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Abstract

Motivated by the success of Nesterov’s accelerated gradient algorithm for con-
vex minimization problems, we examine whether it is possible to achieve similar
performance gains in the context of online learning in games. To that end, we
introduce a family of accelerated learning methods, which we call “follow the
accelerated leader” (FTXL), and which incorporates the use of momentum within
the general framework of regularized learning – and, in particular, the exponen-
tial / multiplicative weights algorithm and its variants. Drawing inspiration and
techniques from the continuous-time analysis of Nesterov’s algorithm, we show
that FTXL converges locally to strict Nash equilibria at a superlinear rate, achiev-
ing in this way an exponential speed-up over vanilla regularized learning methods
(which, by comparison, converge to strict equilibria at a geometric, linear rate).
Importantly, FTXL maintains its superlinear convergence rate in a broad range
of feedback structures, from deterministic, full information models to stochastic,
realization-based ones, and even when run with bandit, payoff-based information,
where players are only able to observe their individual realized payoffs.

1 Introduction

One of the most important milestones in convex optimization was Nesterov’s accelerated gradient
(NAG) algorithm, as proposed by Nesterov [38] in 1983. The groundbreaking achievement of
Nesterov’s algorithm was that it attained an O(1/𝑇2) rate of convergence in Lipschitz smooth convex
minimization problems, thus bridging a decades-old gap between the O(1/𝑇) convergence rate of
ordinary gradient descent and the corresponding Ω(1/𝑇2) lower bound for said class [37]. In this way,
Nesterov’s accelerated gradient algorithm opened the door to acceleration in optimization, leading in
turn to a wide range of other, likewise influential schemes – such as FISTA and its variants [3] – and
jumpstarting a vigorous field of research that remains extremely active to this day.

Somewhat peculiarly, despite the great success that NAG has enjoyed in all fields where optimization
plays a major role – and, in particular, machine learning and data science – its use has not percolated to
the adjoining field of game theory as a suitable algorithm for learning Nash equilibria. Historically, the
reasons for this are easy to explain: despite intense scrutiny by the community and an extensive corpus
of literature dedicated to deconstructing the algorithm’s guarantees, NAG’s update structure remains
quite opaque – and, to a certain extent, mysterious. Because of this, Nesterov’s algorithm could not
be considered as a plausible learning scheme that could be employed by boundedly rational human
agents involved in a repeated game. Given that this was the predominant tenet in economic thought
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at the time, the use of Nesterov’s algorithm in a game-theoretic context has not been extensively
explored, to the best of our knowledge.

On the other hand, as far as applications to machine learning and artificial intelligence are concerned,
the focus on human agents is no longer a limiting factor. In most current and emerging applications of
game-theoretic learning – from multi-agent reinforcement learning to adversarial models in machine
learning – the learning agents are algorithms whose computational capacity is only limited by the
device on which they are deployed. In view of this, our paper seeks to answer the following question:

Can Nesterov’s accelerated gradient scheme be deployed in a game-theoretic setting?
And, if so, is it possible to achieve similar performance gains as in convex optimization?

Our contributions in the context of related work. The answer to the above questions is not easy to
guess. On the one hand, given that game theory and convex optimization are fundamentally different
fields, a reasonable guess would be “no” – after all, finding a Nash equilibrium is a PPAD-complete
problem [9], whereas convex minimization problems are solvable in polynomial time [7]. On the
other, since in the context of online learning each player would have every incentive to use the most
efficient unilateral optimization algorithm at their disposal, the use of NAG methods cannot be easily
discarded from an algorithmic viewpoint.

Our paper examines if it is possible to obtain even a partially positive answer to the above question
concerning the application of Nesterov’s accelerated gradients techniques to learning in games. We
focus throughout on the class of finite 𝑁-person games where, due to the individual concavity of
the players’ payoff functions, the convergence landscape of online learning in games is relatively
well-understood – at least, compared to non-concave games. In particular, it is known that regularized
learning algorithms – such as “follow the regularized leader” (FTRL) and its variants – converge
locally to strict Nash equilibria at a geometric rate [18], and strict equilibria are the only locally stable
and attracting limit points of regularized learning in the presence of randomness and/or uncertainty
[11, 17, 23]. In this regard, we pose the question of (i) whether regularized learning schemes like
FTRL can be accelerated; and (ii) whether the above properties are enhanced by this upgrade.

We answer both questions in the positive. First, we introduce an accelerated regularized scheme,
in both continuous and discrete time, which we call “follow the accelerated leader” (FTXL). In
continuous time, our scheme can be seen as a fusion of the continuous-time analogue of NAG proposed
by Su, Boyd, and Candès [41] and the dynamics of regularized learning studied by Mertikopoulos
& Sandholm [31] – see also [5, 6, 19, 24, 29, 32–36, 42] and references therein. We show that the
resulting dynamics exhibit the same qualitative equilibrium convergence properties as the replicator
dynamics of Taylor & Jonker [43] (the most widely studied instance of FTRL in continuous time).
However, whereas the replicator dynamics converge to strict Nash equilibria at a linear rate, the
FTXL dynamics converge superlinearly.

In discrete time, we likewise propose an algorithmic implementation of FTXL which can be applied
in various information context: (i) full information, that is, when players observe their entire mixed
payoff vector; (ii) realization-based feedback, i.e., when players get to learn the “what-if” payoff of
actions that they did not choose; and (iii) bandit, payoff-based feedback, where players only observe
their realized, in-game payoff, and must rely on statistical estimation techniques to reconstruct
their payoff vectors. In all cases, we show that FTXL maintains the exponential speedup described
above, and converges to strict Nash equilibria at a superlinear rate (though the subleading term in
the algorithm’s convergence rate becomes increasingly worse as less information is available). We
find this feature of FTXL particularly intriguing as superlinear convergence rates are often associated
to methods that are second-order in space, not time; the fact that this is achieved even with bandit
feedback is quite surprising in this context.

Closest to our work is the continuous-time, second-order replicator equation studied by Laraki
& Mertikopoulos [25] in the context of evolutionary game theory, and derived through a model
of pairwise proportional imitation of “long-term success”. The dynamics of [25] correspond to
the undamped, continuous-time version of FTXL with entropic regularization, and the equilibrium
convergence rate obtained by [25] agrees with our analysis. Other than that, the dynamics of Flåm
& Morgan [12] also attempted to exploit a Newtonian structure, but they do not yield favorable
convergence properties in a general setting. The inertial dynamics proposed in [26] likewise sought to
leverage an inertial structure combined with the Hessian–Riemannian underpinnings of the replicator
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dynamics, but the resulting replicator equation was not even well-posed (in the sense that its solutions
exploded in finite time).

More recently, Gao & Pavel [15, 16] considered a second-order, inertial version of the dynamics of
mirror descent in continuous games, and examined their convergence in the context of variational
stability [34]. Albeit related at a high level to our work (given the link between mirror descent and
regularized learning), the dynamics of Gao & Pavel [15, 16] are actually incomparable to our own,
and there is no overlap in our techniques or results. Other than that, second-order dynamics in games
have also been studied in continuous time within the context of control-theoretic passivity, yielding
promising results in circumventing the impossibility results of Hart & Mas-Colell [21], cf. Gao &
Pavel [13, 14], Mabrok & Shamma [30], Toonsi & Shamma [44], and references therein. However,
the resulting dynamics are also different, and we do not see a way of obtaining comparable rates in
our setting.

2 Preliminaries

In this section, we outline some notions and definitions required for our analysis. Specifically,
we introduce the framework of finite 𝑁-player games, we discuss the solution concept of a Nash
equilibrium, and we present the main ideas of regularized learning in games.

2.1. Finite games. In this work, we focus exclusively with finite games in normal form. Such games
consist of a finite set of players N = {1, . . . , 𝑁}, each of whom has a finite set of actions – or pure
strategies – 𝛼𝑖 ∈ A𝑖 and a payoff function 𝑢𝑖 : A→ ℝ, where A := ∏

𝑖∈N A𝑖 denotes the set of all
possible action profiles 𝛼 = (𝛼1, . . . , 𝛼𝑁 ). To keep track of all this, a finite game with the above
primitives will be denoted as Γ ≡ Γ(N ,A, 𝑢).
In addition to pure strategies, players may also randomize their choices by employing mixed strategies,
that is, by choosing probability distributions 𝑥𝑖 ∈ X𝑖 := Δ(A𝑖) over their pure strategies, where
Δ(A𝑖) denotes the probability simplex over A𝑖 . Now, given a strategy profile 𝑥 = (𝑥1, . . . , 𝑥𝑁 ) ∈
X := ∏

𝑖∈N X𝑖 , we will use the standard shorthand 𝑥 = (𝑥𝑖; 𝑥−𝑖) to highlight the mixed strategy 𝑥𝑖 of
player 𝑖 against the mixed strategy profile 𝑥−𝑖 ∈ X−𝑖 := ∏

𝑗≠𝑖 X 𝑗 of all other players. We also define:

1. The mixed payoff of player 𝑖 under 𝑥 as

𝑢𝑖 (𝑥) = 𝑢𝑖 (𝑥𝑖; 𝑥−𝑖) =
∑︁

𝛼1∈A1

· · ·
∑︁

𝛼𝑁 ∈A𝑁

𝑥1𝛼1 . . . 𝑥𝑁𝛼𝑁
𝑢𝑖 (𝛼1, . . . , 𝛼𝑁 ) (1)

2. The mixed payoff vector of player 𝑖 under 𝑥 as

𝑣𝑖 (𝑥) = ∇𝑥𝑖𝑢𝑖 (𝑥) = (𝑢𝑖 (𝛼𝑖; 𝑥−𝑖))𝛼𝑖∈A𝑖
(2)

In words, 𝑣𝑖 (𝑥) collects the expected rewards 𝑣𝑖𝛼𝑖
(𝑥) := 𝑢𝑖 (𝛼𝑖; 𝑥−𝑖) of each action 𝛼𝑖 ∈ A𝑖 of

player 𝑖 ∈ N against the mixed strategy profile 𝑥−𝑖 of all other players. Finally, we write 𝑣(𝑥) =
(𝑣1 (𝑥), . . . , 𝑣𝑁 (𝑥)) for the concatenation of the players’ mixed payoff vectors.

In terms of solution concepts, we will say that 𝑥∗ is a Nash equilibrium (NE) if no player can benefit
by unilaterally deviating from their strategy, that is

𝑢𝑖 (𝑥∗) ≥ 𝑢𝑖 (𝑥𝑖; 𝑥∗−𝑖) for all 𝑥𝑖 ∈ X𝑖 and all 𝑖 ∈ N . (NE)

Moreover, we say that 𝑥∗ is a strict Nash equilibrium if (NE) holds as a strict inequality for all 𝑥𝑖 ≠ 𝑥∗
𝑖
,

𝑖 ∈ N , i.e., if any deviation from 𝑥∗
𝑖

results in a strictly worse payoff for the deviating player 𝑖 ∈ N .
It is straightforward to verify that a strict equilibrium 𝑥∗ ∈ X is also pure in the sense that each player
assigns positive probability only to a single pure strategy 𝛼∗

𝑖
∈ A𝑖 . Finally, we denote the support of

a strategy 𝑥 as the set of actions with non-zero probability mass, i.e., supp(𝑥) = {𝛼 ∈ A : 𝑥𝛼 > 0}.

2.2. Regularized learning in games. In the general context of finite games, the most widely used
learning scheme is the family of algorithms and dynamics known as “follow the regularized leader”
(FTRL). In a nutshell, the main idea behind FTRL is that each player 𝑖 ∈ N plays a “regularized”
best response to their cumulative payoff over time, leading to the continuous-time dynamics

¤𝑦𝑖 (𝑡) = 𝑣𝑖 (𝑥(𝑡)) 𝑥𝑖 (𝑡) = 𝑄𝑖 (𝑦𝑖 (𝑡)) (FTRL-D)
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where
𝑄𝑖 (𝑦𝑖) = arg max𝑥𝑖∈X𝑖

{⟨𝑦𝑖 , 𝑥𝑖⟩ − ℎ𝑖 (𝑥𝑖)} (3)

denotes the regularized best response – or mirror – map of player 𝑖 ∈ N , and ℎ𝑖 : X𝑖 → ℝ is a
strongly convex function known as the method’s regularizer. Accordingly, in discrete time, this leads
to the algorithm

𝑦𝑖,𝑛+1 = 𝑦𝑖,𝑛 + 𝛾𝑣̂𝑖,𝑛 𝑥𝑖,𝑛 = 𝑄𝑖 (𝑦𝑖,𝑛) (FTRL)

where 𝛾 > 0 is a hyperparameter known as the algorithm’s learning rate (or step-size) and 𝑣̂𝑖,𝑛 is a
black-box “payoff signal” that carries information about 𝑣𝑖 (𝑥𝑛). In the simplest case, when players
have full information about the game being played and the actions taken by their opponents, we have
𝑣̂𝑖,𝑛 = 𝑣𝑖 (𝑥𝑛); in more information-depleted environments (such as learning with payoff-based, bandit
feedback), 𝑣̂𝑖,𝑛 is a reconstruction of 𝑣𝑖 (𝑥𝑛) based on whatever information is at hand.

