
FastLog: Efficient End-to-end Rule Learning Over Large-scale Knowledge
Graphs by Reduction to Vector Operations

Anonymous ACL submission

Abstract

Logical rules play a crucial role in the evolu-001
tion of knowledge graphs (KGs), as they can002
infer new facts from existing ones while pro-003
viding explanations. In recent years, end-to-004
end rule learning has emerged as a promising005
paradigm to learn logical rules. The key insight006
of end-to-end rule learning is to transform the007
rule learning problem in a discrete space into008
the parameter learning problem in a continuous009
space, by employing TensorLog operators to010
simulate the inference of logical rules. How-011
ever, these TensorLog-based methods strug-012
gle with limited scalability in learning rules013
from large-scale KGs. To improve the effi-014
ciency and scalability of end-to-end rule learn-015
ing, we propose an efficient framework named016
FastLog for reducing vector-matrix multipli-017
cations to vector computations. FastLog is018
proven to have a lower time complexity than019
TensorLog. Extensive experimental results on020
a variety of benchmark KGs demonstrate that021
FastLog improves the efficiency of end-to-end022
methods by a significant margin without effi-023
cacy degradation in link prediction. Notably,024
by enhancing with FastLog, existing end-to-025
end methods are enabled to learn logical rules026
on two large-scale datasets with up to three027
hundred million triples, while achieving a high028
efficacy comparable with the most advanced029
rule learner within the same training time.030

1 Introduction031

Knowledge graph (KG) is a popular formalism032

to store real-world facts. Nowadays KGs have033

been widely employed in many real-world applica-034

tions, including knowledge-based question answer-035

ing (Mitra and Baral, 2016), recommendation (Lyu036

et al., 2020), information retrieval (Xiong et al.,037

2017) etc. A KG is usually represented as a di-038

rected graph where vertices are labeled by entities039

and edges by relations. A fact (also called a triple)040

in a KG is of the form (h, r, t), where h denotes041

the head entity, r the relation and t the tail entity. 042

By now large-scale KGs such as YAGO (Suchanek 043

et al., 2007), DBpedia (Auer et al., 2007) and Wiki- 044

data (Vrandecic and Krötzsch, 2014) consist of 045

hundreds of millions of facts, underpinning various 046

downstream applications. 047

Logical rules are pivotal in KG reasoning. They 048

can infer new facts from existing ones and excel 049

in explaining why the new facts are inferred. In 050

recent years, end-to-end rule learning (Yang et al., 051

2017; Sadeghian et al., 2019; Wang et al., 2024b; 052

Qi et al., 2023) becomes a popular paradigm for 053

learning logical rules. The key insight of end-to- 054

end methods is to convert the predicate selection 055

problem in a discrete space into the parameter learn- 056

ing problem in a continuous space. This conversion 057

enables end-to-end learning of logical rules from 058

noisy data (Yang et al., 2017; Ye et al., 2023). 059

End-to-end methods such as NeuralLP (Yang 060

et al., 2017) and DRUM (Sadeghian et al., 2019) usu- 061

ally exploit TensorLog (Cohen et al., 2020) op- 062

erators to simulate the inference of logical rules. 063

Specifically, TensorLog leverages a set of adja- 064

cency matrices to represent the background KG, 065

where each adjacency matrix stores triples with 066

the same relation. These matrices are then used 067

to simulate the inference of logical rules. Fig- 068

ure 1 (a) illustrates an example of the calculation 069

processes for TensorLog operators, where both 070

Mr1 , Mr−1
and MI are sparse matrices. We can 071

observe that the number of floating-point multi- 072

plications and additions for TensorLog in this ex- 073

ample is 3|K| + (2|R| + 1)|E| = 30, where |K| 074

denotes the number of non-zero elements in all 075

sparse matrices, |E| (resp. |R|) denotes the total 076

number of entities (resp. relations). In practice, 077

(2|R| + 1)|E| is particularly large in real-world 078

KGs, e.g., (2|R| + 1)|E| = 2.6e12 for the Free- 079

base (Kochsiek and Gemulla, 2021) dataset. Such 080

a huge amount of computation may impair the 081

1

0 1 0𝑣!": 0 1				0 0			0 1 0

0.7 0 0.3𝑤($,&,&):
⨀

0.7 0 0.3𝑤($,&,&):
0 0 1
1 0 0
0 0 0

𝑀(!:

0 1 0
0 0 0
0 0 1

𝑀$!":

Multiply

Multiply

×						0.7

×						0.3

0.7 0 0=

0 0.3 0=

0.7 0.3 0𝜙$,!
(&,&):+

Transform (ℱ!"#)

Transform (ℱ$"#)

Element-wise
product Aggregate (ℱ#"!)

(a) TensorLog operators

(b) FastLog operators

Sum

(One-hot representation of
entity 𝑥)

0 1 0𝑣!":

ℝ|ℰ|

ℝ|ℰ|

ℝ" ℛ ()

ℝ|𝒦|

ℝ|𝒦|
ℝ|𝒦|

0.7 0.3 0𝜙$,!
(&,&):

ℝ|ℰ|

ℝ|ℰ|

ℝ|ℰ|

ℝ|ℰ|
1 0 0
0 1 0
0 0 1

𝑀):

×								0 0 		0 		0=
ℝ|ℰ|

ℝ" ℛ ()

Multiply

0.7			0.7			0			0			0.3			0.3			0.3
0.7		0		0		0		0		0.3		0

Operations
Parameters

Inputs
Outputs

(Predicate
selection weights)

(Estimated truth degrees)

(Predicate selection weights)

(One-hot
representation of
entity 𝑥)

(Estimated truth degrees)

(Sparse adjacency matrices
to store facts)

(Intermediate hidden states)

Figure 1: Examples of the calculation processes for TensorLog and FastLog.

scalability of end-to-end methods on large-scale082

KGs. As pointed out by Meilicke et al. (2024),083

by now there is no end-to-end approach that has084

evaluation reports on large-scale KGs such as Wiki-085

data5M (Wang et al., 2021) and Freebase.086

To enable practical end-to-end learning of logi-087

cal rules from large-scale KGs, we propose a novel088

computational framework named FastLog. It intro-089

duces a sequence of vector operators to simulate the090

inference of logical rules. These vector operators091

reduce vector-matrix multiplications into vector092

computations, thereby considerably decreasing the093

time complexity. Figure 1 (b) illustrates an exam-094

ple of the calculation processes for FastLog oper-095

ators, where both Fe2f , Fr2f and Ff2e are vector-096

based operators designed in FastLog. We can ob-097

serve that the number of floating-point multiplica-098

tions and additions for FastLog in this example is099

2|K| = 21 < 30. This reveals that FastLog has100

a lower computation cost than TensorLog in real-101

world KGs. For example, we have (2|R|+1)|E| =102

2.6e12≫ 2|K| = 1.5e9 on the Freebase dataset.103

Furthermore, we introduce a dynamic pruning104

strategy to further reduce the time complexity of105

the backward propagation steps for FastLog. This106

strategy omits intermediate hidden states that have107

relatively low impacts on the reasoning process. By108

applying this dynamic pruning strategy, we show109

in Proposition 6 that the time complexity of a back-110

ward propagation step in FastLog can be further111

reduced to a constant. Thanks to the relatively low112

time complexity of FastLog, existing methods en-113

hanced by FastLog become capable of learning114

rules from very large KGs (e.g., Freebase) with115

limited time cost (e.g., several hours).116

We apply FastLog to enhancing four state-of-117

the-art (SOTA) end-to-end methods, including 118

NeuralLP, DRUM, smDRUM (Wang et al., 2024b), and 119

mmDRUM (Wang et al., 2024b). We empirically evalu- 120

ate the original methods and the FastLog-enhanced 121

ones for link prediction on totally ten benchmark 122

KGs, among which six are relatively small, two are 123

large-scale, and two are under the inductive setting. 124

Experimental results on the six relatively small 125

KGs demonstrate that the four FastLog-enhanced 126

methods achieve 2.5x to 50x speedups compared 127

to their original methods, while keeping almost 128

the same efficacy in link prediction. For the two 129

large-scale KGs, the FastLog-enhanced methods 130

exhibit comparable efficacy in link prediction as 131

the currently most advanced search-based method 132

AnyBURL (Meilicke et al., 2024), by spending the 133

same training time. For two datasets under the 134

inductive setting, the FastLog-enhanced methods 135

significantly outperform AnyBURL by a significant 136

margin in the link prediction task. 137

2 Related Work 138

Learning logical rules from knowledge bases (KBs) 139

has been widely studied in the field of Inductive 140

Logic Programming (ILP) (Muggleton and Raedt, 141

1994; Zeng et al., 2014), where logical rules are 142

learnt in a generate-and-test manner. This man- 143

ner is a two-step pipeline that first generates log- 144

ical rules from relational paths in a KB, and then 145

filters rules with high confidence scores based on 146

some tests. Modern ILP methods like AMIE+ (Galár- 147

raga et al., 2015) and AnyBURL (Meilicke et al., 148

2024) learn logical rules from KGs based on the 149

Closed-World Assumption (CWA) (Galárraga et al., 150

2013). More specifically, they treat triples outside 151

a KG as negative examples and exploit various 152

2

search heuristics to efficiently learn rules. They153

are called search-based methods due to the use of154

heuristic search strategies. According to the em-155

pirical study conducted by Meilicke et al. (2024),156

only AnyBURL among the above search-based meth-157

ods demonstrates the capability to learn logical158

rules from KGs containing more than 100 million159

facts. However, AnyBURL requires massive main160

memory (e.g., 900GB RAM for Freebase) to build161

up index structures for accelerating reasoning. In162

contrast, all FastLog-enhanced methods can run163

within 25GB RAM in conjunction with a single164

NVIDIA 4090 GPU with 24GB memory.165

More recently, there has been an emerging inter-166

est in exploiting end-to-end methods (Yang et al.,167

2017; Sadeghian et al., 2019; Qi et al., 2023; Wang168

et al., 2024b) for rule learning. They usually param-169

eterize a neural network to simulate the inference170

of logical rules by employing TensorLog (Cohen171

et al., 2020) operators and tune the parameters of172

the neural network by gradient descent. Thanks173

to the end-to-end learning manner, these methods174

work well with imperfect data (Yang et al., 2017) in175

learning logical rules. Despite their successes, the176

scalability of end-to-end methods is still limited.177

As far as we know, there is no end-to-end method178

that can perform rule learning on large-scale KGs.179

To facilitate existing end-to-end methods to learn180

logical rules from large-scale KGs, we propose181

an efficient framework named FastLog that has a182

lower time complexity than TensorLog.183

3 Preliminaries184

Knowledge graph. Let E be a set of entities andR185

a set of relations, a knowledge graph G is a subset186

of E×R×E . Specifically, G = {(hi, ri, ti)}1≤i≤N ,187

where N denotes the number of triples, hi ∈ E the188

head entity for the ith triple, ri ∈ R the relation189

for the ith triple and ti ∈ E the tail entity for the190

ith triple. By r− we denote the inverse relation of191

r ∈ R. The set of inverse relations forR, namely192

{r− | r ∈ R}, is denoted by R−. Accordingly,193

the equivalent knowledge graph for G composed by194

inverse relations, namely {(t, r−, h) | (h, r, t) ∈195

G}, is denoted by G−.196

Chain-like rule. An atom is a basic first-order197

logic formula of the form p(u1, . . . , un), where p198

is a predicate and u1, . . . , un are terms that denote199

either constants or variables. An r-specific chain-200

like rule (CR) R for is of the form:201

r(x, y)← p1(x, z1)∧p2(z1, z2)∧...∧pL(zL−1, y),202

where x (resp. y) is the head (resp. tail) entity vari- 203

able, z1, . . . ,zL−1 are other variables, p1, . . . , pL 204

are predicates, and r denotes the predicate of a new 205

fact that inferred by a r-specific CR. The part of R 206

at the left (resp. right) of← is called the head (resp. 207

body) of R. To uniformly represent r-specific CRs 208

using fixed-length bodies, DRUM (Sadeghian et al., 209

2019) introduces the identity relation (denoted by 210

I) to rule bodies. For example, r(x, y)← p(x, y) 211

can be converted into a rule with two body atoms, 212

namely r(x, y)← p(x, z) ∧ I(z, y). 213

TensorLog operators. End-to-end methods (Yang 214

et al., 2017; Sadeghian et al., 2019; Wang et al., 215

2024b) aim to convert the discrete rule learning 216

problem into a parameterized optimization problem 217

in a continuous space, where the learnt rules are 218

extracted from their parameter assignments. The 219

TensorLog (Cohen et al., 2020) framework is the 220

foundation for end-to-end rule learning to simulate 221

the inference of CRs. We elaborate on the formal- 222

ization of TensorLog as follows. 223

Suppose R = {ri}1≤i≤n, its corresponding 224

set of inverse relations R− = {ri}n+1≤i≤2n and 225

I = r2n+1, where n denotes the number of re- 226

lations and ri+n = r−i for all 1 ≤ i ≤ n. Let 227

G be a knowledge graph. TensorLog first repre- 228

sents the background knowledge K = G ∪ G− ∪ 229

{I(e, e) | e ∈ E} by a set of sparse adjacency ma- 230

trices {Mri}1≤i≤2n+1, where Mri ∈ {0, 1}|E|×|E| 231

is a sparse adjacency matrix to store the set of 232

triples {(h, ri, t) ∈ K}. For an arbitrary triple 233

(x, r, y) ∈ E × R × E , given the maximum num- 234

ber N of rules to be learnt, the maximum length 235

L of each rule and a set of trainable parameters 236

θN,L
r = {w(r,k,l)

