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ABSTRACT

Recent research has highlighted a critical issue known as “robust fairness”, where
robust accuracy varies significantly across different classes, undermining the reli-
ability of deep neural networks (DNNs). A common approach to address this has
been to dynamically reweight classes during training, giving more weight to those
with lower empirical robust performance. However, we find there is a divergence
of class-wise robust performance between training set and testing set, which limits
the effectiveness of these explicit reweighting methods, indicating the need for a
principled alternative. In this work, we derive a robust generalization bound for
the worst-class robust error within the PAC-Bayesian framework, accounting for
unknown data distributions. Our analysis shows that the worst-class robust error
is influenced by two main factors: the spectral norm of the empirical robust confu-
sion matrix and the information embedded in the model and training set. While the
latter has been extensively studied, we propose a novel regularization technique
targeting the spectral norm of the robust confusion matrix to improve worst-class
robust accuracy and enhance robust fairness. We validate our approach through
comprehensive experiments on various datasets and models, demonstrating its ef-
fectiveness in enhancing robust fairness.

1 INTRODUCTION

Deep neural networks, spanning a diverse array of domains and applications, have shown impressive
abilities to learn from training data and generalize effectively to new, unseen data. However, recent
studies have uncovered a notable weakness in these DNNs – their vulnerability to subtle, often
undetectable “adversarial attacks” (Biggio et al., 2013; Szegedy et al., 2013). It has been discovered
that even slight perturbations to the input, typically imperceptible to humans, can drastically mislead
the networks, resulting in significant prediction errors (Goodfellow et al., 2015; Wu et al., 2020a).
Adversarial training is widely acknowledged as a potent defense against adversarial attacks (Athalye
et al., 2018). Building on this, numerous studies have further developed and refined this approach to
bolster robustness, contributing significant advancements in the field (Wu et al., 2020b; Lee et al.,
2020; Cui et al., 2021; Jin et al., 2022; Zhang et al., 2019).

In traditional machine learning, the definition of fairness (Agarwal et al., 2018; Hashimoto et al.,
2018) may differ from the concept of robust fairness that we aim to address in this work, which
focuses on mitigating fairness issues in the context of adversarial attacks (i.e., improving worst-class
robust accuracy). The complex interplay between robustness and fairness, as highlighted by Xu et al.
(2021), shows that the robust accuracy of a model can significantly differ across various categories
or classes. For example, a traffic detection system that achieves impressive overall robust accuracy
in detecting road objects. Despite its general success, the system could exhibit high robustness for
certain categories like inanimate objects, yet be less robust when identifying critical categories, such
as “humans”. Such unevenness in robustness, where some categories are less protected, poses a risk
to both drivers and pedestrians. Therefore, it is crucial to establish uniformly high and fair model
performance against adversarial attacks.

Several works have proposed enhancing model robust fairness through explicit reweighting strate-
gies during adversarial training, where classes are reweighted based on their robust performance
over the training set (Xu et al., 2021; Li & Liu, 2023; Zhang et al., 2024). However, our analysis
reveals that the robust class-wise performance over training set does not consistently align with that
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Figure 1: Illustration of the theoretical framework: worst-class robust generalization bound. Under
this framework, a standard generalization bound over confusion matrix is extended to a robust gen-
eralization bound for the worst-class robust error.

of testing set. As shown in Fig. 2 (left), the class exhibiting the worst robust performance on the
training set may not be the same as the one on the testing set. Furthermore, Fig. 2 (right) demon-
strates that these explicit reweighting approaches, e.g., FRL (Xu et al., 2021) and FAAL (Zhang
et al., 2024), can actually exacerbate the training-test divergence, consequently limiting their ability
to optimize worst-class robust accuracy. This misalignment between training and test robust perfor-
mance across classes, combined with the absence of rigorous theoretical foundations, motivates our
development of a principled alternative to improve worst-class robust performance. As shown in
Fig. 2 (right), our developed method maintains significantly lower training-test divergence (higher
training-test correlation) compared to explicit reweighting approaches. Note that our method is not
primarily designed to address the training-test divergence, which may be inherent to the dataset, but
rather to avoid explicit reweighting that can exacerbate this divergence and limit effectiveness.

Figure 2: Left: Class-wise AA (Auto Attack) ac-
curacy of the adversarially trained WideResNet-
28-10 model on CIFAR-10. The star points are the
worst-class AA accuracy on training set and test-
ing set. Right: The covariance (blue) and Kendall
rank correlation (orange) of class-wise AA ac-
curacy between training set and testing set for
normal adversarially trained WRN-28-10 model,
reweighting methods (FRL and FAAL) fine-tuned
models, and our method fine-tuned model.

In this work, we derive a robust generalization
bound for the worst-class robust error within
the PAC-Bayesian framework. The PAC-
Bayesian approach, introduced by McAllester
(1999), is designed to provide probably approx-
imately correct (PAC) guarantees to “Bayesian-
like” learning algorithms (e.g., a Gibbs classi-
fier defined on a posterior distribution). As il-
lustrated in Fig. 1, our first step is to transfer
the bound in Morvant et al. (2012) for a Gibbs
classifier to bound the spectral norm of the con-
fusion matrix for a deterministic classifier. We
analytically extend this bound by incorporat-
ing the structural information of a determinis-
tic model. This process is similar to that of
Neyshabur et al. (2017b), but with a key dif-
ference: we establish a chain derivation over
confusion matrices to construct the bound. Sec-
ondly, leveraging the local perturbation bound
approach from Xiao et al. (2023), we adapt the generalization bound over confusion matrices to the
robust setting, accounting for adversarial perturbations. Through the relationship between the ℓ1
matrix norm and the spectral norm, we finally provide a PAC-Bayesian bound for the worst-class
robust error.

This bound unveils that the worst-class robust error is constrained by two key components: the
spectral norm of the empirical robust confusion matrix and the information encapsulated within
the model’s architecture and training set. While the latter component has been extensively studied
and leveraged to improve generalization or robust generalization (Yoshida & Miyato, 2017; Farnia
et al., 2019), we propose a complementary approach to tackle this challenge. That is, we introduce
a regularization technique that directly targets the spectral norm of the empirical robust confusion
matrix, with the aim of improving worst-class robust accuracy and further enhancing robust fairness
across different classes. To validate the effectiveness of our proposed method to improve worst-class
performance, we conduct extensive experiments on various datasets. Our empirical evaluations
demonstrate the superior performance of our approach in improving worst-class robust accuracy,
ensuring more equitable and reliable model predictions under adversarial conditions, even for the
most vulnerable classes. To summarize, the contributions of this work are as follows:

• By extending the principled concepts of PAC-Bayesian generalization analysis to the do-
main of robust fairness, we develop a robust generalization framework that enables us to
bound the worst-class robust error, as detailed in Sec. 3. To the best of our knowledge, this
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work represents the first endeavor to develop a PAC-Bayesian framework to characterize
the worst-class robust error across different classes.

• As a by-product, leveraging the insights gleaned from our theoretical results, we propose
an effective and principled method to enhance robust fairness by introducing a spectral
regularization term on the confusion matrix. Empirically, extensive experiments on CIFAR-
10/100 and Tiny-ImageNet datasets have been conducted to demonstrate the effectiveness
of our method. (Sec. 4)

2 PRELIMINARIES

Basic setting. Consider an input set XB defined as XB = {x ∈ Rd |
∑d

i=1 x
2
i ≤ B2} and a label

set Y = {1, . . . , dy}. Let S = {(x1, y1), . . . , (xm, ym)} represent a training dataset comprising m
samples independently and identically drawn from an underlying, fixed but unknown distribution D
on XB × Y . We define fw : XB → Y as the learning function parameterized by weights w, where
w are real-valued weights for functions mapping XB to Y . We call the set of classifiers (or the set
of classifier weights), i.e., H, as the hypotheses. Let ℓ : H × XB × Y → R+ be the loss function
used in the training.