For concreteness, we close this section with the prototypical example of FTRL methods, the exponen-
tial / multiplicative weights (EW) algorithm. Going back to [2, 28, 45], this method is generated by
the negentropy regularizer ℎ𝑖 (𝑥𝑖) =

∑
𝛼𝑖∈A𝑖

𝑥𝑖𝛼𝑖
log 𝑥𝑖𝛼𝑖

, which yields the EW update rule

𝑦𝑖,𝑛+1 = 𝑦𝑖,𝑛 + 𝛾𝑣̂𝑖,𝑛 𝑥𝑖,𝑛 = Λ𝑖 (𝑦𝑖,𝑛) :=
exp(𝑦𝑖,𝑛)
∥exp(𝑦𝑖,𝑛)∥1

(EW)

and, in the continuous-time limit 𝛾 → 0, the exponential weights dynamics

¤𝑦𝑖 (𝑡) = 𝑣𝑖 (𝑥(𝑡)) 𝑥𝑖 (𝑡) = Λ𝑖 (𝑦𝑖 (𝑡)) . (EWD)

In the above, Λ𝑖 denotes the regularized best response induced by the method’s entropic regularizer,
which is known colloquially as a logit best response – or, even more simply, as the logit map. To
make the notation more compact in the sequel, we will write 𝑄 = (𝑄𝑖)𝑖∈N and Λ = (Λ𝑖)𝑖∈N for the
ensemble of the players’ regularized / logit best response maps.
Remark 1. To streamline our presentation, in the main part of the paper, quantitative results will
be stated for the special case of the EW setup above. In Appendix A, we discuss more general
decomposable regularizers of the form ℎ𝑖 (𝑥𝑖) =

∑
𝛼𝑖∈A𝑖

𝜃𝑖 (𝑥𝑖) where 𝜃𝑖 : [0, 1] → ℝ is continuous
on [0, 1], and has 𝜃′′ (𝑥) > 0 for all 𝑥 ∈ (0, 1] and lim𝑥→0+ 𝜃

′ (𝑥) = −∞. Although this set of
assumptions can be relaxed, it leads to the clearest presentation of our results, so it will suffice for us.
Remark 2. Throughout the paper, we will interchangeably use ¤𝑔(𝑡) and 𝑑𝑔/𝑑𝑡 to denote the time
derivative of 𝑔(𝑡). This dual notation allows us to adopt whichever form is most convenient in the
given context. Moreover, for a process 𝑔, we will use the notation 𝑔(𝑡) for 𝑡 ≥ 0 if it evolves in
continuous time, and 𝑔𝑛 for 𝑛 ∈ ℕ if it evolves in discrete time steps, omitting the time-index when it
is clear from context.

3 Combining acceleration with regularization: First insights and results

In this section, we proceed to illustrate how Nesterov’s accelerated gradient (NAG) method can be
combined with FTRL. To keep things as simple as possible, we focus on the continuous-time limit, so
we do not have to worry about the choice of hyperparameters, the construction of black-box models
for the players’ payoff vectors, etc.

3.1. Nesterov’s accelerated gradient algorithm. We begin by discussing Nesterov’s accelerated
gradient algorithm as presented in Nesterov’s seminal paper [38] in the context of unconstrained
smooth convex minimization. Specifically, given a Lipschitz smooth convex function 𝑓 : ℝ𝑑 → ℝ,
the algorithm unfolds iteratively as

𝑥𝑛+1 = 𝑤𝑛 − 𝛾∇ 𝑓 (𝑤𝑛)

𝑤𝑛+1 = 𝑥𝑛+1 +
𝑛

𝑛 + 3
(𝑥𝑛+1 − 𝑥𝑛)

(NAG)

where 𝑤1 = 𝑥1 is initialized arbitrarily and 𝛾 > 0 is a step-size parameter (typically chosen as
𝛾 ← 1/𝐿 where 𝐿 is the Lipschitz smoothness modulus of 𝑓 ). The specific iterative structure of
(NAG) – and, in particular the “3” in the denominator – can appear quite mysterious; nevertheless,
(NAG) otherwise offers remarkable perfomance gains, improving in particular the rate of convergence
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of gradient methods from O(1/𝑇) to O(1/𝑇2) [38], and matching in this way the corresponding
Ω(1/𝑇2) lower bound for the minimization of smooth convex functions [37].1

This groundbreaking result has since become the cornerstone of a vast and diverse literature expanding
on the properties of (NAG) and trying to gain a deeper understanding of the “how” and “why” of its
update structure. One perspective that has gained significant traction in this regard is the continuous-
time approach of Su et al. [40, 41]; combining the two equations in (NAG) into

𝑥𝑛+1 − 2 𝑥𝑛 + 𝑥𝑛−1√
𝛾

= −√𝛾 ∇ 𝑓 (𝑤𝑛) −
3

𝑛 + 2
𝑥𝑛 − 𝑥𝑛−1√

𝛾
, (4)

they modeled (NAG) as a heavy ball with vanishing friction system of the form

𝑑2𝑥

𝑑𝑡2
= −∇ 𝑓 (𝑥) − 3

𝑡

𝑑𝑥

𝑑𝑡
(HBVF)

The choice of terminology alludes to the fact that (HBVF) describes the dynamics of a heavy ball
descending the landscape of 𝑓 under the potential field 𝐹 (𝑥) = −∇ 𝑓 (𝑥) with a vanishing kinetic
friction coefficient (the 3/𝑡 factor in front of the momentum term 𝑑𝑥/𝑑𝑡). In this interpretation, the
mass of the ball accelerates the system, the friction term dissipates energy to enable convergence,
and the vanishing friction coefficient quenches the impact of friction over time in order to avoid
decelerating the system too much (so the system is, in a sense, “critically underdamped”).

As was shown by Su et al. [41], an explicit Euler discretization of (HBVF) yields (NAG) with exactly
the right momentum coefficient 𝑛/(𝑛 + 3); moreover, the rate of convergence of the continuous-time
dynamics (HBVF) is the same as that of the discrete-time algorithm (NAG), and the energy function
and Lyapunov analysis used to derive the former can also be used to derive the latter. For all these
reasons, (HBVF) is universally considered as the de facto continuous-time analogue of (NAG), and
we will treat it as such in the sequel.

3.2. NAG meets FTRL. To move from unconstrained convex minimization problems to finite
𝑁-person games – a constrained, non-convex, multi-agent, multi-objective setting – it will be more
transparent to start with the continuous-time formulation (HBVF). Indeed, applying the logic behind
(HBVF) to the (unconstrained) state variables 𝑦 of (FTRL-D), we obtain the “follow the accelerated
leader” dynamics

𝑑2𝑦

𝑑𝑡2
= 𝑣(𝑄(𝑦)) − 𝑟

𝑡

𝑑𝑦

𝑑𝑡
(FTXL-D)

where the dynamics’ driving force 𝐹 (𝑦) = 𝑣(𝑄(𝑦)) is now given by the payoff field of the game,
and the factor 𝑟/𝑡, 𝑟 ≥ 0, plays again the role of a vanishing friction coefficient. To avoid confusion,
we highlight that in the case of regularized learning, the algorithm’s variable that determines the
evolution of the system in an autonomous way is the “score variable” 𝑦, not the “strategy variable” 𝑥
(which is an ancillary variable obtained from 𝑦 via the regularized choice map 𝑄).

In contrast to (EWD), the accelerated dynamics (FTXL-D) are second-order in time, a fact with
fundamental ramifications, not only from a conceptual, but also from an operational viewpoint.
Focusing on the latter, we first note that (FTXL-D) requires two sets of initial conditions, 𝑦(0) and
¤𝑦(0), the latter having no analogue in the first-order setting of (FTRL-D). In general, the evolution of
the system depends on both 𝑦(0) and ¤𝑦(0), but since this would introduce an artificial bias toward a
certain direction, we will take ¤𝑦(0) = 0, in tune with standard practice for (NAG) [41].

We also note that (FTXL-D) can be mapped to an equivalent autonomous first-order system with
double the variables: specifically, letting 𝑝 = ¤𝑦 denote the players’ (payoff ) momentum, (FTXL-D)
can be rewritten as

𝑑𝑦

𝑑𝑡
= 𝑝

𝑑𝑝

𝑑𝑡
= 𝑣(𝑄(𝑦)) − 𝑟

𝑡
𝑝 (5)

with 𝑦(0) initialized arbitrarily and 𝑝(0) = ¤𝑦(0). In turn, (5) yields 𝑝(𝑡) = 𝑡−𝑟
∫ 𝑡

0 𝑡𝑟 𝑣(𝑄(𝑦(𝜏))) 𝑑𝜏,
so 𝑝(𝑡) can be seen as a weighted aggregate of the players’ payoffs up to time 𝑡: if 𝑟 = 0 (the
undamped regime), all information enters 𝑝(𝑡) with the same weight; if 𝑟 > 0, past information is
discounted relative to more recent observations; and, in the overdamped limit 𝑟 →∞, all weight is
assigned to the current point in time, emulating in this way the first-order system (FTRL-D).

1There are, of course, many other approaches to acceleration, that we cannot cover here; for a discussion of
the popular “linear coupling” approach of Allen-Zhu & Orecchia [1], see Appendix F.
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3.3. First insights and results. From an operational standpoint, the main question of interest is to
specify the equilibrium convergence properties of (FTXL-D) – and, later in the paper, its discrete-time
analogue. To establish a baseline, the principal equilibrium properties of its first-order counterpart can
be summarized as follows: (i) strict Nash equilibria are locally stable and attracting under (FTRL-D)
[23, 31];2 (ii) the dynamics do not admit any other such points (that is, stable and attracting) [11];
and (iii) quantitively, in the case of (EWD), the dynamics converge locally to strict Nash equilibria at
a geometric rate of the form ∥𝑥(𝑡) − 𝑥∗∥ = O(exp(−𝑐𝑡)) for some 𝑐 > 0 [31].

Our first result below shows that the accelerated dynamics (FTXL-D) exhibit an exponential speed-up
relative to (FTRL-D), and the players’ orbits converge to strict Nash equilibria at a superlinear rate:
Theorem 1. Let 𝑥∗ be a strict Nash equilibrium of Γ, and let 𝑥(𝑡) = 𝑄(𝑦(𝑡)) be a solution orbit of
(FTXL-D). If 𝑥(0) is sufficiently close to 𝑥∗, then 𝑥(𝑡) converges to 𝑥∗; in particular, if (FTXL-D) is
run with logit best responses (that is, 𝑄 ← Λ), we have

∥𝑥(𝑡) − 𝑥∗∥∞ ≤ exp
(
𝐶 − 𝑐𝑡2

2(𝑟 + 1)

)
(6)

where 𝐶 > 0 is a constant that depends only on the initialization of (FTXL-D) and

𝑐 =
1
2

min
𝑖∈N

min
𝛽𝑖∉supp(𝑥∗

𝑖
)
[𝑢𝑖 (𝑥∗𝑖 ; 𝑥∗−𝑖) − 𝑢𝑖 (𝛽𝑖; 𝑥∗−𝑖)] > 0 (7)

is the minimum payoff difference at equilibrium.

Theorem 1 (which we prove in Appendix B) is representative of the analysis to come, so some
remarks are in order. First, we should note that the explicit rate estimate (6) is derived for the special
case of logit best responses, which underlie all exponential / multiplicative weights algorithms. To
the best of our knowledge, the only comparable result in the literature is the similar rate provided in
[25] for the case 𝑟 = 0. In the case of a general regularizer, an analogous speed-up is observed, but
the exact expressions are more involved, so we defer them to Appendix B. A second important point
concerns whether the rate estimate (6) is tight or not. Finally, the neighborhood of initial conditions
around 𝑥∗ is determined by the minimum payoff difference at equilibrium and is roughly O(𝑐) in
diameter; we defer the relevant details of this discussion to Appendix B.

To answer this question – and, at the same time get a glimpse of the proof strategy for Theorem 1 – it
will be instructive to consider a single-player game with two actions. Albeit simple, this toy example
is not simplistic, as it provides an incisive look into the problem, and will be used to motivate our
design choices in the sequel.
Example 3.1. Consider a single-player game Γ with actions A and B such that 𝑢(A) − 𝑢(B) = 1, so
the (dominant) strategy 𝑥∗ = (1, 0) is a strict Nash equilibrium. Then, letting 𝑧 = 𝑦A − 𝑦B, (FTXL-D)
readily yields

𝑑2𝑧

𝑑𝑡2
=

𝑑2𝑦A

𝑑𝑡2
− 𝑑2𝑦B

𝑑𝑡2
= 𝑢(A) − 𝑢(B) − 𝑟

𝑡

[
𝑑𝑦A

𝑑𝑡
− 𝑑𝑦B

𝑑𝑡

]
= 1 − 𝑟

𝑡

𝑑𝑧

𝑑𝑡
. (8)

As we show in Appendix B, this non-autonomous differential equation can be solved exactly to yield
𝑧(𝑡) = 𝑧(0) + 𝑡2/[2(𝑟 + 1)], and hence

∥𝑥(𝑡) − 𝑥∗∥∞ =
1

1 + exp(𝑧(𝑡)) ∼ exp
(
−𝑧(0) − 𝑡2

2(𝑟 + 1)

)
. (9)

Since 𝑐 = 𝑢(A) − 𝑢(B) = 1, the rate (9) coincides with that of Theorem 1 up to a factor of 1/2. This
factor is an artifact of the analysis and, in fact, it can be tightened to (1 − 𝜀) for arbitrarily small
𝜀 > 0; we did not provide this more precise expression to lighten notation. By contrast, the factor
2(𝑟 + 1) in (6) cannot be lifted; this has important ramifications which we discuss below. ♦

The first conclusion that can be drawn from Example 3.1 is that the rate estimate of Theorem 1 is
tight and cannot be improved in general. In addition, and in stark contrast to (NAG), Example 3.1

2Recall here that 𝑥∗ ∈ X is said to be (i) Lyapunov stable (or simply stable) if every orbit 𝑥(𝑡) of the dynamics
that starts close enough to 𝑥∗ remains close enough to 𝑥∗ for all 𝑡 ≥ 0; (ii) attracting if lim𝑡→∞ 𝑥(𝑡) = 𝑥∗ for
every orbit 𝑥(𝑡) that starts close enough to 𝑥∗; and (iii) asymptotically stable if it is both stable and attracting.
For an introduction to the theory of dynamical systems, cf. Shub [39] and Hirsch et al. [22].
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shows that the optimal value for the friction parameter is 𝑟 = 0 (at least from a min-max viewpoint,
as this value yields the best possible lower bound for the rate). Of course, this raises the question as
to whether this is due to the continuous-time character of the policy;3 however, as we show in detail
in Appendix C, this is not the case: the direct handover of (NAG) to Example 3.1 yields the exact
same rate (though the proof relies on a significantly more opaque generating function calculation).

In view of all this, it becomes apparent that friction only hinders the equilibrium convergence
properties of accelerated FTRL schemes in our game-theoretic setting. On that account, we will
continue our analysis in the undamped regime 𝑟 = 0.