i }1≤k≤N,1≤l≤L,1≤i≤2n+1 for r, for 237

all 1 ≤ k ≤ N, 1 ≤ l ≤ L, the intermediate truth 238

degrees ϕ(k,l)
r,x ∈ R|E| are estimated by 239

ϕ(k,l)
r,x =

2n+1∑
i=1

ϕ(k,l−1)
r,x (w

(r,k,l)
i Mri), (1) 240

where ϕ
(k,0)
r,x = v⊤x , vx ∈ {0, 1}|E| denotes the one- 241

hot representation of entity x. w(r,k,l) ∈ [0, 1]2n+1 242

denotes the predicate selection weights, and it is 243

confined to [0, 1]2n+1 by a softmax layer. The truth 244

degree of (x, r, y) is calculated by 245

TensorLog(θLr , x, y) =
N∑
k=1

ϕ(k,L)
r,x vy, (2) 246

where vy ∈ {0, 1}|E| denotes the one-hot represen- 247

tation of entity y. Intuitively, the estimated truth 248

3

degree TensorLog(θN,L
r , x, y) reflects the degree249

of whether the triple (x, r, y) can be inferred by a250

certain rule among N -CRs.251

Throughout the paper, we consider the worst-252

case time complexity for the training phases of253

end-to-end methods, where the time complexity254

is derived based on the number of floating-point255

multiplications and additions. The following Propo-256

sition 11 shows the time complexity of TensorLog.257

Proposition 1. Let K = G ∪ G− ∪ {I(e, e) | e ∈258

E}. The time complexity of a forward computation259

step for TensorLog is O(NL(|K|+ |R||E|)). The260

time complexity of a backward propagation step261

for TensorLog is O(NL(|K|+ |R||E|)).262

4 The FastLog Framework263

To reduce the time complexity of TensorLog, we264

propose FastLog, an efficient framework to scale265

existing end-to-end approaches to learn rules on266

large-scale KGs. The intuition of FastLog is to267

convert the sparse vector-matrix multiplications268

used in TensorLog into vector operations, thereby269

improving efficiency. Figure 1 illustrates examples270

of the calculation processes for TensorLog and271

FastLog. It can be seen that a sequence of272

vector-matrix multiplications used in TensorLog is273

equivalent to several steps of vector operations in274

FastLog. Besides, we find that vector operations275

in FastLog have both lower time cost and lower276

space cost than vector-matrix multiplications in277

TensorLog when the proportion of non-zero ele-278

ments in sparse matrices is below a certain value.279

We will elaborate on this value in the discussions280

of Proposition 2 and Proposition 4.281

To implement FastLog operators, we first in-282

troduce three vector-based functions. The first283

function, denoted by Fe2f , maps the intermedi-284

ate estimated truth degrees, represented as a |E|-285

dimensional vector, to a |K|-dimensional vector.286

Similarly, the second function, denoted by Fr2f ,287

maps the predicate selection weights, represented288

as a (2|R| + 1)-dimensional vector, to a |K|-289

dimensional vector. The third function, denoted290

by Ff2e, aggregates a |K|-dimensional vector to a291

|E|-dimensional vector.292

Suppose K = G ∪ G− ∪ {I(e, e) | e ∈ E} =293

{τj}1≤j≤2|G|+|E|. For all 1 ≤ i ≤ |K|, Fe2f :294

R|E| → R|K| is a function such that the i-th element295

1All proofs of this work are moved to Appendix B.

of Fe2f(v) is 296

[Fe2f(v)]i = [v]head(τi), (3) 297

where v ∈ R|E| denotes the input vector, and 298

head(τ) is a function that returns the index (in 299

[1, |E|]) of the head entity of the triple τ . For all 300

1 ≤ i ≤ |K|, Fr2f : R2|R|+1 → R|K| is a function 301

such that the i-th element of Fr2f(v) is 302

[Fr2f(v)]i = [v]rel(τi), (4) 303

where v ∈ R2|R|+1 denotes the input vector, and 304

rel(τ) is a function that returns the index (in 305

[1, 2|R| + 1]) of the relation of the triple τ . Let 306

tail(τ) be a function that returns the index (in 307

[1, |E|]) of the tail entity of the triple τ . For all 308

1 ≤ i ≤ |E|, Ff2e : R|K| → R|E| is a function such 309

that the i-th element of Ff2e(v) is 310

[Ff2e(v)]i =
∑

j:tail(τj)=i

vj , (5) 311

where v ∈ R|K| denotes the input vector. For an 312

arbitrary triple (x, r, y) ∈ E ×R× E , for all 1 ≤ 313

k ≤ N, 1 ≤ l ≤ L, the intermediate truth degrees 314

ϕ
(k,l)
r,x ∈ R|E| are estimated by 315

ϕ(k,l)
r,x = Ff2e(Fe2f(ϕ

(k,l−1)
r,x)⊙Fr2f(w

(r,k,l))),
(6) 316

where ϕ
(k,0)
r,x = v⊤x , and ⊙ denotes the element- 317

wise product. The truth degree of (x, r, y) is esti- 318

mated by 319

FastLog(θN,L
r , x, y) =

N∑
k=1

ϕ(k,L)
r,x vy, (7) 320

where θN,L
r = {w(r,k,l)

i }1≤k≤N,1≤l≤L,1≤i≤2n+1 is 321

a set of trainable parameters for the head relation 322

r. The following Proposition 2 illustrates the time 323

complexity of FastLog. 324

Proposition 2. The time complexity of a forward 325

computation step for FastLog is O(NL|K|). The 326

time complexity of a backward propagation step 327

for FastLog is O(NL|K|). 328

The time complexity of FastLog is generally 329

lower than TensorLog, as it holds that |K| ≪ 330

|R||E| in many real-world scenarios. For exam- 331

ple, the Freebase (Kochsiek and Gemulla, 2021) 332

dataset has |K|=338M, |E|=86M and |R|=15k. It 333

holds that |R||E| ≫ |K|. The following Proposi- 334

tion 3 demonstrates the correctness of FastLog. 335

4

Proposition 3. For an arbitrary triple (a, r, b) ∈336

E × R × E , ∀N ≥ 1, L ≥ 1 :337

TensorLog(θN,L
r , a, b) = FastLog(θN,L

r , a, b).338

Due to the space limitation, detailed formaliza-339

tions of all FastLog-enhanced methods are moved340

to Appendix D.341

4.1 Dynamic Pruning Strategy342

Let m be the mini-batch size. The following343

Propositions 4-5 show the space complexity of344

TensorLog and that of FastLog, respectively.345

Proposition 4. The space complexity of a forward346

computation step for TensorLog is O(m|E|). The347

space complexity of a backward propagation step348

for TensorLog is O(mNL|R||E|).349

Proposition 5. The space complexity of a forward350

computation step for FastLog is O(m|K|). The351

space complexity of a backward propagation step352

for FastLog is O(mNL(|E|+ |K|)).353

Note that the space complexity is derived from354

the number of floating-point numbers that must be355

stored during the reasoning process. From Proposi-356

tions 3-4, we can infer that FastLog consumes less357

memory than TensorLog when |K| < (L|R|+1)|E|
L+1 .358

In general, we have K ≪ (L|R|+1)|E|
L+1 in most prac-359

tical scenarios due to the sparsity of real-life KGs.360

To further improve the efficiency, we propose361

a dynamic pruning strategy to further control the362

space complexity of a backward propagation step363

for FastLog. The intuition of this strategy is to fil-364

ter out the reasoning paths that have relatively low365

impacts on reasoning. Given two hyper-parameters366

c1 and c2, we refine the functions Fe2f , Fr2f and367

Ff2e to achieves this strategy. The refined version368

of Fe2f , denoted by F̂c1
e2f , is defined as369

F̂c1
e2f(T) = {(j, s) | (i, s) ∈ T

c1(T),head(τj) = i}, (8)370

where T is a set of tuples. T k(T) is a function that371

returns the top-k tuples from T, where the tuples372

are ordered by the maximum value of their second373

elements. The refined version of Fr2f , denoted by374

F̂c2
r2f , is defined as375

F̂c2
r2f(T, ω) = {(i, ωrel(τi)s) | (i, s) ∈ T

c2(T)}, (9)376

The refined version of Ff2e, denoted by F̂c2
f2e, is377

defined as378

F̂f2e(T) = {(tail(τi),
∑

(i′,s′)∈T,tail(τi′)=tail(τi)

s′) | (i, s) ∈ T},

(10)379

For all 1 ≤ k ≤ N, 1 ≤ l ≤ L, the set ϕ(k,l)
r,x of 380

intermediate truth degrees are estimated by 381

ϕ̂(k,l)
r,x = F̂f2e(F̂c2

r2f(F̂
c1
e2f(ϕ̂

(k,l−1)
r,x), w(r,k,l))), (11) 382

where ϕk,0
r,x = {(I(x), 1)} and I(e) is a function 383

that returns the index of e (in [1, |E|]). The truth 384

degree of (x, r, y) is estimated by 385

FastLogc1,c2(θN,L
r , x, y) =

N∑
k=1

∑
(I(y),s)∈ϕ̂(k,L)

r,x

s. (12) 386

The following Proposition 6 shows the time com- 387

plexity of FastLogc1,c2 . 388

Proposition 6. The time complexity of a forward 389

computation step for FastLogc1,c2 is O(NL(|E|+ 390

|K|)). The time complexity of a backward propaga- 391

tion step for FastLogc1,c2 is O(NLc2). 392

Note that FastLog uses the RadixSelect (Alabi 393

et al., 2012) algorithm to implement the top-k func- 394

tion T k, which has a worst-case complexity of 395

O(N) (Zhang et al., 2023), where N denotes the 396

total number of elements. Proposition 6 reveals that 397

we can control the time complexity of a backward 398

propagation step for FastLog by setting c2, where 399

it can be that c2 ≪ |K| in practice. Propositions 7 400

shows the space complexity of FastLogc1,c2 . 401

Proposition 7. The space complexity of a forward 402

computation step for FastLogc1,c2 is O(m|K|). 403

The space complexity of a backward propagation 404

step for FastLogc1,c2 is O(mNL(c1 + c2)). 405

Proposition 8 shows that FastLog amounts to a 406

special case of FastLogc1,c2 . 407

Proposition 8. Given a knowledge graph G, for 408

an arbitrary triple (a, r, b) ∈ E × R × E , 409

∀N ≥ 1, L ≥ 1 : FastLog(θN,L
r , a, b) = 410

FastLog|E|,|K|(θN,L
r , a, b). 411

5 Evaluation 412

5.1 Experimental Settings 413

Datasets. We conducted experiments in link 414

prediction on six benchmark datasets, including 415

Family (Yang et al., 2017), Kinship (Kok and 416

Domingos, 2007), UMLS (Kok and Domingos, 417

2007), WN18RR (Dettmers et al., 2018), FB15k- 418

237 (Toutanova and Chen, 2015) and YAGO3- 419

10 (Suchanek et al., 2007). We also conducted 420

experiments on two large KGs Wikidata5m (Wang 421

et al., 2021) and Freebase (Kochsiek and Gemulla, 422

2021). Statistical details are reported in Table 1. 423

5

Dataset |E| |R| |Gtrain| |Gvalid| |Gtest| |K|

Family 3K 12 23.5K 2K 2.8K 50K
Kinship 104 25 3.2K 2.1K 5.3K 6.5K
UMLS 135 46 2K 1.3K 3.3K 4.1K
WN18RR 41K 11 87K 3K 3.1K 215K
FB15k-237 15K 237 272K 17K 20K 559K
YAGO3-10 123K 37 1,079K 5K 5K 2,281K

Wikidata5M 4,594K 822 20,625K 5.2K 5.3K 45,844K
Freebase 86,054K 15K 338,586K 10K 10K 763,226K

Table 1: Statistics of experimental datasets.

Type
(Version)

FB15k-237 NELL-995

|E| |R| |Gtra.| |Gval.| |Gtest| |E| |R| |Gtra.| |Gval.| |Gtest|

Train (V1) 1.6K 179 4.2K 489 492 3.1K 14 4.7K 414 439
Test (V1) 1.1K 179 2.0K 206 205 225 14 833 101 100

Train (V2) 2.6K 200 9.7K 1.2K 1.2K 2.6K 88 8.2K 922 968
Test (V2) 1.7K 200 4.1K 469 478 21K 88 4.6K 459 476

Train (V3) 3.7K 215 18K 22K 22K 4.6K 142 16K 1.9K 1.9K
Test (V3) 2.5K 215 7.4K 866 865 3.6K 142 8.0K 811 809

Train (V4) 4.7K 219 27K 3.4K 3.4K 2.1K 76 7.5K 876 867
Test (V4) 3.1K 219 12K 1.4K 1.4K 2.8K 76 7.1K 716 731

Table 2: Statistics of datasets for the inductive setting.

For a more comprehensive evaluation, we also424

conducted experiments on two datasets FB15k-425

237 (Teru et al., 2020) and NELL-995 (Teru et al.,426

2020) under the inductive setting. Note that these427

two datasets have four different versions corre-428

sponding to four different dataset splitting. Sta-429

tistical details for all versions of the two datasets430

under the inductive setting are reported in Table 2.431

Evaluation Metrics. For each test triple (h, r, t)432

in evaluation, we built two queries (h, r, ?) and433

(t, r−, ?). We computed the truth degrees for cor-434

rupted tail triples and then computed the rank of the435

correct answer. Based on the rank, we reported the436

Mean Reciprocal Rank (MRR for short) and Hit@k437

(H@k for short) metrics under the filtered setting438

introduced by (Bordes et al., 2013). Following the439

work (Qu et al., 2021), the rank of the correct an-440

swer is defined by j + (k + 1)/2 in our evaluation441

setting, where j is the number of corrupted triples442

with higher truth degrees than the correct answer443

and k the number of corrupted triples with the same444

truth degree as the correct answer.445

Implementation Details. We implemented446

FastLog 2 by Pytorch 2.4.0. All experiments were447

conducted on a Linux machine equipped with an448

Intel Xeon Gold 6338N CPU processor with 1TB449

RAM and an NVIDIA 4090 GPU with 24GB mem-450

ory. Note that we require 1TB RAM to reproduce451

the results of AnyBURL, as AnyBURL requires 900GB452

RAM to learn rules from Freebase (Meilicke et al.,453

2Code and data are available at: link removed during
double-blind reviewing.

