trains a more effective subject model
under the guidance of style rewards and disentangled training. Technically, on the one hand, for the
subject-for-style data curation framework, we build upon a state-of-the-art subject-driven model Wu
et al. (2025c) and further develop both a stylization expert and a de-stylization expert to curate styl-
ized and non-stylized images. This process ultimately constructs triplet data pairs in the form of
<style reference, de-stylized subject reference, stylized subject result> for subsequent model train-
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ing. On the other hand, for the style-for-subject model training framework, we propose a Unified
Style-Subject Optimized (USO) customization model, which introduces style-subject disentangle-
ment training and style reward learning.

Our contributions are summarized as follows:

Concept: We point out that existing style-driven and subject-driven methods focus solely on iso-
lated disentanglement within each task, neglecting their potential complementarity and thus leading
to suboptimal disentanglement. For the first time, we propose a novel cross-task co-disentanglement
paradigm that unifies style-driven and subject-driven tasks, enabling mutual enhancement and
achieving significant performance improvements for both.

Methodology: We present a novel cross-task triplet curation framework that bridges style-driven
and subject-driven generation. Building on this, we introduce USO, a unified customization architec-
ture that incorporates content–style disentanglement training and a style reward learning paradigm
to further promote cross-task disentanglement. We further release USO-Bench, to the best of our
knowledge, the first benchmark tailored for evaluating cross-task customization.

Performance: Extensive evaluations on USO-Bench and DreamBench Ruiz et al. (2023) show that
USO achieves state-of-the-art results on subject-driven, style-driven, and joint style-subject-driven
tasks, attaining the highest CLIP-T, DINO, and CSD scores. USO can handle individual tasks and
their free-form combinations while exhibiting superior subject consistency, style fidelity, and text
controllability as shown in Figure 1.

2 RELATED WORK

2.1 STYLE TRANSFER

Style Transfer aims to apply the style in the reference image to the given content image or fully gen-
erated image. Early work like adaptive instance normalization Huang & Belongie (2017) achieved
impressive style transfer results with layout-preserved results by simply using a pre-trained network
as the style encoder and well-designed injection modules. The recent powerful text-to-image gen-
eration base models, like Stable Diffusion Podell et al. (2024); Esser et al. (2024) and FLUX Labs
(2024), along with style transfer plugins built upon them, have significantly improved the conve-
nience and effectiveness of performing this task. Several are even training-free, like StyleAlign Wu
et al. (2021) and StylePrompt Jeong et al. (2024) which transfer the style via simple query-key swap-
ping in the specific self-attention layers. Other training-based methods can theoretically achieve
better fitting and style transfer performance, but they also raise concerns of content leakage. IP-
Adapter Ye et al. (2023) and DEADiff Qi et al. (2024) demonstrate the style transfer ability with a
new decoupled cross-attention layer trained with coupled data, and overcome the content leakage by
decreasing the injection weights in inference-time. InstanceStyle Wang et al. (2024), StyleShot Gao
et al. (2024) and B-lora Frenkel et al. (2024) provide more detailed time-aware and layer-aware
injection strategies to disentangle the style and content feature injections. However, those disentan-
glement analyses are tied to the specific model architecture and hard to migrate.

2.2 SUBJECT-DRIVEN GENERATION

Subject-driven generation refers to generating images of the same subject conditioned on a text in-
struction and reference images of given subjects. Dreambooth Ruiz et al. (2023) and IP-Adapter Ye
et al. (2023) turn a UNet-based text-to-image model into a subject-driven model by parameter-
efficient tuning or a newly introduced attention plug-in. Recently, popular image-generation foun-
dation models have shifted from UNet-based architectures to transformer-based ones. The inherent
in-context learning capabilities of transformers have greatly enriched research on subject-driven
generation. ICLoRA Huang et al. (2024a), OminiControl Tan et al. (2024), UNO Wu et al. (2025c),
and FLUX.1 Kontext Labs et al. (2025) use shared attention between the generated image and ref-
erence image to train a text-to-image DiT into a subject-driven variant. It is worth noting that some
of them have extended the reference subject to other types. OminiControl Tan et al. (2024) supports
layout control image as a reference, UNO Wu et al. (2025c) supports multiple reference images
input, and DreamO Mou et al. (2025) can work for simple style transfer. They have indicated that
various types of reference-guided generation can be unified within the DiT in-context framework.
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Figure 2: Illustration of our proposed cross-task triplet curation framework, which systematically
generates layout-preserved and layout-shifted triplets.