4 Accelerated learning: Analysis and results

4.1. The algorithm. To obtain a bona fide, algorithmic implementation of the continuous-time
dynamics (FTXL-D), we will proceed with the same explicit, finite-difference scheme leading to
the discrete-time algorithm (NAG) from the continuous-time dynamics (HBVF) of Su et al. [41].
Specifically, taking a discretization step 𝛾 > 0 in (FTXL-D) and setting the scheme’s friction
parameter 𝑟 to zero (which, as we discussed at length in the previous section, is the optimal choice in
our setting), a straightforward derivation yields the basic update rule

[𝑦𝑖,𝑛+1 − 2𝑦𝑖,𝑛 + 𝑦𝑖,𝑛−1]/𝛾2 = 𝑣̂𝑖,𝑛 for all 𝑖 ∈ N and all 𝑛 = 1, 2, . . . (10)

In the above, just as in the case of (FTRL), 𝑣̂𝑖,𝑛 ∈ ℝA𝑖 denotes a black-box “payoff signal” that
carries information about the mixed payoff vector 𝑣𝑖 (𝑥𝑛) of player 𝑖 at the current strategy profile 𝑥𝑛
(we provide more details on this below).

Alternatively, to obtain an equivalent first-order iterative rule (which is easier to handle and discuss),
it will be convenient to introduce the momentum variables 𝑝𝑛 = (𝑦𝑛 − 𝑦𝑛−1)/𝛾. Doing just that, a
simple rearrangement of (10) yields the “follow the accelerated leader” scheme

𝑦𝑖,𝑛+1 = 𝑦𝑖,𝑛 + 𝛾𝑝𝑖,𝑛+1 𝑝𝑖,𝑛+1 = 𝑝𝑖,𝑛 + 𝛾𝑣̂𝑖,𝑛 𝑥𝑖,𝑛 = 𝑄𝑖 (𝑦𝑖,𝑛) . (FTXL)

The algorithm (FTXL) will be our main object of study in the sequel, and we will examine its
convergence properties under three differerent models for 𝑣̂𝑛:

1. Full information, i.e., players get to access their full, mixed payoff vectors:

𝑣̂𝑖,𝑛 = 𝑣𝑖 (𝑥𝑛) for all 𝑖 ∈ N , 𝑛 = 1, 2, . . . (11a)

2. Realization-based feedback, i.e., after choosing an action profile 𝛼𝑛 ∼ 𝑥𝑛, each player 𝑖 ∈ N
observes (or otherwise calculates) the vector of their counterfactual, “what-if” rewards, namely

𝑣̂𝑖,𝑛 = 𝑣𝑖 (𝛼𝑛) for all 𝑖 ∈ N , 𝑛 = 1, 2, . . . (11b)

3. Bandit / Payoff-based feedback, i.e., each player only observes their current reward, and must rely
on statistical estimation techniques to reconstruct an estimate of 𝑣𝑖 (𝑥𝑛). For concreteness, we will
consider the case where players employ a version of the so-called importance-weighted estimator

𝑣̂𝑖,𝑛 = IWE(𝑥𝑖,𝑛;𝛼𝑖,𝑛) for all 𝑖 ∈ N , 𝑛 = 1, 2, . . . (11c)

which we describe in detail later in this section.

Of course, this list of information models is not exhaustive, but it is a faithful representation of most
scenarios that arise in practice, so it will suffice for our purposes.

Now before moving forward with the analysis, it will be useful to keep some high-level remarks
in mind. The first is that (FTXL) shares many similarities with (FTRL), but also several notable
differences. At the most basic level, (FTRL) and (FTXL) are both “stimulus-response” schemes in
the spirit of Erev & Roth [10], that is, players “respond” with a strategy 𝑥𝑖,𝑛 = 𝑄𝑖 (𝑦𝑖,𝑛) to a “stimulus”
𝑦𝑖,𝑛 generated by the observed payoff signals 𝑣̂𝑖,𝑛. In this regard, both methods adhere to the online
learning setting (and, in particular, to the regularized learning paradigm).

3The reader might also wonder if the use of a non-vanishing friction coefficient – 𝑟 ¤𝑦 instead of (𝑟/𝑡) ¤𝑦 –
could be beneficial to the convergence rate of (FTXL-D). As we show in Appendices B and C, this leads to
significantly worse convergence rates of the form ∥𝑥(𝑡) − 𝑥∗∥∞ ∼ exp(−Θ(𝑡)) for all 𝑟 > 0.
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However, unlike (FTRL), where players respond to the aggregate of their payoff signals – the process
𝑦𝑛 in (FTRL) – the accelerated algorithm (FTXL) introduces an additional aggregation layer, which
expresses how players “build momentum” based on the same payoff signals – the process 𝑝𝑛 in
(FTXL). Intuitively, we can think of these two processes as the “position” and “momentum” variables
of a classical inertial system, not unlike the heavy-ball dynamics of Su et al. [41]. The only conceptual
difference is that, instead of rolling along the landscape of a (convex) function, the players now track
the “mirrored” payoff field 𝑣̂(𝑦) := 𝑣(𝑄(𝑦)).
In the rest of this section, we proceed to examine in detail the equilibrium convergence properties of
(FTXL) under each of the three models detailed in Eqs. (11a)–(11c) in order.

4.2. Accelerated learning with full information. We begin with the full information model (11a).
This is the most straightforward model (due to the absence of randomness and uncertainty) but,
admittedly, also the least realistic one. Nevertheless, it will serve as a useful benchmark for the rest,
and it will allow us to introduce several important notions.

Before we state our result, it is important to note that a finite game can have multiple strict Nash
equilibria, so global convergence results are, in general, unattainable; for this reason, we analyze the
algorithm’s local convergence landscape. In this regard, Theorem 2 below shows that (FTXL) with
full information achieves a superlinear local convergence rate to strict Nash equilibria:
Theorem 2. Let 𝑥∗ be a strict Nash equilibrium of Γ, and let 𝑥𝑛 = 𝑄(𝑦𝑛) be the sequence of play
generated by (FTXL) with full information feedback of the form (11a). If 𝑥1 is initialized sufficiently
close to 𝑥∗, then 𝑥𝑛 converges to 𝑥∗; in particular, if (FTXL) is run with logit best responses (that is,
𝑄 ← Λ), we have

∥𝑥𝑇 − 𝑥∗∥∞ ≤ exp
(
𝐶 − 𝑐𝛾2𝑇 (𝑇 − 1)

2

)
= exp

(
−Θ(𝑇2)

)
(12)

where 𝐶 > 0 is a constant that depends only on the initialization of (FTXL) and

𝑐 =
1
2

min
𝑖∈N

min
𝛽𝑖∉supp(𝑥∗

𝑖
)
[𝑢𝑖 (𝑥∗𝑖 ; 𝑥∗−𝑖) − 𝑢𝑖 (𝛽𝑖; 𝑥∗−𝑖)] > 0 (13)

is the minimum payoff difference at equilibrium.

To maintain the flow of our discussion, we defer the proof of Theorem 2 to Appendix C. Instead,
we only note here that, just as in the case of (HBVF) and (NAG), Theorem 2 provides essentially
the same rate of convergence as its continuous-time counterpart, Theorem 1, modulo a subleading
term which has an exponentially small impact on the rate of convergence. In particular, we should
stress that the superlinear convergence rate of (FTXL) exhibits an exponential speedup relative to
(FTRL), which is known to converge at a geometric rate ∥𝑥𝑇 − 𝑥∗∥∞ = exp(−Θ(𝑇)). This is in direct
correspondence to what we observe in continuous time, showing in particular that the continuous-time
dynamics (FTXL-D) are a faithful representation of (FTXL).

We should also stress here that superlinear convergence rates are typically associated with methods
that are second-order in space, in the sense that they employ Hessian-like information – like Newton’s
algorithm – not second-order in time – like (NAG) and (FTXL). We find this observation particularly
intriguing as it suggests that accelerated rates can be observed in the context of learning in games
without having to pay the excessively high compute cost of second-order methods in optimization.

4.3. Accelerated learning with realization-based feedback. We now turn to the realization-based
model (11b), where players can only assess the rewards of their pure actions in response to the
realized actions of all other players. In words, 𝑣̂𝑖,𝑛 = 𝑣𝑖 (𝛼𝑛) collects the payoffs that player 𝑖 ∈ N
would have obtained by playing each of their pure actions 𝛼𝑖 ∈ A𝑖 against the action profile 𝛼−𝑖,𝑛
adopted by the rest of the players.

In contrast to the full information model (11a), the realization-based model is stochastic in nature, so
our convergence results will likewise be stochastic. Nevertheless, despite the added layer of uncer-
tainty, we show that (FTXL) with realization-based feedback maintains a superlinear convergence
rate with high probability:
Theorem 3. Let 𝑥∗ be a strict Nash equilibrium of Γ, fix some confidence level 𝛿 > 0, and let
𝑥𝑛 = 𝑄(𝑦𝑛) be the sequence of play generated by (FTXL) with realization-based feedback as per
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(a) Zero-sum game: Realization-based feedback
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(b) Zero-sum game: Bandit feedback
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(c) Congestion game: Realization-based feedback
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Figure 1: Performance evaluation of (FTXL) in a zero-sum and a congestion game under realization-based and
bandit feedback. Solid lines represent average values, while shaded regions enclose ±1 standard deviation. The
plots are in logarithmic scale.

(11b) and a sufficiently small step-size 𝛾 > 0. Then there exists a neighborhood U of 𝑥∗ such that

ℙ(𝑥𝑛 → 𝑥∗ as 𝑛→∞) ≥ 1 − 𝛿 if 𝑥1 ∈ U . (14)

In particular, if (FTXL) is run with logit best responses (that is, 𝑄 ← Λ), there exist positive
constants 𝐶, 𝑐 > 0 as in Theorem 2 such that on the event {𝑥𝑛 → 𝑥∗ as 𝑛→∞}:

∥𝑥𝑇 − 𝑥∗∥∞ ≤ exp
(
𝐶 − 𝑐𝛾2𝑇 (𝑇 − 1)

2
+ 3

5
𝑐𝛾5/3𝑇5/3

)
= exp

(
−Θ(𝑇2)

)
. (15)

What is particularly surprising in Theorem 3 is that, (FTXL) maintains the accelerated superlinear rate
of Theorem 2 – and, likewise, the exponential speedup relative to (FTRL) – despite the randomness
and uncertainty involved in the realization-based model (11b). The salient point enabling this feature
of (FTXL) is that 𝑣̂𝑛 can be expressed as

𝑣̂𝑛 = 𝑣(𝑥𝑛) +𝑈𝑛 (16)

where 𝑈𝑛 ∈
∏

𝑖 ℝ
A𝑖 is an almost surely bounded conditionally zero-mean stochastic perturbation,

that is, 𝔼[𝑈𝑛 |F𝑛] = 0, where F𝑛 := 𝜎(𝑥1, . . . , 𝑥𝑛) denotes the history of play up to (and including)
time 𝑛. Thanks to the boundedness of (16), we are able to derive a series of probabilistic estimates
showing that, with high probability (and, in particular, greater than 1 − 𝛿), the contribution of the
noise in the algorithm’s rate becomes subleading, thus allowing the superlinear rate of Theorem 2 to
emerge. As in the case of Theorem 2, we defer the proof of Theorem 3 to the appendix.

4.4. Bandit feedback. The last framework we consider is the bandit model where players only
observe their realized rewards, a scalar from which they must reconstruct their entire payoff vector.
To do so, a standard technique from the multi-armed bandit literature is the so-called importance
weighted estimator (IWE) [8, 27], defined in our setting as

𝑣̂𝑖𝛼𝑖 ,𝑛 =
1{𝛼𝑖,𝑛 = 𝛼𝑖}

𝑥𝑖𝛼𝑖,𝑛

𝑢𝑖 (𝛼𝑖;𝛼−𝑖,𝑛) (IWE)
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where 𝑥𝑖,𝑛 = (1 − 𝜀𝑛)𝑥𝑖,𝑛 + 𝜀𝑛 unifA𝑖
is a mixture of 𝑥𝑖,𝑛 and the uniform distribution on A𝑖 (a

mechanism known in the literature as explicit exploration). Importantly, this estimator is unbiased
relative to the perturbed strategy 𝑥𝑥𝑛 , which thus incurs an O(𝜀𝑛) non-zero-sum error to the estimation
of 𝑣𝑖 (𝑥𝑛). This error can be made arbitrarily small by taking 𝜀𝑛 → 0 but, in doing so, the variance of
𝑣̂𝑖,𝑛 diverges, leading to a bias-variance trade-off that is difficult to tame.

Despite these added difficulties, we show below that (FTXL) maintains its superlinear convergence
rate even with bandit, payoff-based feedback:
Theorem 4. Let 𝑥∗ be a strict Nash equilibrium of Γ, fix some confidence level 𝛿 > 0, and let
𝑥𝑛 = 𝑄(𝑦𝑛) be the sequence of play generated by (FTXL) with bandit feedback of the form (11c),
an IWE exploration parameter 𝜀𝑛 ∝ 1/𝑛ℓ𝜀 for some ℓ𝜀 ∈ (0, 1/2), and a sufficiently small step-size
𝛾 > 0. Then there exists a neighborhood U of 𝑥∗ in X such that

ℙ(𝑥𝑛 → 𝑥∗ as 𝑛→∞) ≥ 1 − 𝛿 if 𝑥1 ∈ U . (17)

In particular, if (FTXL) is run with logit best responses (that is, 𝑄 ← Λ), there exist positive
constants 𝐶, 𝑐 > 0 as in Theorem 2 such that on the event {𝑥𝑛 → 𝑥∗ as 𝑛→∞}

∥𝑥𝑇 − 𝑥∗∥∞ ≤ exp
(
𝐶 − 𝑐𝛾2𝑇 (𝑇 − 1)

2
+ 5

9
𝑐𝛾9/5𝑇9/5

)
= exp

(
−Θ(𝑇2)

)
. (18)

Theorem 4 (which we prove in Appendix D shows that, despite the degradation of the subleading
term, (FTXL) retains its superlinear convergence rate even with bandit, payoff-based feedback (for a
numerical demonstration, see Fig. 1 above). We find this feature of (FTXL) particularly important as
it shows that the algorithm remains exceptionally robust in the face of randomness and uncertainty,
even as we move toward increasingly information-starved environments – from full information, to
realization-based observations and, ultimately, to bandit feedback. This has important ramifications
from an operational standpoint, which we intend to examine further in future work.

4.5. Numerical Experiments. We conclude this section with a series of numerical simulations to
validate the performance of (FTXL). To this end, we consider two game paradigms, (i) a 2-player
zero-sum game, and (ii) a congestion game.

