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Abstract

Logical rules play a crucial role in the evolu-
tion of knowledge graphs (KGs), as they can
infer new facts from existing ones while pro-
viding explanations. In recent years, end-to-
end rule learning has emerged as a promising
paradigm to learn logical rules. The key insight
of end-to-end rule learning is to transform the
rule learning problem in a discrete space into
the parameter learning problem in a continuous
space, by employing TensorLog operators to
simulate the inference of logical rules. How-
ever, these TensorLog-based methods strug-
gle with limited scalability in learning rules
from large-scale KGs. To improve the effi-
ciency and scalability of end-to-end rule learn-
ing, we propose an efficient framework named
FastLog for reducing vector-matrix multipli-
cations to vector computations. FastlLog is
proven to have a lower time complexity than
TensorLog. Extensive experimental results on
a variety of benchmark KGs demonstrate that
FastLog improves the efficiency of end-to-end
methods by a significant margin without effi-
cacy degradation in link prediction. Notably,
by enhancing with FastLog, existing end-to-
end methods are enabled to learn logical rules
on two large-scale datasets with up to three
hundred million triples, while achieving a high
efficacy comparable with the most advanced
rule learner within the same training time.

1 Introduction

Knowledge graph (KG) is a popular formalism
to store real-world facts. Nowadays KGs have
been widely employed in many real-world applica-
tions, including knowledge-based question answer-
ing (Mitra and Baral, 2016), recommendation (Lyu
et al., 2020), information retrieval (Xiong et al.,
2017) etc. A KG is usually represented as a di-
rected graph where vertices are labeled by entities
and edges by relations. A fact (also called a triple)
in a KG is of the form (h,r,t), where h denotes

the head entity, r the relation and t the tail entity.
By now large-scale KGs such as YAGO (Suchanek
et al., 2007), DBpedia (Auer et al., 2007) and Wiki-
data (Vrandecic and Krotzsch, 2014) consist of
hundreds of millions of facts, underpinning various
downstream applications.

Logical rules are pivotal in KG reasoning. They
can infer new facts from existing ones and excel
in explaining why the new facts are inferred. In
recent years, end-to-end rule learning (Yang et al.,
2017; Sadeghian et al., 2019; Wang et al., 2024b;
Qi et al., 2023) becomes a popular paradigm for
learning logical rules. The key insight of end-to-
end methods is to convert the predicate selection
problem in a discrete space into the parameter learn-
ing problem in a continuous space. This conversion
enables end-to-end learning of logical rules from
noisy data (Yang et al., 2017; Ye et al., 2023).

End-to-end methods such as NeurallP (Yang
et al., 2017) and DRUM (Sadeghian et al., 2019) usu-
ally exploit TensorLog (Cohen et al., 2020) op-
erators to simulate the inference of logical rules.
Specifically, TensorLog leverages a set of adja-
cency matrices to represent the background KG,
where each adjacency matrix stores triples with
the same relation. These matrices are then used
to simulate the inference of logical rules. Fig-
ure 1 (a) illustrates an example of the calculation
processes for TensorLog operators, where both
M,,, Mr; and M are sparse matrices. We can
observe that the number of floating-point multi-
plications and additions for TensorLog in this ex-
ample is 3|K| + (2|R| + 1)|€] = 30, where |K]|
denotes the number of non-zero elements in all
sparse matrices, || (resp. |R|) denotes the total
number of entities (resp. relations). In practice,
(2|R| + 1)|&] is particularly large in real-world
KGs, e.g., (2|R| + 1)|€] = 2.6e12 for the Free-
base (Kochsiek and Gemulla, 2021) dataset. Such
a huge amount of computation may impair the
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Figure 1: Examples of the calculation processes for TensorLog and FastLog.

scalability of end-to-end methods on large-scale
KGs. As pointed out by Meilicke et al. (2024),
by now there is no end-to-end approach that has
evaluation reports on large-scale KGs such as Wiki-
dataSM (Wang et al., 2021) and Freebase.

To enable practical end-to-end learning of logi-
cal rules from large-scale KGs, we propose a novel
computational framework named FastLog. It intro-
duces a sequence of vector operators to simulate the
inference of logical rules. These vector operators
reduce vector-matrix multiplications into vector
computations, thereby considerably decreasing the
time complexity. Figure 1 (b) illustrates an exam-
ple of the calculation processes for FastLog oper-
ators, where both Fyor, Fror and Fiye are vector-
based operators designed in FastLog. We can ob-
serve that the number of floating-point multiplica-
tions and additions for FastLog in this example is
2|K] = 21 < 30. This reveals that FastLog has
a lower computation cost than TensorLog in real-
world KGs. For example, we have (2|R|+1)|&| =
2.6e12 > 2|K| = 1.5¢9 on the Freebase dataset.

Furthermore, we introduce a dynamic pruning
strategy to further reduce the time complexity of
the backward propagation steps for FastLog. This
strategy omits intermediate hidden states that have
relatively low impacts on the reasoning process. By
applying this dynamic pruning strategy, we show
in Proposition 6 that the time complexity of a back-
ward propagation step in FastLog can be further
reduced to a constant. Thanks to the relatively low
time complexity of FastLog, existing methods en-
hanced by FastlLog become capable of learning
rules from very large KGs (e.g., Freebase) with
limited time cost (e.g., several hours).

We apply FastLog to enhancing four state-of-

the-art (SOTA) end-to-end methods, including
NeurallLP, DRUM, smDRUM (Wang et al., 2024b), and
mmDRUM (Wang et al., 2024b). We empirically evalu-
ate the original methods and the FastLog-enhanced
ones for link prediction on totally ten benchmark
KGs, among which six are relatively small, two are
large-scale, and two are under the inductive setting.
Experimental results on the six relatively small
KGs demonstrate that the four FastLog-enhanced
methods achieve 2.5x to 50x speedups compared
to their original methods, while keeping almost
the same efficacy in link prediction. For the two
large-scale KGs, the FastLog-enhanced methods
exhibit comparable efficacy in link prediction as
the currently most advanced search-based method
AnyBURL (Meilicke et al., 2024), by spending the
same training time. For two datasets under the
inductive setting, the FastLog-enhanced methods
significantly outperform AnyBURL by a significant
margin in the link prediction task.