This further prompts the question of whether jointly addressing different tasks in this setting could
lead to mutual benefits across them.

3 METHODOLOGY

3.1 CROSS-TASK TRIPLET CURATION FRAMEWORK

This section details the construction of cross-task triplets for USO training. Although prior
works Xing et al. (2024); Wang et al. (2025) have explored triplet generation, they retain the original
layout, preventing any pose or spatial re-arrangement of the subject. To jointly enable subject-driven
and style-driven generation beyond simple instruction-based edits, we curate a new USO dataset ex-
pressly designed for this unified objective.

Figure 2 provides an overview of USO dataset. Our co-disentanglement paradigm starts from a
subject-for-style data curation framework. Among many possible tasks, subject-driven (i.e., UNO-
1M Wu et al. (2025c)) and instruction-based editing (i.e., X2I2 Wu et al. (2025b)) datasets are
comparatively easy to collect at scale, enabling targeted task-specific corpora. In particular, subject-
driven data emphasizes learning from content cues while preserving subject identity and consistency;
instruction-based editing bridges styles by preserving spatial layout and transferring appearance
between realistic and stylized domains in both directions. These resources naturally support training
domain-specialist models and, through deliberate dataset design, induce the capabilities we care
about (e.g., extracting task-relevant features conditioned on image type). Guided by these insights,
we curate 200k stylized image pairs sourced from publicly licensed datasets and augmented with
samples synthesized by state-of-the-art text-to-image models. Using these data, we trained two
complementary experts on top of the leading customization framework UNO Wu et al. (2025c):
(1) a stylized expert model that performs style-driven generation conditioned on a style-reference
image, producing a new subject rendered in the target style (Isref from Itgt), and (2) a de-stylization
expert model that inverts a stylized image to a photorealistic counterpart, allowing either flexible
layout shifts or preservation (Icref from Itgt).

Each curated stylized image serves as the target Itgt. We synthesize its style reference Isref via the
stylization expert and its content reference Icref via the de-stylization expert. Following Wu et al.
(2025c), a VLM-based filter enforces style similarity between Itgt and Isref and subject consistency
between Itgt and Icref. This yields two kinds of triplets, shown in Figure 2: layout-preserved and
layout-shifted. Unlike prior work Xing et al. (2024); Wang et al. (2025), which focuses solely on
style-driven generation and confines itself to layout-preserved triplets, our cross-task triplets achieve
deeper content–style disentanglement across tasks and are used to train USO.

3.2 UNIFIED CUSTOMIZATION FRAMEWORK (USO)

In this section, we describe how we unify two tasks that have traditionally been treated separately,
subject-driven and style-driven generation, into a single model. we train USO on two kinds of
triplets from Section 3.1. Critically, in addition to layout-preserved triplets, we introduce layout-
shifted triplets—pairs where the spatial configuration changes, which are essential for a robust uni-
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fied model: they force the network to inject the desired stylistic features while keeping the subject
consistent across diverse stylized scenarios and varied text prompts.

3.2.1 CONTENT-STYLE DISENTANGLEMENT TRAINING.

Disentangled conditional encoder. As illustrated in Figure 3, We start from a pre-trained text-to-
image (T2I) model and fine-tune it into a text-image-to-image (TI2I) model.

MM-DiT Blocks

VAE

𝓛!"#$!%

Target Image
𝐼!"!

Style Image
𝐼#$%&

Content Image
𝐼#$%'

SigLIP

Hierarchical 
Projector

An old man sits 
and eats bread

style similarity

𝐼(

Figure 3: Illustration of the training frame-
work of USO.