Zero-sum Games. First, we consider a 2-player zero-sum game with actions {𝛼1, 𝛼2, 𝛼3} and
{𝛽1, 𝛽2, 𝛽3}, and payoff matrix

𝑃 =

((2,−2) (1,−1) (2,−2)
(−2, 2) (−1, 1) (−2, 2)
(−2, 2) (−1, 1) (−2, 2)

)
Here, the rows of 𝑃 correspond to the actions of player 𝐴 and the columns to the actions of player
𝐵, while the first item of each entry of 𝑃 corresponds to the payoff of 𝐴, and the second one to the
payoff of 𝐵. Clearly, the action profile (𝛼1, 𝛽2) is a strict Nash equilibrium.

Congestion Games. As a second example, we consider a congestion game with 𝑁 = 100 and 2
roads, 𝑟1 and 𝑟2, with costs 𝑐1 = 1.1 and 𝑐2 = 𝑑/𝑁 where 𝑑 is the number of drivers on 𝑟2. In words,
𝑟1 has a fixed delay equal to 1.1, while 𝑟2 has a delay proportional to the drivers using it. Note, that
the strategy profile where all players are using 𝑟2 is a strict Nash equilibrium.

In Fig. 1, we assess the convergence of (FTXL) with logit best responses, under realization-based
and bandit feedback, and compare it to the standard (EW) with the same level of information. The
figures verify that (FTXL) outperforms (EW) regarding the convergence to a strict Nash equilibrium
both for the realization-based and the bandit feedback, as expected from the theoretical findings.
Specifically, they validate the faster convergence rate of (FTXL) compared to that of the (EW)
algorithm. Moreover, we observe that both algorithms perform worse under bandit feedback than
under realization-based feedback. This behavior is expected as less information becomes available.
More details can be found in Appendix E.
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Appendix

In Appendix A, we discuss how our findings can be extended to general regularizers. Subsequently,
Appendices B and C contain the technical proofs for the continuous and discrete time algorithms,
respectively. Following this, Appendix D provides the convergence results of (FTXL) under partial
information, specifically under realization-based and bandit feedback. We conclude this section with
Appendix E, which presents the details of the numerical experiments.

A Auxiliary results for general regularizers

In this appendix, we briefly discuss how to obtain the convergence of (FTXL) for mirror maps 𝑄
beyond the logit map Λ. Namely, we consider regularizers that are decomposable, i.e., ℎ𝑖 (𝑥𝑖) =∑

𝛼𝑖∈A𝑖
𝜃𝑖 (𝑥𝛼𝑖

) such that 𝜃𝑖 : [0, 1] → ℝ is continuous on [0, 1], twice differentiable on (0, 1] and
strongly convex with 𝜃′

𝑖
(0+) = −∞.

Lemma A.1. Suppose that 𝑥𝑛 = 𝑄(𝑦𝑛) and for all 𝛼 ∈ A, 𝛼 ≠ 𝛼∗, it holds that 𝑦𝛼,𝑛 − 𝑦𝛼∗ ,𝑛 → −∞
as 𝑛→∞. Then, 𝑥𝑛 converges to 𝑥∗, where 𝑥∗ is a point mass at 𝛼∗. Moreover, it holds that:

∥𝑥𝑛 − 𝑥∗∥∞ ≤
∑︁
𝛼≠𝛼∗
(𝜃′)−1 (𝜃′ (1) + 𝑦𝛼,𝑛 − 𝑦𝛼∗ ,𝑛) (A.1)

Proof. First, note that for 𝑥 = 𝑄(𝑦), we have that 𝑥 is the solution of the following optimization
problem

𝑄(𝑦) = arg max

{ ∑︁
𝛼∈A

𝑦𝛼𝑥𝛼 − ℎ(𝑥) :
∑︁
𝛼∈A

𝑥𝛼 = 1 and ∀𝛼 ∈ A : 𝑥𝛼 ≥ 0

}
By solving the Karush–Kuhn–Tucker (KKT) conditions to this optimization problem we readily get
that 𝑥 lies in the interior of X , since 𝜃 (0+) = −∞, and thus we obtain that at the solution, it holds
𝑦𝛼 = 𝜃′ (𝑥𝛼) + 𝜆 for 𝜆 ∈ ℝ. Therefore, we have:

𝑦𝛼,𝑛 − 𝑦𝛼∗ ,𝑛 = 𝜃′ (𝑥𝛼,𝑛) − 𝜃′ (𝑥𝛼∗ ,𝑛) (A.2)

or equivalently:

𝜃′ (𝑥𝛼,𝑛) = 𝜃′ (𝑥𝛼∗ ,𝑛) + 𝑦𝛼,𝑛 − 𝑦𝛼∗ ,𝑛 ≤ 𝜃′ (1) + 𝑦𝛼,𝑛 − 𝑦𝛼∗ ,𝑛 (A.3)

Now, assume that there exists 𝛼 ∈ A such that 𝑥𝛼,𝑛 does not converge to 0, that is, lim sup𝑛 𝑥𝛼,𝑛 > 𝜀
for some 𝜀 > 0. Then, since 𝜃 is strongly convex, 𝜃′ is strictly increasing, and thus 𝜃′ (𝑥𝛼,𝑛) ≥ 𝜃′ (𝜀)
infinitely often. However, by taking 𝑛 → ∞ in (A.3), it implies that 𝜃′ (𝑥𝛼,𝑛) → −∞, which is a
contradiction. Therefore, we conclude that for all 𝛼 ≠ 𝛼∗, it holds that lim𝑛→∞ 𝑥𝛼,𝑛 = 0, and the
convergence result follows.

Finally, note that since 𝜃′ is strictly increasing, it is invertible and its inverse is strictly increasing as
well. Thus, for each 𝛼 ≠ 𝛼∗ we have:

𝑥𝛼,𝑛 ≤ (𝜃′)−1 (𝜃′ (1) + 𝑦𝛼,𝑛 − 𝑦𝛼∗ ,𝑛) (A.4)

Therefore,

∥𝑥𝑛 − 𝑥∗∥∞ = 1 − 𝑥𝛼∗ ,𝑛 =
∑︁
𝛼≠𝛼∗

𝑥𝛼,𝑛 ≤
∑︁
𝛼≠𝛼∗
(𝜃′)−1 (𝜃′ (1) + 𝑦𝛼,𝑛 − 𝑦𝛼∗ ,𝑛) (A.5)

and our proof is complete. ■

B Proofs for Continuous Time Algorithms

In this appendix, we provide the proof of Theorem 1 and discuss the convergence of (FTXL-D) under
a non-vanishing friction coefficient – that is, 𝑟 ¤𝑦 instead of (𝑟/𝑡) ¤𝑦. First, we provide a lemma that is
necessary for our analysis.
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Lemma B.1. Let 𝑥∗ = (𝛼∗1, . . . , 𝛼
∗
𝑁
) ∈ X be a strict Nash equilibrium of Γ, and let 𝑑 denote the

minimum payoff difference at equilibrium, i.e.,

𝑑 := min
𝑖∈N

min
𝛽𝑖∉supp(𝑥∗

𝑖
)
[𝑢𝑖 (𝑥∗𝑖 ; 𝑥∗−𝑖) − 𝑢𝑖 (𝛽𝑖; 𝑥∗−𝑖)] . (B.1)

Then, for any 𝑐 ∈ (0, 𝑑), there exists 𝑀 > 0 such that if 𝑦𝑖𝛼∗
𝑖
− 𝑦𝑖𝛼𝑖

> 𝑀 for all 𝛼𝑖 ≠ 𝛼∗
𝑖
∈ A𝑖 and

𝑖 ∈ N , then
𝑣𝑖𝛼∗

𝑖
(𝑄(𝑦)) − 𝑣𝑖𝛼𝑖

(𝑄(𝑦)) > 𝑐 for all 𝛼𝑖 ≠ 𝛼∗𝑖 ∈ A𝑖 , and 𝑖 ∈ N . (B.2)

Proof. Since 𝑥∗ is a strict Nash equilibrium, the minimum payoff difference 𝑑 at 𝑥∗ is bounded away
from zero. Then, by continuity of the function 𝑥 ↦→ 𝑣(𝑥), there exists a neighborhood U∗ of 𝑥∗ such
that for any 𝑥 ∈ U∗, it holds

𝑣𝑖𝛼∗
𝑖
(𝑥) − 𝑣𝑖𝛼𝑖

(𝑥) > 𝑐 for all 𝛼𝑖 ≠ 𝛼∗𝑖 ∈ A𝑖 , and 𝑖 ∈ N (B.3)

Finally, by Giannou et al. [18, Lemma C.2.], there exists 𝑀 > 0, such that 𝑄(𝑦) ∈ U∗ for all 𝑦 ∈ V∗
with

𝑦𝑖𝛼∗
𝑖
− 𝑦𝑖𝛼𝑖

> 𝑀 for all 𝛼𝑖 ≠ 𝛼∗𝑖 ∈ A𝑖 , and 𝑖 ∈ N (B.4)

Therefore, we readily get that if 𝑦 ∈ V∗ satisfies the above relation, then

𝑣𝑖𝛼∗
𝑖
(𝑄(𝑦)) − 𝑣𝑖𝛼𝑖

(𝑄(𝑦)) > 𝑐 for all 𝛼𝑖 ≠ 𝛼∗𝑖 ∈ A𝑖 , and 𝑖 ∈ N . ■

We are now in a position to prove Theorem 1, which we restate below for convenience.
Theorem 1. Let 𝑥∗ be a strict Nash equilibrium of Γ, and let 𝑥(𝑡) = 𝑄(𝑦(𝑡)) be a solution orbit of
(FTXL-D). If 𝑥(0) is sufficiently close to 𝑥∗, then 𝑥(𝑡) converges to 𝑥∗; in particular, if (FTXL-D) is
run with logit best responses (that is, 𝑄 ← Λ), we have

∥𝑥(𝑡) − 𝑥∗∥∞ ≤ exp
(
𝐶 − 𝑐𝑡2

2(𝑟 + 1)

)
(6)

where 𝐶 > 0 is a constant that depends only on the initialization of (FTXL-D) and

𝑐 =
1
2

min
𝑖∈N

min
𝛽𝑖∉supp(𝑥∗

𝑖
)
[𝑢𝑖 (𝑥∗𝑖 ; 𝑥∗−𝑖) − 𝑢𝑖 (𝛽𝑖; 𝑥∗−𝑖)] > 0 (7)

is the minimum payoff difference at equilibrium.

Proof. First of all, since 𝑥∗ is a strict Nash equilibrium, by Lemma B.1 for

𝑐 =
1
2

min
𝑖∈N

min
𝛽𝑖∉supp(𝑥∗

𝑖
)
[𝑢𝑖 (𝑥∗𝑖 ; 𝑥∗−𝑖) − 𝑢𝑖 (𝛽𝑖; 𝑥∗−𝑖)]

there exists 𝑀 > 0 such that if 𝑦𝑖𝛼∗
𝑖
− 𝑦𝑖𝛼𝑖

> 𝑀 for all 𝛼𝑖 ≠ 𝛼∗
𝑖
∈ A𝑖 and 𝑖 ∈ N , then

𝑣𝑖𝛼∗
𝑖
(𝑄(𝑦)) − 𝑣𝑖𝛼𝑖

(𝑄(𝑦)) > 𝑐 for all 𝛼𝑖 ≠ 𝛼∗𝑖 ∈ A𝑖 , and 𝑖 ∈ N . (B.5)

From now on, for notational convenience, we focus on player 𝑖 ∈ N and drop the player-specific
indices altogether. Then, for 𝛼 ≠ 𝛼∗ ∈ A, we let 𝑧𝛼 (𝑡) := 𝑦𝛼 (𝑡) − 𝑦∗𝛼 (𝑡), which evolves as:

¥𝑧(𝑡) = 𝑣𝛼 (𝑥(𝑡)) − 𝑣𝛼∗ (𝑥(𝑡)) −
𝑟

𝑡
¤𝑧𝛼 (𝑡) (B.6)

Let 𝑦(0) such that 𝑧𝛼 (0) = −𝑀 − 𝜀, for all 𝛼 ≠ 𝛼∗ ∈ A, where 𝜀 > 0 small. We will, first, show that
𝑧(𝑡) < −𝑀 for all 𝑡 ≥ 0. For the sake of contradiction, and denoting 𝑇0 := inf{𝑡 ≥ 0 : 𝑧(𝑡) ≥ −𝑀},
suppose that 𝑇0 < ∞. Then, we readily get that for all 𝑡 < 𝑇0, it holds

𝑣𝛼 (𝑥(𝑡)) − 𝑣𝛼∗ (𝑥(𝑡)) < −𝑐 (B.7)

and therefore, for all 𝑡 ≤ 𝑇0:

¥𝑧𝛼 (𝑡)𝑡𝑟 + 𝑟𝑡𝑟−1 ¤𝑧𝛼 (𝑡) = 𝑡𝑟 [𝑣𝛼 (𝑥) − 𝑣𝛼∗ (𝑥)] ≤ −𝑐𝑡𝑟 (B.8)
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which can be rewritten as:
𝑑

𝑑𝑡
( ¤𝑧𝛼 (𝑡)𝑡𝑟 ) ≤ −𝑐𝑡𝑟 (B.9)

Integrating over 𝑡 < 𝑇0, we obtain ¤𝑧𝛼 (𝑡)𝑡𝑟 ≤ −𝑐𝑡𝑟+1/(𝑟 + 1), which readily implies:

𝑧𝛼 (𝑡) ≤ 𝑧𝛼 (0) −
𝑐

2(𝑟 + 1) 𝑡
2

< −𝑀 − 𝑐

2(𝑟 + 1) 𝑡
2 (B.10)

By sending 𝑡 → 𝑇0, we arrive at a contradiction. Therefore 𝑧𝛼 (𝑡) < −𝑀 for all 𝑡 ≥ 0, and the previous
equation implies that for all 𝑡 ≥ 0 :

𝑧𝛼 (𝑡) ≤ 𝑧𝛼 (0) −
𝑐

2(𝑟 + 1) 𝑡
2 (B.11)

and invoking Lemma A.1, we get the convergence result. Finally, translating the score-differences to
the primal space X , we get:

∥𝑥(𝑡) − 𝑥∗∥∞ = max
𝑖∈N

{
1 − 𝑥𝑖𝛼∗

𝑖
(𝑡)

}
(B.12)

For the case of logit best responses, i.e., when 𝑄 ← Λ, and assuming that the maximum above is
attained for player 𝑖 ∈ N , we obtain