The function fw is structured as an n-layer neural network, each layer equipped with h hidden units
and utilizing the ReLU activation function ϕ(·). The weight matrices for the entire model and l-th
layer are denoted by W and Wl (capital letters), respectively, with w and wl representing their
vectorized forms (lowercase letters, i.e., w = vec(W)). The operation of the function through
the layers is formulated as fw(x) = Wnϕ(Wn−1 . . . ϕ(W1x) . . .), where f

(1)
w (x) = W1x and

subsequent layers are defined recursively as f
(l)
w (x) = Wlϕ(f

(l−1)
w (x)). For simplicity, bias are

integrated into the weight matrices. We denote ∥W∥2 as the spectral norm of W, represents the
largest singular value. Additionally, ∥W∥F is the Frobenius norm of the weight matrix and ∥w∥p is
the ℓp norm of the weight vector, respectively.

We define the empirical and the true confusion matrices of fw by respectively Cfw
S = (ĉij)1≤i,j≤dy

and Cfw
D = (cij)1≤i,j≤dy such that

∀(i, j), ĉij :=

{
0 i = j∑m

q=1
1
mj
1(fw(xq)[i] ≥ max

i ̸=i′
fw(xq)[i

′]) 1(yq = j) else,

∀(i, j), cij :=

{
0 i = j
P(x,y)∼D(fw(x)[i] ≥ max

i ̸=i′
fw(x)[i′] | y = j) else,

(1)

where mj is the number of samples with label j in the training set S. In previous works such as
Neyshabur et al. (2017b); Farnia et al. (2019), the PAC-Bayesian generalization analysis for a DNN
is conducted on the margin loss. Following the margin setting, we consider any positive margin γ in
this work and define the empirical margin confusion matrix Cfw

S,γ = (ĉγij)1≤i,j≤dy
as, ∀(i, j),

ĉγij :=

{
0 i = j∑m

q=1
1
mj
1(fw(xq)[yq] ≤ γ + fw(xq)[i])1(yq = j)1(argmax

i′ ̸=yq

fw(xq)[i
′] = i) else,

where 1[a ≤ b] = 1 if a ≤ b, else 1[a ≤ b] = 0.

Remark 1 Following Neyshabur et al. (2017b), γ is an auxiliary variable that aids in the develop-
ment of the theory, setting γ = 0 corresponds to the normal empirical confusion matrix in (1). Note
that γ only exists in the confusion matrix over training data S , ensuring that the classifier operates
independently of the label over unseen data D.

PAC-Bayes. PAC-Bayes (McAllester, 1999; 2003) offers a tight upper bound on the generalization
ability of a stochastic classifier called the Gibbs classifier (Laviolette & Marchand, 2005), which is
defined on a posterior distribution Q over H. This framework also provides a generalization guar-
antee for the Q-weighted majority vote classifier, which is associated with this Gibbs classifier and
assigns labels to input instances based on the most probable output from the Gibbs classifier (La-
casse et al., 2006; Germain et al., 2015; Jin et al., 2020). The bound is primarily determined by the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Kullback-Leibler divergence (KL) between the posterior distribution Q and the prior distribution P
of weights (classifiers). Within this setting, we define the Gibbs classifiers over the posterior Q of
the type fw+u (Neyshabur et al., 2017b), where u is a random variable potentially influenced by
the training data and w is the deterministic weights. In this case, we can define the true and the
empirical (margin) confusion matrices of Gibbs classifier fw+u respectively by

CQ
D = EuCfw+u

D ; CQ
S = EuCfw+u

S ; CQ
S,γ = EuCfw+u

S,γ . (2)

Morvant et al. (2012) proposes a PAC-Bayesian bound for the generalization risk of the Gibbs clas-
sifier using the confusion matrix of multi-class labels, a framework we also adopt in this work.

Theorem 2.1 (Morvant et al. (2012)) Consider a training dataset S with m samples drawn from a
distribution D on XB×Y with Y = {1, . . . , dy}. Given a learning algorithm (e.g., a classifier) with
prior and posterior distributions P and Q (i.e., w + u) on the weights respectively, for any δ > 0,
with probability 1− δ over the draw of training data, we have that

∥CQ
S − CQ

D∥2 ≤

√
8dy

mmin − 8dy

[
DKL(Q∥P ) + ln

(mmin

4δ

)]
, (3)

where mmin represents the minimal number of examples from S which belong to the same class.

Adversarial setting. Given the classifier fw and the input data x with label y, we consider the
corresponding adversarial example as

x′ = argmax
∥x−x′∥p≤ϵ

ℓ(fw(x′), y), (4)

where ϵ is the ℓp norm adversarial radius. Under this adversarial setting, we let the corresponding
adversarial training set and data distribution for fw be S ′ and D′, and adversarial confusion matrices
for fw be Cfw

D′ , Cfw
S′ , Cfw

S′,γ . We provide more related work about adversarial training and fairness-
aware adversarial learning in App. A.

Problem definition. For a classifier fw, the worst-class robust error is defined as

max
j

P
(x′,y)∼D′

(max
i̸=j

fw(x′)[i] ≥ fw(x′)[j] | y = j).

Look at the definition in (1), one could find the sum of j-th column of Cfw
D′ represents the expected

error for class j, which can be expressed as:∑
i

(Cfw
D′ )ij = P

(x′,y)∼D′
(max
i ̸=j

fw(x′)[i] ≥ fw(x′)[j] | y = j).

Since the ℓ1 matrix norm represents the maximum column sum of absolute elements, it naturally
corresponds to the worst-class error, allowing us to express it as ∥Cfw

D′ ∥1, i.e.,

∥Cfw
D′ ∥1 = max

j

∑
i

(Cfw
D′ )ij .

In this work, we will theoretically explore how to bound ∥Cfw
D′ ∥1 in Sec. 3, and empirically study

how to enhance ∥Cfw
D′ ∥1 in Sec. 4.

3 WORST-CLASS ROBUST ERROR AND CONFUSIONAL SPECTRAL NORM

In this section, we derive a robust generalization bound for the worst-class robust error of feed-
forward neural networks with ReLU activations, leveraging the PAC-Bayesian framework. The
transition from Thm. 2.1 to our theoretical results involves two key steps.

The first step is to analytically extend the PAC-Bayesian generalization bound of confusion matrices
for a Gibbs classifier to a deterministic classifier. In previous works, such as Langford & Caruana
(2002); Neyshabur et al. (2017a); Dziugaite & Roy (2017), leveraging PAC-Bayesian bounds to
analyze the generalization behavior of neural networks focuses on evaluating the KL divergence,
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the perturbation error ℓ(fw+u(x), y) − ℓ(fw(x), y), or the numerical value of the bound. Notably,
through restricting fw+u(x) − fw(x), Neyshabur et al. (2017b); Farnia et al. (2019) utilize the
PAC-Bayesian framework to derive margin-based bounds that are constructed by weight norms.
Following these works, we adopt the margin operator with the restriction of network output. Through
the eigendecomposition of the confusion matrix and the adoption of Perron–Frobenius theorem, we
establish the bound between ∥Cfw

D ∥2 and ∥Cfw
S,γ∥2.

Secondly, we adapt the generalization bound from the clean setting to an adversarial context. The
key idea is that the local perturbation bound in an adversarial environment can be estimated by
the local perturbation bound of the clean setting, aligning with the approach in Xiao et al. (2023).
The robust generalization bound retains the tightness of the standard version while incorporating an
additional term ϵ that represents the perturbation radius. By leveraging the connection between the
ℓ1 matrix norm and the spectral norm, we shift the bound from the overall robust accuracy to the
worst-class robust accuracy on unseen data. These critical steps yield the bound in Prop. 3.1. Details
of the proof are given in Sec. 3.1.

Remark 2 (Difference with previous work) Building upon the key ideas introduced by Morvant
et al. (2012); Neyshabur et al. (2017b); Xiao et al. (2023), we employ a chain derivation over con-
fusion matrices to adapt previous PAC-Bayesian results to our robust generalization bound. To the
best of our knowledge, this work establishes the first PAC-Bayesian robust generalization bound to
characterize the worst-class performance. By extending the PAC-Bayesian framework to account
for worst-class adversarial robustness, our approach provides valuable insights into the fundamen-
tal factors governing worst-class adversarial accuracy, paving the way for more effective strategies
to enhance the robust fairness performance.