Unlike prior in-context generation approaches that
rely solely on a VAE E(·) to encode the condi-
tioned image Iref, we argue that style is a more
abstract cue demanding richer semantic informa-
tion. Therefore, we employ the semantic encoder
SigLIP instead of the VAE to process the reference
style image Isref. While subject-driven or identity-
preserving tasks typically emphasize high-level se-
mantics, style-driven tasks must simultaneously han-
dle two extremes: high-level semantics to accom-
modate large geometric deformations (e.g., 3-D car-
toon styles) and low-level details to reproduce sub-
tle brushstrokes (e.g., pencil sketches). Following
recent works like Zhang et al. (2024), we intro-
duce a lightweight Hierarchical Projector MProj(·)
to project multi-scale, fine-grained visual features
zs from the extracted SigLIP embeddings {ci}Ni=1,
where N represents the layer indices of SigLIP. This
process can be formulated as:

zs = Concatenate(MProj({ci}Ni=1)), (1)

Then we introduce subject conditioning as shown in Figure 3. Following recent paradigms Tan et al.
(2024); Wu et al. (2025c), the content image Icref is encoded into pure conditional tokens zc by a
frozen VAE encoder E(·). We formulate USO as a multi-image conditioned model, yet explicitly
disentangle content and style features via separate encoders.

Stochastic conditioning dropout training. During training, we unfreeze the Hierarchical Projector
and fine-tune the DiT with LoRA as shown in Figure 3. With probability p we randomly drop either
the style or the subject reference, forcing the model to solve pure subject-driven generation or pure
style transfer tasks. This strategy preserves single-task capability while simultaneously exposing the
network to a multi-task regime, enabling end-to-end learning of disentangled representations. The
final multimodal input sequence z2 is therefore expressed as:

z2 = Concatenate(zs, c, zt, zc), (2)

We set p = 0.25 during training. Style tokens zs are assigned the same positional indices as the text
tokens c, while content tokens obtain their positions via UnoPE Wu et al. (2025c) using its diagonal
layout. Consequently, USO can seamlessly handle both subject-driven and style-driven tasks on the
proposed triplet dataset.

3.2.2 STYLE REWARD LEARNING

Although the above pipeline already formulates a unified customization model, one of our key in-
sights is that learning to include desired features for one task helps the complementary task suppress
those undesired features, thereby improving overall performance. To this end, we introduce Style
Reward Learning (SRL) to boost style similarity and observe how it contributes to subject consis-
tency. SRL alternates between computing a reward score and back-propagating the reward signal.
Unlike traditional ReFL Xu et al. (2023), which in text-to-image generation primarily considers text
fidelity or visual appeal, SRL is tailored for the reference-to-image setting. It focuses on reinforcing
the model to extract desired features from a reference image by directly computing a reward between
the online outputs and the conditioning image. As shown in Figure 3, we define the reward score
as the style similarity between the reference style image Isref and the generated stylized image Î0,
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Algorithm 1 Style Reward Learning (SRL) with Flow Matching
Require: Customization model net with pretrained parameters θ; pretrain loss LPre; reward loss
LSRL; reward model MRM; balancing coefficient λ; noise-schedule steps T ; SRL fine-tuning
interval [ts, te]; dataset D = {(y, I0, Icref, I

s
ref)}, y is prompt, I0 is target image and Icref , I

s
ref

are reference content and style images (Section 3.1)
1: for (y, I0, I

c
ref, I

s
ref) ∈ D do

2: LPre ← netθ(y, I0, I
c
ref, I

s
ref) // calculate pretrain loss with Equation (4)

3: t ∼ U(ts, te) // pick a random time step in [ts, te]
4: xT ∼ N (0, I)
5: for τ = T, . . . , t+ 1 do
6: v̂τ ← no-grad(netθ(y, xτ , I

c
ref, I

s
ref))

7: xτ−1 ← xτ − v̂τ∆t // reverse-step update
8: end for
9: v̂t ← netθ(y, xt, I

c
ref, I

s
ref)

10: Î0 ← decode(xt − v̂t∆t) // predict original image
11: LSRL ← −MRM(Î0, I

s
ref) // calculate SRL loss with negative reward with Equation (3)

12: L ← LPre + λLSRL
13: θ ← θ − η∇θL // update model parameters via gradient descent (η is learning rate)
14: end for

measured by either a VLM-based filter or the CSD model MRM(·) Somepalli et al. (2024); Xing
et al. (2024). The reward loss is defined as:

LSRL = E[ϕ(MRM(Isref, Î0))] (3)

where Y = {yi}ni=1 is the prompt set, ϕ maps reward scores to per-sample loss values, and Î0
denotes the image generated by the diffusion model with parameters θ corresponding to prompt y.