2 Related Work

Learning logical rules from knowledge bases (KBs)
has been widely studied in the field of Inductive
Logic Programming (ILP) (Muggleton and Raedt,
1994; Zeng et al., 2014), where logical rules are
learnt in a generate-and-test manner. This man-
ner is a two-step pipeline that first generates log-
ical rules from relational paths in a KB, and then
filters rules with high confidence scores based on
some tests. Modern ILP methods like AMIE+ (Galar-
raga et al., 2015) and AnyBURL (Meilicke et al.,
2024) learn logical rules from KGs based on the
Closed-World Assumption (CWA) (Galdrraga et al.,
2013). More specifically, they treat triples outside
a KG as negative examples and exploit various



search heuristics to efficiently learn rules. They
are called search-based methods due to the use of
heuristic search strategies. According to the em-
pirical study conducted by Meilicke et al. (2024),
only AnyBURL among the above search-based meth-
ods demonstrates the capability to learn logical
rules from KGs containing more than 100 million
facts. However, AnyBURL requires massive main
memory (e.g., 900GB RAM for Freebase) to build
up index structures for accelerating reasoning. In
contrast, all FastLog-enhanced methods can run
within 25GB RAM in conjunction with a single
NVIDIA 4090 GPU with 24GB memory.

More recently, there has been an emerging inter-
est in exploiting end-to-end methods (Yang et al.,
2017; Sadeghian et al., 2019; Qi et al., 2023; Wang
et al., 2024b) for rule learning. They usually param-
eterize a neural network to simulate the inference
of logical rules by employing TensorLog (Cohen
et al., 2020) operators and tune the parameters of
the neural network by gradient descent. Thanks
to the end-to-end learning manner, these methods
work well with imperfect data (Yang et al., 2017) in
learning logical rules. Despite their successes, the
scalability of end-to-end methods is still limited.
As far as we know, there is no end-to-end method
that can perform rule learning on large-scale KGs.
To facilitate existing end-to-end methods to learn
logical rules from large-scale KGs, we propose
an efficient framework named FastLog that has a
lower time complexity than TensorLog.

3 Preliminaries

Knowledge graph. Let £ be a set of entities and R
a set of relations, a knowledge graph G is a subset
of EXRXE. Speciﬁcally, g = {(hz, T, ti)}1§i§N7
where N denotes the number of triples, h; € £ the
head entity for the i*" triple, ; € R the relation
for the i*" triple and ¢; € & the tail entity for the
it" triple. By ~ we denote the inverse relation of
r € R. The set of inverse relations for R, namely
{r= | r € R}, is denoted by R~. Accordingly,
the equivalent knowledge graph for G composed by
inverse relations, namely {(t,7,h) | (h,r,t) €
G}, is denoted by G~

Chain-like rule. An atom is a basic first-order
logic formula of the form p(us, ..., u,), where p
is a predicate and uy, . . ., u, are terms that denote
either constants or variables. An r-specific chain-
like rule (CR) R for is of the form:

r(x,y) < p1(x, 21)Ap2(21, 2) A . ApL(20-1, V),

where x (resp. y) is the head (resp. tail) entity vari-
able, z1, ...,zr,_1 are other variables, p1, ..., pr,
are predicates, and  denotes the predicate of a new
fact that inferred by a r-specific CR. The part of R
at the left (resp. right) of < is called the head (resp.
body) of R. To uniformly represent r-specific CRs
using fixed-length bodies, DRUM (Sadeghian et al.,
2019) introduces the identity relation (denoted by
I) to rule bodies. For example, (z,y) < p(x,y)
can be converted into a rule with two body atoms,
namely r(x,y) < p(x,z) A I(z,y).

TensorLog operators. End-to-end methods (Yang
et al., 2017; Sadeghian et al., 2019; Wang et al.,
2024b) aim to convert the discrete rule learning
problem into a parameterized optimization problem
in a continuous space, where the learnt rules are
extracted from their parameter assignments. The
TensorlLog (Cohen et al., 2020) framework is the
foundation for end-to-end rule learning to simulate
the inference of CRs. We elaborate on the formal-
ization of TensorlLog as follows.

Suppose R = {ri}1<i<n, its corresponding
set of inverse relations R~ = {r;},41<i<on and
I = ron4+1, where n denotes the number of re-
lations and r;1, = r; forall1 <7 < n. Let
G be a knowledge graph. TensorLog first repre-
sents the background knowledge K = GU G~ U
{I(e,e) | e € £} by a set of sparse adjacency ma-
trices { M, }1<i<an+1, Where M, € {0, 1MElxe]
is a sparse adjacency matrix to store the set of
triples {(h,r;,t) € K}. For an arbitrary triple
(x,r,y) € € X R x &, given the maximum num-
ber N of rules to be learnt, the maximum length
L of each rule and a set of trainable parameters
o = {wl(r’ ’l)}1§k§N,1gsz,1§i§2n+1 for r, for
all1 <k < N,1 <[ < L, the intermediate truth
degrees qbq(nffg}l) € RI€l are estimated by

2n+1

ptkD) = qu“l UML), )

where ng% = v, v, € {0, 1}/ denotes the one-
hot representation of entity . w(™*b € [0, 1)1
denotes the predicate selection weights, and it is
confined to [0, 1]2"*1 by a softmax layer. The truth
degree of (x,r,y) is calculated by

Z¢ v, (@)

where v, € {0, 1}|5| denotes the one-hot represen-
tation of entity y. Intuitively, the estimated truth
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degree TensorLog(G,{V’L, x,y) reflects the degree

of whether the triple (z,r,y) can be inferred by a
certain rule among N-CRs.