Proposition 3.1 Consider a training set S with m samples drawn from a distribution D over XB ×
Y . For any B,n, h, ϵ > 0, let the base classifier fw : XB → Y be an n-layer feedforward network
with h units each layer and ReLU activation function. Consider S ′ and D′ as the adversarial
training set and adversarial data distribution for fw respectively, within the ℓ2 norm radius ϵ. Then,
for any δ, γ > 0, with probability at least 1− δ, we have

∥Cfw
D′ ∥1︸ ︷︷ ︸

Worst-class error

≤ ν∥Cfw
S′,γ∥2︸ ︷︷ ︸

Empirical spectral norm

+O

(√
ν2dy

(mmin − 8dy)γ2

[
Φ′(fw) + ln

(nmmin

δ

)])
︸ ︷︷ ︸

Model and training set dependence

, (5)

where dy is the number of classes, mmin represents the minimal number of examples from S which

belong to the same class, Φ′(fw) = (B + ϵ)2n2h ln(nh)
∏n

l=1 ||Wl||22
∑n

l=1
||Wl||2F
||Wl||22

, and ν is a
positive constant which depends on dy .

Proof. See Sec. 3.1. □

Remark 3 The above proposition establishes a robust generalization bound for the worst-class
adversarial performance of the model, comprising two key components. The first component is the
spectral norm of the empirical confusion matrix over adversarial data, while the second component
is a model-dependent and training data-dependent term. The latter has been extensively studied
in the previous research, with various techniques proposed to improve generalization and robust
generalization, such as weight spectral norm normalization (Yoshida & Miyato, 2017; Farnia et al.,
2019). In this work, from another point of the bound, we focus our attention on the spectral norm
of the empirical confusion matrix, investigating its potential to enhance the worst-class adversarial
performance.

3.1 SKETCH OF PROOF

Building upon the PAC-Bayesian framework established in Thm. 2.1, which bounds the gap between
expected confusion matrix and empirical confusion matrix for Gibbs classifiers, our initial step is to
formulate a generalization bound tailored to deterministic classifiers. By leveraging the sharpness
limit discussed in Neyshabur et al. (2017b) and employing a chain derivation of spectral norms,
we have analytically derived a margin-based generalization bound for deterministic classifiers, as
detailed in the following.
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Lemma 3.2 Given Thm. 2.1, let fw : XB → Y be any classifier with weights w. Let P be any prior
distribution on the weights that is independent of the training data, Q (i.e., w + u) be the posterior
distribution on weights. Then, for any δ, γ > 0, and any (posterior) random perturbation u s.t.
Pu(maxx |fw+u(x)− fw(x)|∞ < γ

4 ) ≥
1
2 , with probability at least 1− δ, we have

∥Cfw
D ∥2 ≤ ∥Cfw

S,γ∥2 + 4

√
dy

mmin − 8dy

[
DKL(w + u∥P ) + ln

(
3mmin

4δ

)]
. (6)

Proof. See App. B. □

Although the above lemma establishes a connection between the expected and empirical confusion
matrices of a deterministic classifier fw, the bound depends on the KL divergence between the
posterior and prior distributions. Neyshabur et al. (2017b); Farnia et al. (2019) employ the PAC-
Bayesian framework to derive a margin-based bound that depends on the weight norms through a
sharpness limit, i.e., restricting the quantity fw+u(x) − fw(x). Following their research, we will
also replace the KL divergence term in the bound with an expression involving the weight norms.

The primary challenge lies in computing the KL divergence within the sharpness limit (or random
perturbation limit), as shown in Lem. 3.2. To tackle this, we employ a two-pronged approach from
Neyshabur et al. (2017b). Firstly, we leverage a pred-determined grid method to judiciously select
the prior distribution P of weights (classifiers). Secondly, let u ∼ N (0, σ2I) (Neyshabur et al.,
2017b), by carefully accounting for both the sharpness limit and the Lipschitz property of the model,
we derive an upper bound on the randomness of posterior distribution by the weight matrices. This
strategic formulation allows us to effectively bound the KL divergence between Q and P , a crucial
step in obtaining the following generalization bound.

Lemma 3.3 Given Lem. 3.2, for any B,n, h > 0, let the base classifier fw : XB → Y be an n-layer
feedforward network with h units each layer and ReLU activation function. Then, for any δ, γ > 0,
with probability at least 1− δ, we have

∥Cfw
D ∥2 ≤ ∥Cfw

S,γ∥2 +O

(√
dy

(mmin − 8dy)γ2

[
Φ(fw) + ln

(nmmin

δ

)])
, (7)

where Φ(fw) = B2n2h ln(nh)
∏n

l=1 ||Wl||22
∑n

l=1
||Wl||2F
||Wl||22

.

Proof. See App. C. □

The above lemma derives a generalization guarantee by restricting the variation in the output of
the network, effectively bounding the sharpness of the model through weight matrices. Building
upon this foundation, we leverage a key insight from Xiao et al. (2023), specifically, that the local
perturbation bounds of scalar value functions hold for both clean and adversarial settings. Capital-
izing on this idea, we proceed to bound the spectral norm of the confusion matrix under adversarial
perturbations to the input data. By synergistically combining the sharpness-based analysis with
the adversarial perturbation framework, in the following, we establish a connection between model
weights and adversarial confusion matrices. Consider the adversarial example x′ defined in (4)
for a speccific classifier fw, and the corresponding adversarial training set S ′ and adversarial data
distribution D′ for fw, we have the following lemma.

Lemma 3.4 Given Lem. 3.3, for any B,n, h, ϵ > 0, let the base classifier fw : XB → Y be an
n-layer feedforward network with h units each layer and ReLU activation function. Consider S ′

and D′ as the adversarial training set and adversarial data distribution for fw respectively, within
the ℓ2 norm radius ϵ. Then, for any δ, γ > 0, with probability at least 1− δ, we have

∥Cfw
D′ ∥2 ≤ ∥Cfw

S′,γ∥2 +O

(√
dy

(mmin − 8dy)γ2

[
Φ′(fw) + ln

(nmmin

δ

)])
, (8)

where Φ′(fw) = (B + ϵ)2n2h ln(nh)
∏n

l=1 ||Wl||22
∑n

l=1
||Wl||2F
||Wl||22

.

Proof. See App. D. □
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The above lemma establishes a connection between the spectral norm of the expected confusion
matrix, ∥Cfw

D′ ∥2, and the spectral norm of the empirical margin confusion matrix, ∥Cfw
S′,γ∥2, in the

adversarial setting. This connection is bridged through the information encapsulated in the training
data and the model weights. Our objective, however, extends beyond this result — we aim to derive
an upper bound on the worst-class adversarial performance of the model, as characterized by the ℓ1
norm of the expected confusion matrix under adversarial perturbations, i.e., ∥Cfw

D′ ∥1.

By leveraging the well-established relationship between the ℓ1 norm and spectral norm of matrices,
we can translate the spectral norm bound obtained in the lemma into a bound on the ℓ1 norm,
which directly governs the worst-class adversarial error of the model. Specifically, for a general
confusion matrix C ∈ Rdy×dy , we have the following inequality: ∥Cfw

D′ ∥1 ≤ ν∥Cfw
D′ ∥2, where ν is

a constant that depends on the number of classes dy and is upper bounded by
√
dy . To validate the

tightness of this bound, we conducted an extensive numerical study involving 1,000,000 experiments
on randomly generated confusion matrices for dy = 10, where the maximum of ν is 1.16 and the
average value is 1.06. It demonstrates that the value of ν can be sufficiently small (i.e., close to 1),
enabling the term ν∥Cfw

D′ ∥2 to provide a tight upper bound on the ℓ1 norm ∥Cfw
D′ ∥1. This numerical

analysis reinforces the practical utility of our theoretical result, ensuring that the derived bound on
the worst-class adversarial error is informative under PAC-Bayesian framework. Synthesizing these
theoretical results and leveraging the established relationships between matrix norms, we derive our
main result (Prop. 3.1) that provides a robust generalization bound for the worst-class adversarial
performance of DNNs.

4 EMPIRICAL RESULTS

4.1 SPECTRAL REGULARIZATION OF CONFUSION MATRIX

Prop. 3.1 provides a theoretical perspective that identifies the spectral norm of the empirical confu-
sion matrix as a key factor bounding the worst-class robust generalization performance. Motivated
by this insight, we explore strategies to regularize this spectral term to enhance robust fairness
across different classes. However, directly optimizing ∥Cfw

S′,γ∥2 by computing the gradient with re-
spect to the model weights presents significant challenges. As shown in (9), this difficulty arises
from the discrete nature of the elements in Cfw

S′,γ , which are binary {0, 1} error indicators. Here
(Cfw

S′,γ)ij represents the element at i-th row, j-th column. The non-differentiable nature of these dis-
crete elements precludes the straightforward application of gradient-based optimization techniques.
Consequently, we are limited to employing computationally expensive methods to estimate discrete
gradients, which can significantly hinder the efficiency of the regularizer. Note that in (9), for no-
tional convenience, we use the notations including ∂ to represent the (discrete) gradient in practical
algorithm, even though Cfw

S′,γ may not be theoretically differentiable.