To mitigate potential reward hacking, we jointly optimize the model by including the original Flow-
Matching training objective, which is computed as:

LPre = Ex0,t,ϵ[w(t)∥vθ − vt∥2] (4)

where w(t) is a weighting function, vθ denotes the neural network parameterized by θ, and the
sampling process is from t = T with xT ∼ N (0, I) to t = 0, by solving the PF-ODE via dxt =
vθ(xt, t)dt. The final objective combines both losses:

L = LPre + λLSRL, λ = 0 before step S, λ = 1 thereafter. (5)

As shown in Algorithm 1, we present the detailed SRL algorithm.

4 EXPERIMENTS

4.1 EXPERIMENTS SETTING

USO Unified Benchmark. To enable a comprehensive evaluation, we introduce USO-Bench, a
unified benchmark built from 50 content images (20 human-centric, 30 object-centric) paired with
50 style references. We further craft 30 subject-driven prompts that span pose variation, descriptive
stylization, and instructive stylization, along with 30 style-driven prompts. We generate four images
per prompt for both subject-driven and style-driven tasks, and a single image for the combined
style-subject-driven task. This yields 6000 samples for subject-driven generation, 7040 for style-
driven generation, and 29500 for the combined task; full construction details are provided in the
supplementary material.

Evaluation Metrics. For quantitative evaluation, we assess each task along three dimensions: (1)
subject consistency, measured by the cosine similarity of CLIP-I and DINO embeddings following
Wu et al. (2025c); (2) style similarity, reported via the CSD score Somepalli et al. (2024) for both
style-driven and style-subject-driven generation, following Xing et al. (2024); and (3) text–image
alignment, evaluated with CLIP-T across all three tasks.
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Figure 4: Qualitative comparison with different methods on subject-driven generation.

Table 1: Quantitative results for subject-driven and style-driven generation on USO-Bench.

Method Subject-driven generation Style-driven generation
CLIP-I↑ DINO↑ CLIP-T↑ CSD↑ CLIP-T↑

RealCustom++ Huang et al. (2024b) 0.314 0.615 0.303 - -
RealGeneral Lin et al. (2025) 0.485 0.732 0.275 - -
UNO Wu et al. (2025c) 0.605 0.789 0.264 - -
BAGEL Deng et al. (2025) 0.516 0.741 0.298 - -
OmniGen2 Wu et al. (2025b) 0.475 0.723 0.302 - -
FLUX.1 Kontext dev Labs et al. (2025) 0.579 0.775 0.287 - -
Qwen-Image Edit Wu et al. (2025a) 0.544 0.756 0.302 - -

DEADiff Qi et al. (2024) - - - 0.462 0.274
InstantStyle-XL Wang et al. (2024) - - - 0.540 0.276
CSGO Xing et al. (2024) - - - 0.452 0.272
StyleStudio Lei et al. (2025) - - - 0.348 0.282

DreamO Mou et al. (2025) 0.588 0.787 0.280 0.454 0.278

USO (Ours) 0.647 0.804 0.287 0.556 0.286

Comparative Methods. As a unified customization framework, USO is evaluated against both task-
specific and unified baselines. For subject-driven generation, we benchmark RealCustom++ Mao
et al. (2024), RealGeneral Lin et al. (2025), UNO Wu et al. (2025c), OmniGen2 Wu et al. (2025b),
BAGEL Deng et al. (2025), FLUX.1 Kontext dev Labs et al. (2025), and Qwen-Image Edit Wu et al.
(2025a). For style-driven generation, we compare StyleStudio Lei et al. (2025), DreamO Mou et al.
(2025), CSGO Xing et al. (2024), InstantStyle Wang et al. (2024), and DEADiff Qi et al. (2024).
For the joint style-subject-driven setting with dual conditioning, we compare OmniStyle Wang et al.
(2025) and StyleID Chung et al. (2024).