∥𝑥(𝑡) − 𝑥∗∥∞ =

∑
𝛼𝑖≠𝛼

∗
𝑖

exp(𝑧𝛼𝑖
(𝑡))

1 +∑
𝛼𝑖≠𝛼

∗
𝑖

exp(𝑧𝛼𝑖
(𝑡))

≤
∑︁
𝛼𝑖≠𝛼

∗
𝑖

exp(𝑧𝛼𝑖
(𝑡))

≤ |A𝑖 | exp
(
𝑧𝛼𝑖
(0) − 𝑐

2(𝑟 + 1) 𝑡
2
)

≤ exp
(
𝐶 − 𝑐

2(𝑟 + 1) 𝑡
2
)

(B.13)

for 𝐶 = log|A𝑖 | + 𝑧𝛼𝑖
(0). ■

Now, moving to the case where we use a constant friction coefficient – 𝑟 ¤𝑦 instead of (𝑟/𝑡) ¤𝑦, (FTXL-D)
becomes:

𝑑2𝑦

𝑑𝑡2
= 𝑣(𝑄(𝑦)) − 𝑟 𝑑𝑦

𝑑𝑡
(B.14)

Under, (B.14), we obtain the following convergence result.
Theorem B.1. Let 𝑥∗ be a strict Nash equilibrium of Γ, and let 𝑥(𝑡) = 𝑄(𝑦(𝑡)) be a solution orbit of
(B.14). If 𝑥(0) is sufficiently close to 𝑥∗, then 𝑥(𝑡) converges to 𝑥∗; in particular, if (B.14) is run with
logit best responses (that is, 𝑄 ← Λ), we have

∥𝑥(𝑡) − 𝑥∗∥∞ ≤ exp
(
𝐶 − 𝑐

𝑟
𝑡 − 𝑐

𝑟2 𝑒
−𝑟𝑡 + 𝑐

𝑟2

)
(B.15)

where 𝐶 > 0 is a constant that depends on the initialization of (B.14) and

𝑐 =
1
2

min
𝑖∈N

min
𝛽𝑖∉supp(𝑥∗

𝑖
)
[𝑢𝑖 (𝑥∗𝑖 ; 𝑥∗−𝑖) − 𝑢𝑖 (𝛽𝑖; 𝑥∗−𝑖)] > 0 (B.16)

is the minimum payoff difference at equilibrium.

Proof. The initial steps of proof of Theorem B.1 are similar to the proof of Theorem 1, which we
include for the sake of completeness.

Specifically, by Lemma B.1 there exists 𝑀 > 0 such that if 𝑦𝑖𝛼∗
𝑖
− 𝑦𝑖𝛼𝑖

> 𝑀 for all 𝛼𝑖 ≠ 𝛼∗
𝑖
∈ A𝑖 and

𝑖 ∈ N , then
𝑣𝑖𝛼∗

𝑖
(𝑄(𝑦)) − 𝑣𝑖𝛼𝑖

(𝑄(𝑦)) > 𝑐 for all 𝛼𝑖 ≠ 𝛼∗𝑖 ∈ A𝑖 , and 𝑖 ∈ N . (B.17)
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Now, for notational convenience, we focus on player 𝑖 ∈ N and drop the player-specific indices
altogether. Then, for 𝛼 ≠ 𝛼∗ ∈ A, we let 𝑧𝛼 (𝑡) := 𝑦𝛼 (𝑡) − 𝑦∗𝛼 (𝑡), which evolves as:

¥𝑧(𝑡) = 𝑣𝛼 (𝑥(𝑡)) − 𝑣𝛼∗ (𝑥(𝑡)) − 𝑟 ¤𝑧𝛼 (𝑡) (B.18)

Let 𝑦(0) such that 𝑧𝛼 (0) = −𝑀 − 𝜀, for all 𝛼 ≠ 𝛼∗ ∈ A, where 𝜀 > 0 small. As in the proof of
Theorem 1, we will, first, show that 𝑧(𝑡) < −𝑀 for all 𝑡 ≥ 0. For the sake of contradiction, and
denoting 𝑇0 := inf{𝑡 ≥ 0 : 𝑧(𝑡) ≥ −𝑀}, suppose that 𝑇0 < ∞. Then, we readily get that for all 𝑡 < 𝑇0,
it holds

𝑣𝛼 (𝑥(𝑡)) − 𝑣𝛼∗ (𝑥(𝑡)) < −𝑐 (B.19)

and therefore, for all 𝑡 ≤ 𝑇0:

¥𝑧𝛼 (𝑡)𝑒𝑟𝑡 + 𝑟𝑒𝑟𝑡 ¤𝑧𝛼 (𝑡) = 𝑒𝑟𝑡 [𝑣𝛼 (𝑥) − 𝑣𝛼∗ (𝑥)] ≤ −𝑐𝑒𝑟𝑡 (B.20)

which can be rewritten as:
𝑑

𝑑𝑡

(
¤𝑧𝛼 (𝑡)𝑒𝑟𝑡

)
≤ −𝑐𝑒𝑟𝑡 (B.21)

Integrating over 𝑡 < 𝑇0, and using that ¤𝑧𝛼 (0) = 0, we obtain ¤𝑧𝛼 (𝑡) ≤ −𝑐/𝑟 + 𝑐𝑒−𝑟𝑡/𝑟 , which implies:

𝑧𝛼 (𝑡) ≤ 𝑧𝛼 (0) −
𝑐

𝑟
𝑡 − 𝑐

𝑟2 𝑒
−𝑟𝑡 + 𝑐

𝑟2

= 𝑧𝛼 (0) −
𝑐

𝑟2
(
𝑟𝑡 + 𝑒−𝑟𝑡 − 1

)
< 𝑧𝛼 (0)
< −𝑀 (B.22)

where we used the fact that 𝑥 + 𝑒−𝑥 − 1 ≥ 0 for all 𝑥 ∈ ℝ with equality if and only if 𝑥 = 0. By
sending 𝑡 → 𝑇0, we arrive at a contradiction. Therefore 𝑧𝛼 (𝑡) < −𝑀 for all 𝑡 ≥ 0, and the previous
equation implies that for all 𝑡 ≥ 0 :

𝑧𝛼 (𝑡) ≤ 𝑧𝛼 (0) −
𝑐

𝑟
𝑡 − 𝑐

𝑟2 𝑒
−𝑟𝑡 + 𝑐

𝑟2 (B.23)

and invoking Lemma A.1 for 𝜃 (𝑥) = 𝑥 log 𝑥, we get the convergence result. ■

C Proofs for discrete-time algorithms with full information

In this section, we provide the results for the (FTXL) algorithm with full-information feedback. First,
we discuss the rates obtained by the direct discretization of (FTXL-D) with both vanishing and non-
vanishing friction, and then provide the proof of Theorem 2, our main result, for the full-information
case.

C.1. FTXL with vanishing friction. First, we provide the rate of convergence for the discrete
version of (FTXL-D) with vanishing friction:

𝑝𝑖,𝑛+1 = 𝑝𝑖,𝑛

(
1 − 𝛾𝑟

𝑛

)
+ 𝛾𝑣̂𝑖,𝑛

𝑦𝑖,𝑛+1 = 𝑦𝑖,𝑛 + 𝛾𝑝𝑖,𝑛+1

(C.1)

To streamline our presentation, we consider the setup of Example 3.1 that provides a lower bound for
the algorithm.

Proposition C.1. Consider the single-player game Γ with actions A and B such that 𝑢(A) − 𝑢(B) = 1
of Example 3.1, and let 𝑥𝑛 = Λ(𝑦𝑛) be the sequence of play generated by (C.1). Then, denoting by
𝑥∗ = (1, 0) the strict Nash equilibrium, we have:

∥𝑥𝑇 − 𝑥∗∥∞ ∼ exp
(
𝐶 − 𝛾2𝑇2

2(𝛾𝑟 + 1)

)
. (C.2)

where 𝐶 > 0 is a constant that depends only on the initialization of the algorithm.
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Proof. We first define the score-difference

𝑤𝑛 := 𝑝B,𝑛 − 𝑝A,𝑛 (C.3)

with initial condition 𝑤1 = 0. Then, unfolding according to the sequence of play, we obtain:

𝑤𝑛+1 = 𝑤𝑛

(
1 − 𝛾𝑟

𝑛

)
+ 𝛾(𝑢(B) − 𝑢(A))

= 𝑤𝑛

(
1 − 𝛾𝑟

𝑛

)
− 𝛾

= −𝛾
𝑛−1∑︁
𝑘=1

𝑘−1∏
ℓ=0

(
1 − 𝛾𝑟

𝑛 − ℓ

)
− 𝛾 (C.4)

We next define for 𝑛 ∈ ℕ the difference 𝑧𝑛 := 𝑦B,𝑛 − 𝑦A,𝑛. Thus, unfolding it, we obtain:

𝑧𝑛+1 = 𝑧𝑛 + 𝛾𝑤𝑛+1

= 𝑧𝑛 − 𝛾2

(
1 +

𝑛−1∑︁
𝑘=1

𝑘−1∏
ℓ=0

(
1 − 𝛾𝑟

𝑛 − ℓ

))
= 𝑧1 − 𝛾2

𝑛∑︁
𝑚=1

(
1 +

𝑚−1∑︁
𝑘=1

𝑘−1∏
ℓ=0

(
1 − 𝛾𝑟

𝑚 − ℓ

))
(C.5)

Now, using Lemma C.1, which we provide after this proof, we obtain that

𝑧𝑛+1 = 𝑧1 − 𝛾2
𝑛∑︁

𝑚=1

(
1 + 𝑚 − 𝛾𝑟

1 + 𝛾𝑟 −
1

1 + 𝛾𝑟
𝑚∏
ℓ=1

(
1 − 𝛾𝑟

ℓ

))
= 𝑧1 − 𝛾2 𝑛(𝑛 + 1)

2(1 + 𝛾𝑟) − 𝛾
2𝑛

(
1 − 𝛾𝑟

1 + 𝛾𝑟

)
+ 𝛾2

1 + 𝛾𝑟
𝑛∑︁

𝑚=1

𝑚∏
ℓ=1

(
1 − 𝛾𝑟

ℓ

)
= 𝑧1 −

𝛾2𝑛2

2(1 + 𝛾𝑟) + Θ(𝑛) (C.6)

and invoking Lemma A.1 for 𝜃 (𝑥) = 𝑥 log 𝑥, we get the result. ■

The following lemma is a necessary tool for obtaining the exact convergence rate in Proposition C.2.
Lemma C.1. For any 𝑚 ∈ ℕ and 𝑎 > 0, we have that

𝑚−1∑︁
𝑘=1

𝑘−1∏
ℓ=0
(1 − 𝑎

𝑚 − ℓ ) =
𝑚 − 𝑎
1 + 𝑎 −

1
1 + 𝑎

𝑚∏
ℓ=1

(
1 − 𝑎

ℓ

)
(C.7)

Proof. First, by expanding the inner product, we can rewrite the expression as

𝑚−1∑︁
𝑘=1

𝑘−1∏
ℓ=0
(1 − 𝑎

𝑚 − ℓ ) =
𝑚−1∑︁
𝑘=1

𝑘−1∏
ℓ=0
(𝑚 − ℓ − 𝑎

𝑚 − ℓ )

𝑚−1∑︁
𝑘=1

(𝑚 − 𝑎) . . . (𝑚 − 𝑘 + 1 − 𝑎)
𝑚 . . . (𝑚 − 𝑘 + 1)

=
𝑚−1∑︁
𝑘=1

(𝑚 − 𝑎)!(𝑚 − 𝑘)!
(𝑚 − 𝑘 − 𝑎)!𝑚!

=
(𝑚 − 𝑎)!

𝑚!

𝑚−1∑︁
𝑘=1

(𝑚 − 𝑘)!
(𝑚 − 𝑘 − 𝑎)! (C.8)

where with a slight abuse of notation we use the factorial notation (𝑚 − 𝑎)! to denote the Gamma
function evaluated at 𝑚 − 𝑎 + 1, i.e., Γ(𝑚 − 𝑎 + 1).
Now, defining the quantity

𝐹𝑚 :=
(𝑚 − 𝑎)!

𝑚!

𝑚∑︁
𝑘=1

(𝑚 − 𝑘)!
(𝑚 − 𝑘 − 𝑎)!
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the difference of two consecutive terms evolves as:

𝐹𝑚+1 − 𝐹𝑚 =
(𝑚 + 1 − 𝑎)!
(𝑚 + 1)!

𝑚+1∑︁
𝑘=1

(𝑚 + 1 − 𝑘)!
(𝑚 + 1 − 𝑘 − 𝑎)! −

(𝑚 − 𝑎)!
𝑚!

𝑚∑︁
𝑘=1

(𝑚 − 𝑘)!
(𝑚 − 𝑘 − 𝑎)!

=
𝑚 + 1 − 𝑎
𝑚 + 1

+ (𝑚 + 1 − 𝑎)!
(𝑚 + 1)!

𝑚+1∑︁
𝑘=2

(𝑚 + 1 − 𝑘)!
(𝑚 + 1 − 𝑘 − 𝑎)! −

(𝑚 − 𝑎)!
𝑚!

𝑚∑︁
𝑘=1

(𝑚 − 𝑘)!
(𝑚 − 𝑘 − 𝑎)!

=
𝑚 + 1 − 𝑎
𝑚 + 1

+ (𝑚 + 1 − 𝑎)!
(𝑚 + 1)!

𝑚+1∑︁
𝑘=2

(𝑚 + 1 − 𝑘)!
(𝑚 + 1 − 𝑘 − 𝑎)! −

(𝑚 − 𝑎)!
𝑚!

𝑚+1∑︁
𝑘=2

(𝑚 − 𝑘 + 1)!
(𝑚 − 𝑘 + 1 − 𝑎)!

=
𝑚 + 1 − 𝑎
𝑚 + 1

+
𝑚+1∑︁
𝑘=2

(𝑚 + 1 − 𝑎)!(𝑚 + 1 − 𝑘)! − (𝑚 + 1) (𝑚 − 𝑎)!(𝑚 − 𝑘 + 1)!
(𝑚 + 1)!(𝑚 + 1 − 𝑎 − 𝑘)!