∂∥Cfw
S′,γ∥2
∂w︸ ︷︷ ︸

Expensive

=⇒
∑
i ̸=j

∂∥Cfw
S′,γ∥2

∂(Cfw
S′,γ)ij︸ ︷︷ ︸

Cheap

×
∂(Cfw

S′,γ)ij

∂w︸ ︷︷ ︸
Expensive

=⇒
∑
i ̸=j

∂∥Cfw
S′,γ∥2

∂(Cfw
S′,γ)ij︸ ︷︷ ︸

Cheap

×
∂(Cfw

S′,γ)ij

∂(Lfw
S′,γ)ij︸ ︷︷ ︸

Approximate

×
∂(Lfw

S′,γ)ij

∂w︸ ︷︷ ︸
Cheap

(9)

To address the problem, as shown in the right-hand of (9), we introduce an alternative confusion
matrix Lfw

S′,γ with differentiable elements. This matrix Lfw
S′,γ is structurally similar to Cfw

S′,γ , main-
taining zero diagonal elements. However, we replace the binary {0, 1} errors in the off-diagonal
positions (i, j) with the average KL divergence, i.e., ∀i ̸= j,

(Lfw
S′,γ)ij :=

1

mj

∑
(x′,y)∈S′

ij

DKL(fw(x′) + γ(1− y)∥y), (10)

where y is the one-hot vector of y, S ′
ij = {(x′, y) ∈ S ′ | fw(x′)[y] ≤ γ + fw(x′)[i], y =

j, argmaxi′ ̸=y fw(x′)[i′] = i}, and mj is the number of samples with label j in the training set.

In the right-hand side of (9), we observe that the general direction of ∂(Cfw
S′,γ)ij/∂(L

fw
S′,γ)ij can

be readily approximated, as the descent direction of non-diagonal elements in Cfw
S′,γ closely aligns

7
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Table 1: Evaluation of different fine-tuning methods on CIFAR-10 with WRN-34-10. We report the
average accuracy and the worst-class accuracy under standard ℓ∞ norm Auto Attack, with baseline
models of TRADES and TRADES-AWP.

Fine-Tuning Fine-Tuning TRADES TRADES-AWP
Method Epochs AA (%) Worst (%) AA (%) Worst (%)

TRADES/AWP - 52.51 23.20 56.18 25.80
+ FRL-RWRM0.05 80 49.97 35.40 46.50 27.70
+ FRL-RWRM0.07 80 51.30 34.60 46.53 28.60
+ FAALAT 2 50.91 35.30 49.87 30.60
+ FAALAWP 2 52.45 35.40 53.93 37.00
+ Oursγ=0.0 2 53.46 36.30 54.65 37.00
+ Oursγ=0.1 2 53.38 35.60 54.49 37.60

Table 2: Evaluation of our fine-tuning method on different pre-trained models with DDPM generated
data, over CIFAR-10 dataset and Tiny-ImageNet dataset. Our fine-tuning method is adopted on the
DDPM generated training set (1M/50M) within 2 epochs.

Dataset Architecture
PreTrained Model Clean AA

Fine-Tuning Method Average (%) Worst (%) Average (%) Worst (%)

CIFAR-10
ℓ∞

WRN-28-10
(1M)

Pang et al. (2022) 88.61 75.40 61.04 33.80
+ Oursγ=0.0 88.56 77.30 61.06 36.30
+ Oursγ=0.1 88.24 78.50 60.53 37.80

WRN-70-16
(1M)

Pang et al. (2022) 89.01 75.40 63.34 35.10
+ Oursγ=0.0 89.23 79.10 62.98 38.60
+ Oursγ=0.1 88.67 80.20 62.74 39.30

CIFAR-10
ℓ2

WRN-28-10
(50M)

Wang et al. (2023) 95.16 88.90 83.63 64.50
+ Oursγ=0.0 95.02 89.30 83.60 66.90
+ Oursγ=0.1 94.87 90.70 83.21 67.80

WRN-70-16
(50M)

Wang et al. (2023) 95.54 89.30 84.86 67.00
+ Oursγ=0.0 95.39 89.90 85.06 68.80
+ Oursγ=0.1 94.98 91.30 84.20 69.70

Tiny-ImageNet
ℓ∞

WRN-28-10
(50M)

Wang et al. (2023) 65.19 26.00 31.30 0.00
+ Oursγ=0.0 65.12 30.00 31.34 2.00
+ Oursγ=0.1 64.93 32.00 31.06 4.00

with that of Lfw
S′,γ . That is, sign

(
∂(Cfw

S′,γ)ij

∂(Lfw
S′,γ)ij

)
≈ 1, where sign(·) denotes the sign function. This

approximation strategy is well-established in machine learning; for instance, in classification tasks,
while we cannot directly optimize classification error (accuracy), we optimize cross-entropy loss
or KL divergence to improve accuracy based on the assumption that their optimization directions
approximately coincide.

Based on this insight, we design a regularization term Ψ(fw,S ′, γ) as follows:

∂Ψ(fw,S ′, γ)

∂w
=
∑
i̸=j

{
∂∥Cfw

S′,γ∥2
∂(Cfw

S′,γ)ij
× sign

(
∂(Cfw

S′,γ)ij

∂(Lfw
S′,γ)ij

)
×

∂(Lfw
S′,γ)ij

∂w

}
. (11)

Incorporating this regularizer, we define the adversarial training objective function as:

J = E
(x′,y)∈S′

ℓ(fw(x′), y) + αΨ(fw,S ′, γ), (12)

where S ′ is the adversarial training set for the classifier fw as defined in (4), α ∈ (0,+∞) is a
hyper-parameter which balances the first adversarial training term and the second regularizer. This
formulation allows us to effectively regularize the spectral norm of the confusion matrix, enabling
gradient-based optimization to enhance robust fairness. In the following experiments, we normally
set the default values of α as 0.3, γ as 0.0 and 0.1. We provide sensitivity analysis for hyper-
parameters in App. E.1.
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Table 3: Training from scratch with different methods on CIFAR-10 and CIFAR-100 datasets using
Preact-ResNet18 model with ℓ∞ norm attack.

AT CIFAR-10 CIFAR-100
Method Clean (%) Worst (%) AA (%) Worst (%) Clean (%) Worst (%) AA (%) Worst (%)

PGD-AT 82.72 55.80 47.38 12.90 54.63 19.00 22.78 1.00
TRADES 82.54 66.10 49.05 20.70 54.57 19.00 23.57 1.00
CFAAT 80.82 64.60 50.10 24.40 55.12 22.00 23.62 2.00
CFATRADES 80.36 66.20 50.10 26.50 55.57 23.00 24.56 2.00
WATTRADES 80.37 66.00 46.16 30.70 53.99 19.00 22.89 3.00
FAALAT 82.20 62.90 49.10 33.70 56.84 16.00 21.85 3.00
FAALTRADES 81.62 68.90 48.48 33.60 55.87 21.00 23.57 3.00
Oursγ=0.0 83.51 68.90 49.92 33.80 57.37 24.00 25.17 3.00
Oursγ=0.1 82.86 69.70 49.73 34.90 56.91 24.00 24.88 4.00

4.2 EXPERIMENTS

Figure 3: In both confusion matrices, the hori-
zontal axis represents the true labels, while the
vertical axis represents the predicted labels. The
left figure shows the AA results of a WRN-34-
10 model trained using the TRADES method on
CIFAR-10, whereas the right figure demonstrates
the AA results of a WRN-34-10 model trained us-
ing our method with γ = 0.1.