2024). FastLog only requires a maximum 25GB 454

RAM for training and evaluation. 455

5.2 Main Results 456

To reduce bias, we evaluated each method us- 457

ing five distinct random seeds {1, 12, 123, 1234, 458

12345}. For each metric, we report the mean 459

scores based on five runs. Table 3 (resp. Ta- 460

ble 4) reports the comparison results on Family, 461

Kinship and UMLS (resp. WN18RR, FB15k-237 462

and YAGO3-10). Note that we did not apply the 463

dynamic pruning strategy for Family, Kinship and 464

UMLS due to their small size. Results show that the 465

FastLog-enhanced methods achieve 2.5x to 50x 466

speedups over their original methods. In particu- 467

lar, the original DRUM, smDRUM and mmDRUM methods 468

cannot complete training on FB15k-237 within a 469

limited time (1 day), while all original methods can- 470

not complete training on YAGO3-10. In contrast, 471

all FastLog-enhanced methods can complete train- 472

ing on FB15k-237 and YAGO3-10. These results 473

confirm the high efficiency of FastLog. Further- 474

more, we can observe that only a few efficacy dif- 475

ferences between the FastLog-enhanced methods 476

and the original methods are statistically significant 477

by two-tailed t-tests. These results demonstrate 478

that FastLog keeps comparable efficacy of existing 479

end-to-end methods. Besides, it can be seen that 480

FastLog may spend slightly more GPU memory 481

on Family, Kinship and UMLS, which is consis- 482

tent with the space complexity results. Given the 483

high efficiency achieved by FastLog, these slight 484

increases in memory usage are acceptable. 485

Table 5 reports the comparison results on two 486

large-scale datasets. Results show that all the orig- 487

inal end-to-end methods cannot work on Wiki- 488

data5M and Freebase due to running out of mem- 489

ory (OOM). In contrast, the FastLog-enhanced 490

methods can achieve comparable MRR scores 491

on these datasets with the SOTA search-based 492

method AnyBURL. This implies that FastLog is 493

able to upgrade existing end-to-end methods to 494

learn rules from large-scale KGs. Note that 495

all FastLog-enhanced methods cannot outper- 496

form AnyBURL within the same training time (i.e., 497

20,000s). This may be because all FastLog- 498

enhanced methods only learn chain-like rules for 499

reasoning, whereas AnyBURL learns both chain-like 500

rules and logical rules with entity constants. In 501

general, learning more complex forms of rules may 502

result in better efficacy in link prediction. To ver- 503

ify this, we created a variant of AnyBURL, denoted 504

6

Method
Family Kinship UMLS

MRR H@1 H@3 H@10 TT MC MRR H@1 H@3 H@10 TT MC MRR H@1 H@3 H@10 TT MC

NeuralLP 0.923 87.1 97.2 98.7 448s 0.5GB 0.468 30.4 54.7 82.6 73s 0.4GB 0.686 53.3 81.0 93.0 73s 0.4GB
NeuralLP-FL 0.926 87.5 97.4 98.8 147s 0.7GB 0.472 30.5 55.3 84.3 29s 0.6GB 0.707 55.1 84.1 93.6 19s 0.5GB
∆ (↑0.003) (↑0.4) (↑0.2) (↑0.1) (↑3.0x) (↓0.2) (↑0.004) (↑0.1) (↑0.6) (↑1.7∗) (↑2.5x) (↓0.2) (↑0.021∗) (↑1.8) (↑3.1∗) (↑0.6) (↑3.8x) (↓0.1)

DRUM 0.941 89.8 98.2 99.0 565s 0.7GB 0.471 30.0 55.0 84.5 132s 0.5GB 0.706 56.1 82.1 93.9 111s 0.5GB
DRUM-FL 0.951 92.0 98.0 99.0 158s 1.1GB 0.475 30.4 55.5 85.5 37s 0.7GB 0.742 60.3 86.3 94.7 22s 0.6GB
∆ (↑0.010) (↑2.2) (↓0.2) (-) (↑3.6x) (↓0.4) (↑0.004) (↑0.4) (↑0.5) (↑1.0) (↑3.6x) (↓0.2) (↑0.036∗) (↑4.2∗) (↑4.2∗) (↑0.8∗) (↑5.0x) (↓0.1)

smDRUM 0.957 92.6 98.4 99.0 1119s 1.0GB 0.425 25.1 49.8 82.1 303s 0.6GB 0.738 60.1 84.8 94.3 179s 0.6GB
smDRUM-FL 0.959 93.0 98.4 99.0 190s 1.2GB 0.439 26.3 51.5 84.2 40s 0.7GB 0.744 61.4 85.0 94.4 30s 0.6GB
∆ (↑0.002) (↑0.4) (-) (-) (↑5.9x) (↓0.2) (↑0.014) (↑1.2) (↑1.7) (↑2.1∗) (↑7.6x) (↓0.1) (↑0.006) (↑1.3∗) (↑0.2) (↑0.1) (↑6.0x) (-)

mmDRUM 0.904 83.0 96.9 98.9 1072s 1.0GB 0.286 13.0 30.7 66.8 214s 0.6GB 0.465 31.8 52.0 79.3 221s 0.6GB
mmDRUM-FL 0.926 86.0 97.8 99.0 166s 1.2GB 0.304 13.3 31.0 68.4 38s 0.7GB 0.478 32.9 54.1 78.3 23s 0.6GB
∆ (↑0.022∗) (↑3.0∗) (↑0.9∗) (↑0.1) (↑6.5x) (↓0.2) (↑0.018) (↑0.3) (↑0.3) (↑1.6) (↑5.6x) (↓0.1) (↑0.013) (↑1.1) (↑2.1) (↓1.0) (↑9.6x) (-)

Table 3: Comparison results on Family, Kinship and UMLS, where TT abbreviates the training time, MC the memory
cost on GPU and GB the Gigabytes. The differences marked by ∗ are statistically significant with p-value<0.05 by
a two-tailed t-test. ∆ denotes the performance difference.

Method
WN18RR FB15k-237 YAGO3-10

MRR H@1 H@3 H@10 TT MC MRR H@1 H@3 H@10 TT MC MRR H@1 H@3 H@10 TT MC

NeuralLP 0.450 41.7 45.7 51.6 2.2h 2.5GB 0.335 24.9 36.4 50.6 23h 8.6GB - - - - >1day 16.8GB
NeuralLP-FL 0.450 41.7 45.7 51.9 551s 1.0GB 0.334 24.9 36.4 50.8 0.7h 2.0GB 0.513 43.2 55.6 66.0 5.5h 5.9GB
∆ (-) (-) (-) (↑0.3∗) (↑14.2x) (↓1.5) (↓0.1) (-) (↑0.1) (↑0.2) (↑32.6x) (↓6.6) (-) (-) (-) (-) (↑≈44x) (↓10.9)

DRUM 0.459 42.2 47.1 53.3 2.2h 4.5GB - - - - >1day 22.4GB - - - - >1day 22.4GB
DRUM-FL 0.459 42.2 47.1 53.6 610s 1.5GB 0.339 25.2 37.0 51.7 1.6h 4.4GB 0.431 35.4 47.5 58.1 9.6h 15.5GB
∆ (-) (-) (-) (↑0.3∗) (↑13.2x) (↓3.0) (-) (-) (-) (-) (↑≈16x) (↓18) (-) (-) (-) (-) (↑≈50x) (↓6.9)

smDRUM 0.410 35.6 43.2 51.7 4h 5.9GB - - - - >1day 23.9GB - - - - >1day 23.0GB
smDRUM-FL 0.421 37.4 43.7 51.4 546s 1.8GB 0.280 18.7 30.5 46.4 1.7h 5.2GB 0.446 31.9 51.1 63.2 13.5h 13.7GB
∆ (↑0.011) (↑1.8) (↑0.5) (↓0.3) (↑26.5x) (↓4.1) (-) (-) (-) (-) (↑≈16x) (↓18.7) (-) (-) (-) (-) (↑≈36x) (↓9.3)

mmDRUM 0.416 36.1 44.0 51.1 2.5h 5.9GB - - - - >1day 23.9GB - - - - >1day 23.3GB
mmDRUM-FL 0.420 37.0 44.2 51.2 556s 1.8GB 0.219 13.7 24.1 39.8 1.7h 4.2GB 0.365 24.6 41.4 55.7 11.6h 14.8GB
∆ (↑0.004) (↑0.9) (↑0.2) (↑0.1) (↑16.5x) (↓4.1) (-) (-) (-) (-) (↑≈16x) (↓19.7) (-) (-) (-) (-) (↑≈42x) (↓8.5)

Table 4: Comparison results on WN18RR, FB15k-237 and YAGO3-10, where TT abbreviates the training time,
MC the memory cost on GPU and GB the Gigabytes. The differences marked by ∗ are statistically significant with
p-value<0.05. ∆ denotes the performance difference.

5000 10000 20000 30000 40000 50000 60000 70000 80000
Training time (seconds)

26
27
28
29
30
31
32
33

Hi
t@

1

28.9 29.2
29.7 30.1 30.1 30.2 30.3 30.5 30.7

25.9
26.4 26.6 26.5 26.6 26.5 26.5 26.6 26.6

28.0
28.5

29.0 29.1 29.1 29.1 29.4 29.4 29.4
30.2

31.1 31.3 31.3 31.4 31.4 31.4 31.3 31.4

AnyBURL
DRUM-FL

NeuralLP-FL
AnyBURL (w/o con.)

Figure 2: Comparison results for longer training time.

by AnyBURL (w/o constants), which only learns505

chain-like rules for reasoning. We can observe506

that the efficacy of AnyBURL significantly drops507

when only chain-like rules are learnt, and that DRUM-508

FL can outperform this variant in Hit@1 on both509

datasets. These results further affirm the effec-510

tiveness of the FastLog-enhanced methods. Be-511

sides, we show in Figure 2 that both NeuralLP-FL512

and DRUM-FL can benefit from more training time,513

whereas AnyBURL and its variant cannot achieve514

better efficacy by increasing the training time.515

To verify the effectiveness of the proposed dy-516

namic pruning strategy, we create a variant denoted 517

by X-FL (w/o PS) for each FastLog-enhanced 518

method by omitting the dynamic pruning strategy. 519

We can observe that all variants cannot work on 520

Freebase due to OOM. This indicates that the pro- 521

posed dynamic pruning strategy is crucial for re- 522

ducing the memory consumption of FastLog. 523

5.3 Discussions on Complexities and Results 524

From Proposition 1-2 we know that FastLog have 525

a lower time cost than that of TensorLog, espe- 526

cially for those KGs that are relatively sparse (i.e., 527

|R||E| ≫ |K|). Empirical results on Table 3-4 528

show that the FastLog-enhanced methods always 529

have lower training time costs than that of their 530

original methods, especially for sparse KGs like 531

WN18RR, FB15k-237 and YAGO3-10. These 532

findings align with the theoretical time complex- 533

ity results we derived. Similarly, from Proposi- 534

tion 4-5 we know that FastLog demonstrates a 535

lower memory cost than TensorLog when |K| < 536
(L|R|+1)|E|

L+1 ≈ |R||E|. This is consistent with the 537

results presented in Tables 3-5, where FastLog- 538

enhanced methods show higher memory costs on 539

7

Method Wikidata5M Freebase

MRR H@1 H@3 H@10 TT ET MC MRR H@1 H@3 H@10 TT ET MC

AnyBURL (Meilicke et al., 2024) 0.355 31.3 37.2 43.2 20000s 18469s - 0.573 50.6 60.5 67.6 20000s 9672s -
AnyBURL (w/o constants) 0.304 26.6 31.8 36.4 20000s 20919s - 0.544 47.7 57.6 64.4 20000s 10305s -

NeuralLP - - - - - - OOM - - - - - - OOM
NeuralLP-FL 0.329 28.9 34.7 40.2 20000s 337s 11.0GB 0.537 47.5 56.8 63.7 20000s 8037s 9.7GB
NeuralLP-FL (w/o PS) 0.328 28.7 34.6 40.3 20000s 506s 19.2GB - - - - - - OOM

DRUM - - - - - - OOM - - - - - - OOM
DRUM-FL 0.338 29.7 35.7 41.1 20000s 342s 13.0GB 0.544 48.0 57.5 64.6 20000s 8029s 11.5GB
DRUM-FL (w/o PS) 0.334 29.3 35.3 40.9 20000s 473s 20.4GB - - - - - - OOM

smDRUM - - - - - - OOM - - - - - - OOM
smDRUM-FL 0.301 25.6 31.9 37.6 20000s 342s 13.4GB 0.530 45.7 56.3 64.1 20000s 8179s 11.4GB
smDRUM-FL (w/o PS) 0.297 25.3 31.4 37.1 20000s 499s 21.2GB - - - - - - OOM

mmDRUM - - - - - - OOM - - - - - - OOM
mmDRUM-FL 0.278 23.2 29.6 35.5 20000s 347s 14.0GB 0.510 43.8 54.2 62.6 20000s 8185 11.4GB
mmDRUM-FL (w/o PS) 0.276 23.0 29.2 35.0 20000s 493s 21.2GB - - - - - - OOM

Table 5: Comparison results on Wikidata5M and Freebase, where TT abbreviates the training time, MC the memory
cost on GPU and GB the Gigabytes. The best value of each column has been highlighted.

Method
FB15k-237 (Inductive setting) NELL-995 (Inductive setting)

V1 V2 V3 V4 V1 V2 V3 V4

MRR H@1 MRR H@1 MRR H@1 MRR H@1 MRR H@1 MRR H@1 MRR H@1 MRR H@1

AnyBURL(L = 3) 0.366 30.5 0.477 36.8 0.447 33.4 0.424 31.6 0.734 67.5 0.438 32.9 0.373 28.9 0.362 20.7
AnyBURL(L = 6) 0.369 30.2 0.458 34.8 0.449 34.1 0.430 31.9 0.633 47.5 0.435 31.4 0.371 28.9 0.364 21.1

AnyBURL† (L = 3) 0.362 30.0 0.476 37.2 0.447 33.4 0.429 31.7 0.723 65.5 0.446 33.1 0.359 27.2 0.369 21.8
AnyBURL† (L = 6) 0.364 29.5 0.373 36.3 0.408 30.3 0.427 31.7 0.611 44.5 0.431 32.9 0.362 28.1 0.363 21.3

DRUM-FL (L = 3) 0.416 34.4 0.514 41.7 0.489 39.4 0.471 37.0 0.748 68.0 0.526 40.8 0.485 38.9 0.384 25.7
DRUM-FL (L = 6) 0.468 38.0 0.521 42.2 0.493 39.7 0.469 36.9 0.671 57.0 0.501 38.1 0.487 38.9 0.439 31.1

Table 6: Comparison results on four versions of FB15k-237 and NELL-995 under the inductive setting.