4.2 EXPERIMENTAL RESULTS

Subject-Driven Generation. As shown in Figure 4, the first two rows demonstrate that USO
simultaneously satisfies both descriptive and instructive style edits while maintaining high subject
consistency. In contrast, competing methods either fail to apply the style or lose the subject. The last
two rows further illustrate USO’s strength in preserving human appearance and identity; it adheres
strictly to the textual prompt and almost perfectly retains facial and bodily features, whereas other
approaches fall short. When the prompt is “The man is reading a book in a cafe”, FLUX.1 Kontext
dev Labs et al. (2025) achieves decent facial similarity but carries copy-paste risks. As reported in
Table 1, USO significantly outperforms prior work, achieving the highest DINO and CLIP-I scores
and a leading CLIP-T score.
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Figure 5: Qualitative comparison with different methods on style-driven generation.
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“” “”

… gave an impassioned 
speech on the podium.

Figure 6: Qualitative comparison with different methods on style-subject-driven generation.
Style-Driven Generation. Figure 5 shows that USO outperforms task-specific baselines in preserv-
ing the original style, including global color palettes and painterly brushwork. In the last two rows,
given highly abstract references such as material textures or Pixar-style renderings, USO handles
them almost flawlessly while prior methods struggle, demonstrating the generalization power of our
cross-task co-disentanglement. Quantitatively, Table 1 confirms that USO achieves the highest CSD
and CLIP-T scores among all style-driven approaches.

Table 2: Quantitative results for style-subject-
driven generation on USO-Bench.

Model CSD↑ CLIP-T↑
StyleID Chung et al. (2024) 0.407 0.230
OmniStyle Wang et al. (2025) 0.365 0.229

USO (Ours) 0.492 0.283

Style-Subject-Driven Generation. As illus-
trated in Figure 6, we evaluate USO on both
layout-preserved and layout-shifted scenarios.
When the input prompt is empty, USO not
only preserves the original layout of the con-
tent reference but also delivers the strongest
style adherence. In the last two rows, under
a more complex prompt, USO simultaneously
preserves the subject and identity consistency, matches the reference style, and aligns with the text,
while other methods lag markedly and merely adhere to the text. Table 2 corroborates these obser-
vations, showing USO achieves the highest CSD and CLIP-T scores and substantially outperforms
all baselines.

4.3 ABLATION STUDY

Effect of style reward learning (SRL). As shown in Figure 7(a), the middle column reveals a
clear boost in style similarity for both style-driven and style-subject-driven tasks, with the identity

8
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of the woman and the painting style closely matching the reference images. Removing SRL leads
to a sharp drop in the CSD score and simultaneous declines in CLIP-I and CLIP-T, as reported
in Table 3. We further visualize the reward curves in Figure 7(b) and Figure 7(c); our method yields
improvements in both identity and style similarity. Notably, we rely solely on style reward signals
and introduce no identity-specific supervision; nevertheless, the unified model gains in identity
consistency. By sharpening the model’s ability to extract and retain desired features, SRL brings
overall improvements across all tasks, validating our motivation.

w/ SRL w/o SRL

Subject
reference

Style
reference

Reference
Images

(a)  Qualitative comparison (b) Reward on identity similarity
(subject-driven)

(c) Reward on style similarity
(style-driven)

Figure 7: Ablation study of SRL.

Table 3: Ablation study of different components proposed in USO.
Model Subject-driven Style-driven Style-subject-driven

CLIP-I↑ CLIP-T↑ CSD↑ CLIP-T↑ CSD↑ CLIP-T↑
USO (Ours) 0.647 0.287 0.556 0.286 0.492 0.283
w/o SRL 0.619 0.283 0.491 0.281 0.413 0.280
w/o DE 0.594 0.269 0.491 0.280 0.382 0.277

Effect of disentangled encoder (DE). Replacing the disentangled encoders with a single shared
VAE to encode both style and content images degrades nearly every metric ( Table 3). We provide a
qualitative comparison in Figure 10 of Section A.3.3.