In this section, we discuss the fine-tuning per-
formance and the adversarial training perfor-
mance of our method using the average accu-
racy and the worst-class accuracy under Au-
toAttack (AA) and clean settings. AutoAt-
tack (Croce & Hein, 2020b) is one of the
most powerful attack methods, it includes
three white-box attacks (APGD-CE (Croce &
Hein, 2020b), APGD-DLR (Croce & Hein,
2020b), and FAB (Croce & Hein, 2020a))
and one black-box attack (Square Attack (An-
driushchenko et al., 2020)). We conduct experi-
ments on the CIFAR-10, CIFAR-100, and Tiny-
ImageNet datasets, which are widely used for
evaluating adversarial training methods. The
perturbation budget is set to ϵ = 8/255 for ℓ∞
norm attacks and ϵ = 128/255 for ℓ2 norm at-
tacks.

FRL (Xu et al., 2021) and FAAL (Zhang et al.,
2024) are the existing state-of-the-art techniques from recent literature that perform fine-tuning on
a pre-trained model to improve robust fairness. FRL proposes two strategies based on TRADES
(Zhang et al., 2019) for enhancing robust fairness: reweight (RW) and remargin (RM). Follow-
ing Zhang et al. (2024), in our experiments, we apply the best versions of FRL from their pa-
per: FRL-RWRM with τ1 = τ2 = 0.05 and FRL-RWRM with τ1 = τ2 = 0.07, where τ1 and
τ2 are the fairness constraint parameters for reweight and remargin, respectively. The results of
FRL are reproduced using their public code, where the target models are fine-tuned for 80 epochs,
and the best results are presented. FAAL proposes two versions based on vanilla adversarial train-
ing (AT) and AWP (Wu et al., 2020b). We provide their best results which are fine-tuned on the
TRADES pre-trained WideResNet-34-10 (WRN-34-10) (Zagoruyko & Komodakis, 2016) model
and the TRADES-AWP pre-trained WRN-34-10 model in Tab. 1 for CIFAR-10 with ℓ∞ attack. For
our method, we set the value of α as 0.3, γ = 0.0/0.1, and the learning rate is 0.01. As shown in
Tab. 1, compared to FRL and FAAL, our method maintains higher average clean and robust accura-
cies while achieving better worst-class clean and robust accuracies.

Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) is an advanced deep learning
model primarily used for generating high-quality, diverse samples such as images or audio. The
model learns to generate data by reversing a process that gradually adds noise to the data. Recently,
Pang et al. (2022); Wang et al. (2023) have used DDPM-generated data to enhance adversarial train-
ing and achieved stunning results on CIFAR and Tiny-ImageNet datasets. Following their work, we
fine-tune their models on CIFAR-10 under ℓ∞ attack, which is pre-trained using 1M extra data; on
CIFAR-10 under ℓ2 attack, which is pre-trained using 50M extra data; and on Tiny-ImageNet under

9
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Table 4: Evaluation of different fine-tuning methods on CIFAR-10 with WRN-34-10. We report
the average accuracy and the worst-class accuracy under standard ℓ∞ norm PGD-20/CW-20 attack,
with baseline models of TRADES and TRADES-AWP.

Fine-Tuning TRADES TRADES-AWP
Method PGD-20 (%) Worst (%) CW-20 (%) Worst (%) PGD-20 (%) Worst (%) CW-20 (%) Worst (%)

TRADES/AWP 55.32 27.10 53.92 24.80 59.20 28.80 57.14 26.50
+ FRL-RWRM0.05 53.16 40.60 51.39 36.30 49.90 31.70 49.68 34.00
+ FRL-RWRM0.07 53.76 39.20 52.92 36.80 48.63 30.90 49.77 31.50
+ FAALAT 53.46 39.80 52.72 38.20 52.54 35.00 51.70 34.40
+ FAALAWP 56.07 43.30 54.16 38.60 57.14 43.40 55.34 40.10
+ Oursγ=0.0 57.83 44.60 56.09 39.70 59.06 44.10 56.79 41.30
+ Oursγ=0.1 57.66 44.10 55.97 38.90 58.87 44.50 56.44 41.80

Table 5: Training from scratch with different methods on CIFAR-10 using Preact-ResNet18 model
with standard ℓ2 norm attack.

Method Clean (%) Worst (%) PGD-20 (%) Worst (%) CW-20 (%) Worst (%) AA (%) Worst (%)
PGD-AT 88.83 74.90 68.83 43.50 68.61 43.20 67.99 42.60
FAALAT 87.61 76.30 66.57 46.80 66.31 46.80 65.45 44.20
FAALTRADES 86.62 78.10 65.21 48.20 65.04 48.10 64.25 46.40
Oursγ=0.0 89.57 78.80 70.36 49.10 69.98 48.90 69.51 47.50
Oursγ=0.1 89.36 78.70 70.16 49.90 69.74 49.60 69.32 48.40

ℓ∞ attack, which is pre-trained using 50M extra data. Our fine-tuning setting is the same as in the
previous experiment. As shown in Tab. 2, after fine-tuning within 2 epochs, our method signifi-
cantly improves worst-class clean and robust accuracies while maintaining the average accuracy or
only experiencing a small decline in average accuracy.

We also investigate the advancements achieved by training the model from the ground up using our
method. We compare our methods with two common adversarial training methods, PGD-AT and
TRADES, and three recent state-of-the-art techniques: CFA (Wei et al., 2023), WAT (Li & Liu,
2023), and FAAL, which have been recently proposed to mitigate robust fairness issues. Note that
our method builds upon the TRADES adversarial training framework here. We adversarially trained
Preact-ResNet-18 models (He et al., 2016) for 200 epochs using SGD with a momentum of 0.9,
batch size of 128, weight decay of 5× 10−4, and an initial learning rate of 0.1, which is reduced by
a factor of 10 at the 100th and 150th epochs. Following Zhang et al. (2024), we report the best results
under Auto Attack for both average accuracy and worst-class accuracy in Tab. 3. Furthermore, as
shown in Fig. 3, the confusion matrix generated by WRN-34-10 model trained with our method
(right) exhibits a more fair (uniform) distribution compared with the one generated by TRADES
(left). Here we adopt the confusion matrix defined in (1), where the diagonal elements are 0.

Additionally, we extend our evaluation to include fine-tuning experiments under both standard ℓ∞
norm PGD-20 attack and CW-20 attack (Carlini & Wagner, 2017). As demonstrated in Tab. 4, our
method maintains superior worst-class performance across these different attack types. Furthermore,
we evaluate models trained from scratch under ℓ2 norm attacks. The results in Tab. 5 show that for
CIFAR-10 with Preact-ResNet18 architecture, our method achieves the best performance in both
average and worst-class robust accuracy under standard ℓ2 attacks.

5 CONCLUSION

This work addresses an oversight in the robust fairness literature by arguing that the spectral norm of
the confusion matrix over training data needs to be systematically considered. Through theoretical
study (updating the PAC-Bayesian framework), algorithmic development (efficient regularization of
the confusional spectral norm), and extensive experiments, we demonstrate that the consideration
of the spectral norm of the confusion matrix can improve the worst-class robust performance and
robust fairness over not only the vanilla adversarial training framework but also the state-of-the-art
adversarially trained models.
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A RELATED WORK

Adversarial training (Engstrom et al., 2018; Kannan et al., 2018; Zhang et al., 2020; Lee et al.,
2020) is one of the most effective methods against adversarial attacks, normally, it can be formulated
as a minimax optimization problem (Madry et al., 2018)

min
w

{
E

(x′,y)∼S′

[
ℓ(fw(x′), y)

]}
, (13)

where x′ is an adversarial example causing the largest loss for fw within an ϵ-ball as defined in (4).