Throughout the paper, we consider the worst-
case time complexity for the training phases of
end-to-end methods, where the time complexity
is derived based on the number of floating-point
multiplications and additions. The following Propo-
sition 1! shows the time complexity of TensorLog.

Proposition 1. Let K = GUG U{I(e,e) | e €
E}. The time complexity of a forward computation
step for TensorLog is O(NL(|K| + |R||E|)). The
time complexity of a backward propagation step
for TensorLog is O(NL(|K| + |R||E])).

4 The FastLog Framework

To reduce the time complexity of TensorLog, we
propose FastlLog, an efficient framework to scale
existing end-to-end approaches to learn rules on
large-scale KGs. The intuition of FastLog is to
convert the sparse vector-matrix multiplications
used in TensorlLog into vector operations, thereby
improving efficiency. Figure 1 illustrates examples
of the calculation processes for TensorLog and
FastLog. It can be seen that a sequence of
vector-matrix multiplications used in TensorLog is
equivalent to several steps of vector operations in
FastLog. Besides, we find that vector operations
in FastLog have both lower time cost and lower
space cost than vector-matrix multiplications in
TensorlLog when the proportion of non-zero ele-
ments in sparse matrices is below a certain value.
We will elaborate on this value in the discussions
of Proposition 2 and Proposition 4.

To implement FastLog operators, we first in-
troduce three vector-based functions. The first
function, denoted by Feor, maps the intermedi-
ate estimated truth degrees, represented as a |£|-
dimensional vector, to a |K|-dimensional vector.
Similarly, the second function, denoted by Fof,
maps the predicate selection weights, represented
as a (2|R| + 1)-dimensional vector, to a |K|-
dimensional vector. The third function, denoted
by Fioe, aggregates a |KC|-dimensional vector to a
|€|-dimensional vector.

Suppose K = GU G~ U {l(e,e) | e € £} =
{Tj}1§j§2|g|+|g|. For all 1 <1 < VC|, fegf :
RI€l — RIXl s a function such that the i-th element

'All proofs of this work are moved to Appendix B.

of Feor(v) is
[Feot(v)]i = [v]head(r:)» 3)

where v € RI€l denotes the input vector, and
head(7) is a function that returns the index (in
[1,|€]]) of the head entity of the triple 7. For all
1 <i<I|K|, Fror : RERIFL 5 RIFT s a function
such that the i-th element of Frof(v) is

[fr?f(v)]i = [v]rel(n)7 “4)

where v € R2RI+1 denotes the input vector, and
rel(7) is a function that returns the index (in
[1,2|R| + 1]) of the relation of the triple 7. Let
tail(7) be a function that returns the index (in
[1,|€]]) of the tail entity of the triple 7. For all
1<i <&, Fize : RIFI — RI€l is a function such
that the i-th element of Fyoe(v) is

>, )

j:tail(7;)=i

[Fr2e(v)]i =

where v € RIXI denotes the input vector. For an
arbitrary triple (z,r,y) € £ x R x &, forall 1 <
k < N,1 <[ < L, the intermediate truth degrees
gzﬁ,%” e Rl are estimated by

D = Fige(Fear (9% 1) © Frap(w™F)),
(6)
where gb?(nﬁgo) = v;r , and ® denotes the element-
wise product. The truth degree of (z,r,y) is esti-

mated by

N
FastLog(6,"", z,y) = Z oMo, ()
k=1

where 67" = {wgnk,l)}1§k§N,1§l§L,1§i§2n+1 is
a set of trainable parameters for the head relation
r. The following Proposition 2 illustrates the time
complexity of FastLog.

Proposition 2. The time complexity of a forward
computation step for FastLog is O(NL|K|). The
time complexity of a backward propagation step
for FastLog is O(NL|K)).

The time complexity of FastLog is generally
lower than TensorLog, as it holds that |K| <
|R||€| in many real-world scenarios. For exam-
ple, the Freebase (Kochsiek and Gemulla, 2021)
dataset has |KC|=338M, |£|=86M and |R|=15k. It
holds that |R||€| > |K|. The following Proposi-
tion 3 demonstrates the correctness of FastLog.




Proposition 3. For an arbitrary triple (a,r,b) €
E X R x & VN > 1,L > 1
L

TensorLog(OrN’L,a, b) = FastLog(GTN’ ,a,b).

Due to the space limitation, detailed formaliza-
tions of all FastLog-enhanced methods are moved
to Appendix D.

4.1 Dynamic Pruning Strategy

Let m be the mini-batch size. The following
Propositions 4-5 show the space complexity of
TensorlLog and that of FastLog, respectively.

Proposition 4. The space complexity of a forward
computation step for TensorlLog is O(m/|E|). The
space complexity of a backward propagation step
for TensorLog is O(mNL|R||&|).

Proposition 5. The space complexity of a forward
computation step for FastLog is O(m|K|). The
space complexity of a backward propagation step
for FastLog is O(mNL(|€| + |K])).