datasets such as Family, Kinship, and UMLS, but540

significantly lower memory costs on larger datasets.541

Finally, from Proposition 6-7, we establish that542

FastLog can achieve a lower time and memory543

cost when the dynamic pruning strategy is applied544

and c2 < |K|. This is corroborated by the results in545

Table 5, where all FastLog-enhanced methods ex-546

hibit superior efficiency compared to their variants547

without the dynamic pruning strategy.548

5.4 Inductive Setting549

By comparing AnyBURL† (i.e., AnyBURL (w/o con-550

stants)) and AnyBURL, we know that the logical551

rules with entity constants contribute to the high ef-552

ficacy of AnyBURL. Note that the logical rules with553

entity constants cannot generalize to the inductive554

setting where missing facts involve unseen entities.555

To verify this, we conducted experiments on four556

versions of FB15k-237 and NELL-995 under the in-557

ductive setting, as reported in Table 6. We followed558

the same inductive setting as the work (Teru et al.,559

2020), by using Gtrain in the training data for train-560

ing and using Gtest in the test data for evaluation,561

where the background knowledge for test is Gtrain562

in the test data. Results show that AnyBURL cannot563

benefit from the rules with entity constants on all564

datasets. Besides, we found that both AnyBURL and565

AnyBURL† cannot benefit from learning longer rules. 566

In contrast, DRUM-FL benefits from learning longer 567

rules on most datasets, significantly outperforming 568

both AnyBURL and AnyBURL† on all datasets. These 569

results reveal that learning logical rules with entity 570

constants makes AnyBURL overfit the training data, 571

resulting in limited efficacy under the inductive 572

setting. In contrast, the FastLog-enhanced meth- 573

ods demonstrate better efficacy under the inductive 574

setting thanks to their end-to-end learning manner. 575

More analysis can refer to Appendix A. 576

6 Conclusion and Future Work 577

In this paper we have proposed an efficient frame- 578

work named FastLog for end-to-end rule learning. 579

We have proposed a novel vectorization optimiza- 580

tion and a dynamic pruning strategy in FastLog to 581

significantly reduce the time cost. Experimental 582

results on six benchmark datasets demonstrate that 583

the four FastLog-enhanced methods achieve 2.5x 584

to 50x speedups compared to their original meth- 585

ods, while keeping comparable efficacy in link pre- 586

diction. Furthermore, FastLog can upgrade four 587

end-to-end methods to learn rules from two large- 588

scale KGs that contain up to three hundred million 589

triples. Future work will exploit FastLog to learn 590

more complex logical rules for better efficacy. 591

8

7 Limitations592

The major limitation of FastLog may be that all593

the FastLog-enhanced methods in this work learn594

chain-like rules only. In general, learning logical595

rules in a more complex form can help improve the596

efficacy for link prediction. For example, Table 5597

shows that AnyBURL can benefit a lot from learn-598

ing logical rules with entity constants. In practice,599

upgrading existing end-to-end methods to learn600

more complex rules is non-trivial. It requires well-601

designed neural modules to capture constraints on602

entity variables or on atoms, which is beyond the603

scope of this work. Therefore, we leave this inves-604

tigation to future work. In more detail, our future605

work plans to exploit FastLog to learn logical rules606

with entity constants (Meilicke et al., 2024) and log-607

ical rules with type constraints (Wu et al., 2022).608

8 Ethics Statement609

This work presents FastLog, a framework for effi-610

cient end-to-end rule learning. Our evaluations rely611

on publicly available datasets, such as Freebase612

and Wikidata, which are widely used in academic613

research and do not contain private or sensitive in-614

formation. We ensure that FastLog operates fairly615

across diverse datasets and provides transparency616

on its limitations to avoid unintended bias. While617

FastLog aims to improve the scalability and effi-618

ciency of KG reasoning, we emphasize the need619

for responsible use, particularly in sensitive appli-620

cations. We encourage continuous monitoring and621

human oversight when deploying FastLog-based622

systems to mitigate potential risks.623

References624

Tolu Alabi, Jeffrey D. Blanchard, Bradley Gordon, and625
Russel Steinbach. 2012. Fast k-selection algorithms626
for graphics processing units. ACM J. Exp. Algorith-627
mics, 17(1).628

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens629
Lehmann, Richard Cyganiak, and Zachary G. Ives.630
2007. Dbpedia: A nucleus for a web of open data. In631
ISWC, volume 4825, pages 722–735.632

Antoine Bordes, Nicolas Usunier, Alberto García-633
Durán, Jason Weston, and Oksana Yakhnenko.634
2013. Translating embeddings for modeling multi-635
relational data. In NIPS, pages 2787–2795.636

William W. Cohen, Fan Yang, and Kathryn Mazaitis.637
2020. Tensorlog: A probabilistic database imple-638
mented using deep-learning infrastructure. J. Artif.639
Intell. Res. (JAIR), 67:285–325.640

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, 641
and Sebastian Riedel. 2018. Convolutional 2d knowl- 642
edge graph embeddings. In AAAI, pages 1811–1818. 643

Luis Galárraga, Christina Teflioudi, Katja Hose, and 644
Fabian M. Suchanek. 2015. Fast rule mining in on- 645
tological knowledge bases with AMIE+. VLDB J., 646
24(6):707–730. 647

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, 648
and Fabian M. Suchanek. 2013. AMIE: association 649
rule mining under incomplete evidence in ontological 650
knowledge bases. In WWW, pages 413–422. 651

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long 652
short-term memory. Neural Computation, 9(8):1735– 653
1780. 654

Adrian Kochsiek and Rainer Gemulla. 2021. Parallel 655
training of knowledge graph embedding models: A 656
comparison of techniques. VLDB, 15(3):633–645. 657

Stanley Kok and Pedro M. Domingos. 2007. Statistical 658
predicate invention. In ICML, volume 227, pages 659
433–440. 660

Xiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong 661
Qiu, Mengdi Zhang, Wei Wu, Yuxiao Dong, and Jie 662
Tang. 2022. Mask and reason: Pre-training knowl- 663
edge graph transformers for complex logical queries. 664
In KDD, pages 1120–1130. 665

Linhao Luo, Yuan-Fang Li, Reza Haf, and Shirui Pan. 666
2024. Reasoning on graphs: Faithful and inter- 667
pretable large language model reasoning. In ICLR. 668

Xinze Lyu, Guangyao Li, Jiacheng Huang, and Wei 669
Hu. 2020. Rule-guided graph neural networks for 670
recommender systems. In ISWC, pages 384–401. 671

Christian Meilicke, Melisachew Wudage Chekol, 672
Patrick Betz, Manuel Fink, and Heiner Stucken- 673
schmidt. 2024. Anytime bottom-up rule learning 674
for large-scale knowledge graph completion. VLDB 675
J., 33(1):131–161. 676

Arindam Mitra and Chitta Baral. 2016. Addressing a 677
question answering challenge by combining statisti- 678
cal methods with inductive rule learning and reason- 679
ing. In AAAI, pages 2779–2785. 680

Stephen H. Muggleton and Luc De Raedt. 1994. Induc- 681
tive logic programming: Theory and methods. J. Log. 682
Program., 19/20:629–679. 683

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji- 684
apu Wang, and Xindong Wu. 2024. Unifying large 685
language models and knowledge graphs: A roadmap. 686
IEEE Trans. Knowl. Data Eng. (TKDE), 36(7):3580– 687
3599. 688

Kunxun Qi, Jianfeng Du, and Hai Wan. 2023. Learn- 689
ing from both structural and textual knowledge for 690
inductive knowledge graph completion. In NeurIPS. 691

9

https://doi.org/10.1145/2133803.2345676
https://doi.org/10.1145/2133803.2345676
https://doi.org/10.1145/2133803.2345676
https://doi.org/10.1007/978-3-540-76298-0_52
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.1613/jair.1.11944
https://doi.org/10.1613/jair.1.11944
https://doi.org/10.1613/jair.1.11944
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.1007/s00778-015-0394-1
https://doi.org/10.1007/s00778-015-0394-1
https://doi.org/10.1007/s00778-015-0394-1
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.vldb.org/pvldb/vol15/p633-kochsiek.pdf
http://www.vldb.org/pvldb/vol15/p633-kochsiek.pdf
http://www.vldb.org/pvldb/vol15/p633-kochsiek.pdf
http://www.vldb.org/pvldb/vol15/p633-kochsiek.pdf
http://www.vldb.org/pvldb/vol15/p633-kochsiek.pdf
https://doi.org/10.1145/1273496.1273551
https://doi.org/10.1145/1273496.1273551
https://doi.org/10.1145/1273496.1273551
https://doi.org/10.1145/3534678.3539472
https://doi.org/10.1145/3534678.3539472
https://doi.org/10.1145/3534678.3539472
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://doi.org/10.1007/978-3-030-62419-4_22
https://doi.org/10.1007/978-3-030-62419-4_22
https://doi.org/10.1007/978-3-030-62419-4_22
https://doi.org/10.1007/s00778-023-00800-5
https://doi.org/10.1007/s00778-023-00800-5
https://doi.org/10.1007/s00778-023-00800-5
https://doi.org/10.1609/aaai.v30i1.10354
https://doi.org/10.1609/aaai.v30i1.10354
https://doi.org/10.1609/aaai.v30i1.10354
https://doi.org/10.1609/aaai.v30i1.10354
https://doi.org/10.1609/aaai.v30i1.10354
https://doi.org/10.1609/aaai.v30i1.10354
https://doi.org/10.1609/aaai.v30i1.10354
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1109/TKDE.2024.3352100
https://doi.org/10.1109/TKDE.2024.3352100
https://doi.org/10.1109/TKDE.2024.3352100
http://papers.nips.cc/paper_files/paper/2023/hash/544242770e8333875325d013328b2079-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/544242770e8333875325d013328b2079-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/544242770e8333875325d013328b2079-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/544242770e8333875325d013328b2079-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/544242770e8333875325d013328b2079-Abstract-Conference.html

Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux,692
Yoshua Bengio, and Jian Tang. 2021. Rnnlogic:693
Learning logic rules for reasoning on knowledge694
graphs. In ICLR.695

Ali Sadeghian, Mohammadreza Armandpour, Patrick696
Ding, and Daisy Zhe Wang. 2019. DRUM: end-to-697
end differentiable rule mining on knowledge graphs.698
In NeurIPS, pages 15321–15331.699

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.700
2022. Sequence-to-sequence knowledge graph com-701
pletion and question answering. In ACL, pages 2814–702
2828.703

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter704
Bloem, Rianne van den Berg, Ivan Titov, and Max705
Welling. 2018. Modeling relational data with graph706
convolutional networks. In ESWC, volume 10843,707
pages 593–607.708

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard709
Weikum. 2007. Yago: a core of semantic knowledge.710
In WWW, pages 697–706.711

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian712
Tang. 2019. Rotate: Knowledge graph embedding by713
relational rotation in complex space. In ICLR.714

Komal K. Teru, Etienne G. Denis, and William L. Hamil-715
ton. 2020. Inductive relation prediction by subgraph716
reasoning. In ICML, volume 119, pages 9448–9457.717

Kristina Toutanova and Danqi Chen. 2015. Observed718
versus latent features for knowledge base and text719
inference. In Proceedings of the 3rd Workshop on720
Continuous Vector Space Models and their Composi-721
tionality (CVSC), pages 57–66.722

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric723
Gaussier, and Guillaume Bouchard. 2016. Complex724
embeddings for simple link prediction. In ICML,725
volume 48, pages 2071–2080.726

Denny Vrandecic and Markus Krötzsch. 2014. Wiki-727
data: a free collaborative knowledgebase. Commun.728
ACM, 57(10):78–85.729

Kai Wang, Yuwei Xu, and Siqiang Luo. 2024a.730
TIGER: training inductive graph neural network731
for large-scale knowledge graph reasoning. VLDB,732
17(10):2459–2472.733

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan734
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.735
KEPLER: A unified model for knowledge embed-736
ding and pre-trained language representation. Trans.737
Assoc. Comput. Linguistics (TACL), 9:176–194.738

Xiaxia Wang, David Jaime Tena Cucala,739
Bernardo Cuenca Grau, and Ian Horrocks. 2024b.740
Faithful rule extraction for differentiable rule741
learning models. In ICLR.742

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng743
Chen. 2014. Knowledge graph embedding by trans-744
lating on hyperplanes. In AAAI, pages 1112–1119.745

Hong Wu, Zhe Wang, Kewen Wang, and Yi-Dong Shen. 746
2022. Learning typed rules over knowledge graphs. 747
In KR. 748

Chenyan Xiong, Russell Power, and Jamie Callan. 2017. 749
Explicit semantic ranking for academic search via 750
knowledge graph embedding. In WWW, pages 1271– 751
1279. 752

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, 753
and Li Deng. 2015. Embedding entities and relations 754
for learning and inference in knowledge bases. In 755
ICLR. 756

Fan Yang, Zhilin Yang, and William W. Cohen. 2017. 757
Differentiable learning of logical rules for knowledge 758
base reasoning. In NIPS, pages 2319–2328. 759

Rongzhen Ye, Tianqu Zhuang, Hai Wan, Jianfeng Du, 760
Weilin Luo, and Pingjia Liang. 2023. A noise- 761
tolerant differentiable learning approach for single 762
occurrence regular expression with interleaving. In 763
AAAI, pages 4809–4817. 764

Qiang Zeng, Jignesh M. Patel, and David Page. 2014. 765
Quickfoil: Scalable inductive logic programming. 766
VLDB, 8(3):197–208. 767

Jingrong Zhang, Akira Naruse, Xipeng Li, and Yong 768
Wang. 2023. Parallel top-k algorithms on GPU: A 769
comprehensive study and new methods. In SC, pages 770
76:1–76:13. 771

Yongqi Zhang and Quanming Yao. 2022. Knowledge 772
graph reasoning with relational digraph. In WWW, 773
pages 912–924. 774

Zhaocheng Zhu, Xinyu Yuan, Michael Galkin, Louis- 775
Pascal A. C. Xhonneux, Ming Zhang, Maxime 776
Gazeau, and Jian Tang. 2023. A*net: A scalable 777
path-based reasoning approach for knowledge graphs. 778
In NeurIPS. 779

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal A. C. 780
Xhonneux, and Jian Tang. 2021. Neural bellman-ford 781
networks: A general graph neural network framework 782
for link prediction. In NeurIPS, pages 29476–29490. 783

A Empirical Analysis 784

A.1 Analysis on Learning Longer Rules 785

To verify whether the search-based method 786

AnyBURL and the FastLog-enhanced methods can 787

benefit from learning longer rules, we conducted 788

an analysis on the efficacy of DRUM-FL using vary- 789

ing hyper-parameter L settings within a training 790

time limit of 20,000 seconds, as reported in Ta- 791

ble 7. We also created a variant (denoted by 792

AnyBURL†) of AnyBURLby omitting the learning of 793

logical rules with entity constants for a more com- 794

prehensive comparison. We can observe that both 795

AnyBURL and AnyBURL† fail to be evaluated on 796

10

https://openreview.net/forum?id=tGZu6DlbreV
https://openreview.net/forum?id=tGZu6DlbreV
https://openreview.net/forum?id=tGZu6DlbreV
https://openreview.net/forum?id=tGZu6DlbreV
https://openreview.net/forum?id=tGZu6DlbreV
https://proceedings.neurips.cc/paper/2019/hash/0c72cb7ee1512f800abe27823a792d03-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0c72cb7ee1512f800abe27823a792d03-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0c72cb7ee1512f800abe27823a792d03-Abstract.html
https://doi.org/10.18653/v1/2022.acl-long.201
https://doi.org/10.18653/v1/2022.acl-long.201
https://doi.org/10.18653/v1/2022.acl-long.201
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1145/1242572.1242667
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
http://proceedings.mlr.press/v119/teru20a.html
http://proceedings.mlr.press/v119/teru20a.html
http://proceedings.mlr.press/v119/teru20a.html
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://www.vldb.org/pvldb/vol17/p2459-luo.pdf
https://www.vldb.org/pvldb/vol17/p2459-luo.pdf
https://www.vldb.org/pvldb/vol17/p2459-luo.pdf
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
https://openreview.net/forum?id=kBTzlxM2J1
https://openreview.net/forum?id=kBTzlxM2J1
https://openreview.net/forum?id=kBTzlxM2J1
https://doi.org/10.1609/aaai.v28i1.8870
https://doi.org/10.1609/aaai.v28i1.8870
https://doi.org/10.1609/aaai.v28i1.8870
https://proceedings.kr.org/2022/51/
https://doi.org/10.1145/3038912.3052558
https://doi.org/10.1145/3038912.3052558
https://doi.org/10.1145/3038912.3052558
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://doi.org/10.1609/aaai.v37i4.25606
https://doi.org/10.1609/aaai.v37i4.25606
https://doi.org/10.1609/aaai.v37i4.25606
https://doi.org/10.1609/aaai.v37i4.25606
https://doi.org/10.1609/aaai.v37i4.25606
http://www.vldb.org/pvldb/vol8/p197-patel.pdf
https://doi.org/10.1145/3581784.3607062
https://doi.org/10.1145/3581784.3607062
https://doi.org/10.1145/3581784.3607062
https://doi.org/10.1145/3485447.3512008
https://doi.org/10.1145/3485447.3512008
https://doi.org/10.1145/3485447.3512008
http://papers.nips.cc/paper_files/paper/2023/hash/b9e98316cb72fee82cc1160da5810abc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/b9e98316cb72fee82cc1160da5810abc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/b9e98316cb72fee82cc1160da5810abc-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2021/hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html

1 2 3 4 5 6
Length of rules

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
M

RR

0.07

0.204

0.338 0.332 0.327 0.325

DRUM-FL

(a) MRR against L on Wikidata5M.