Recently, several works (Li & Liu, 2023; Ma et al., 2022; Sun et al., 2023; Wei et al., 2023; Xu
et al., 2021; Zhang et al., 2024) have explored ways to address the fairness issue in adversarial
robustness (the imbalance issue for robust accuracies across classes). Xu et al. (2021) was the
first to reveal that the issue of robust fairness occurs in conventional adversarial training, which can
introduce severe disparity in accuracy and robustness between different groups of data when boost-
ing the average robustness. To mitigate this problem, they proposed a Fair-Robust-Learning (FRL)
framework that employs reweight and remargin strategies to fine-tune the pre-trained model, reduc-
ing the significant boundary error within a certain margin. Ma et al. (2022) empirically discovered
that a trade-off exists between robustness and robustness fairness, and adversarial training (AT) with
a larger perturbation radius will result in a larger variance. To mitigate this trade-off, they added
a variance regularization term to the objective function, naming the method FAT (Fairness-Aware
Adversarial Training), which relieves the trade-off between average robustness and robust fairness.
Sun et al. (2023) proposed a method called Balance Adversarial Training (BAT), which adjusts the
attack strengths and difficulties of each class to generate samples near the decision boundary for
easier and fairer model learning. Wei et al. (2023) presented a framework named CFA (Class-wise
Fair Adversarial training), which automatically customizes specific training configurations for each
class, thereby improving the worst-class robustness while maintaining the average performance.
More recently, Li & Liu (2023) considered the worst-class robust risk and proposed a framework
named WAT (Worst-class Adversarial Training), leveraging no-regret dynamics to solve this prob-
lem. Zhang et al. (2024) proposed Fairness-Aware Adversarial Learning (FAAL) to enhance robust
fairness by considering the worst-case distribution across various classes.

Unlike the above works, this study develops a robust generalization bound for the worst-class ro-
bust error and proposes a method to enhance worst-class robust performance and robust fairness by
regularizing the spectral norm of the robust confusion matrix.
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B PROOF OF LEM. 3.2

Proof B.1 Let Su be the set of perturbations with the following property:

Su ⊆
{
u
∣∣∣ max
x∈XB

|fw+u(x)− fw(x)|∞ <
γ

4

}
. (14)

Let q be the probability density function over u. We construct a new distribution Q̃ over ũ that is
restricted to Su with the probability density function:

q̃(ũ) =

{
1
z q(ũ) ũ ∈ Su,

0 otherwise,
(15)

where z is a normalizing constant and by the lemma assumption z = P(u ∈ Su) ≥ 1
2 . By the

definition of Q̃, we have:
max
x∈XB

|fw+ũ(x)− fw(x)|∞ <
γ

4
. (16)

Therefore, with probability at least 1− δ over training dataset S, we have:

∥Cfw
D ∥2 ≤ ∥CQ̃

D, γ2
∥2 ▷because of Pf. B.2

≤ ∥CQ̃
S, γ2

∥2 +

√
8dy

mmin − 8dy

[
DKL(Q̃∥P ) + ln

(mmin

4δ

)]
▷because of Pf. B.3

≤ ∥Cfw
S,γ∥2 +

√
8dy

mmin − 8dy

[
DKL(Q̃∥P ) + ln

(mmin

4δ

)]
▷because of Pf. B.4

≤ ∥Cfw
S,γ∥2 + 4

√
dy

mmin − 8dy

[
DKL(Q∥P ) + ln

(
3mmin

4δ

)]
▷because of Pf. B.5

Hence, proved. □

Proof B.2 Given (14) and (15), for all ũ ∈ Q̃, we have

max
x∈XB

|fw+ũ(x)− fw(x)|∞ <
γ

4
. (17)

For all x ∈ XB s.t. argmaxi fw(x)[i] ̸= y, we have

fw+ũ(x)[argmax
i

fw(x)[i]] +
γ

4
≥ fw+ũ(x)[y]−

γ

4
. (18)

Thus for all i ̸= j, we have
(Cfw

D )ij ≤ (CQ̃
D, γ2

)ij . (19)

According to Perron–Frobenius theorem (Frobenius et al., 1912), for all 1 ≤ i, j ≤ dy , ∂∥C∥2

∂(C)ij ≥ 0.

Combine the above conditions, we get ∥Cfw
D ∥2 ≤ ∥CQ̃

D, γ2
∥2. □

Proof B.3 Apply |∥A∥2 − ∥B∥2| ≤ ∥A−B∥2 and Thm. 2.1. □

Proof B.4 For all x ∈ XB , if there exists ũ ∈ Q̃ s.t. maxi ̸=y fw+ũ(x)[i] +
γ
2 ≥ fw+ũ(x)[y], we

have
max
i̸=y

fw(x)[i] + γ ≥ fw(x)[y]. (20)

Thus for all i ̸= j, we have
(CQ̃

S, γ2
)ij ≤ (Cfw

S,γ)ij . (21)

According to Perron–Frobenius theorem, for all 1 ≤ i, j ≤ dy , ∂∥C∥2

∂(C)ij ≥ 0. Combine the above

conditions, we get ∥CQ̃
S, γ2

∥2 ≤ ∥Cfw
S,γ∥2.
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Proof B.5 Given q, q̃, z, and Su in (15), let Sc
u denote the complement set of Su and q̃c denote the

normalized density function restricted to Sc
u. Then, we have

DKL(q∥p) = zDKL(q̃∥p) + (1− z)DKL(q̃
c∥p)−H(z), (22)

where H(z) = −z ln z− (1− z) ln(1− z) ≤ 1 is the binary entropy function. Since DKL is always
positive, we get

DKL(q̃∥p) =
1

z
[DKL(q∥p) +H(z))− (1− z)DKL(q̃

c∥p)] ≤ 2(DKL(q∥p) + 1). (23)

Thus we have 2(DKL(w + u||P ) + ln 3mmin

4δ ) ≥ DKL(w + ũ||P ) + ln mmin

4δ . □

C PROOF OF LEM. 3.3

Proof C.1 Following Neyshabur et al. (2017b), we use two main steps to prove Lem. 3.3. Firstly,
utilizing Lems. A and B, we compute the maximum allowable perturbation of u required to satisfy the
given condition on the margin γ. In the second step, we compute the KL term in Lem. C, considering
the perturbation obtained from the previous step. This computation is essential in deriving the PAC-
Bayesian bound.

Consider a neural network with weights W that can be regularized by dividing each weight matrix
Wl by its spectral norm ∥Wl∥2. Let β be the geometric mean of the spectral norms of all weight
matrices, defined as:

β =

(
n∏

l=1

∥Wl∥2

) 1
n

,

where n is the number of weight matrices in the network. We introduce a modified version of the
weights, denoted as W̃l, which is obtained by scaling the original weights Wl by a factor of β

∥Wl∥2
:

W̃l =
β

∥Wl∥2
Wl.

Due to the homogeneity property of the ReLU activation function, the behavior of the network with
the modified weights, denoted as fw̃, is identical to that of the original network fw.

Furthermore, we observe that the product of the spectral norms of the original weights, given by∏n
l=1 ∥Wl∥2, is equal to the product of the spectral norms of the modified weights, expressed as∏n
l=1 ∥W̃l∥2. Moreover, the ratio of the Frobenius norm to the spectral norm remains unchanged

for both the original and modified weights:

∥Wl∥F
∥Wl∥2

=
∥W̃l∥F
∥W̃l∥2

.

As a result, the excess error mentioned in the theorem statement remains unaffected by this weight
normalization. Therefore, it is sufficient to prove the theorem only for the normalized weights w̃.
Without loss of generality, we assume that the spectral norm of each weight matrix is equal to β, i.e.,
∥Wl∥2 = β for any layer i.

In our approach, we initially set the prior distribution P as a Gaussian distribution with zero mean
and a diagonal covariance matrix σ2I. We incorporate random perturbations u ∼ N (0, σ2I),
where the value of σ will be determined in relation to β at a later stage. Since the prior must be
independent of the learned predictor w and its norm, we choose σ according to an estimated value
β̃. We calculate the PAC-Bayesian bound for each β̃ selected from a pre-determined grid, offering
a generalization guarantee for all w satisfying |β − β̃| ≤ 1

nβ. This ensures that each relevant β
value is covered by some β̃ in the grid. Subsequently, we apply a union bound across all β̃ defined
by the grid. For now, we will consider a set of β̃ and the corresponding w that meet the condition
|β − β̃| ≤ 1

nβ, which implies:
1

e
βn−1 ≤ β̃n−1 ≤ eβn−1.
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According to Bandeira & Boedihardjo (2021) and the fact that u ∼ N (0, σ2I), we can obtain the
following bound for the spectral norm of the perturbation matrix Ul (ul = vec(Ul)):

Pul∼N (0,σ2I) [∥Ul∥2 > t] ≤ 2h exp

(
− t2

2hσ2

)
, (24)

where h is the width of the hidden layers. By taking a union bound over the layers, we can establish
that, with a probability of at least 1

2 , the spectral norm of the perturbation Ul in each layer is
bounded by σ

√
2h ln(4nh).