Note that the space complexity is derived from
the number of floating-point numbers that must be
stored during the reasoning process. From Proposi-
tions 3-4, we can infer that FastLog consumes less

memory than TensorLog when |K| < (LIRI+D)IE]

L+1
LIRI+1)|E] -
In general, we have I < %H)H 1n most prac-

tical scenarios due to the sparsity of real-life KGs.
To further improve the efficiency, we propose

a dynamic pruning strategy to further control the
space complexity of a backward propagation step
for FastLog. The intuition of this strategy is to fil-
ter out the reasoning paths that have relatively low
impacts on reasoning. Given two hyper-parameters
c1 and co, we refine the functions Feo¢, Frof and
Fioe to achieves this strategy. The refined version
of Feof, denoted by Fo <op» 1 defined as

Fr(T) = {(G:9) | (i,8) € T(T), head(ry) = i}, (8)
where T is a set of tuples. 7%(T) is a function that
returns the top-k tuples from T, where the tuples
are ordered by the maximum value of their second
elements. The refined version of F,o¢, denoted by
]:"fgf, is defined as

]:-r?f(’]rvw) = {(iawrel(n)s) I (i’ S) €T (T)}v (9)
The refined version of Fpe, denoted by ff;e, is
defined as

Fioe(T) = {(tail(r;), > )| (i,s) € T}

(#,s") €T, tail(r; )=tail(7;)

(10)

Forall1 < k < N,1 <1< L, the set ¢\"2) of
intermediate truth degrees are estimated by

¢(k = -FfQE(ﬁrCZQf(ﬁg%f(qgg‘%l_l))v wlB)) (1)

where qb,]fjg = {(Z(x),1)} and Z(e) is a function
that returns the index of e (in [1,|£]]). The truth
degree of (x,r,y) is estimated by

N
FastLog®“ GNL, Z Z

F=1(z(y), e)eqss’;“

- (12)

The following Proposition 6 shows the time com-
plexity of FastLog®“2,

Proposition 6. The time complexity of a forward
computation step for FastLog® 2 is O(NL(|E| +
IC|)). The time complexity of a backward propaga-
tion step for FastLog®*? is O(N Lcs).

Note that FastLog uses the RadixSelect (Alabi
et al., 2012) algorithm to implement the top-k func-
tion 7%, which has a worst-case complexity of
O(N) (Zhang et al., 2023), where N denotes the
total number of elements. Proposition 6 reveals that
we can control the time complexity of a backward
propagation step for FastLog by setting co, where
it can be that ¢ < |K| in practice. Propositions 7
shows the space complexity of FastLog® 2.

Proposition 7. The space complexity of a forward
computation step for FastLog® 2 is O(m|K]).
The space complexity of a backward propagation
step for FastLog® 2 is O(mN L(cy + c2)).

Proposition 8 shows that FastLog amounts to a
special case of FastLog® 2.

Proposition 8. Given a knowledge graph G, for
an arbitrary triple (a,r,b) € & x R x &,
YN > 1,L > 1 FastLog(GﬁV’L,a,b) =
FastLogléKI(NE a, b).

5 [Evaluation

5.1 Experimental Settings

Datasets. We conducted experiments in link
prediction on six benchmark datasets, including
Family (Yang et al., 2017), Kinship (Kok and
Domingos, 2007), UMLS (Kok and Domingos,
2007), WN18RR (Dettmers et al., 2018), FB15k-
237 (Toutanova and Chen, 2015) and YAGO3-
10 (Suchanek et al., 2007). We also conducted
experiments on two large KGs WikidataSm (Wang
et al., 2021) and Freebase (Kochsiek and Gemulla,
2021). Statistical details are reported in Table 1.



Dataset €] IR|  |Gtrain|l  [Gvalida| |Gtestl |K|
Family 3K 12 23.5K 2K 2.8K 50K
Kinship 104 25 3.2K 2.1K 5.3K 6.5K
UMLS 135 46 2K 1.3K 3.3K 4.1K
WNI18RR 41K 11 87K 3K 3.1K 215K
FB15k-237 15K 237 272K 17K 20K 559K
YAGO3-10 123K 37 1,079K 5K 5K 2,281K
WikidataSM  4,594K 822  20,625K 5.2K 5.3K 45,844K

Freebase 86,054K 15K 338,586K 10K 10K 763,226K

Table 1: Statistics of experimental datasets.

FB15k-237 ‘ NELL-995

Type ‘

(Version) | |g]  |R| |Gera.| [Gval.| [Geestl| €] [R| [Gera.| |Grar.| [Grest|
Train (V1) | 16K 179 42K 489 492 | 31K 14 47K 414 439
Test (V1) LIK 179 20K 206 205 | 225 14 833 101 100

Train (V2) 26K 200 97K 12K 1.2K
Test (V2) 1.7K 200 4.1K 469 478

2.6K 88 82K 922 968
21K 88 4.6K 459 476

Test (V3) 25K 215 74K 866 865 3.6K 142 8.0K 811 809

Train (V4) 47K 219 27K 34K 34K
Test (V4) 31K 219 12K 14K 14K

21K 76 75K 876 867

Train (V3) 37K 215 18K 22K 22K ‘ 46K 142 16K 19K 19K
‘ 28K 76 7.1K 716 731

Table 2: Statistics of datasets for the inductive setting.

For a more comprehensive evaluation, we also
conducted experiments on two datasets FB15k-
237 (Teru et al., 2020) and NELL-995 (Teru et al.,
2020) under the inductive setting. Note that these
two datasets have four different versions corre-
sponding to four different dataset splitting. Sta-
tistical details for all versions of the two datasets
under the inductive setting are reported in Table 2.
Evaluation Metrics. For each test triple (h,r,t)
in evaluation, we built two queries (h,r,?) and
(t,7~,7). We computed the truth degrees for cor-
rupted tail triples and then computed the rank of the
correct answer. Based on the rank, we reported the
Mean Reciprocal Rank (MRR for short) and Hit@k
(H@k for short) metrics under the filtered setting
introduced by (Bordes et al., 2013). Following the
work (Qu et al., 2021), the rank of the correct an-
swer is defined by j + (k + 1)/2 in our evaluation
setting, where j is the number of corrupted triples
with higher truth degrees than the correct answer
and k the number of corrupted triples with the same
truth degree as the correct answer.
Implementation Details. = We implemented
FastLog 2 by Pytorch 2.4.0. All experiments were
conducted on a Linux machine equipped with an
Intel Xeon Gold 6338N CPU processor with 1TB
RAM and an NVIDIA 4090 GPU with 24GB mem-
ory. Note that we require 1TB RAM to reproduce
the results of AnyBURL, as AnyBURL requires 900GB
RAM to learn rules from Freebase (Meilicke et al.,

2Code and data are available at: link removed during
double-blind reviewing.