1 2 3 5 10 15 20
Number of rules

0.320

0.325

0.330

0.335

0.340

M
RR 0.331

0.336
0.338 0.338

0.335 0.335 0.334

DRUM-FL

(b) MRR against N on Wikidata5M.

10000
20000

30000
40000

50000
60000

70000
80000

86400
Training time (seconds)

0.325

0.330

0.335

0.340

0.345

0.350

0.355

M
RR

0.333

0.338
0.3410.3410.3420.3430.344

0.3460.345

0.326
0.330.3310.3310.331

0.3330.3330.3330.333

DRUM-FL
NeuralLP-FL

(c) MRR against TT on Wikidata5M.

1000 10000 100000 1000000 all
Size of c1, c2

0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350

M
RR

0.324

0.338 0.338 0.34

0.333

DRUM-FL

(d) MRR against c1, c2 on Wikidata5M.

1 2 3 4 5 6
Length of rules

5

10

15

20

25

30

35

Hi
t@

1

6.6

18.1

29.7 29.2 28.5 28.3
DRUM-FL

(e) Hit@1 against L on Wikidata5M.

1 2 3 5 10 15 20
Number of rules

28.0

28.5

29.0

29.5

30.0

Hi
t@

1 29.1

29.5
29.7 29.8

29.5 29.6 29.5

DRUM-FL

(f) Hit@1 against N on Wikidata5M.

10000
20000

30000
40000

50000
60000

70000
80000

86400
Training time (seconds)

28.5

29.0

29.5

30.0

30.5

31.0

Hi
t@

1

29.2

29.7

30.1 30.1 30.2 30.3
30.5

30.7 30.6

28.5

29.0 29.1 29.1 29.1
29.4 29.4 29.4 29.3

DRUM-FL
NeuralLP-FL

(g) Hit@1 against TT on Wikidata5M.

1000 10000 100000 1000000 all
Size of c1, c2

28.0

28.5

29.0

29.5

30.0

30.5

Hi
t@

1

28.8

29.9
29.7

30.0

29.2

DRUM-FL

(h) Hit@1 against c1, c2 on Wikidata5M.

1 2 3 4 5 6
Length of rules

0.46

0.48

0.50

0.52

0.54

0.56

M
RR

0.482

0.501

0.544
0.536

0.517 0.516

DRUM-FL

(i) MRR against L on Freebase.

1 2 3 5 10 15 20
Number of rules

0.536

0.538

0.540

0.542

0.544

M
RR

0.539

0.542

0.544

0.541 0.541

OOM OOM

DRUM-FL

(j) MRR against N on Freebase.

10000
20000

30000
40000

50000
60000

70000
80000

86400
Training time (seconds)

0.530

0.535

0.540

0.545

0.550

0.555

0.560

0.565

M
RR

0.537

0.544
0.5480.5480.549

0.5510.551
0.5530.553

0.53

0.537
0.5390.5390.5390.54 0.54

0.5470.547

DRUM-FL
NeuralLP-FL

(k) MRR against TT on Freebase.

1000 10000 100000 1000000 all
Size of c1, c2

0.50

0.51

0.52

0.53

0.54

0.55

0.56

M
RR

0.536 0.539
0.544 0.542

OOM

DRUM-FL

(l) MRR against c1, c2 on Freebase.

1 2 3 4 5 6
Length of rules

40

42

44

46

48

Hi
t@

1

41.9

43.7

48.0
47.2

44.9 44.9

DRUM-FL

(m) Hit@1 against L on Freebase.

1 2 3 5 10 15 20
Number of rules

46.0

46.5

47.0

47.5

48.0

Hi
t@

1

47.6

47.9 48.0

47.7 47.8

OOM OOM

DRUM-FL

(n) Hit@1 against N on Freebase.

10000
20000

30000
40000

50000
60000

70000
80000

86400
Training time (seconds)

47.0

47.5

48.0

48.5

49.0

49.5

Hi
t@

1

47.4

48.0

48.6
48.4

48.7 48.8 48.7

49.1 49.0

46.8

47.5
47.8 47.7 47.7

47.9 47.9

48.5
48.3

DRUM-FL
NeuralLP-FL

(o) Hit@1 against TT on Freebase.

1000 10000 100000 1000000 all
Size of c1, c2

45.0
45.5
46.0
46.5
47.0
47.5
48.0
48.5
49.0

Hi
t@

1 47.1
47.5

48.0 47.9

OOM

DRUM-FL

(p) Hit@1 against c1, c2 on Freebase.

Figure 3: Analysis on different hyper-parameters

Wikidata5M within a reasonable time when longer797

rules (L > 3) were learnt. This can be attributed798

to the fact that reasoning with longer rules is time-799

consuming for search-based methods. In contrast,800

thanks to the highly parallel implementation of801

FastLog on a GPU, the FastLog-enhanced method802

DRUM-FL can be effectively evaluated on Wiki-803

data5M within 1,000 seconds. In more detail, DRUM-804

FL achieves a 53.5x speedup over AnyBURL in eval-805

uation efficiency when L = 3, with the speedup be-806

coming even more evident as L increases. These re-807

sults imply that the FastLog-enhanced methods are808

effective in learning longer rules. Besides, learning809

too many rules also impairs the explainability of810

AnyBURL.811

The sub-figures (a) and (e) (resp. (i) and (m)) in812

Figure 3 illustrate the evaluation results of DRUM-FL813

using different L on the Wikidata5M (resp. Free-814

base) dataset. We found that DRUM-FL achieves815

the highest MRR and Hit@1 scores on both Wiki- 816

data5M and Freebase when L = 3, implying that 817

DRUM-FL cannot benefit from learning longer rules. 818

The reasons may be two-fold. Firstly, the train- 819

ing efficiency of DRUM-FL decreases as L increases, 820

which in turn impairs the efficacy for link predic- 821

tion under the same training time limit. Secondly, 822

the search space increases exponentially with the 823

increasing of L. This imposes a great challenge for 824

end-to-end rule learning methods to learn precise 825

rules on large-scale KGs, thereby leading to the 826

decline of MRR and Hit@1 scores. Nevertheless, 827

compared to search-based methods, the FastLog- 828

enhanced methods are more effective in learning 829

longer rules. 830

A.2 Analysis on Learning More Rules. 831

To verify whether the FastLog-enhanced methods 832

can benefit from learning more rules, we conducted 833

11

Method
Wikidata5M

MRR H@1 H@3 H@10 ECP ET NLR

AnyBURL(L = 1) 0.334 29.2 35.1 40.9 100% 5822s 7.0M
AnyBURL(L = 2) 0.351 30.8 36.8 42.6 100% 13940s 6.4M
AnyBURL(L = 3) 0.355 31.3 37.2 43.2 100% 18469s 6.2M
AnyBURL(L = 4) - - - - 47% >1day 5.2M
AnyBURL(L = 5) - - - - 3.2% >1day 4.7M
AnyBURL(L = 6) - - - - 0.5% >1day 4.3M

AnyBURL† (L = 1) 0.070 6.6 7.2 7.3 100% 1s 1K
AnyBURL† (L = 2) 0.209 18.6 22.2 23.8 100% 237s 30K
AnyBURL† (L = 3) 0.304 26.6 31.8 36.4 100% 20919s 97K
AnyBURL† (L = 4) - - - - 23.9% >1day 178K
AnyBURL† (L = 5) - - - - 3.2% >1day 202K
AnyBURL† (L = 6) - - - - 0.7% >1day 219K

DRUM-FL (L = 1) 0.070 6.6 7.2 7.3 100% 68s -
DRUM-FL (L = 2) 0.204 18.1 21.8 23.7 100% 176s -
DRUM-FL (L = 3) 0.338 29.7 35.7 41.1 100% 341s -
DRUM-FL (L = 4) 0.332 29.2 35.0 40.8 100% 544s -
DRUM-FL (L = 5) 0.327 28.5 34.7 40.4 100% 731s -
DRUM-FL (L = 6) 0.325 28.3 34.6 40.4 100% 931s -

Table 7: Comparison results against different L for
AnyBURL and DRUM-FL on Wikidata5M, where ECP
(resp. ET or NLR) abbreviates the evaluation comple-
tion progress (resp. evaluation time or the number of
learnt rules).

an analysis on hyper-parameter N . The sub-figures834

(a) and (e) (resp. (i) and (m)) in Figure 3 illustrate835

the evaluation results of DRUM-FL using different836

N on the Wikidata5M (resp. Freebase) dataset. It837

can be seen that DRUM-FL is able to achieve higher838

MRR and Hit@1 scores as N increases when 1 ≤839

N ≤ 5. However, further increasing N does not840

lead to higher MRR and Hit@1 scores. This may841

be due to the fact that learning more rules may842

hinder the training efficiency of DRUM-FL, making843

some training cases ignored within the training844

time limit.845

A.3 Analysis on More Training Time846

To verify whether the FastLog-enhanced methods847

can benefit from more training time, we conducted848

an analysis on NeuralLP-FL and DRUM-FL with849

increasing training time, as illustrated in the sub-850

figures (c) and (g) (resp. (k) and (o)) in Figure 3851

for the Wikidata5M (resp. Freebase) dataset. It can852

be seen that both NeuralLP-FL and DRUM-FL ex-853

hibit higher MRR and Hit@1 scores as more train-854

ing time is allowed. Besides, we found that DRUM-855

FL is able to outperform AnyBURL(w/o constants)856

when the training time is not less than 20,000 sec-857

onds on Freebase. Note that AnyBURL cannot ob-858

tain efficacy improvement by allowing more train-859

ing time (Meilicke et al., 2024). In contrast, the860

FastLog-enhanced methods can achieve better ef-861

ficacy for link prediction as training time increases.862

These results suggest that we can further improve863

Method
Wikidata5M

MRR H@1 H@3 H@10 TT

DRUM-FL (c1, c2 = 1, 000) 0.320 28.5 33.8 38.4 11281s
DRUM-FL (c1, c2 = 10, 000) 0.331 28.9 35.3 40.6 12482s
DRUM-FL (c1, c2 = 100, 000) 0.335 29.5 35.5 41.0 13473s
DRUM-FL (c1, c2 = 1, 000, 000) 0.336 29.7 35.4 40.8 18117s
DRUM-FL (w/o PS) 0.336 29.6 35.6 41.1 35303s

Table 8: Comparison results against different settings of
c1, c2 for DRUM-FL.

the efficacy of the FastLog-enhanced methods by 864

allowing a longer training period. 865

A.4 Analysis on c1 and c2 866

To clarify why the proposed dynamic pruning strat- 867

egy can improve efficacy, we conducted an analysis 868

on DRUM-FL using varying settings for c1 and c2 869

within a training time limit of 20,000 seconds. The 870

sub-figure (d) and (h) (resp. (l) and (p)) in Figure 3 871

illustrates the evaluation results of DRUM-FL with 872

different setting of c1 and c2 on the Wikidata5M 873

(resp. Freebase) dataset. We can see that DRUM-FL 874

achieves higher MRR and Hit@1 scores as both 875

c1 and c2 increases to 100,000. We can also see 876

that the MRR and Hit@1 scores drop as either c1 877

or c2 further increases. To clarify why this hap- 878

pens, we further analyzed the efficacy of DRUM-FL 879

using varying settings of c1 and c2 without limit- 880

ing the training time, as reported by Table 8. It 881

can be seen that the Hit@1 scores for DRUM-FL in- 882

crease as c1 and c2 increase. We can also observe 883

that DRUM-FL (w/o PS) is able to achieve the same 884

MRR score as DRUM-FL (c1, c2 = 1, 000, 000) but 885

spends much more training time. These results re- 886

veal that the proposed dynamic pruning strategy 887

improves the efficacy for link prediction within a 888

training time limit by significantly improving the 889

training efficiency. Besides, we also analyzed the 890

impacts of different combinations of c1 and c2, as 891

reported in Table 9. Results suggest that the min- 892

imal combination to maximize the Hit@10 score 893

is c1 = 100, 000 and c2 = 100, 000. Therefore, 894

we recommend this setting as the default setting of 895

FastLog. 896

B Proofs 897

In this section, we provide detailed proofs for all 898

propositions in this work. 899

B.1 Proof of Proposition 1 900

Proof. (I) We first prove that the time complexity 901

of a forward computation step for TensorLog is 902

12

c1
c2

1,000 10,000 100,000 1,000,000 |K|
1,000 37.5 39.6 39.7 39.6 39.5
10,000 37.8 39.5 39.9 39.9 39.8
100,000 38.0 39.3 40.0 39.9 39.9
1,000,000 37.4 39.4 39.7 39.6 39.6
|E| 37.5 39.4 40.0 39.5 39.5

Table 9: Hit@10 scores against different combinations
of c1 and c2 for DRUM-FL on the validation set of Wiki-
data5M.