Plugging the bound into Lem. C.2, we have that

max
x∈XB

∥fw+u(x)− fw(x)∥2 ≤ eBβn
∑
l

∥Ul∥2
β

= eBβn−1
∑
l

∥Ul∥2

≤ e2nBβ̃n−1σ
√
2h ln(4nh) ≤ γ

4
.

(25)

To make (25) hold, given β̃n−1 ≤ eβn−1, we can choose the largest σ as

σ =
γ

114nB
√

h ln(4nh)
∏n

l=1 ∥Wl∥
n−1
n

2

.

Hence, the perturbation u with the above value of σ satisfies the assumptions of the Lem. 3.2. We
now compute the KL-term using the selected distributions for P and Q, considering the given value
of σ,

DKL(w + u∥P ) ≤ ∥w∥22
2σ2

=

∑n
l=1 ∥Wl∥2F

2σ2

≤ O

(
B2n2h ln(nh)

∏n
l=1 ∥Wl∥22

γ2

n∑
l=1

∥Wl∥2F
∥Wl∥22

)
.

Then, we can give a union bound over different choices of β̃. We only need to form the bound

for
(

γ
2B

) 1
n ≤ β ≤

(
γ
√
m

2B

) 1
n

which can be covered using a cover of size nm
1
2n as discussed

in Neyshabur et al. (2017b). Thus, with probability ≥ 1 − δ, for any β̃ and for all w such that
|β − β̃| ≤ 1

nβ, we have:

∥Cfw
D ∥2 ≤ ∥Cfw

S,γ∥2 +O

(√
dy

(mmin − 8dy)γ2

[
Φ(fw) + ln

(nmmin

δ

)])
, (26)

where Φ(fw) = B2n2h ln(nh)
∏n

l=1 ||Wl||22
∑n

l=1
||Wl||2F
||Wl||22

.

Hence, proved. □

Lemma C.2 (Neyshabur et al. (2017b)) For any B,n > 0, let fw : XB → Y be a n-layer feedfor-
ward network with ReLU activation function. Then for any w, and x ∈ XB , and any perturbation
u = vec({Ul}nl=1) such that ∥Ul∥2 ≤ 1

n∥Wl∥2, the change in the output of the network can be
bounded as follow

∥fw+u(x)− fw(x)∥2 ≤ eB

(
n∏

l=1

∥Wl∥2

)
n∑

l=1

∥Ul∥2
∥Wl∥2

. (27)
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D PROOF FOR LEM. 3.4

Proof D.1 Following the proof process from Xiao et al. (2023), we first introduce some definitions.
Then, we derive Lems. D.4 and D.5. By combining these results, we obtain Lem. 3.4. Note that we
provide a concise process here, a more detailed one can be found in Xiao et al. (2023).

Definition D.2 (Local perturbation bound) Given x ∈ XB , we say gw(x) has a (L1, · · · , Ln)-
local perturbation bound w.r.t. w, if

|gw(x)− gw′(x)| ≤
n∑

l=1

Ll ∥Wl −W′
l∥2 ,

where Ll can be related to w,w′ and x.

The bound introduced in Def. D.2 plays a crucial role in quantifying the variation in the output of the
function gw(x), especially when the weights are subject to small perturbations. Building upon this
foundation, we can derive the following lemma, as demonstrated in the work of Xiao et al. (2023).

Lemma D.3 (Xiao et al. (2023)) If gw(x) has a (A1|x|, · · · , An|x|)-local perturbation bound, i.e.,

|gw(x)− gw′(x)| ≤
n∑

l=1

Al|x| ∥Wl −W′
l∥2 ,

the robustified function max
∥x−x′∥2≤ϵ

gw (x′) has a (A1(|x|+ ϵ), · · · , An(|x|+ ϵ))-local perturbation

bound.

Margin Operator. Following the notation used by Bartlett et al. (2017); Xiao et al. (2023), the mar-
gin operator is defined for both the true label y given an input x and for a pair of classes (i, j). This
definition provides a clear and precise measure of class separation for the model, quantifying the
difference between the model’s output for the true class and other classes, as well as the difference
between the model’s outputs for any pair of classes.

M(fw(x), y) = fw(x)[y]−max
i ̸=y

fw(x)[i],

M(fw(x), i, j) = fw(x)[i]− fw(x)[j].
(28)

Robust Margin Operator. Similarly, the robust margin operator is also defined for a pair of classes
(i, j) with respect to (x, y).

RM(fw(x), y) = max
∥x−x′∥2≤ϵ

(
fw(x′)[y]−max

j ̸=y
fw(x′)[j]

)
,

RM(fw(x), i, j) = max
∥x−x′∥2≤ϵ

(fw(x′)[i]− fw(x′)[j]) .
(29)

Building upon the previously introduced definitions and Lem. D.3, Xiao et al. (2023) presents the
form of Ai for the margin operator in the following lemma.

Lemma D.4 (Xiao et al. (2023)) Consider fw(·) as an n-layer neural network characterized by
ReLU activation functions. It is established that the following bounds apply to local perturbations
within this framework.

1. Given x and i, j, the margin operator M(fw(x), i, j) has a (A1|x|, , An|x|)-local perturbation
bound w.r.t. w, where Al = 2e

∏n
l=1 ∥Wl∥2/∥Wl∥2. And

|M(fw+u(x), i, j)−M(fw(x), i, j)| ≤ 2eB

n∏
l=1

∥Wl∥2
n∑

l=1

∥Ul∥2
∥Wl∥2

. (30)

2. Given x and i, j, the robust margin operator RM(fw(x), i, j) has a (A1(|x|+ ϵ), , An(|x|+ ϵ))-
local perturbation bound w.r.t. w. And

|RM(fw+u(x), i, j)−RM(fw(x), i, j)| ≤ 2e(B + ϵ)

n∏
l=1

∥Wl∥2
n∑

l=1

∥Ul∥2
∥Wl∥2

. (31)
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By combining Lems. 3.2 and D.4, and building upon the work of Xiao et al. (2023), we obtain the
following lemma, which demonstrates that the weight perturbation of the robust margin operator
can be utilized to develop a PAC-Bayesian framework.

Lemma D.5 Let fw : XB → Rny be any predictor with weights w, and P be any distribution on
the weights that is independent of the training data. Then, for any γ, δ > 0, with probability at least
1− δ over the training set of size m, for any w, and any random perturbation u s.t.

1.

Pu

[
max

i,j∈[dy ],x∈XB

|M(fw+u(x), i, j)−M(fw(x), i, j)| ≤ γ

2

]
≥ 1

2
,

we have

∥Cfw
D ∥2 ≤ ∥Cfw

S,γ∥2 + 4

√
dy

mmin − 8dy

[
DKL(w + u∥P ) + ln

(
3mmin

4δ

)]
.

2.

Pu

[
max

i,j∈[dy ],x∈XB

|RM(fw+u(x), i, j)−RM(fw(x), i, j)| ≤ γ

2

]
≥ 1

2
,

we have

∥Cfw
D′ ∥2 ≤ ∥Cfw

S′,γ∥2 + 4

√
dy

mmin − 8dy

[
DKL(w + u∥P ) + ln

(
3mmin

4δ

)]
. (32)

Finally, combine Lems. D.4, D.5 and Lem. 3.3 (App. C), we get Lem. 3.4. □

E MORE EXPERIMENTAL RESULTS

E.1 SENSITIVITY ANALYSIS FOR HYPER-PARAMETERS

Table 6: Training from scratch on CIFAR-10 using Preact-ResNet18 model under ℓ∞ norm attack
with different hyper-parameters. Left table shows results for fixed γ = 0.0 with α ranging from 0.0
to 0.4. Right table shows results for fixed α = 0.3 with γ ranging from 0.0 to 0.4.