2024). FastLog only requires a maximum 25GB
RAM for training and evaluation.

5.2 Main Results

To reduce bias, we evaluated each method us-
ing five distinct random seeds {1, 12, 123, 1234,
12345}. For each metric, we report the mean
scores based on five runs. Table 3 (resp. Ta-
ble 4) reports the comparison results on Family,
Kinship and UMLS (resp. WN18RR, FB15k-237
and YAGO3-10). Note that we did not apply the
dynamic pruning strategy for Family, Kinship and
UMLS due to their small size. Results show that the
FastLog-enhanced methods achieve 2.5x to 50x
speedups over their original methods. In particu-
lar, the original DRUM, smDRUM and mmDRUM methods
cannot complete training on FB15k-237 within a
limited time (1 day), while all original methods can-
not complete training on YAGO3-10. In contrast,
all FastLog-enhanced methods can complete train-
ing on FB15k-237 and YAGO3-10. These results
confirm the high efficiency of FastLog. Further-
more, we can observe that only a few efficacy dif-
ferences between the FastLog-enhanced methods
and the original methods are statistically significant
by two-tailed t-tests. These results demonstrate
that FastLog keeps comparable efficacy of existing
end-to-end methods. Besides, it can be seen that
FastlLog may spend slightly more GPU memory
on Family, Kinship and UMLS, which is consis-
tent with the space complexity results. Given the
high efficiency achieved by FastLog, these slight
increases in memory usage are acceptable.

Table 5 reports the comparison results on two
large-scale datasets. Results show that all the orig-
inal end-to-end methods cannot work on Wiki-
data5M and Freebase due to running out of mem-
ory (OOM). In contrast, the FastLog-enhanced
methods can achieve comparable MRR scores
on these datasets with the SOTA search-based
method AnyBURL. This implies that FastlLog is
able to upgrade existing end-to-end methods to
learn rules from large-scale KGs. Note that
all FastlLog-enhanced methods cannot outper-
form AnyBURL within the same training time (i.e.,
20,000s). This may be because all FastLog-
enhanced methods only learn chain-like rules for
reasoning, whereas AnyBURL learns both chain-like
rules and logical rules with entity constants. In
general, learning more complex forms of rules may
result in better efficacy in link prediction. To ver-
ify this, we created a variant of AnyBURL, denoted



Family ‘ Kinship ‘ UMLS

Method ‘ MRR H@l H@3 H@l10 TT MC ‘ MRR H@! H@3 H@I0 TT MC ‘ MRR H@l H@3 H@l0 TT MC

NeurallLP 0923  87.1 972 987 448 0.5GB| 0468 304 547 826 73s 04GB| 0.686 533 81.0 930 73s 04GB
NeuralLP-FL | 0926 875 974 988 147s 0.7GB| 0472 305 553 843 29s 0.6GB| 0.707 551 841 93.6 195 0.5GB
A (10.003) (10.4) (10.2) (10.1) (13.0x) (J0.2) | (10.004) (10.1) (10.6) (T1.77) (12.5x) (10.2) | (10.0217) (11.8) (13.17) (10.6) (13.8x) (J0.1)
DRUM 0.941 89.8 982 99.0 565s 0.7GB| 0471 30.0 550 845 132s 0.5GB| 0.706 56.1 821 939 111s 0.5GB
DRUM-FL 0.951 920 980 99.0 158 1.1GB| 0475 304 555 855 37s 0.7GB| 0742 603 863 947 22s 0.6GB
A (10.010) (12.2) (10.2) (-)  (13.6x) (J0.4) | (10.004) (10.4) (10.5) (T1.0) (13.6x) (10.2) | (10.036") (14.2%) (14.2%) (10.8") (15.0x) (J0.1)
smDRUM 0957 92,6 984 99.0 1119s 1.0GB| 0425 25.1 498 82.1 303s 0.6GB| 0.738 60.1 84.8 943 179s 0.6GB
smDRUM-FL 0959 930 984 99.0 190s 1.2GB| 0439 263 51.5 842 40s 0.7GB| 0.744 614 850 944 30s 0.6GB
A (10.002) (104 (-)  (-)  (159x) (J0.2) | (10.014) (11.2) (T1.7) (12.17) (17.6x) (J0.1) | (10.006) (11.3") (10.2) (10.1) (16.0x) (-)

mmDRUM 0904 830 969 989 1072s 1.0GB| 0286 13.0 30.7 668 214s 0.6GB| 0465 31.8 520 793 22Is 0.6GB
mmDRUM-FL 0926 860 97.8 99.0 166s 12GB| 0.304 133 310 684 38 0.7GB| 0478 329 541 783 23s 0.6GB
A (10.0227) (13.0") (10.9%) (10.1) (16.5x) (J0.2) | (10.018) (10.3) (10.3) (T1.6) (15.6x) (J0.1) | (10.013) (T1.1) (12.1) ((1.0) (19.6x) (-)

Table 3: Comparison results on Family, Kinship and UMLS, where TT abbreviates the training time, MC the memory
cost on GPU and GB the Gigabytes. The differences marked by * are statistically significant with p-value<0.05 by

a two-tailed t-test. A denotes the performance difference.