O(NL(|K|+ |R||E|)). Let nnz(Mri) be the num-903

ber of non-zero elements in the sparse matrix904

Mri . From Equations (1-2), we know that the905

complexity for each step in TensorLog comes906

from
∑2n+1

i=1 ϕ
(k,l−1)
r,x (w

(r,k,l)
i Mri). Since the907

time complexity of
∑2n+1

i=1 ϕ
(k,l−1)
r,x (w

(r,k,l)
i Mri) is908 ∑2n+1

i=1 (nnz(Mri) + |E|), where n = |R|. By909 ∑2n+1
i=1 nnz(Mri) = |K|, we can infer that the910

time complexity of a forward computation step911

for TensorLog is O(NL(|K|+ |R||E|)).912

(II) We then prove that the time complexity913

of a backward propagation step for TensorLog is914

O(NL(|K| + |R||E|)). For a backward propaga-915

tion step, we know that only w(r,k,l) is trainable.916

The time complexity for calculating ∂L
∂ϕ

(k,l)
r,x

M⊤
ri is917

nnz(Mri) + |E|. Therefore, the time complexity918

of a backward propagation step for TensorLog is919

O(NL
∑2n+1

i=1 (nnz(Mri) + |E|)) = O(NL(|K|+920

|R||E|)).921

B.2 Proof of Proposition 2922

Proof. (I) From Equations (3-6), the time complex-923

ity of a forward computation step for FastLog is924

NL(|K|︸︷︷︸
⊙

+ |K|︸︷︷︸
Ff2e

)925

Therefore, the time complexity of a forward com-926

putation step for FastLogis O(NL|K|).927

(II) For a backward propagation step of FastLog,928

we know that only w(r,k,l) is trainable. Let z =929

Fe2f(ϕ
(k,l−1)
r,x)⊙Fr2f(w

(r,k,l)). The time complex-930

ity for calculating ∂Ff2e(z)
∂z is O(|K|). The time931

complexity for calculating ∂z

∂Fe2f(ϕ
(k,l−1)
r,x)

isO(|K|).932

The time complexity for calculating ∂z
∂Fr2f(w(r,k,l))

933

is O(|K|). The time complexity for calculat-934

ing ∂Fr2f(w
(r,k,l))

∂w(r,k,l) is O(|K|). Therefore, the time935

complexity of a backward propagation step for936

FastLogis O(NL|K|).937

B.3 Proof of Proposition 3 938

Proof. To prove Proposition 3, we first introduce 939

three sparse matrices Me2f , Mr2f , and Mf2e, where 940

Me2f ∈ R|E|×|K| (resp. Mr2f ∈ R(2n+1)×|K| or 941

Mf2e ∈ R|K|×|E|) stores the mapping between a 942

head entity (resp. relation or fact) and its corre- 943

sponding fact (resp. fact or tail entity). 944

For all 1 ≤ k ≤ N, 1 ≤ l ≤ L, it holds that 945

ϕ(k,l)
r,a = Ff2e(Fe2f(ϕ

(k,l−1)
r,a)⊙Fr2f(w

(r,k,l)))

= ((ϕ(k,l−1)
r,a Me2f)⊙ (w(r,k,l)Mr2f))Mf2e

= ϕ(k,l−1)
r,a ((Me2f ⊙ (w(r,k,l)Mr2f))Mf2e)

= ϕ(k,l−1)
r,a (

2n+1∑
i=1

w
(r,k,l)
i Mri)

946

Therefore, we have 947

FastLog(θN,L
r , a, b) = (

N∑
k=1

ϕ(k,L)
r,a)vb

= (
N∑
k=1

((· · · (v⊤a (
2n+1∑
i=1

w
(r,k,1)
i Mri))

(

2n+1∑
i=1

w
(r,k,2)
i Mri))

· · ·

(

2n+1∑
i=1

w
(r,k,L)
i Mri)))vb

= v⊤a (

N∑
k=1

L∏
l=1

2n+1∑
i=1

w
(r,k,l)
i Mri)vb

= TensorLog(θN,L
r , a, b)

948

949

B.4 Proof of Proposition 4 950

Proof. (I) We first prove that the space complexity 951

of a forward computation step for TensorLog is 952

O(m|E|). For all 1 ≤ k ≤ N, 1 ≤ l ≤ L, 953

TensorLog requires a space of m|E| to store the 954

intermediate estimated truth degrees. Since the 955

summation of predicate selection is serial, this pro- 956

cess does not require additional space. Therefore, 957

the space complexity of a forward computation step 958

for TensorLog is O(m|E|). 959

(II) We then prove that the space complexity 960

of a backward propagation step for TensorLog is 961

O(mNL|R||E|). For a backward propagation step, 962

TensorLog requires to store all intermediate esti- 963

mated truth degrees for all L steps for all N rules 964

to calculate the gradient. Therefore, the space 965

complexity of a backward propagation step for 966

TensorLog is O(mNL|R||E|). 967

13

B.5 Proof of Proposition 5968

Proof. (I) We first prove that the space complex-969

ity of a forward computation step for FastLog is970

O(m|K|). For all 1 ≤ k ≤ N, 1 ≤ l ≤ L,971

FastLog requires a space of the size m|K| to store972

the intermediate hidden state for all facts. Although973

FastLog also requires a space of m|E| to store the974

intermediate estimated truth degrees, it can reuse975

the previously opened space. In general, it holds976

that |K| > |E|. Therefore, a forward computation977

step for FastLog is O(m|K|).978

(II) We then prove that the space complexity979

of a backward propagation step for FastLog is980

O(mNL(|K|+ |E|)). For a backward propagation981

step, FastLog requires storing the intermediate hid-982

den states for all L steps for all N rules to calculate983

the gradients. It also requires storing the interme-984

diate estimated truth degrees for all L steps for all985

N rules to calculate the gradients. Therefore, the986

space complexity of a backward propagation step987

for TensorLog is O(mNL(|K|+ |E|)).988

B.6 Proof of Proposition 6989

Proof. (I) We first prove that the time complexity990

of a forward computation step for FastLogc1,c2 is991

O(NL(|K|+ |E|)). From Proposition 2, we know992

that the time complexity of a forward computation993

step for FastLog isO(NL|K|). From Equation (8),994

we know that the dynamic pruning strategy intro-995

duces an additional complexity of O(NL|E|) to996

calculate top-c1 intermediate estimated truth de-997

grees. From Equation (9), we know that the dy-998

namic pruning strategy introduces an additional999

complexity of O(NL|K|) to calculate top-c2 in-1000

termediate hidden states. Therefore, the time1001

complexity of a forward computation step for1002

FastLogc1,c2 is O(NL(|K|+ |E|)).1003

(II) We then prove that the time complexity1004

of a backward propagation step for FastLog is1005

O(NLc2). From Equations (8), we know that1006

only top-c1 intermediate estimated truth degrees1007

are used to calculate the gradients. From Equa-1008

tions (9), we know that only top-c2 intermediate1009

hidden states are used to calculate the gradients.1010

Let z = F̂c2
r2f(F̂

c1
e2f(ϕ

(k,l−1)
r,x), w(r,k,l)). The time1011

complexity for calculating ∂F̂f2e(z)
∂z is O(c2) be-1012

cause z only has c2 elements. The time complexity1013

for calculating ∂z
∂w(r,k,l) is O(c2) because only the1014

top-c2 elements in F̂c1
e2f(ϕ

(k,l−1)
r,x) are used to calcu-1015

late gradients. The time complexity for calculating1016

∂F̂c1
e2f(ϕ

(k,l−1)
r,x)

∂ϕ
(k,l−1)
r,x

isO(c2) because only the top-c2 ele- 1017

ments in F̂c1
e2f(ϕ

(k,l−1)
r,x) are used to calculate gradi- 1018

ents. Therefore, the time complexity of a backward 1019

propagation step for FastLog is O(NLc2). 1020

B.7 Proof of Proposition 7 1021

Proof. (I) We first prove that the space complex- 1022

ity of a forward computation step for FastLog is 1023

O(m|K|). For all 1 ≤ k ≤ N, 1 ≤ l ≤ L, 1024

FastLog requires a space of the size m|K| to store 1025

the intermediate hidden state for all facts. Although 1026

FastLog also requires a space of m|E| to store the 1027

intermediate estimated truth degrees, it can reuse 1028

the previously opened space. In general, it holds 1029

that |K| > |E|. Therefore, a forward computation 1030

step for FastLog is O(m|K|). 1031

(II) We then prove that the space complexity 1032

of a backward propagation step for FastLog is 1033

O(mNL(c1 + c2)). For a backward propagation 1034

step, FastLog requires storing the intermediate es- 1035

timated truth degrees with the size of c1 for all L 1036

steps for all N rules to calculate the gradients. It 1037

also requires storing the intermediate hidden states 1038

with the size of c2 for all L steps for all N rules 1039

to calculate the gradients. Therefore, the space 1040

complexity of a backward propagation step for 1041

FastLog is O(mNL(c1 + c2)). 1042

B.8 Proof of Proposition 8 1043

Proof. From Equations (3-5) and (8-10), we know 1044

that F̂ |E|
e2f (resp. F̂ |K|

r2f or F̂f2e) is equivalent to Fe2f 1045

(resp. Fr2f or Ff2e) because both T |E|(T) and 1046

T |K|(T) return the original set T of tuples. There- 1047

fore, Equation (6) can be derived by: 1048

FastLog(θN,L
r , a, b) =

N∑
k=1

ϕ(k,L)
r,a vb

=

N∑
k=1

Ff2e(Fr2f(w
(r,k,L))⊙Fe2f(

· · ·
Ff2e(Fr2f(w

(r,k,2))⊙Fe2f(

Ff2e(Fr2f(w
(r,k,1))⊙Fe2f(v

⊤
x))))

· · ·))vb

=

N∑
k=1

F̂f2e(F̂
|K|
r2f (F̂

|E|
e2f(

· · ·

F̂f2e(F̂
|K|
r2f (F̂

|E|
e2f(v

⊤
x), w

(r,k,1))), · · ·),
w(r,k,L)))

= FastLog|E|,|K|(θN,L
r , a, b)

1049

1050

14

C Formalization of Existing Methods1051

In the following, we introduce four SOTA1052

end-to-end rule learning methods that employ1053

TensorLog to learn CRs, including NeuralLP,1054

DRUM, smDRUM, mmDRUM.1055

C.1 The NeuralLP Method1056

NeuralLP (Yang et al., 2017) is the first work1057

that exploits TensorLog operators to learn CRs.1058

Specifically, NeuralLP introduces a set of addi-1059

tional learnable parameters to pay attention to pre-1060

vious steps, thereby learning CRs with dynamic1061

length without using the identity relation. Be-1062

sides, NeuralLP leverages LSTM (Hochreiter and1063

Schmidhuber, 1997) networks to estimate both1064

the predicate selection weights and the attention1065

weights. Note that NeuralLP only simulates the1066

inference of one CR, i.e., it holds that N = 1. For-1067

mally, given a query (x, r, ?) and the maximum1068

length of each rule L, NeuralLP first encodes r1069

as a trainable vector vr ∈ Rd, where d denotes1070

the dimensional size. Then an input sequence1071

(q1, q2, · · · , qL+1) is created by setting ql = vr1072

for all 1 ≤ l ≤ L and qL+1 = vend, where vend is1073

a special trainable vector to capture the boundary1074

of the input sequence. For all 1 ≤ l ≤ L+ 1, the1075

predicate selection weights w(r,1,l) ∈ [0, 1]2n are1076

estimated by1077

hl = LSTM(hl−1, ql),

w(r,1,l) = Softmax(Whl + b),
(13)1078

where h0 is a zero-padding d-dimensional vector.1079

W ∈ R2n×d and b ∈ R2n are trainable weights and1080

bias, respectively. The attention weights α(r,1,l) ∈1081

[0, 1]l are estimated by1082

α(r,1,l) = Softmax([h⊤0 hl;h
⊤
1 hl; · · · ;h⊤l−1hl]),

(14)1083

where [;] is the concatenation operation. The1084

intermediate truth degrees ϕ
(1,l)
r,x ∈ R|E| for1085

NeuralLP are estimated by1086

ϕ(1,l)
r,x =

2n∑
i=1

(
l−1∑
j=0

α
(r,1,l)
j ϕ(1,j)

r,x)(w
(r,1,l)
i Mri), 1 ≤ l ≤ L,

L∑
j=0

α
(r,1,L+1)
j ϕ(1,j)

r,x , l = L+ 1,

(15)1087

where ϕ
(1,0)
r,x = v⊤x . For an arbitrary triple1088

(x, r, y) ∈ E ×R× E , the truth degree of (x, r, y)1089

is estimated by1090

NeuralLP(θ1,Lr , x, y) = ϕ(1,L+1)
r,x vy, (16)1091

where θ1,Lr = {vr,W, b} ∪ θLSTM is a set of train- 1092

able parameters for the head relation r, and θLSTM 1093

is the set of parameters used in the LSTM network. 1094

The following Proposition 9 shows the time com- 1095

plexity of NeuralLP . 1096

Proposition 9. LetK = G∪G−. The time complex- 1097

ity of a forward computation step for NeuralLP is 1098

O(L(|K|+ |R||E|) +L2|E|). The time complexity 1099

of a backward propagation step for NeuralLP is 1100

O(L(|K|+ |R||E|) + L2|E|). 1101

Proof. (I) We first prove that the time complex- 1102

ity of a forward computation step for NeuralLP is 1103

O(L(|K|+ |R||E|)+L2|E|). From Equations (15- 1104

16), we know that the time complexity of a forward 1105

computation step for NeuralLP is 1106

L(|K|+ |R||E|)︸ ︷︷ ︸
TensorLog

+
L(L− 1)