Table 4: Quantitative results on USO-Bench. ∗ de-
notes models reproduced on our USO dataset.

Model Subject-driven Style-subject-driven
CLIP-I↑ CLIP-T↑ CSD↑ CLIP-T↑

USO (Ours) 0.647 0.287 0.492 0.283
UNO 0.605 0.264 - -
UNO∗ 0.596 0.278 - -
OmniStyle - - 0.365 0.229
OmniStyle∗ - - 0.382 0.277

Effect of curated dataset. As shown in Ta-
ble 4, we reproduce two representative task-
specific methods, UNO Wu et al. (2025c) and
OmniStyle Wang et al. (2025), on our dataset
to validate the effectiveness of the curated
dataset. The reproduced OmniStyle even out-
performs the original baseline, particularly in
terms of CLIP-T, thanks to the layout-shifted
triplets in the new dataset. Training UNO
solely on the new dataset yields partial im-
provement, further confirming that both our method and the dataset contribute to the overall perfor-
mance of USO.

5 CONCLUSION

In this paper, we present USO, a unified framework capable of subject-driven, style-driven, and joint
style-subject-driven generation. We introduce a cross-task co-disentanglement paradigm that first
constructs a systematic triplet-curation pipeline, then applies content–style disentanglement training
on the curated triplets to formulate a unified customization model. Additionally, we propose a style-
reward learning paradigm to further boost performance. To comprehensively evaluate our method,
we construct USO-Bench, a unified benchmark that provides both task-specific and joint evaluation
for existing approaches. Finally, extensive experiments demonstrate that USO sets new state-of-
the-art results on subject-driven, style-driven, and their joint style-subject-driven tasks, exhibiting
superior subject consistency, style fidelity, and text controllability.

9
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A APPENDIX

A.1 LLM USAGE STATEMENT

The core scientific ideas, methodology, experimental results, and conclusions presented in this paper
are entirely the product of human authorship. A large language model was utilized solely as a
language refinement tool, specifically to enhance the conciseness and clarity of the English text and
to correct grammatical errors.

A.2 EXPERIMENTS SETTING

A.2.1 IMPLEMENTATION DETAILS.

We begin with FLUX.1 dev Labs (2024) and the SigLIP Zhai et al. (2023) pretrained model. We
train on triplets {Icref , Isref , Itgt} for 21, 000 steps at batch size 64, learning rate 8e − 5, resolution
1024 and reward steps S = 18, 000. LoRA Hu et al. (2021) rank 128 is used throughout.
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Descriptive 
prompts

The xx is reading a 
book in a cafe.

Instructive 
stylization

Transform the style of 
image into yy style

Descriptive
stylization

yy style, the xx is 
reading a book in a cafe.

Subject-driven 
(Content reference)

Style-driven 
(Style reference)

Style-subject-driven 
(Combination reference)

Stylization 
prompts

A villa on the coast.
A cat sleeping on a chair.
A beautiful woman.
Handsome boy.
A canvas bag.
A duck.
A child standing beside a 
huge cat
Eiffel tower.
…

Layout-preserved 
prompts

Layout-shifted
prompts

“” (empty prompt)

The xx is reading a 
book in a cafe.

Generation
Prompts

Reference 
Images

USO-Bench

Figure 8: Examples of USO-Bench.

A.2.2 DETAILS OF USO-BENCH.

USO-Bench is built to evaluate subject-driven, style-driven, and joint style-subject-driven gener-
ation. As shown in Figure 8, each subject-driven sample uses three prompt types: descriptive,
instructive-stylization, and descriptive-stylization. By pairing these prompts with style-reference
images from style-driven tasks, we obtain style-subject-driven samples via their Cartesian product.
The resulting prompts are further split into layout-shifted and layout-preserved variants.

A.3 ADDITIONAL EXPERIMENTS

A.3.1 USER STUDY.