| WNISRR | FB15k-237 | YAGO3-10
Method | MRR H@! H@3 Hel0 TT MC | MRR H@! H@3 Hel0 TT MC | MRR Hel H@3 Hel0 TT  MC
NeurallP 0450 417 457 516 22h  25GB| 0335 249 364 506 23h  8.6GB | - - >lday 16.8GB
NeuralLP-FL | 0450 417 457 519 551s 10GB| 0334 249 364 508 07h 20GB | 0513 432 556 660 55h 59GB
A (=) () () (1037 (114.2x) (L1.5) | 0.1 (-)  (10.1) (10.2) (132.6x) (16.6) | (-)  (-) () (-) (I=44x) ([10.9)
DRUM 0459 422 471 533 22h  45GB| - - - - >lday 224GB| - - - - >lday 224GB
DRUM-FL 0459 422 471 536 6l0s 15GB| 0339 252 517 1.6h  44GB | 0431 354 475 581 9.6h  155GB
A (-) (=) (=) (1037 (113.2x) (13.0) | (-) () (-) (=) (=l6x) (L18) | (-)  (-) (=) (-) (I=50x) (16.9)
SMDRUM 0410 356 432 517 4h  59GB| - - >lday 239GB| - - - >1day 23.0GB
STDRUM-FL | 0421 374 437 514 5465 1.8GB| 0280 187 464 17h  52GB | 0446 319 511 632 135h  13.7GB
A (10.011) (11.8) (10.5) (10.3) (126.5%) (4. | (-) (=) () (-) (=16 BN (-) (-) (-) (=) (@=36x) (19.3)
mmDRUM 0416 361 440 511 25h  59GB| - - - - >lday 239GB| - - - - >lday 233GB
mmDRUM-FL | 0420 37.0 442 512 556 1.8GB| 0219 137 241 398 17h 42GB | 0365 246 414 557 11.6h 14.8GB
A (10.004) (10.9) (10.2) (10.1) (T16.5x) (4. | (-)  (-)  (-) () (=169 19D (-) () (-) (-) (=42x) (8.5)

Table 4: Comparison results on WN18RR, FB15k-237 and YAGO3-10, where TT abbreviates the training time,
MC the memory cost on GPU and GB the Gigabytes. The differences marked by * are statistically significant with

p-value<0.05. A denotes the performance difference.

=Om AnyBURL
= = DRUM-FL

=@= NeuralLP-FL
AnyBURL (w/o con.)

334

Hit@1

27+ 26.4 26,6 26.6 26,6 26.6

26125.9

5000 10000 20000 30000 40000 50000 60000 70000 80000
Training time (seconds)

26.5 26.5 26.5

Figure 2: Comparison results for longer training time.

by AnyBURL (w/o constants), which only learns
chain-like rules for reasoning. We can observe
that the efficacy of AnyBURL significantly drops
when only chain-like rules are learnt, and that DRUM-
FL can outperform this variant in Hit@1 on both
datasets. These results further affirm the effec-
tiveness of the FastLog-enhanced methods. Be-
sides, we show in Figure 2 that both NeurallLP-FL
and DRUM-FL can benefit from more training time,
whereas AnyBURL and its variant cannot achieve
better efficacy by increasing the training time.

To verify the effectiveness of the proposed dy-

namic pruning strategy, we create a variant denoted
by X-FL (w/o PS) for each FastlLog-enhanced
method by omitting the dynamic pruning strategy.
We can observe that all variants cannot work on
Freebase due to OOM. This indicates that the pro-
posed dynamic pruning strategy is crucial for re-
ducing the memory consumption of FastLog.

5.3 Discussions on Complexities and Results

From Proposition 1-2 we know that FastLog have
a lower time cost than that of TensorlLog, espe-
cially for those KGs that are relatively sparse (i.e.,
|R||€] > |K|). Empirical results on Table 3-4
show that the FastLog-enhanced methods always
have lower training time costs than that of their
original methods, especially for sparse KGs like
WNI18RR, FB15k-237 and YAGO3-10. These
findings align with the theoretical time complex-
ity results we derived. Similarly, from Proposi-
tion 4-5 we know that FastLog demonstrates a
lower memory cost than TensorLog when |K| <
%ﬁ)'g' ~ |R||€|. This is consistent with the
results presented in Tables 3-5, where FastLog-
enhanced methods show higher memory costs on



| WikidataSM | Freebase
Method

‘ MRR H@l H@3 H@I0 TT ET MC ‘ MRR H@l H@3 H@I10 TT ET MC
AnyBURL (Meilicke et al., 2024) | 0.355 31.3 37.2 43.2 20000s  18469s 0.573  50.6 60.5 67.6 20000s  9672s
AnyBURL (w/o constants) 0.304  26.6 31.8 36.4 20000s  20919s 0.544 477 57.6 64.4 20000s  10305s
NeurallLP - - - - - OOM - - - - - - OOM
NeurallLP-FL 0.329 289 347 40.2 20000s 337s 11.0GB | 0.537 475 56.8 63.7 20000s  8037s 9.7GB
NeurallLP-FL (w/o PS) 0.328 287 34.6 40.3 20000s 506s 19.2GB - - - - - - OOM
DRUM R - - - R R 00OM R R R R R R 00M
DRUM-FL 0.338  29.7 35.7 41.1 20000s 342s 13.0GB | 0.544 48.0 57.5 64.6 20000s  8029s 11.5GB
DRUM-FL (w/o PS) 0.334 293 353 40.9 20000s 473s 20.4GB - - - - - - OOM
smDRUM - - - - - - OOM - - - - - - OOM
smDRUM-FL 0.301 25.6 31.9 37.6 20000s 342s 13.4GB | 0.530 45.7 56.3 64.1 20000s  8179s 11.4GB
smDRUM-FL (w/o PS) 0.297 253 314 37.1 20000s 499s 21.2GB - - - - - - OOM
MMDRUM B - - - R - 0OM R R - - R B 0OM
mmDRUM-FL 0.278 232 29.6 355 20000s 347s 14.0GB | 0.510 43.8 54.2 62.6 20000s 8185 11.4GB
mmDRUM-FL (w/o PS) 0.276  23.0 29.2 35.0 20000s 493s 21.2GB - - - - - OOM

Table 5: Comparison results on WikidataSM and Freebase, where TT abbreviates the training time, MC the memory
cost on GPU and GB the Gigabytes. The best value of each column has been highlighted.