2
|E|︸ ︷︷ ︸

Aggregation

+(L+ 1)(8d2)︸ ︷︷ ︸
LSTM network

+(d2 + d)︸ ︷︷ ︸
MLP

1107

where d denotes the hidden size. In general, it 1108

holds that L(|K| + |R||E|) + L(L−1)
2 |E| ≫ (L + 1109

1)(8d2) + (d2 + d). Therefore, the time complex- 1110

ity of a forward computation step for NeuralLP is 1111

O(L(|K|+ |R||E|) + L2|E|). 1112

(II) We then prove that the time complexity 1113

of a forward computation step for NeuralLP is 1114

O(L(|K| + |R||E|) + L2|E|). From Equations 1115

(13-16), we know that the time complexity of a 1116

backward propagation step for NeuralLP is 1117

2L(|K|+ |R||E|)︸ ︷︷ ︸
TensorLog

+L(L− 1)|E|︸ ︷︷ ︸
Aggregation

+2(L+ 1)(8d2)︸ ︷︷ ︸
LSTM network

+2(d2 + d)︸ ︷︷ ︸
MLP

1118

In general, it holds that L(|K|+ |R||E|) + L(L− 1119

1)|E| ≫ +2(L+ 1)(8d2) + 2(d2 + d). Therefore, 1120

the time complexity of a forward computation step 1121

for NeuralLP isO(L(|K|+ |R||E|)+L2|E|). 1122

C.2 The DRUM Method 1123

Different from NeuralLP, DRUM (Sadeghian et al., 1124

2019) introduces more trainable parameters to learn 1125

more CRs, and uses the identity relation to learn 1126

rules with dynamic length. Specifically, DRUM lever- 1127

ages N BiLSTM networks to estimate the predicate 1128

selection weights. Formally, given a query (x, r, ?), 1129

the maximum number of rules to be learnt N , the 1130

maximum length of each rule L, DRUM first encodes 1131

r as a trainable vector vr ∈ Rd, where d denotes the 1132

dimensional size. For all 1 ≤ k ≤ N, 1 ≤ l ≤ L, 1133

the predicate selection weights w(r,k,l) ∈ [0, 1]2n+1 1134

15

is estimated by1135

−→
h

(k)
l =

−−−−−−→
BiLSTM(k)(

−→
h

(k)
l−1, vr),

←−
h

(k)
L−l+1 =

←−−−−−−
BiLSTM(k)(

←−
h

(k)
L−l, vr),

w(r,k,l) = Softmax(W [
−→
h

(k)
l ;
←−
h

(k)
L−l+1] + b),

(17)1136

where both
−→
h

(k)
0 and

←−
h

(k)
L+1 are set as zero-padding1137

d-dimensional vectors. W ∈ R(2n+1)×2d and1138

b ∈ R2n+1 are trainable weights and bias, respec-1139

tively. For an arbitrary triple (x, r, y) ∈ E ×R×E ,1140

the intermediate truth degrees ϕ
(k,l)
r,x ∈ R|E| for1141

DRUM are estimated by1142

ϕ(k,l)
r,x =

2n+1∑
i=1

ϕ(k,l−1)
r,x (w

(r,k,l)
i Mri), (18)1143

where ϕ
(k,0)
r,x = v⊤x . The truth degree of (x, r, y) is1144

estimated by1145

DRUM(θN,L
r , x, y) =

N∑
k=1

ϕ(k,L)
r,x vy, (19)1146

where θN,L
r = {vr,W, b} ∪

⋃
1≤k≤N θ

(k)
BiLSTM is a1147

set of trainable parameters for the head relation r,1148

and θ
(k)
BiLSTM is the set of parameters used in the1149

k-th BiLSTM network.1150

C.3 The smDRUM Method1151

smDRUM (Wang et al., 2024b) is proposed to en-1152

hance the faithfulness between DRUM and CRs, by1153

introducing new tensorized operations. Note that1154

smDRUM uses the same way as DRUM to estimate the1155

predicate selection weights. For an arbitrary triple1156

(x, r, y) ∈ E×R×E , the intermediate truth degrees1157

ϕ
(k,l)
r,x ∈ R|E| for smDRUM are estimated by1158

ϕ(k,l)
r,x =

2n+1∑
i=1

ϕ(k,l−1)
r,x ⊗ (w

(r,k,l)
i Mri), (20)1159

where ϕ
(k,0)
r,x = v⊤x , ⊗ is the max-production op-1160

erator, i.e., given two matrices U ∈ Ra×m and1161

V ∈ Rm×b, (U ⊗ V)i,j = maxmk=1 Ui,k · Vk,j for1162

all 1 ≤ i ≤ a and 1 ≤ j ≤ b. The truth degree of1163

(x, r, y) is estimated by1164

smDRUM(θN,L
r , x, y) =

N∑
k=1

ϕ(k,L)
r,x vy, (21)1165

where θN,L
r = {vr,W, b} ∪

⋃
1≤k≤N θ

(k)
BiLSTM is a1166

set of trainable parameters for the head relation r.1167

C.4 The mmDRUM Method 1168

mmDRUM (Wang et al., 2024b) is another method 1169

proposed to enhance the faithfulness between 1170

DRUM and CRs. mmDRUM employs the same way 1171

in DRUM to estimate the predicate selection weights. 1172

Compared to smDRUM, mmDRUM introduces max- 1173

pooling to aggregate N rules. For an arbitrary triple 1174

(x, r, y) ∈ E×R×E , the intermediate truth degrees 1175

ϕ
(k,l)
r,x ∈ R|E| for mmDRUM are estimated by 1176

ϕ(k,l)
r,x =

2n+1∑
i=1

ϕ(k,l−1)
r,x ⊗ (w

(r,k,l)
i Mri), (22) 1177

where ϕ
(k,0)
r,x = v⊤x . The truth degree of (x, r, y) is 1178

estimated by 1179

mmDRUM(θN,L
r , x, y) =

N
max
k=1

ϕ(k,L)
r,x vy, (23) 1180

where θN,L
r = {vr,W, b} ∪

⋃
1≤k≤N θ

(k)
BiLSTM is a 1181

set of trainable parameters for the head relation r. 1182

The following Proposition 10 shows the time 1183

complexity of DRUM, smDRUM, and mmDRUM. 1184

Proposition 10. Let K = G ∪ G− ∪ {I(e, e) | 1185

e ∈ E}. The time complexity of a forward com- 1186

putation step for DRUM , smDRUM, and mmDRUM is 1187

O(NL(|K| + |R||E|)). The time complexity of a 1188

backward propagation step for DRUM , smDRUM, and 1189

mmDRUM is O(NL(|K|+ |R||E|)). 1190

Proof. From Equations (18-23), we know that 1191

DRUM, smDRUM and mmDRUM has the same training 1192

time complexity. 1193

(I) We first prove that the time complexity of a 1194

forward computation step for DRUM, smDRUM, and 1195

mmDRUM is O(NL(|K|+ |R||E|)). From Equations 1196

(17-19), we know that the time complexity of a 1197

forward computation step for DRUM is 1198

NL(|K|+ |R||E|)︸ ︷︷ ︸
TensorLog

+2N(L+ 1)(8d2)︸ ︷︷ ︸
BiLSTM networks

+N((2d)2 + 2d)︸ ︷︷ ︸
MLPs

1199

where d denotes the hidden size. In general, it 1200

holds that NL(|K|+ |R||E|)≫ N(L+1)(8d2)+ 1201

N((2d)2 + 2d). Therefore, the time complexity of 1202

a forward computation step for DRUM, smDRUM, and 1203

mmDRUM is O(NL(|K|+ |R||E|)). 1204

(II) We then prove that the time complexity of 1205

a forward computation step for DRUM, smDRUM, and 1206

mmDRUM is O(NL(|K|+ |R||E|)). From Equations 1207

(17-19), we know that the time complexity of a 1208

16

backward propagation step for DRUM, smDRUM, and1209

mmDRUM is1210

2NL(|K|+ |R||E|)︸ ︷︷ ︸
TensorLog

+4N(L+ 1)(8d2)︸ ︷︷ ︸
BiLSTM networks

+2N((2d)2 + 2d)︸ ︷︷ ︸
MLPs

1211

In general, it holds that 2NL(|K| + |R||E|) ≫1212

4N(L + 1)(8d2) + 2N((2d)2 + 2d). Therefore,1213

the time complexity of a forward computation step1214

for DRUM, smDRUM, and mmDRUM is O(NL(|K| +1215

|R||E|)).1216

C.5 Training objective1217

. The intuition of end-to-end rule learning methods1218

is to search a set of parameters θN,L
r to distinguish1219

positive facts from negative facts, by minimizing1220

the following training objective.1221

L({θN,L
r }r∈R∪R−) = −

∑
(x,r,y)∈G∪G−

logM(θN,L
r , x, y),

(24)1222

whereM is an end-to-end rule learning method or1223

a FastLog-enhanced methods. Note that the loss1224

is computed in a batch-wise parallel manner for all1225

methods.1226

D FastLog-enhanced Methods1227

SOTA end-to-end rule learning methods can be1228

enhanced by replacing TensorLog operators with1229

FastLog operators. By X-FL we denote the1230

FastLog-enhanced methods, where X can be1231

NeuralLP, DRUM, smDRUM, and mmDRUM.1232

D.1 The NeuralLP-FL Method1233

In the following, we elaborate on enhancing the1234

NeuralLP method with FastLog. It is worth not-1235

ing that the use of FastLog does not affect the1236

estimation of selection weights. Therefore, we can1237

still use Equation (13-14) for selection weight es-1238

timation. Let K = G ∪ G−. For an arbitrary triple1239

(x, r, y) ∈ E×R×E , the intermediate truth degrees1240

ϕ
(1,l)
r,x ∈ R|E| are estimated by1241

ϕ(1,l)
r,x =

Ff2e(Fe2f(

l−1∑
j=0

α
(r,1,l)
j ϕ(1,j)

r,x)⊙Fr2f(w
(r,1,l))), 1 ≤ l ≤ L,

L∑
j=0

α
(r,1,L+1)
j ϕ(1,j)

r,x , l = L+ 1,

(25)1242

where ϕ
(1,0)
r,x = vx. The truth degree of (x, r, y) is1243

estimated by1244

NeuralLP−FL(θ1,Lr , x, y) = ϕ(1,L+1)
r,x vy, (26)1245

The following Proposition 11 shows the time com-1246

plexity of NeuralLP-FL.1247

Proposition 11. The time complexity of a forward 1248

computation step for NeuralLP-FL is O(L|K| + 1249

L2|E|). The time complexity of a backward propa- 1250

gation step for NeuralLP-FL is O(L|K|+ L2|E|). 1251

1252

Proof. (I) We first prove that the time complexity 1253

of a forward computation step for NeuralLP-FL is 1254

O(L|K| + L2|E|). From Proposition 2, we know 1255

that the time complexity of a forward computa- 1256

tion step for FastLogis O(NL|K|). From Equa- 1257

tions (25-26), we know that the time complexity of 1258

a forward computation step for NeuralLP-FL is 1259

L|K|︸︷︷︸
FastLog

+
L(L− 1)

2
|E|︸ ︷︷ ︸

Aggregation

+(L+ 1)(8d2)︸ ︷︷ ︸
LSTM network

+(d2 + d)︸ ︷︷ ︸
MLP

1260

where d denotes the hidden size. In general, it holds 1261

that L|K| + L(L−1)
2 |E| ≫ (L + 1)(8d2) + (d2 + 1262

d). Therefore, the time complexity of a forward 1263

computation step for NeuralLP-FL is O(L|K| + 1264

L2|E|). 1265

(II) We then prove that the time complexity 1266

of a backward propagation step for NeuralLP- 1267

FL is O(L|K| + L2|E|). For a backward prop- 1268

agation step for NeuralLP-FL, we know that 1269

both w(r,1,l) and α(r,1,l) are trainable. Let 1270

z = Fe2f(
∑l−1

j=0 α
(r,1,l)
j ϕ

(1,j)
r,x) ⊙ Fr2f(w

(r,1,l)). 1271

The time complexity for calculating ∂Ff2e(z)
∂z is 1272

O(|K|). The time complexity for calculating 1273
∂z

∂Fe2f(
∑l−1

j=0 α
(r,1,l)
j ϕ

(1,j)
r,x)

is O(|K|). The time com- 1274

plexity for calculating
∂Fe2f(

∑l−1
j=0 α

(r,1,l)
j ϕ

(1,j)
r,x)

∂α(r,1,l) is 1275

O(L2|E|). The time complexity for calculating 1276
∂z

∂Fr2f(w(r,1,l))
is O(|K|). The time complexity for 1277

calculating ∂Fr2f(w
(r,1,l))

∂w(r,1,l) is O(|K|). Therefore, the 1278

time complexity of a backward propagation step 1279

for NeuralLP-FL is O(L|K|+ L2|E|). 1280

By being enhanced by FastLog, the time 1281

complexity of a forward computation step for 1282

NeuralLP is reduced from O(L(|K| + |R||E|) + 1283

L2|E|) to O(L|K|+ L2|E|). The time complexity 1284

of a backward propagation step for NeuralLP is 1285

reduced from O(L(|K| + |R||E|) + L2|E|) to 1286

O(L|K| + L2|E|). The following Proposition 12 1287

demonstrates the correctness of NeuralLP-FL. 1288

Proposition 12. For an arbitrary triple (a, r, b) ∈ 1289

E ×R×E , ∀L ≥ 1 : NeuralLP−FL(θ1,Lr , a, b) = 1290

NeuralLP(θ1,Lr , a, b). 1291

17

Proof. To prove Proposition 12, we first introduce1292

three sparse matrices Me2f , Mr2f , and Mf2e, where1293

Me2f ∈ R|E|×|K| (resp. Mr2f ∈ R2n×|K| or Mf2e ∈1294

R|K|×|E|) stores the mapping between a head entity1295

(resp. relation or fact) and its corresponding fact1296

(resp. fact or tail entity).1297

For all 1 ≤ l ≤ L, it holds that1298

ϕ(l)
r,a = Ff2e(Fe2f(

l−1∑
j=0

α
(r,l)
j ϕ(j)

r,a)⊙Fr2f(w
(r,l)))

= ((
l−1∑
j=0

α
(r,l)
j ϕ(j)

r,a)Me2f ⊙ (w(r,l)Mr2f))Mf2e

= (
l−1∑
j=0

α
(r,l)
j ϕ(j)

r,a)((Me2f ⊙ (w(r,l)Mr2f))Mf2e)

= (
l−1∑
j=0

α
(r,l)
j ϕ(j)

r,a)(
2n∑
i=1

w
(r,l)
i Mri)

=
2n∑
i=1

(
l−1∑
j=0

α
(r,l)
j ϕ(j)

r,a)(w
(r,l)
i Mri)

1299

Therefore, we have1300

NeuralLP−FL(θLr , a, b) = ϕ(L+1)
r,a vb

=
L∑

j=0

α
(r,L+1)
j ϕ(j)

r,x

=
L∑

j=0

α
(r,L+1)
j (

2n∑
i=1

(

j−1∑
k=0

α
(r,j)
k ϕ(k)

r,a)(w
(r,j)
i Mri))

= NeuralLP(θLr , a, b)