=
𝑚 + 1 − 𝑎
𝑚 + 1

+
𝑚+1∑︁
𝑘=2

(𝑚 − 𝑎)!(𝑚 + 1 − 𝑘)!(𝑚 + 1 − 𝑎 − 𝑚 − 1)
(𝑚 + 1)!(𝑚 + 1 − 𝑎 − 𝑘)!

=
𝑚 + 1 − 𝑎
𝑚 + 1

− 𝑎
𝑚+1∑︁
𝑘=2

(𝑚 − 𝑎)!(𝑚 + 1 − 𝑘)!
(𝑚 + 1)!(𝑚 + 1 − 𝑎 − 𝑘)!

=
𝑚 + 1 − 𝑎
𝑚 + 1

− 𝑎

𝑚 + 1 − 𝑎

[
𝑚+1∑︁
𝑘=1

(𝑚 + 1 − 𝑘)!(𝑚 + 1 − 𝑎)!
(𝑚 + 1)!(𝑚 + 1 − 𝑎 − 𝑘)! −

𝑚 + 1 − 𝑎
𝑚 + 1

]
= 1 − 𝑎

𝑚 + 1 − 𝑎 𝐹𝑚+1 (C.9)

Thus, we readily obtain the recurrence relation
𝑚 + 1

𝑚 + 1 − 𝑎 𝐹𝑚+1 = 𝐹𝑚 + 1 . (C.10)

We continue the proof by induction. To this end, we will show that

𝐹𝑚 =
𝑚 − 𝑎
1 + 𝑎 +

𝑎

1 + 𝑎
𝑚∏
ℓ=1

ℓ − 𝑎
ℓ

. (C.11)

For the base case, note that

𝐹1 = (1 − 𝑎) = 1 − 𝑎
1 + 𝑎 +

𝑎

1 + 𝑎 (1 − 𝑎) (C.12)

For the inductive step, suppose that (C.11) holds for 𝑚 ∈ ℕ. Then, we have:
𝑚 + 1

𝑚 + 1 − 𝑎 𝐹𝑚+1 =
𝑚 − 𝑎
1 + 𝑎 +

𝑎

1 + 𝑎
𝑚∏
ℓ=1

(
ℓ − 𝑎
ℓ

)
+ 1

=
𝑚 + 1
1 + 𝑎 +

𝑎

1 + 𝑎
𝑚∏
ℓ=1

ℓ − 𝑎
ℓ

(C.13)

which implies the inductive step

𝐹𝑚+1 =
𝑚 + 1 − 𝑎

1 + 𝑎 + 𝑎

1 + 𝑎
𝑚+1∏
ℓ=1

ℓ − 𝑎
ℓ

(C.14)

and thus (C.11) holds for all 𝑚 ∈ ℕ. Finally, to complete the proof notice that
𝑚−1∑︁
𝑘=1

𝑘−1∏
ℓ=0
(1 − 𝑎

𝑚 − ℓ ) =
(𝑚 − 𝑎)!

𝑚!

𝑚−1∑︁
𝑘=1

(𝑚 − 𝑘)!
(𝑚 − 𝑘 − 𝑎)!

= 𝐹𝑚 −
𝑚−1∏
ℓ=0

(
1 − 𝑎

𝑚 − ℓ

)
=

𝑚 − 𝑎
1 + 𝑎 +

𝑎

1 + 𝑎
𝑚∏
ℓ=1

ℓ − 𝑎
ℓ
−

𝑚∏
ℓ=1

(
1 − 𝑎

ℓ

)
=

𝑚 − 𝑎
1 + 𝑎 −

1
1 + 𝑎

𝑚∏
ℓ=1

(
1 − 𝑎

ℓ

)
(C.15)

as was to be shown. ■
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Next, we discuss the cases of non-vanishing and zero friction.

C.2. FTXL with non-vanishing friction. We continue this section by considering the case of
non-vanishing friction in analogy to the continuous-time case, as per Appendix B. Specifically, we
consider the discrete version of (FTXL-D) with non-vanishing friction, as follows:

𝑝𝑖,𝑛+1 = 𝑝𝑖,𝑛 (1 − 𝛾𝑟) + 𝛾𝑣̂𝑖,𝑛
𝑦𝑖,𝑛+1 = 𝑦𝑖,𝑛 + 𝛾𝑝𝑖,𝑛+1

(C.16)

with 𝛾𝑟 < 1. Below, we provide the rate of convergence for the setup of 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 3.1, as we did
before. Namely, we obtain a linear convergence rate, as the following proposition suggests.
Proposition C.2. Consider the single-player game Γ with actions A and B such that 𝑢(A) − 𝑢(B) = 1
of Example 3.1, and let 𝑥𝑛 = Λ(𝑦𝑛) be the sequence of play generated by (C.16). Then, denoting by
𝑥∗ = (1, 0) the strict Nash equilibrium, we have:

∥𝑥𝑛 − 𝑥∗∥∞ ∼ exp
(
𝐶 − 𝛾

𝑟
𝑛

)
. (C.17)

where 𝐶 > 0 is a constant that depends on the initialization of the algorithm.

Proof. We first define the score-difference
𝑤𝑛 := 𝑝B,𝑛 − 𝑝A,𝑛 (C.18)

with initial condition 𝑤1 = 0. Then, unfolding according to the sequence of play, we obtain:
𝑤𝑛+1 = 𝑤𝑛 (1 − 𝛾𝑟) + 𝛾(𝑢(B) − 𝑢(A))

= 𝑤𝑛 (1 − 𝛾𝑟) − 𝛾
= . . .

= −𝛾
𝑛−1∑︁
𝑘=0
(1 − 𝛾𝑟)𝑘

= −1 − (1 − 𝛾𝑟)𝑛
𝑟

(C.19)

We next define for 𝑛 ∈ ℕ the difference 𝑧𝑛 := 𝑦B,𝑛 − 𝑦A,𝑛. Thus, unfolding it, we obtain:
𝑧𝑛+1 = 𝑧𝑛 + 𝛾𝑤𝑛+1

= 𝑧𝑛 − 𝛾
1 − (1 − 𝛾𝑟)𝑛

𝑟

= 𝑧1 − 𝛾
𝑛∑︁

𝑚=1

1 − (1 − 𝛾𝑟)𝑚
𝑟

= 𝑧1 −
𝛾

𝑟

(
𝑛 − (1 − 𝛾𝑟) 1 − (1 − 𝛾𝑟)

𝑛

𝛾𝑟

)
= 𝑧1 −

𝛾

𝑟
𝑛 +O(1) (C.20)

and invoking Lemma A.1 for 𝜃 (𝑥) = 𝑥 log 𝑥, we get the result. ■

C.3. FTXL with zero friction. Moving forward to the case of 𝑟 = 0 as presented in Section 4, we
provide the proof of Theorem 2, which we restate below for convenience.
Theorem 2. Let 𝑥∗ be a strict Nash equilibrium of Γ, and let 𝑥𝑛 = 𝑄(𝑦𝑛) be the sequence of play
generated by (FTXL) with full information feedback of the form (11a). If 𝑥1 is initialized sufficiently
close to 𝑥∗, then 𝑥𝑛 converges to 𝑥∗; in particular, if (FTXL) is run with logit best responses (that is,
𝑄 ← Λ), we have

∥𝑥𝑇 − 𝑥∗∥∞ ≤ exp
(
𝐶 − 𝑐𝛾2𝑇 (𝑇 − 1)

2

)
= exp

(
−Θ(𝑇2)

)
(12)

where 𝐶 > 0 is a constant that depends only on the initialization of (FTXL) and

𝑐 =
1
2

min
𝑖∈N

min
𝛽𝑖∉supp(𝑥∗

𝑖
)
[𝑢𝑖 (𝑥∗𝑖 ; 𝑥∗−𝑖) − 𝑢𝑖 (𝛽𝑖; 𝑥∗−𝑖)] > 0 (13)

is the minimum payoff difference at equilibrium.
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Proof. First of all, since 𝑥∗ is a strict Nash equilibrium, by Lemma B.1 for

𝑐 =
1
2

min
𝑖∈N

min
𝛽𝑖∉supp(𝑥∗

𝑖
)
[𝑢𝑖 (𝑥∗𝑖 ; 𝑥∗−𝑖) − 𝑢𝑖 (𝛽𝑖; 𝑥∗−𝑖)]

there exists 𝑀 > 0 such that if 𝑦𝑖𝛼∗
𝑖
− 𝑦𝑖𝛼𝑖

> 𝑀 for all 𝛼𝑖 ≠ 𝛼∗
𝑖
∈ A𝑖 and 𝑖 ∈ N , then

𝑣𝑖𝛼∗
𝑖
(𝑄(𝑦)) − 𝑣𝑖𝛼𝑖

(𝑄(𝑦)) > 𝑐 for all 𝛼𝑖 ≠ 𝛼∗𝑖 ∈ A𝑖 , and 𝑖 ∈ N . (C.21)

For notational convenience, we focus on player 𝑖 and drop the player-specific indices altogether. Let
𝛼 ≠ 𝛼∗ ∈ A, and define for 𝑛 ∈ ℕ the quantities 𝑤𝛼,𝑛 and 𝑧𝛼,𝑛 as

𝑤𝛼,𝑛 := ⟨𝑝𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩, 𝑧𝛼,𝑛 := ⟨𝑦𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩ (C.22)

where 𝑒𝛼, 𝑒
∗
𝛼 are the standard basis vectors corresponding to 𝛼, 𝛼∗ ∈ A.

Let initial conditions 𝑦1 such that 𝑦𝛼,1 − 𝑦𝛼∗ ,1 = −𝑀 − 𝜀, for all 𝛼 ≠ 𝛼∗ ∈ A, where 𝜀 > 0 small, and
𝑝1 = 0. We will first show by induction that 𝑧𝛼,𝑛 < −𝑀 for all 𝑛 ∈ ℕ. To this end, unfolding the
recursion, we obtain:

𝑤𝛼,𝑛+1 = 𝑤𝛼,𝑛 + 𝛾⟨𝑣̂𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩
= 𝑤𝛼,𝑛 + 𝛾⟨𝑣(𝑥𝑛), 𝑒𝛼 − 𝑒∗𝛼⟩

= 𝛾
𝑛∑︁

𝑘=1
⟨𝑣(𝑥𝑘), 𝑒𝛼 − 𝑒∗𝛼⟩ (C.23)

where we used that 𝑤1 = 0. Now, for the sake of induction, suppose that

𝑧𝛼,𝑘 < −𝑀 for all 𝑘 = 1, . . . , 𝑛 (C.24)

which implies that ⟨𝑣(𝑥𝑘), 𝑒𝛼 − 𝑒∗𝛼⟩ < −𝑐. With this in hand, we will prove that 𝑧𝛼,𝑛+1 < −𝑀, as
well. Specifically, we have:

𝑧𝛼,𝑛+1 = 𝑧𝛼,𝑛 + 𝛾𝑤𝛼,𝑛+1 = 𝑧𝛼,𝑛 + 𝛾2
𝑛∑︁

𝑘=1
⟨𝑣(𝑥𝑘), 𝑒𝛼 − 𝑒∗𝛼⟩

≤ 𝑧𝛼,𝑛 − 𝑐𝛾2𝑛

≤ 𝑧𝛼,1 − 𝑐𝛾2
𝑛∑︁

ℓ=1
ℓ

< −𝑀 (C.25)

where we used the inductive hypothesis and the initial condition. Therefore, we conclude by induction
that 𝑧𝛼,𝑛 < −𝑀 for all 𝑛 ∈ ℕ. Thus, we readily obtain that after 𝑇 time-step:

𝑧𝑇 ≤ 𝑧𝛼,1 − 𝑐𝛾2
𝑇−1∑︁
ℓ=1

ℓ ≤ 𝑧𝛼,1 − 𝑐𝛾2𝑇 (𝑇 − 1)
2

(C.26)

and invoking Lemma A.1 for 𝜃 (𝑥) = 𝑥 log 𝑥, we get the result. ■

D Proofs for discrete-time algorithms with partial information

In this appendix, we provide the proofs of Theorem 3 and Theorem 4 that correspond to the con-
vergence of (FTXL) with realization-based and bandit feedback, respectively. For this, we need the
following lemma, which provides a maximal bound on a martingale process. Namely, we have:

Lemma D.1. Let 𝑀𝑛 := ∑𝑛
𝑘=1 𝛾𝑘𝜉𝑘 be a martingale with respect to (F𝑛)𝑛∈ℕ with 𝔼[∥𝜉𝑛∥𝑞∗ ] ≤ 𝜎

𝑞
𝑛

for some 𝑞 > 2. Then, for 𝜇 ∈ (0, 1) and 𝑛 ∈ ℕ:

ℙ

(
sup
𝑘≤𝑛
|𝑀𝑘 | > 𝑐

(
𝑛∑︁

𝑘=1
𝛾𝑘

)𝜇)
≤ 𝐴𝑞

∑𝑛
𝑘=1 𝛾

𝑞/2+1
𝑘

𝜎
𝑞

𝑘(∑𝑛
𝑘=1 𝛾𝑘

)1+𝑞 (𝜇−1/2) (D.1)

where 𝐴𝑞 is a constant depending only on 𝑐 and 𝑞.
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Proof. Fix some 𝜇 ∈ (0, 1). By Doob’s maximal inequality [20, Corollary 2.1], we have:

ℙ

(
sup
𝑘≤𝑛
|𝑀𝑘 | > 𝑐

(
𝑛∑︁

𝑘=1
𝛾𝑘

)𝜇)
≤ 𝔼[|𝑀𝑛 |𝑞]

𝑐𝑞
(∑𝑛

𝑘=1 𝛾𝑘
)𝑞𝜇 (D.2)

Now, applying the Burkholder–Davis–Gundy inequality [20, Theorem 2.10], we get that

𝔼[|𝑀𝑛 |𝑞] ≤ 𝐴𝑞 𝔼


(

𝑛∑︁
𝑘=1

𝛾2
𝑘 ∥𝜉𝑘 ∥

2
∗

)𝑞/2 (D.3)

where 𝐴𝑞 is a constant depending only on 𝑐 and 𝑞. Now, we will invoke the generalized Hölder’s
inequality [4], we have: (