FB15k-237 (Inductive setting) ‘ NELL-995 (Inductive setting)

\
Method

| Vi | V2 | V3 | V4 | Vi | V2 | V3 | V4

‘ MRR Hel ‘ MRR Hel ‘ MRR Hel ‘ MRR Hel ‘ MRR Hel ‘ MRR Hel ‘ MRR Hel ‘ MRR Hel
AnyBURL(L = 3) 0.366 30.5 0.477 36.8 0.447 334 0.424 31.6 0.734 67.5 0.438 329 0.373 28.9 0.362 20.7
AnyBURL(L = 6) 0.369 30.2 0.458 34.8 0.449 34.1 0.430 31.9 0.633 475 0.435 314 0.371 28.9 0.364 21.1
AnyBURLT (L = 3) | 0.362 30.0 0.476 37.2 0.447 334 0.429 31.7 0.723 65.5 0.446 33.1 0.359 27.2 0.369 21.8
AnyBURL" (L = 6) | 0.364 29.5 0.373 36.3 0.408 30.3 0.427 31.7 0.611 44.5 0.431 329 0.362 28.1 0.363 213
DRUM-FL (L = 3) 0.416 34.4 0.514 41.7 0.489 39.4 0.471 37.0 0.748 68.0 0.526 40.8 0.485 389 0.384 25.7
DRUM-FL (L = 6) 0.468 38.0 0.521 422 0.493 39.7 0.469 36.9 0.671 57.0 0.501 38.1 0.487 389 0.439 311

Table 6: Comparison results on four versions of FB15k-237 and NELL-995 under the inductive setting.

datasets such as Family, Kinship, and UMLS, but
significantly lower memory costs on larger datasets.
Finally, from Proposition 6-7, we establish that
FastLog can achieve a lower time and memory
cost when the dynamic pruning strategy is applied
and ¢ < |KC|. This is corroborated by the results in
Table 5, where all FastLog-enhanced methods ex-
hibit superior efficiency compared to their variants
without the dynamic pruning strategy.

5.4 Inductive Setting

By comparing AnyBURL (i.e., AnyBURL (w/o con-
stants)) and AnyBURL, we know that the logical
rules with entity constants contribute to the high ef-
ficacy of AnyBURL. Note that the logical rules with
entity constants cannot generalize to the inductive
setting where missing facts involve unseen entities.
To verify this, we conducted experiments on four
versions of FB15k-237 and NELL-995 under the in-
ductive setting, as reported in Table 6. We followed
the same inductive setting as the work (Teru et al.,
2020), by using Gyrain in the training data for train-
ing and using Gyesq in the test data for evaluation,
where the background knowledge for test is Girain
in the test data. Results show that AnyBURL cannot
benefit from the rules with entity constants on all
datasets. Besides, we found that both AnyBURL and

AnyBURLT cannot benefit from learning longer rules.
In contrast, DRUM-FL benefits from learning longer
rules on most datasets, significantly outperforming
both AnyBURL and AnyBURL on all datasets. These
results reveal that learning logical rules with entity
constants makes AnyBURL overfit the training data,
resulting in limited efficacy under the inductive
setting. In contrast, the FastLog-enhanced meth-
ods demonstrate better efficacy under the inductive
setting thanks to their end-to-end learning manner.
More analysis can refer to Appendix A.

6 Conclusion and Future Work

In this paper we have proposed an efficient frame-
work named FastLog for end-to-end rule learning.
We have proposed a novel vectorization optimiza-
tion and a dynamic pruning strategy in FastLog to
significantly reduce the time cost. Experimental
results on six benchmark datasets demonstrate that
the four FastLog-enhanced methods achieve 2.5x
to 50x speedups compared to their original meth-
ods, while keeping comparable efficacy in link pre-
diction. Furthermore, FastLog can upgrade four
end-to-end methods to learn rules from two large-
scale KGs that contain up to three hundred million
triples. Future work will exploit FastLog to learn
more complex logical rules for better efficacy.



7 Limitations

The major limitation of FastLog may be that all
the FastLog-enhanced methods in this work learn
chain-like rules only. In general, learning logical
rules in a more complex form can help improve the
efficacy for link prediction. For example, Table 5
shows that AnyBURL can benefit a lot from learn-
ing logical rules with entity constants. In practice,
upgrading existing end-to-end methods to learn
more complex rules is non-trivial. It requires well-
designed neural modules to capture constraints on
entity variables or on atoms, which is beyond the
scope of this work. Therefore, we leave this inves-
tigation to future work. In more detail, our future
work plans to exploit FastLog to learn logical rules
with entity constants (Meilicke et al., 2024) and log-
ical rules with type constraints (Wu et al., 2022).