1301

1302

This proposition reveals that the efficacy of1303

NeuralLP will not be impaired by applying1304

FastLog.1305

D.2 The DRUM-FL Method1306

In the following, we elaborate on enhancing the1307

DRUM method with FastLog. Let K = G ∪ G− ∪1308

{I(e, e) | e ∈ E}. Similarly with DRUM, DRUM-FL1309

also uses Equation (7) for selection weight estima-1310

tion. For all 1 ≤ k ≤ N, 1 ≤ l ≤ L, the inter-1311

mediate truth degrees ϕ(k,l)
r,x ∈ R|E| are estimated1312

by1313

ϕ(k,l)
r,x = Ff2e(Fe2f(ϕ

(k,l−1)
r,x)⊙Fr2f(w

(r,k,l))),
(27)1314

where ϕ
(k,0)
r,x = v⊤x . The truth degree of (x, r, y) is 1315

estimated by 1316

DRUM−FL(θN,L
r , x, y) = (

N∑
k=1

ϕ(k,L)
r,x)vy, (28) 1317

The following Proposition 13 shows the time com- 1318

plexity of DRUM-FL. 1319

Proposition 13. The time complexity of a forward 1320

computation step for DRUM-FL is O(NL|K|). The 1321

time complexity of a backward propagation step 1322

for DRUM-FL is O(NL|K|). 1323

Proof. (I) We first prove that the time complex- 1324

ity of a forward computation step for DRUM-FL is 1325

O(NL|K|). From Proposition 2, we know that the 1326

time complexity of a forward computation step for 1327

FastLog is O(NL|K|). From Equations (27-28), 1328

we know that the time complexity of a forward 1329

computation step for DRUM-FL is 1330

NL|K|︸ ︷︷ ︸
FastLog

+2N(L+ 1)(8d2)︸ ︷︷ ︸
BiLSTM networks

+N((2d)2 + 2d)︸ ︷︷ ︸
MLPs

1331

where d denotes the hidden size. In general, it 1332

holds that NL|K| ≫ +2N(L+1)(8d2)+((2d)2+ 1333

2d). Therefore, the time complexity of a forward 1334

computation step for DRUM-FL is O(NL|K|). 1335

(II) We then prove that the time complexity 1336

of a backward propagation step for DRUM-FL is 1337

O(NL|K|). For a backward propagation step 1338

of DRUM-FL, we know that only w(r,k,l) is train- 1339

able. Let z = Fe2f(ϕ
(k,l−1)
r,x)⊙Fr2f(w

(r,k,l)). The 1340

time complexity for calculating ∂Ff2e(z)
∂z is O(|K|). 1341

The time complexity for calculating ∂z

∂Fe2f(ϕ
(k,l−1)
r,x)

1342

is O(|K|). The time complexity for calculating 1343
∂z

∂Fr2f(w(r,k,l))
is O(|K|). The time complexity for 1344

calculating ∂Fr2f(w
(r,k,l))

∂w(r,l,l) is O(|K|). Therefore, the 1345

time complexity of a backward propagation step 1346

for DRUM-FL is O(NL|K|). 1347

By being enhanced by FastLog, the time com- 1348

plexity of a forward computation step for DRUM is 1349

reduced fromO(NL(|K|+|R||E|)) toO(NL|K|). 1350

The time complexity of a backward propaga- 1351

tion step for DRUM is reduced from O(NL(|K| + 1352

|R||E|)) to O(NL|K|). The following Proposi- 1353

tion 14 demonstrates the correctness of DRUM-FL. 1354

Proposition 14. For an arbitrary triple (a, r, b) ∈ 1355

E × R × E , ∀N ≥ 1, L ≥ 1 : 1356

DRUM−FL(θN,L
r , a, b) = DRUM(θN,L

r , a, b). 1357

18

Proof. To prove Proposition 14, we first introduce1358

three sparse matrices Me2f , Mr2f , and Mf2e, where1359

Me2f ∈ R|E|×|K| (resp. Mr2f ∈ R(2n+1)×|K| or1360

Mf2e ∈ R|K|×|E|) stores the mapping between a1361

head entity (resp. relation or fact) and its corre-1362

sponding fact (resp. fact or tail entity).1363

For all 1 ≤ k ≤ N, 1 ≤ l ≤ L, it holds that1364

ϕ(k,l)
r,a = Ff2e(Fe2f(ϕ

(k,l−1)
r,a)⊙Fr2f(w

(r,k,l)))

= ((ϕ(k,l−1)
r,a Me2f)⊙ (w(r,k,l)Mr2f))Mf2e

= ϕ(k,l−1)
r,a ((Me2f ⊙ (w(r,k,l)Mr2f))Mf2e)

= ϕ(k,l−1)
r,a (

2n+1∑
i=1

w
(r,k,l)
i Mri)

1365

Therefore, we have1366

DRUM−FL(θN,L
r , a, b) = (

N∑
k=1

ϕ(k,L)
r,a)vb

= (

N∑
k=1

((· · · (v⊤a (
2n+1∑
i=1

w
(r,k,1)
i Mri))

(

2n+1∑
i=1

w
(r,k,2)
i Mri))

· · ·

(

2n+1∑
i=1

w
(r,k,L)
i Mri)))vb

= v⊤a (

N∑
k=1

L∏
l=1

2n+1∑
i=1

w
(r,k,l)
i Mri)vb

= DRUM(θN,L
r , a, b)

1367

1368

This proposition reveals that the efficacy of1369

DRUM will not be impaired by applying FastLog.1370

D.3 The smDRUM-FL Method1371

Similar to DRUM-FL, for all 1 ≤ k ≤ N, 1 ≤ l ≤ L,1372

the formalization of smDRUM-FL is defined as1373

ϕ(k,l)
r,x = Fmax

f2e (Fe2f(ϕ
(k,l−1)
r,x)⊙Fr2f(w

(r,k,l))),
(29)1374

where ϕ
(k,0)
r,x = v⊤x . Fmax

f2e : R|K| → R|E| is a1375

function such that the i-th elements of Fmax
f2e (v) is1376

[Fmax
f2e (v)]i = max

j:tail(τj)=i
vj . (30)1377

The truth degree of (x, r, y) is estimated by1378

smDRUM−FL(θN,L
r , x, y) = (

N∑
k=1

ϕ(k,L)
r,x)vy. (31)1379

Note that smDRUM-FL has the same time complexity1380

as DRUM-FL. The following Proposition 15 demon-1381

strates the correctness of smDRUM-FL.1382

Proposition 15. For an arbitrary triple (a, r, b) ∈ 1383

E × R × E , ∀N ≥ 1, L ≥ 1 : 1384

smDRUM−FL(θN,L
r , a, b) = smDRUM(θN,L

r , a, b). 1385

Proof. To prove Proposition 15, we first introduce 1386

three sparse matrices Me2f , Mr2f , and Mf2e, where 1387

Me2f ∈ R|E|×|K| (resp. Mr2f ∈ R(2n+1)×|K| or 1388

Mf2e ∈ R|K|×|E|) stores the mapping between a 1389

head entity (resp. relation or fact) and its corre- 1390

sponding fact (resp. fact or tail entity). 1391

For all 1 ≤ k ≤ N, 1 ≤ l ≤ L, it holds that 1392

ϕ(k,l)
r,a = Fmax

f2e (Fe2f(ϕ
(k,l−1)
r,a)⊙Fr2f(w

(r,k,l)))

= ((ϕ(k,l−1)
r,a Me2f)⊙ (w(r,k,l)Mr2f))⊗Mf2e

= ϕ(k,l−1)
r,a ((Me2f ⊙ (w(r,k,l)Mr2f))⊗Mf2e)

= ϕ(k,l−1)
r,a ⊗ ((Me2f ⊙ (w(r,k,l)Mr2f))Mf2e)

= ϕ(k,l−1)
r,a ⊗ (

2n+1∑
i=1

w
(r,k,l)
i Mri)

1393

Therefore, we have 1394

smDRUM−FL(θN,L
r , a, b) = (

N∑
k=1

ϕ(k,L)
r,a)vb

= (

N∑
k=1

((· · · (v⊤a ⊗ (

2n+1∑
i=1

w
(r,k,1)
i Mri))

⊗ (
2n+1∑
i=1

w
(r,k,2)
i Mri))

· · ·

⊗ (
2n+1∑
i=1

w
(r,k,L)
i Mri)))vb

= v⊤a (
N∑
k=1

L⊗
l=1

2n+1∑
i=1

w
(r,k,l)
i Mri)vb

= smDRUM(θN,L
r , a, b)

1395

1396

This proposition reveals that the efficacy of 1397

smDRUM will not be impaired by applying FastLog. 1398

D.4 The mmDRUM-FL Method 1399

Similar to DRUM-FL and smDRUM-FL, the formaliza- 1400

tion of mmDRUM-FL is defined as 1401

ϕ(k,l)
r,x = Fmax

f2e (Fe2f(ϕ
(k,l−1)
r,x)⊙Fr2f(w

(r,k,l))),
(32) 1402

where ϕ
(k,0)
r,x = v⊤x . The truth degree of (x, r, y) is 1403

estimated by 1404

mmDRUM−FL(θN,L
r , x, y) =

N
max
k=1

ϕ(k,L)
r,x vy. (33) 1405

Note that mmDRUM-FL has the same time complexity 1406

as DRUM-FL and smDRUM-FL. The following Propo- 1407

sition 16 shows the correctness of mmDRUM-FL. 1408

19

Proposition 16. For an arbitrary triple (a, r, b) ∈1409

E × R × E , ∀N ≥ 1, L ≥ 1 :1410

mmDRUM−FL(θN,L
r , a, b) = mmDRUM(θN,L

r , a, b).1411

Proof. To prove Proposition 16, we first introduce1412

three sparse matrices Me2f , Mr2f , and Mf2e, where1413

Me2f ∈ R|E|×|K| (resp. Mr2f ∈ R(2n+1)×|K| or1414

Mf2e ∈ R|K|×|E|) stores the mapping between a1415

head entity (resp. relation or fact) and its corre-1416

sponding fact (resp. fact or tail entity).1417

For all 1 ≤ k ≤ N, 1 ≤ l ≤ L, it holds that1418

ϕ(k,l)
r,a = Fmax

f2e (Fe2f(ϕ
(k,l−1)
r,a)⊙Fr2f(w

(r,k,l)))

= ((ϕ(k,l−1)
r,a Me2f)⊙ (w(r,k,l)Mr2f))⊗Mf2e

= ϕ(k,l−1)
r,a ((Me2f ⊙ (w(r,k,l)Mr2f))⊗Mf2e)

= ϕ(k,l−1)
r,a ⊗ ((Me2f ⊙ (w(r,k,l)Mr2f))Mf2e)

= ϕ(k,l−1)
r,a ⊗ (

2n+1∑
i=1

w
(r,k,l)
i Mri)

1419

Therefore, we have1420

mmDRUM−FL(θN,L
r , a, b) = (

N
max
k=1

ϕ(k,L)
r,a)vb

= (
N

max
k=1

((· · · (v⊤a ⊗ (
2n+1∑
i=1

w
(r,k,1)
i Mri))

⊗ (
2n+1∑
i=1

w
(r,k,2)
i Mri))

· · ·

⊗ (
2n+1∑
i=1

w
(r,k,L)
i Mri)))vb

= v⊤a (
N

max
k=1

L⊗
l=1

2n+1∑
i=1

w
(r,k,l)
i Mri)vb

= mmDRUM(θN,L
r , a, b)

1421

1422

This proposition reveals that the efficacy of1423

mmDRUM will not be impaired by applying FastLog.1424

E Discussion on Embedding-based1425

Methods1426

Knowledge graph embeddings (KGEs) (Bordes1427

et al., 2013; Wang et al., 2014; Yang et al., 2015;1428

Trouillon et al., 2016; Sun et al., 2019) are a kind of1429

typical methods for link prediction over KGs. They1430

usually represent entities and relations in KGs as1431

low-dimensional real-value vectors, and then esti-1432

mate the truth degree of a triple based on the se-1433

mantic distance or similarity calculated from entity1434

and relation embeddings. However, KGE meth-1435

ods can hardly measure the triples involving pre-1436

viously unseen entities as their embeddings have1437

not been trained. Besides, the learnt embeddings 1438

are real-value vectors that can hardly be interpreted. 1439

Adapting KGE methods to large KGs is non-trivial. 1440

Kochsiek and Gemulla (2021) employed 8 GPUs 1441

with a total of 88GB memory to train SOTA KGE 1442

methods on Wikidata5M and Freebase. In contrast, 1443

FastLog enables scalable end-to-end rule learning 1444

from large-scale KGs using a single GPU with 24 1445

GB memory. 1446

Graph neural networks (GNNs) (Schlichtkrull 1447

et al., 2018; Teru et al., 2020; Zhu et al., 2021; 1448

Zhang and Yao, 2022; Zhu et al., 2023) are a kind 1449

of embedding-based methods for link prediction. 1450

They can handle the inductive setting where miss- 1451

ing triples involve unseen entities. However, GNN- 1452

based methods are still black-box methods that are 1453

difficult to interpret. In contrast, we focus on learn- 1454

ing logical rules from large-scale KGs for better 1455

explainability. It is worth noting that TIGER (Wang 1456

et al., 2024a) employs a rapid sub-graph extraction 1457

algorithm to facilitate GNNs for link prediction 1458

over large-scale KGs. However, sub-graph extrac- 1459

tion cannot take effect in reducing the time cost 1460

in some application scenarios where the given KG 1461

has no small sub-graphs for multi-hop reasoning. 1462

Therefore, we do not consider exploiting sub-graph 1463

extraction to enhance the efficiency of end-to-end 1464

rule learning. 1465

More recently, there has been an increasing in- 1466

terest in leveraging pre-trained language models 1467

(PLMs) (Wang et al., 2021; Saxena et al., 2022; 1468

Liu et al., 2022) or even large language models 1469

(LLMs) (Luo et al., 2024; Pan et al., 2024) for 1470

link prediction over KGs. These methods are also 1471

embedding-based. They aim to leverage the pre- 1472

trained knowledge from text corpora and the con- 1473

textual information of entities and relations to en- 1474

hance the efficacy for link prediction. Based on 1475

the contextual information, PLM-based methods 1476

can handle previously unseen entities and rela- 1477

tions. However, PLMs especially LLMs require 1478

massive computation resources such as GPU mem- 1479

ory. Besides, they are black-box methods that 1480

lack interpretability. In contrast, the FastLog- 1481

enhanced methods have only moderate memory 1482

cost on GPUs, and they can interpret logical rules 1483

as explanations for missing triples. 1484

20

	Introduction
	Related Work
	Preliminaries
	The FastLog Framework
	Dynamic Pruning Strategy

	Evaluation
	Experimental Settings
	Main Results
	Discussions on Complexities and Results
	Inductive Setting

	Conclusion and Future Work
	Limitations
	Ethics Statement
	Empirical Analysis
	Analysis on Learning Longer Rules
	Analysis on Learning More Rules.
	Analysis on More Training Time
	Analysis on c1 and c2

	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8

	Formalization of Existing Methods
	The NeuralLP Method
	The DRUM Method
	The smDRUM Method
	The mmDRUM Method
	Training objective

	FastLog-enhanced Methods
	The NeuralLP-FL Method
	The DRUM-FL Method
	The smDRUM-FL Method
	The mmDRUM-FL Method

	Discussion on Embedding-based Methods