We further conduct an online user-study questionnaire to compare state-of-the-art subject-driven and
style-driven methods. Questionnaires were distributed to both domain experts and non-experts, who
ranked the best results for each task. (1) Subject-driven tasks were evaluated on text fidelity, visual
appeal, subject consistency, and overall quality. (2) Style-driven tasks were judged on text fidelity,
visual appeal, style similarity, and overall quality. As shown in Figure 9, our USO achieves top
performance on both tasks, validating the effectiveness of our cross-task co-disentanglement and
showcasing its capability to deliver state-of-the-art results.
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Method DINO ↑ CLIP-I ↑ CLIP-T ↑
Oracle(reference images) 0.774 0.885 -
Textual Inversion Gal et al. (2022) 0.569 0.780 0.255
DreamBooth Ruiz et al. (2023) 0.668 0.803 0.305
BLIP-Diffusion Li et al. (2023) 0.670 0.805 0.302
ELITE Wei et al. (2023) 0.647 0.772 0.296
Re-Imagen Chen et al. (2022) 0.600 0.740 0.270
BootPIGPurushwalkam et al. (2024) 0.674 0.797 0.311
SSR-EncoderZhang et al. (2024) 0.612 0.821 0.308
RealCustom++ Huang et al. (2024b); Mao et al. (2024) 0.702 0.794 0.318
OmniGen Xiao et al. (2024) 0.693 0.801 0.315
OminiControl Tan et al. (2024) 0.684 0.799 0.312
FLUX.1 IP-Adapter 0.582 0.820 0.288
UNO Wu et al. (2025c) 0.760 0.835 0.304
USO (Ours) 0.800 0.838 0.316

Table 5: Quantitative results for single-subject driven generation on Dreambench Ruiz et al. (2023).

subject consistency

text fidelity

overall performance

1
2

3
4

5
6

Subject-driven Generation

visual appeal
USO (ours)
Kontext dev
OmniGen2
BAGEL
UNO
RealGeneral
RealCustom++

style similarity

subject consistency

visual appeal

overall performance

1
2

3
4

5
6

Style-driven Generation
USO (ours)
StyleStudio
DreamO
CSGO
InstantStyle
DEADiff

Figure 9: Radar charts of user evaluation of methods for subject-driven and style-driven generation
on different dimensions.

A.3.2 QUANTITATIVE EVALUATION ON DREAMBENCH RUIZ ET AL. (2023).

To further assess USO, we evaluate it on DreamBench Ruiz et al. (2023) in addition to USO-Bench.
Following UNO Wu et al. (2025c), we generate six images per prompt, yielding 4,500 image groups
across all subjects. As shown in Table 5, USO achieves the highest CLIP-I and DINO scores, and
with a CLIP-T score of 0.316, it trails the top result (0.318) by only a narrow margin. These results
demonstrate USO’s superior subject consistency among state-of-the-art methods.

A.3.3 ADDITIONAL ABLATION EXPERIMENTS

Effect of Disentangled Encoder (DE). We provide a visual comparison of using a single encoder
versus separate encoders for the two conditions. As shown in Figure 10, the “cheetah” reverts to a
photorealistic appearance, while the man’s identity suffers a marked loss, further demonstrating the
effectiveness of our disentanglement training.

Effect of Hierarchical Projector. To demonstrate the effectiveness of the Hierarchical Projector,
we freeze all other parameters and fine-tune only this module to create a stylized variant that enables
the pretrained T2I model to accept style-reference images as conditional input. This allows us to
isolate its contribution. As shown in Table 6, the hierarchical projector achieves the highest CSD
and a top CLIP-T score, confirming its key role in style-alignment training.
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Subject-driven: The man is reading a book in a cafe.

Style-driven: A cheetah.

Reference
Images w/ DE w/o DE

Figure 10: Ablation study of disentangled encoder. Zoom in for details.

Table 6: Ablation study of different projector in USO.
Model CSD↑ CLIP-T↑
resampler (depth=1) 0.336 0.279
resampler, unfreeze siglip 0.155 0.288
mlp (depth=1) 0.277 0.284
mlp, unfreeze siglip 0.179 0.288
hierarchical projector 0.402 0.284

A.4 MORE RESULTS.