γ = 0.0 α = 0.3

α AA (%) Worst (%) γ AA (%) Worst (%)
0.0 47.38 12.90 0.0 49.92 33.80
0.1 49.02 21.50 0.1 49.73 34.90
0.2 49.76 24.40 0.2 49.31 34.70
0.3 49.92 33.80 0.3 48.56 33.90
0.4 49.13 30.10 0.4 47.68 33.20

We investigate how regularization hyper-parameters α and γ influence model performance through
experiments on CIFAR-10 with PreAct ResNet-18. Models are trained for 200 epochs with batch
size 128, using two configurations: (1) fixed γ = 0.0 with α varying from 0.0 to 0.4, and (2) fixed
α = 0.3 with γ varying from 0.0 to 0.4. As shown in Tab. 6 (left), both average and worst-class AA
accuracy initially increase with α before declining due to the disruption of training performance at
larger values, leading to our choice of α = 0.3 for subsequent experiments. Tab. 6 (right) demon-
strates that with increasing γ, average AA accuracy consistently decreases while worst-class AA
accuracy shows an initial improvement followed by deterioration. This behavior can be explained
by two competing effects: while larger γ values may impair overall training performance, they also
reduce the influence of the final term in Prop. 3.1, allowing the regularization term to more ef-
fectively optimize worst-class AA accuracy. This trade-off explains why γ = 0.1 achieves better
worst-class performance while maintaining acceptable average performance.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Following Cui et al. (2024), we conduct experiments on ImageNet and CIFAR-100 with
clean training, compare ours with other methods on fairness.

Dataset Method Easy (%) Medium (%) Hard (%) All (%)

ImageNet

Baseline (ResNet-50) 93.1 81.1 59.4 77.8
Menon et al. (2021) 91.7(-1.4) 79.8(-1.3) 61.4(+2.0) 77.6
Cui et al. (2019) 91.6(-1.5) 79.6(-1.5) 61.3(+1.9) 77.5
Oursγ=0.0 91.5(-1.6) 79.6(-1.5) 62.3(+2.9) 77.8

CIFAR-100

Baseline (WRN-34-10) 92.2 83.2 70.1 81.7
Menon et al. (2021) 91.5(-0.7) 83.2(+0.0) 70.4(+0.3) 81.6
Nam et al. (2020) 90.4(-1.8) 81.5(-1.7) 67.7(-2.4) 79.7
Liu et al. (2021) 91.3(-0.9) 82.4(-0.8) 69.6(-0.5) 81.0
Oursγ=0.0 91.3(-0.9) 83.0(-0.2) 71.2(+1.1) 81.8

E.2 EXPERIMENTS ON CLEAN TRAINING

Following Cui et al. (2024), we extend our evaluation to clean training scenarios on ImageNet and
CIFAR-100, comparing our method with other approaches for clean accuracy fairness. As demon-
strated in Tab. 7, our method effectively enhances fairness in clean training, improving test accuracy
on “hard” subsets of ImageNet and CIFAR-100 while maintaining overall accuracy.

E.3 SHARPNESS ANALYSIS

Table 8: Sharpness-like method estimated variance with respect to robust generalization gap and
worst-class AA accuracy. The models are trained from scratch on CIFAR-10 using Preact-ResNet18
model with ℓ∞ norm attack.

Method Training AA - Test AA (%) Test worst-class AA (%) Largest variance
PGD-AT 7.53 12.90 0.14
TRADES 6.08 20.70 0.17
Oursγ=0.0 5.47 33.80 0.21

Our approach follows established PAC-Bayesian frameworks (Neyshabur et al., 2017b; Farnia et al.,
2019) , where the norm restriction on u serves as a theoretical bridge connecting worst-class error
with the spectral norm of empirical confusion matrix and model weights.

The perturbation degree of u reflects the sharpness/flatness of the base classifier fw. Its effectiveness
is usually evaluated in relation to generalization gaps (Jiang et al., 2020), as the single value of
u is un-imformative. While Sec. 3 presents weight-norm-based bounds, we further validate the
PAC-Bayesian bound/assumption empirically using sharpness-based sampling method (Jiang et al.,
2020):

• Sample 50 perturbations u1, ...,u50 from N (0, σ2I).
• Find the largest σ2 ∈ {0.01, 0.02, ..., 1} where training accuracy drop between fw and any
fw+ui

stays within 5%.

The results in Tab. 8 show that smaller generalization gaps and higher worst-class accuracy corre-
spond to larger variances, indicating smoother base classifiers. These findings align with previous
work (Jiang et al., 2020; Xiao et al., 2023), supporting the effectiveness of the PAC-Bayesian frame-
work.

E.4 LONG-TAIL EXPERIMENTS
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Table 9: The performances on ImageNet-LT with ResNeXt-50.

Method Many-shot (%) Medium-shot (%) Few-shot (%)
Baseline 66.1 38.4 8.9
Oursγ=0.0 61.3 45.5 31.2

We evaluate long-tail image classification on ImageNet-LT (Liu et al., 2019) using ResNeXt-50-
32x4d as our baseline, trained with SGD (momentum 0.9, batch size 512) and cosine learning rate
decay from 0.2 to 0.0 over 90 epochs. As shown in Tab. 9, our regularizer leads to improved fair-
ness across the distribution: while showing a slight decrease in many-shot performance, it achieves
significant gains in few-shot classes and moderate improvements in medium-shot classes, demon-
strating effectiveness in addressing fairness problem in long-tail scenarios.

E.5 TRAINING DYNAMIC

Figure 4: We adversarially trained Preact-ResNet-18 models for standard TRADES (left) and our
method with γ = 0.0 based on TRADES (right) for 200 epochs using SGD with a momentum of 0.9,
batch size of 256, weight decay of 5× 10−4, and an initial learning rate of 0.1, which is reduced by
a factor of 10 at the 100th and 150th epochs. Blue line represents training accuracy under PGD-10,
while orange line represents testing accuracy under PGD-10.

As illustrated in Fig. 4, both methods exhibit similar training and testing dynamics. These results
suggest that our method does not independently introduce robust overfitting or address robust over-
fitting; rather, this phenomenon appears to be inherent to the fundamental adversarial training frame-
works, e.g., TRADES, AWP, and AT.

E.6 BEST CLASS PERFORMANCE

Table 10: Evaluation of different methods on CIFAR-10. We report the average accuracy, the worst-
class accuracy, and the best-class accuracy under standard ℓ∞ norm AA, with baseline models of
TRADES/TRADES-AWP.

Method AA (%) Worst (%) Best (%)
TRADES 52.51 23.20 77.10

+ FRL-RWRM0.05 49.97 35.40 75.70
+ FAALAWP 52.45 35.40 77.50
+ Oursγ=0.0 53.46 36.30 78.50

TRADES-AWP 56.18 25.80 77.60
+ FRL-RWRM0.05 46.50 27.70 72.80
+ FAALAWP 53.93 37.00 76.20
+ Oursγ=0.0 54.65 37.00 76.90
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F IMPLEMENTATION DETAILS

In the current implementation version, the confusion matrix is computed over training set and the
computation of gradients involves two key terms:

• The gradient of the confusion matrix’s spectral norm:
∂||Cfw

S′,γ ||2
∂(Cfw

S′,γ)ij
. This is computed once

per epoch over all training data using SVD, and the resulting gradient matrix is cached for
use throughout the epoch.

• The final KL gradient term in (11):
∂(Lfw

S′,γ)ij

∂w , which is computed over batch set due to
the computational overload of processing the entire training set at once. We believe this
operation is commonly used in DNNs’ training.

Then, model updates during each minibatch combine these two components.

Our method can also regularize both terms over batch set, we show empirical results in the following.
We also compare our results with FAAL, as they reweight classes each minibatch. Note that in the
table, Hybrid means the first spectral term in (11) is computed once per epoch over training set, and
the final gradient term is comptued each minibatch over batch set. Minibatch means both terms are
computed each minibatch over batch set.

Table 11: Evaluation of regularization over epoch or minibatch on CIFAR-10. We report the
training time, average accuracy and the worst-class accuracy under standard ℓ∞ norm AA, with
baseline models of TRADES.

Method AA (%) Worst (%) Time/Epoch (s) Regularize on
TRADES 52.51 23.20 664 N/A

+ FAALAWP 52.45 35.40 921 Minibatch
+ Oursγ=0.0 53.46 36.30 997 Hybrid
+ Oursγ=0.0 53.39 36.10 1089 Minibatch

To improve computational efficiency, we have implemented and evaluated an alternative version of
our method. Following CFA, we utilize adversarial examples from the previous epoch to generate
the confusion matrix for the current epoch.

Table 12: Experimental setting follows the above table. Here, the confusion matrix in our method
is generated by adversarial examples from previous epoch.

Method AA (%) Worst (%) Time/Epoch (s) Regularize on
TRADES + Oursγ=0.0 53.31 36.10 705 Hybrid
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