𝑛∑︁
𝑘=1

𝑎𝑘𝑏𝑘

)𝜌
≤

(
𝑛∑︁

𝑘=1
𝑎

𝜆𝜌

𝜌−1
𝑘

)𝜌−1
𝑛∑︁

𝑘=1
𝑎
(1−𝜆)𝜌
𝑘

𝑏
𝜌

𝑘
(D.4)

for 𝑎𝑘 , 𝑏𝑘 ≥ 0, 𝜌 > 1 and 𝜆 ∈ [0, 1). Thus, setting 𝑎𝑘 = 𝛾2
𝑘
, 𝑏𝑘 = ∥𝜉𝑘 ∥2∗, 𝜌 = 𝑞/2 and 𝜆 = 1/2− 1/𝑞,

(D.2), combined with (D.3), becomes:

ℙ

(
sup
𝑘≤𝑛
|𝑀𝑘 | > 𝑐

(
𝑛∑︁

𝑘=1
𝛾𝑘

)𝜇)
≤ 𝐴𝑞

(∑𝑛
𝑘=1 𝛾𝑘

)𝑞/2−1 ∑𝑛
𝑘=1 𝛾

𝑞/2+1
𝑘

𝔼[∥𝜉𝑘 ∥𝑞∗ ](∑𝑛
𝑘=1 𝛾𝑘

)𝑞𝜇
≤ 𝐴𝑞

∑𝑛
𝑘=1 𝛾

𝑞/2+1
𝑘

𝜎
𝑞

𝑘(∑𝑛
𝑘=1 𝛾𝑘

)1+𝑞 (𝜇−1/2) (D.5)

and our proof is complete. ■

With this tool in hand, we proceed to prove the convergence of (FTXL) under realization-based
feedback. For convenience, we restate the relevant result below.
Theorem 3. Let 𝑥∗ be a strict Nash equilibrium of Γ, fix some confidence level 𝛿 > 0, and let
𝑥𝑛 = 𝑄(𝑦𝑛) be the sequence of play generated by (FTXL) with realization-based feedback as per
(11b) and a sufficiently small step-size 𝛾 > 0. Then there exists a neighborhood U of 𝑥∗ such that

ℙ(𝑥𝑛 → 𝑥∗ as 𝑛→∞) ≥ 1 − 𝛿 if 𝑥1 ∈ U . (14)

In particular, if (FTXL) is run with logit best responses (that is, 𝑄 ← Λ), there exist positive
constants 𝐶, 𝑐 > 0 as in Theorem 2 such that on the event {𝑥𝑛 → 𝑥∗ as 𝑛→∞}:

∥𝑥𝑇 − 𝑥∗∥∞ ≤ exp
(
𝐶 − 𝑐𝛾2𝑇 (𝑇 − 1)

2
+ 3

5
𝑐𝛾5/3𝑇5/3

)
= exp

(
−Θ(𝑇2)

)
. (15)

Proof. First of all, since 𝑥∗ is a strict Nash equilibrium, by Lemma B.1 for

𝑐 =
1
2

min
𝑖∈N

min
𝛽𝑖∉supp(𝑥∗

𝑖
)
[𝑢𝑖 (𝑥∗𝑖 ; 𝑥∗−𝑖) − 𝑢𝑖 (𝛽𝑖; 𝑥∗−𝑖)]

there exists 𝑀 > 0 such that if 𝑦𝑖𝛼∗
𝑖
− 𝑦𝑖𝛼𝑖

> 𝑀 for all 𝛼𝑖 ≠ 𝛼∗
𝑖
∈ A𝑖 and 𝑖 ∈ N , then

𝑣𝑖𝛼∗
𝑖
(𝑄(𝑦)) − 𝑣𝑖𝛼𝑖

(𝑄(𝑦)) > 𝑐 for all 𝛼𝑖 ≠ 𝛼∗𝑖 ∈ A𝑖 , and 𝑖 ∈ N . (D.6)

For notational convenience, we focus on player 𝑖 and drop the player-specific indices altogether. Let
𝛼 ≠ 𝛼∗ ∈ A, and define for 𝑛 ∈ ℕ the quantities 𝑤𝛼,𝑛 and 𝑧𝛼,𝑛 as

𝑤𝛼,𝑛 := ⟨𝑝𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩, 𝑧𝛼,𝑛 := ⟨𝑦𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩ (D.7)

where 𝑒𝛼, 𝑒
∗
𝛼 are the standard basis vectors corresponding to 𝛼, 𝛼∗ ∈ A.

Then, unfolding the recursion, we obtain:

𝑤𝛼,𝑛+1 = 𝑤𝛼,𝑛 + 𝛾⟨𝑣̂𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩ = 𝑤𝛼,𝑛 + 𝛾⟨𝑣(𝑥𝑛), 𝑒𝛼 − 𝑒∗𝛼⟩ + 𝛾⟨𝑈𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩

= 𝛾
𝑛∑︁

𝑘=1
⟨𝑣(𝑥𝑘), 𝑒𝛼 − 𝑒∗𝛼⟩ + 𝛾

𝑛∑︁
𝑘=1
⟨𝑈𝑘 , 𝑒𝛼 − 𝑒∗𝛼⟩ (D.8)
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where we used that 𝑤1 = 0. Now, define the stochastic process {𝑀𝑛}𝑛∈ℕ as

𝑀𝑛 := 𝛾
𝑛∑︁

𝑘=1
⟨𝑈𝑘 , 𝑒𝛼 − 𝑒∗𝛼⟩ (D.9)

which is a martingale, since 𝔼[𝑈𝑛 |F𝑛] = 0. Moreover, note that

∥𝑈𝑛∥∗ = ∥𝑣(𝛼𝑛) − 𝑣(𝑥𝑛)∥∗ ≤ 2 max
𝛼∈A
∥𝑣(𝛼)∥∗ (D.10)

and, thus, we readily obtain that 𝔼[∥𝑈𝑛∥𝑞∗ |F𝑛] ≤ 𝜎𝑞 for 𝜎 = 2 max𝛼∈A∥𝑣(𝛼)∥∗ and all 𝑞 ∈ [1,∞].
By Lemma D.1 for 𝛾𝑛 = 𝛾, 𝜎𝑛 = 𝜎, 𝜉𝑛 = ⟨𝑈𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩, 𝑐 as in Theorem 2, and 𝜇 ∈ (0, 1), 𝑞 > 2
whose values will be determined next, there exists 𝐴𝑞 > 0 such that:

𝛿𝑛 := ℙ

(
sup
𝑘≤𝑛
|𝑀𝑘 | > 𝑐(𝛾𝑛)𝜇

)
≤ 𝐴𝑞𝜎

𝑞 𝑛𝛾𝑞/2+1

(𝛾𝑛)1+𝑞 (𝜇−1/2)

≤ 𝐴𝑞𝜎
𝑞 𝛾𝑞 (1−𝜇)

𝑛𝑞 (𝜇−1/2) (D.11)

Now, we need to guarantee that there exist 𝜇 ∈ (0, 1), 𝑞 > 2, such that
∞∑︁
𝑛=1

𝛿𝑛 < ∞ (D.12)

For this, we simply need 𝑞(𝜇 − 1/2) > 1, or equivalently, 𝜇 > 1/2 + 1/𝑞, which implies that
𝜇 ∈ (1/2, 1).
Therefore, for 𝛾 small enough, we get

∑∞
𝑛=1 𝛿𝑛 < 𝛿, and therefore:

ℙ

(
∞⋂
𝑛=1

{
sup
𝑘≤𝑛
|𝑀𝑘 | ≤ 𝑐(𝛾𝑛)𝜇

})
= 1 − ℙ

(
∞⋃
𝑛=1

{
sup
𝑘≤𝑛
|𝑀𝑘 | > 𝑐(𝛾𝑛)𝜇

})
≥ 1 −

∞∑︁
𝑛=1

𝛿𝑛

≥ 1 − 𝛿 (D.13)

From now on, we denote the good event
⋂∞

𝑛=1
{
sup𝑘≤𝑛 |𝑀𝑘 | ≤ 𝑐(𝛾𝑛)𝜇

}
by 𝐸 . Then, with probability

at least 1 − 𝛿:

𝑤𝛼,𝑛+1 ≤ 𝛾
𝑛∑︁

𝑘=1
⟨𝑣(𝑥𝑘), 𝑒𝛼 − 𝑒∗𝛼⟩ + 𝑐(𝛾𝑛)𝜇 for all 𝑛 ∈ ℕ. (D.14)

Furthermore, we have that for 𝑛 > 𝑁0 := ⌈1/𝛾⌉, we readily get that 𝛾𝑛 > (𝛾𝑛)𝜇. Therefore, setting

𝑅 := 𝑐𝛾

𝑁0−1∑︁
𝑘=1
((𝛾𝑘)𝜇 − 𝛾𝑘) (D.15)

we obtain:

−𝑐𝛾
𝑛∑︁

𝑘=1
(𝛾𝑘 − (𝛾𝑘)𝜇) ≤ 𝑅 (D.16)

for all 𝑛 ∈ ℕ. Then, initializing 𝑦1 such that 𝑧𝛼,1 < −𝑀 − 𝑅, we will show that 𝑧𝛼,𝑛 < −𝑀 for all
𝑛 ∈ ℕ with probability at least 1 − 𝛿. For this, suppose that 𝐸 is realized, and assume that

𝑧𝛼,𝑘 < −𝑀 for all 𝑘 = 1, . . . , 𝑛 (D.17)

We will show that 𝑧𝛼,𝑛+1 < −𝑀 , as well. For this, we have:

𝑧𝛼,𝑛+1 = 𝑧𝛼,𝑛 + 𝛾𝑤𝛼,𝑛+1

≤ 𝑧𝛼,𝑛 + 𝛾
(
𝛾

𝑛∑︁
𝑘=1
⟨𝑣(𝑥𝑘), 𝑒𝛼 − 𝑒∗𝛼⟩ + 𝑐(𝛾𝑛)𝜇

)
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≤ 𝑧𝛼,𝑛 − 𝑐𝛾(𝛾𝑛 − (𝛾𝑛)𝜇)

≤ 𝑧𝛼,1 − 𝑐𝛾
𝑛∑︁

𝑘=1
(𝛾𝑘 − (𝛾𝑘)𝜇)

≤ −𝑀 − 𝑅 − 𝑐𝛾
𝑛∑︁

𝑘=1
(𝛾𝑘 − (𝛾𝑘)𝜇)

< −𝑀 (D.18)

Therefore, we conclude by induction that 𝑧𝛼,𝑛 < −𝑀 for all 𝑛 ∈ ℕ. Thus, we readily obtain that with
probability at least 1 − 𝛿 it holds:

𝑧𝛼,𝑇 ≤ 𝑧𝛼,1 − 𝑐𝛾
𝑇−1∑︁
𝑘=1
(𝛾𝑘 − (𝛾𝑘)𝜇)

≤ 𝑧𝛼,1 − 𝑐𝛾2𝑇 (𝑇 − 1)
2

+ 𝑐𝛾1+𝜇
∫ 𝑇

0
𝑡𝜇𝑑𝑡

≤ 𝑧𝛼,1 − 𝑐𝛾2𝑇 (𝑇 − 1)
2

+ 𝑐𝛾1+𝜇 𝑇
𝜇+1

𝜇 + 1
(D.19)

for all 𝑇 ∈ ℕ. Setting 𝜇 = 2/3 and invoking Lemma A.1 for 𝜃 (𝑥) = 𝑥 log 𝑥, we get the result. ■

Finally, we prove the convergence of (FTXL) with bandit feedback. Again, for convenience, we
restate the relevant result below.
Theorem 4. Let 𝑥∗ be a strict Nash equilibrium of Γ, fix some confidence level 𝛿 > 0, and let
𝑥𝑛 = 𝑄(𝑦𝑛) be the sequence of play generated by (FTXL) with bandit feedback of the form (11c),
an IWE exploration parameter 𝜀𝑛 ∝ 1/𝑛ℓ𝜀 for some ℓ𝜀 ∈ (0, 1/2), and a sufficiently small step-size
𝛾 > 0. Then there exists a neighborhood U of 𝑥∗ in X such that

ℙ(𝑥𝑛 → 𝑥∗ as 𝑛→∞) ≥ 1 − 𝛿 if 𝑥1 ∈ U . (17)

In particular, if (FTXL) is run with logit best responses (that is, 𝑄 ← Λ), there exist positive
constants 𝐶, 𝑐 > 0 as in Theorem 2 such that on the event {𝑥𝑛 → 𝑥∗ as 𝑛→∞}

∥𝑥𝑇 − 𝑥∗∥∞ ≤ exp
(
𝐶 − 𝑐𝛾2𝑇 (𝑇 − 1)

2
+ 5

9
𝑐𝛾9/5𝑇9/5

)
= exp

(
−Θ(𝑇2)

)
. (18)

Proof. First of all, since 𝑥∗ is a strict Nash equilibrium, by Lemma B.1 for

𝑐 =
1
2

min
𝑖∈N

min
𝛽𝑖∉supp(𝑥∗

𝑖
)
[𝑢𝑖 (𝑥∗𝑖 ; 𝑥∗−𝑖) − 𝑢𝑖 (𝛽𝑖; 𝑥∗−𝑖)]

there exists 𝑀 > 0 such that if 𝑦𝑖𝛼∗
𝑖
− 𝑦𝑖𝛼𝑖

> 𝑀 for all 𝛼𝑖 ≠ 𝛼∗
𝑖
∈ A𝑖 and 𝑖 ∈ N , then

𝑣𝑖𝛼∗
𝑖
(𝑄(𝑦)) − 𝑣𝑖𝛼𝑖

(𝑄(𝑦)) > 𝑐 for all 𝛼𝑖 ≠ 𝛼∗𝑖 ∈ A𝑖 , and 𝑖 ∈ N . (D.20)

For notational convenience, we focus on player 𝑖 and drop the player-specific indices altogether. Let
𝛼 ≠ 𝛼∗ ∈ A, and define for 𝑛 ∈ ℕ the quantities 𝑤𝛼,𝑛 and 𝑧𝛼,𝑛 as

𝑤𝛼,𝑛 := ⟨𝑝𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩, 𝑧𝛼,𝑛 := ⟨𝑦𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩ (D.21)

where 𝑒𝛼, 𝑒
∗
𝛼 are the standard basis vectors corresponding to 𝛼, 𝛼∗ ∈ A. For notational convenience,

we focus on player 𝑖 and drop the player-specific indices altogether. Now, decomposing the IWE 𝑣̂𝑛,
we obtain