We present additional qualitative results from USO:

• From Figures 11 to 14, USO demonstrates the ability to extract task-relevant content fea-
tures while maintaining subject consistency across diverse textual prompts—capabilities
that prior work typically treats as isolated tasks (e.g., subject-driven generation, instruction-
based stylized editing, and identity preservation).

• In Figures 15 and 16, USO exhibits high stylistic fidelity, capturing both fine-grained char-
acteristics (e.g., brushwork and material textures) and abstract artistic styles—far beyond
simple color transfer.

• In Figures 17 and 18, USO freely combines arbitrary subjects with arbitrary styles, sup-
porting both layout-preserving and layout-shifting generations.
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(1) A dog in the jungle. (2) A dog on a cobblestone street. (3)
A dog on the beach. (4) A dog on top of a wooden floor. (5)
A dog on top of fabric. (6) Transform the style of image into
Studio Ghibli anime style. (7) Oil painting style, a dog with a
house in the background. (8) Pixel style, a dog on a
cobblestone street. (9) Retro comic style, a dog in the jungle.

Figure 11: More results on subject-driven generation.
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(1) This man is surfing, with the waves behind him chasing
after him. (2) Handsome man is playing Piano. (3) This man in
suit was playing the violin on the stage when a beam of light
shone upon him. (4) This man is holding a cat in the garden. (5)
This man stood on the moon and made a "yeah" sign, with a
miniature of the Earth behind him. (6) The boy is reading a
book in the coffe. (7) This man is playing football on the
playground under the setting sun. (8) Handsome man in the
city. (9) This man is in the water, with fish circling around him.

Figure 12: More results on subject-driven generation.
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(1) The man is reading a book in a cafe. (2) The man carried a backpack
with a kitten inside. (3) A man in a silver sequin jacket dances in a club,
strobe lights bouncing off his coat like. (4) A man fixes a bike at dusk,
wrench shining in orange twilight. (5) This man was walking on the
street at night, with the blurry neon lights behind him reading "USO”.
(6) Sketch style, the man is walking with a dog, on the path in the park.
(7) Pixel style, the man in flower shops carefully match bouquets,
conveying beautiful emotions and blessings with flowers. (8) Lego
building block wind, the man is reading a book in a cafe. (9) Studio
Ghibli anime style, The man gave an impassioned speech on the podium.

Figure 13: More results on identity-driven generation.
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(1) The woman crouched down in the garden and carefully
trimmed the flower branches. (2) The woman is reading a book
in a cafe. (3) A woman in a black leather jacket at night,
streetlights streaking past like gold lines, her jacket collar
flipping to catch cool blue neon. (4) A woman is mixing paint
in a sunny art studio. (5) This woman writes on the blackboard,
side view, the blackboard blurs "USO inspires creativity”. (6)
Retro comic style, the woman is walking in a retro alley, with
the sky drizzling and the raindrops clearly visible. (7) Pixel
style, the woman crouched down in the garden and carefully
trimmed the flower branches. (8) 3D Cartoon Style, the woman
rides a deer in the forest. (9) Studio Ghibli anime style, the
woman gave an impassioned speech on the podium.

Figure 14: More results on identity-driven generation.
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A child standing 
beside a huge cat

A cat sleeping on a 
chair.
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A beautiful woman.
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A duck.
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Figure 15: More results on style-driven generation.
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The cat chased the 
butterfly in the snow.
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Figure 16: More results on style-driven generation.
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Content
Reference
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Reference

Figure 17: More results on style-subject-driven generation. We set prompt to empty for layout-
preserved generation.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(1) “” 

(2) The woman in flower shops carefully match bouquets, conveying 
beautiful emotions and blessings with flowers.

(3) The woman is reading a book in a cafe. 

(4) The woman gave an impassioned speech on the podium. 

(5) The woman with a mountain in the background. 

(6) The woman on the beach. 

(7) Night fell and the woman stood under the street lamp. 

(8) This woman is holding a cat.

Figure 18: More results on style-subject-driven generation. USO supports any subject combined
with any style in any scenario.
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