𝑣̂𝑛 = 𝑣(𝑥𝑛) +𝑈𝑛 + 𝑏𝑛 (D.22)
where 𝑈𝑛 := 𝑣̂𝑛 − 𝑣𝑖 (𝑥𝑛) is a zero-mean noise, and 𝑏𝑖,𝑛 := 𝑣𝑖 (𝑥𝑛) − 𝑣𝑖 (𝑥𝑛).
Then, unfolding the recursion, we obtain:

𝑤𝛼,𝑛+1 = 𝑤𝛼,𝑛 + 𝛾⟨𝑣̂𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩
= 𝑤𝛼,𝑛 + 𝛾⟨𝑣(𝑥𝑛), 𝑒𝛼 − 𝑒∗𝛼⟩ + 𝛾⟨𝑈𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩ + 𝛾⟨𝑏𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩
≤ 𝑤𝛼,𝑛 + 𝛾⟨𝑣(𝑥𝑛), 𝑒𝛼 − 𝑒∗𝛼⟩ + 𝛾⟨𝑈𝑛, 𝑒𝛼 − 𝑒∗𝛼⟩ + 2𝛾∥𝑏𝑛∥∗
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≤ 𝛾
𝑛∑︁

𝑘=1
⟨𝑣(𝑥𝑘), 𝑒𝛼 − 𝑒∗𝛼⟩ + 𝛾

𝑛∑︁
𝑘=1
⟨𝑈𝑘 , 𝑒𝛼 − 𝑒∗𝛼⟩ + 2𝛾

𝑛∑︁
𝑘=1
∥𝑏𝑘 ∥∗

≤ 𝛾
𝑛∑︁

𝑘=1
⟨𝑣(𝑥𝑘), 𝑒𝛼 − 𝑒∗𝛼⟩ + 𝛾

𝑛∑︁
𝑘=1
⟨𝑈𝑘 , 𝑒𝛼 − 𝑒∗𝛼⟩ + 2𝛾𝐵

𝑛∑︁
𝑘=1

𝜀𝑘 (D.23)

where we used that ∥𝑏𝑛∥∗ = Θ(𝜀𝑛) for all 𝑛 ∈ ℕ. Now, define the process {𝑀𝑛}𝑛∈ℕ as

𝑀𝑛 := 𝛾
𝑛∑︁

𝑘=1
⟨𝑈𝑘 , 𝑒𝛼 − 𝑒∗𝛼⟩ (D.24)

which is a martingale, since 𝔼[𝑈𝑛 |F𝑛] = 0. Moreover, note that

∥𝑈𝑛∥∗ = ∥ 𝑣̂𝑛 − 𝑣(𝑥𝑛)∥∗ ≤ ∥ 𝑣̂𝑛∥∗ + ∥𝑣(𝑥𝑛)∥∗ (D.25)

i.e., ∥𝑈𝑛∥∗ = Θ(1/𝜀𝑛). Thus, we readily obtain that 𝔼[∥𝑈𝑛∥𝑞∗ |F𝑛] ≤ 𝜎
𝑞
𝑛 for 𝜎𝑛 = Θ(1/𝜀𝑛) and all

𝑞 ∈ [1,∞]. So, by Lemma D.1 for 𝛾𝑛 = 𝛾, 𝜎𝑛 = 𝜎, 𝑐 as in Theorem 2, and 𝜇 ∈ (0, 1), 𝑞 > 2 whose
values will be determined next, there exists 𝐴𝑞 > 0 such that:

𝛿𝑛 := ℙ

(
sup
𝑘≤𝑛
|𝑀𝑘 | >

𝑐

2
(𝛾𝑛)𝜇

)
≤ 𝐴𝑞

𝛾𝑞/2+1 ∑𝑛
𝑘=1 𝜎

𝑞

𝑘

(𝛾𝑛)1+𝑞 (𝜇−1/2)

≤ 𝐴𝑞

𝛾𝑞 (1−𝜇)
∑𝑛

𝑘=1 𝜎
𝑞

𝑘

𝑛1+𝑞 (𝜇−1/2) (D.26)

Now, note that for 𝜀𝑛 = 𝜀/𝑛ℓ𝜀 , and since 𝜎𝑛 = Θ(1/𝜀𝑛), we get that there exists 𝑀 > 0 such that
𝑛∑︁

𝑘=1
𝜎
𝑞

𝑘
≤ 𝑀𝜀−𝑞

𝑛∑︁
𝑘=1

𝑘𝑞ℓ𝜀 (D.27)

with
∑𝑛

𝑘=1 𝑘
𝑞ℓ𝜀 = Θ(𝑛1+𝑞ℓ𝜀 ). Therefore,

𝛿𝑛 ≤ 𝐴′𝑞
𝛾𝑞 (1−𝜇)𝜀−𝑞𝑛1+𝑞ℓ𝜀

𝑛1+𝑞 (𝜇−1/2)

≤ 𝐴′𝑞
𝛾𝑞 (1−𝜇)𝜀−𝑞

𝑛𝑞 (𝜇−1/2−ℓ𝜀 )
(D.28)

Now, we need to guarantee that there exist 𝜇 ∈ (0, 1), 𝑞 > 2, such that
∞∑︁
𝑛=1

𝛿𝑛 < ∞ (D.29)

For this, we need to ensure that 𝑞(𝜇 − 1/2 − ℓ𝜀) > 1, or, equivalently,

ℓ𝜀 < 𝜇 − 1/2 − 1/𝑞 (D.30)

which we will do later. Then, we will get for 𝛾 small enough:

ℙ

(
∞⋂
𝑛=1

{
sup
𝑘≤𝑛
|𝑀𝑘 | ≤

𝑐

2
(𝛾𝑛)𝜇

})
= 1 − ℙ

(
∞⋃
𝑛=1

{
sup
𝑘≤𝑛
|𝑀𝑘 | >

𝑐

2
(𝛾𝑛)𝜇

})
≥ 1 −

∞∑︁
𝑛=1

𝛿𝑛

≥ 1 − 𝛿 (D.31)

Regarding the term 2𝛾𝐵∑𝑛
𝑘=1 𝜀𝑘 in (D.23), we have that:

2𝛾𝐵
𝑛∑︁

𝑘=1
𝜀𝑘 = 2𝐵𝛾𝜀

𝑛∑︁
𝑘=1

𝑘−ℓ𝜀 ≤ 𝐵′𝛾𝜀𝑛1−ℓ𝜀 (D.32)

where we used that
∑𝑛

𝑘=1 𝑘
−ℓ𝜀 = Θ(𝑛1−ℓ𝜀 ). Thus, for

1 − ℓ𝜀 < 𝜇 (D.33)
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we have for 𝜀, 𝛾 > 0 small enough:

2𝛾𝐵
𝑛∑︁

𝑘=1
𝜀𝑘 ≤ 𝐵′𝛾𝜀𝑛1−ℓ𝜀 ≤ 𝐵′𝛾𝜀𝑛𝜇 ≤ 𝑐

2
(𝛾𝑛)𝜇 (D.34)

for all 𝑛 ∈ ℕ. Hence, by (D.30), (D.33) we need the following two conditions to be satisfied:

1 − ℓ𝜀 < 𝜇 and ℓ𝜀 < 𝜇 − 1
2
− 1
𝑞

(D.35)

for which we get that for ℓ𝜀 ∈ (0, 1/2), there exists always 𝜇 ∈ (3/4, 1) and 𝑞 large that satisfy
(D.35). Thus, combining (D.34) and (D.31), we get by (D.23) that with probability at least 1 − 𝛿:

𝑤𝛼,𝑛+1 ≤
𝑛∑︁

𝑘=1
𝛾𝑘 ⟨𝑣(𝑥𝑘), 𝑒𝛼 − 𝑒∗𝛼⟩ + 𝑐(𝛾𝑛)𝜇 for all 𝑛 ∈ ℕ. (D.36)

Thus, following similar steps as in the proof Theorem 3 after (D.14), we readily obtain that with
probability at least 1 − 𝛿, we have:

𝑧𝛼,𝑇 ≤ 𝑧𝛼,1 − 𝑐𝛾
𝑇−1∑︁
𝑘=1
(𝛾𝑘 − (𝛾𝑘)𝜇)

≤ 𝑧𝛼,1 − 𝑐𝛾2𝑇 (𝑇 − 1)
2

+ 𝑐𝛾1+𝜇
∫ 𝑇

0
𝑡𝜇𝑑𝑡 (D.37)

≤ 𝑧𝛼,1 − 𝑐𝛾2𝑇 (𝑇 − 1)
2

+ 𝑐𝛾1+𝜇 𝑇
𝜇+1

𝜇 + 1
(D.38)

for all 𝑇 ∈ ℕ. Setting 𝜇 = 4/5 and invoking Lemma A.1 for 𝜃 (𝑥) = 𝑥 log 𝑥, our claim follows. ■

E Numerical experiments

In this section, we provide numerical simulations to validate and explore the performance of (FTXL).
To this end, we consider two game paradigms, (i) a zero-sum game, and (ii) a congestion game.

Zero-sum Game. First, we consider a 2-player zero-sum game with actions {𝛼1, 𝛼2, 𝛼3} and
{𝛽1, 𝛽2, 𝛽3}, and payoff matrix

𝑃 =

((2,−2) (1,−1) (2,−2)
(−2, 2) (−1, 1) (−2, 2)
(−2, 2) (−1, 1) (−2, 2)

)
Here, the rows of 𝑃 correspond to the actions of player 𝐴 and the columns to the actions of player
𝐵, while the first item of each entry of 𝑃 corresponds to the payoff of 𝐴, and the second one to the
payoff of 𝐵. Clearly, the action profile (𝛼1, 𝛽2) is a strict Nash equilibrium.

Congestion Game. As a second example, we consider a congestion game with 𝑁 = 100 and 2
roads, 𝑟1 and 𝑟2, with costs 𝑐1 = 1.1 and 𝑐2 = 𝑑/𝑁 where 𝑑 is the number of drivers on 𝑟2. In words,
𝑟1 has a fixed delay equal to 1.1, while 𝑟2 has a delay proportional to the drivers using it. Note, that
the strategy profile where all players are using 𝑟2 is a strict Nash equilibrium.

In Fig. 1, we assess the convergence of (FTXL) with logit best responses, under realization-based
and bandit feedback, and compare it to the standard (EW) with the same level of information. For
each feedback mode, we conducted 100 separate trials, each with 𝑇 = 103 steps, and calculated
the average norm ∥𝑥𝑛 − 𝑥∗∥1 as a function of the iteration counter 𝑛 = 1, 2, ..., 𝑇 . The solid lines
represent the average distance from equilibrium for each method, while the shaded areas enclose the
range of ±1 standard deviation from the mean across the different trials. All the plots are displayed in
logarithmic scale. For the zero-sum game, all runs were initialized with 𝑦1 = 0, and we used constant
step-size 𝛾 = 10−2, and exploration parameter 𝜀 = 10−1, where applicable. For the congestion game,
the initial state 𝑦1 for each run was drawn uniformly at random in [−1, 1]2, and we used constant
step-size 𝛾 = 10−2, and exploration parameter 𝜀𝑛 = 1/𝑛1/4, where applicable.

The experiments have been implemented using Python 3.11.5 on a M1 MacBook Air with 16GB of
RAM.
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F Connection with other acceleration mechanisms

In this appendix, we discuss the connection between (FTXL) and the “linear coupling” method of
Allen-Zhu & Orecchia [1]. Because [1] is not taking a momentum-based approach, it is difficult
to accurately translate the coupling approach of [1] to our setting and provide a direct comparison
between the two methods. One of the main reasons for this is that [1] is essentially using two
step-sizes: the first is taken equal to the inverse Lipschitz modulus of the function being minimized
and is used to take a gradient step; the second step-size sequence is much more aggressive, and it is
used to generate an ancillary, exploration sequence which “scouts ahead”. These two sequences are
then “coupled” with a mixing coefficient which plays a role “similar” – but not equivalent – to the
friction coefficient in the (HBVF) formulation of (NAG) by Su et al. [40].

The above is the best high-level description and analogy we can make between the coupling approach
of [1] and the momentum-driven analysis of Su et al. [40] and/or momentum analysis in Nesterov’s
2004 textbook. At a low level (and omitting certain technical details and distinctions that are not
central to this discussion), the linear coupling approach of [1] applied to our setting would correspond
to the update scheme:

𝑥𝑛 = 𝑄(𝑦𝑛)
𝑤𝑛 = 𝜆𝑛𝑧𝑛 + (1 − 𝜆𝑛)𝑥𝑛

𝑦𝑛+1 = 𝑦𝑛 + (1 − 𝜆𝑛)𝜂𝑛 𝑣̂𝑛
𝑧𝑛+1 = 𝜆𝑛𝑧𝑛 + (1 − 𝜆𝑛)𝑥𝑛+1

with 𝑣̂𝑛 obtained by querying a first-order oracle at 𝑤𝑛 - that is, 𝑣̂𝑛 is an estimate, possibly imperfect,
of 𝑣(𝑤𝑛). The first and third lines of this update scheme are similar to the corresponding update
structure of (FTXL). However, whereas (FTXL) builds momentum by the aggregation of gradient
information via the momentum variables 𝑝𝑛, the linear coupling method above achieves acceleration
through the coupling of the sequences 𝑤𝑛, 𝑧𝑛 and 𝑥𝑛, and by taking an increasing step-size sequence
𝜂𝑛 that grows roughly as Θ(𝑛), and a mixing coefficient 𝜆𝑛 that evolves as 𝜆𝑛 = 1 − 1/(𝐿𝜂𝑛), where
𝐿 is the Lipschitz modulus of 𝑣(·). Beyond this comparison, we cannot provide a term-by-term
correspondence between the momentum-based and coupling-based approaches, because the two
methods are not equivalent (even though they give the same value convergence rates in convex
minimization problems). In particular, we do not see a way of linking the parameters 𝜂𝑛 and 𝜆𝑛 of
the coupling approach to the friction and step-size parameters of the momentum approach.

In the context of convex minimization problems, the coupling-based approach of [1] is more amenable
to a regret-based analysis – this is the “unification” aspect of [1] – while the momentum-based
approach of Su et al. [40] facilitates a Lyapunov-based analysis. From a game-theoretic standpoint,
the momentum-based approach seems to be more fruitful and easier to implement, but studying the
linear coupling approach of [1] could also be very relevant.
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