8 Ethics Statement

This work presents FastLog, a framework for effi-
cient end-to-end rule learning. Our evaluations rely
on publicly available datasets, such as Freebase
and Wikidata, which are widely used in academic
research and do not contain private or sensitive in-
formation. We ensure that FastLog operates fairly
across diverse datasets and provides transparency
on its limitations to avoid unintended bias. While
FastLog aims to improve the scalability and effi-
ciency of KG reasoning, we emphasize the need
for responsible use, particularly in sensitive appli-
cations. We encourage continuous monitoring and
human oversight when deploying FastLog-based
systems to mitigate potential risks.
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A Empirical Analysis

A.1 Analysis on Learning Longer Rules

To verify whether the search-based method
AnyBURL and the FastLog-enhanced methods can
benefit from learning longer rules, we conducted
an analysis on the efficacy of DRUM-FL using vary-
ing hyper-parameter L settings within a training
time limit of 20,000 seconds, as reported in Ta-
ble 7. We also created a variant (denoted by
AnyBURLT) of AnyBURLby omitting the learning of
logical rules with entity constants for a more com-
prehensive comparison. We can observe that both
AnyBURL and AnyBURL' fail to be evaluated on
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Figure 3: Analysis on different hyper-parameters

Wikidata5M within a reasonable time when longer
rules (L > 3) were learnt. This can be attributed
to the fact that reasoning with longer rules is time-
consuming for search-based methods. In contrast,
thanks to the highly parallel implementation of
FastLog on a GPU, the FastLog-enhanced method
DRUM-FL can be effectively evaluated on Wiki-
dataSM within 1,000 seconds. In more detail, DRUM-
FL achieves a 53.5x speedup over AnyBURL in eval-
uation efficiency when L = 3, with the speedup be-
coming even more evident as L increases. These re-
sults imply that the FastLog-enhanced methods are
effective in learning longer rules. Besides, learning
too many rules also impairs the explainability of
AnyBURL.

The sub-figures (a) and (e) (resp. (i) and (m)) in
Figure 3 illustrate the evaluation results of DRUM-FL
using different L on the Wikidata5M (resp. Free-
base) dataset. We found that DRUM-FL achieves
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the highest MRR and Hit@1 scores on both Wiki-
data5M and Freebase when L = 3, implying that
DRUM-FL cannot benefit from learning longer rules.
The reasons may be two-fold. Firstly, the train-
ing efficiency of DRUM-FL decreases as L increases,
which in turn impairs the efficacy for link predic-
tion under the same training time limit. Secondly,
the search space increases exponentially with the
increasing of L. This imposes a great challenge for
end-to-end rule learning methods to learn precise
rules on large-scale KGs, thereby leading to the
decline of MRR and Hit@1 scores. Nevertheless,
compared to search-based methods, the FastLog-
enhanced methods are more effective in learning
longer rules.

A.2 Analysis on Learning More Rules.

To verify whether the FastLog-enhanced methods
can benefit from learning more rules, we conducted



| Wikidata5SM

Method | MRR H@! H@3 H@I0ECP ET  NLR
AnyBURL(L = 1) | 0.334 292 351 409 100% 58225 7.0M
AnyBURL(L = 2) | 0.351 30.8 368 42.6 100% 13940s 6.4M
AnyBURL(L = 3) | 0.355 313 37.2 432 100% 18469s 6.2M
AnyBURL(L = 4) - - - - 47% >1day 5.2M
AnyBURL(L = 5) 32% >1day 4.7M
AnyBURL(L = 6) 0.5% >lday 4.3M
AnyBURLT (L =1) | 0070 66 72 73 100% 1s  IK
AnyBURLT (L = 2) | 0209 18.6 222 238 100% 237s 30K
AnyBURLT (L = 3) | 0.304 26.6 31.8 364 100% 20919 97K
AnWBURLI (L=4) | - - - - 239% >lday 178K
AnyBURL' (L = 5) 32% >lday 202K
AnyBURLT (L = 6) 0.7% >lday 219K
DRUM-FL (L =1) | 0.070 66 7.2 7.3 100% 68s
DRUM-FL (L =2) | 0.204 181 218 237 100% 176s
DRUM-FL (L = 3) | 0.338 29.7 357 411 100% 34ls
DRUM-FL (L = 4) | 0.332 292 350 40.8 100% 544s
DRUM-FL (L =5) | 0.327 285 347 404 100% 73ls
DRUM-FL (L = 6) | 0.325 283 346 404 100% 93ls

Table 7: Comparison results against different L for
AnyBURL and DRUM-FL on Wikidata5M, where ECP
(resp. ET or NLR) abbreviates the evaluation comple-
tion progress (resp. evaluation time or the number of
learnt rules).

an analysis on hyper-parameter N. The sub-figures
(a) and (e) (resp. (i) and (m)) in Figure 3 illustrate
the evaluation results of DRUM-FL using different
N on the Wikidata5M (resp. Freebase) dataset. It
can be seen that DRUM-FL is able to achieve higher
MRR and Hit@1 scores as N increases when 1 <
N < 5. However, further increasing N does not
lead to higher MRR and Hit@1 scores. This may
be due to the fact that learning more rules may
hinder the training efficiency of DRUM-FL, making
some training cases ignored within the training
time limit.

A.3 Analysis on More Training Time

To verify whether the FastLog-enhanced methods
can benefit from more training time, we conducted
an analysis on NeurallLP-FL and DRUM-FL with
increasing training time, as illustrated in the sub-
figures (c) and (g) (resp. (k) and (o)) in Figure 3
for the Wikidata5SM (resp. Freebase) dataset. It can
be seen that both NeurallLP-FL and DRUM-FL ex-
hibit higher MRR and Hit@1 scores as more train-
ing time is allowed. Besides, we found that DRUM-
FL is able to outperform AnyBURL(w/o constants)
when the training time is not less than 20,000 sec-
onds on Freebase. Note that AnyBURL cannot ob-
tain efficacy improvement by allowing more train-
ing time (Meilicke et al., 2024). In contrast, the
FastLog-enhanced methods can achieve better ef-
ficacy for link prediction as training time increases.
These results suggest that we can further improve
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\ WikidataSM
Method | MRR H@1H@3H@10 TT
DRUM-FL (c1, c2 = 1,000) 0.320 285 33.8 384 11281s
DRUM-FL (c1,c2 = 10,000) | 0331 289 353 40.6 12482
DRUM-FL (c1, cz = 100,000) | 0335 29.5 355 41.0 13473
DRUM-FL (c1, c2 = 1,000,000) | 0336 29.7 35.4 40.8 181175
DRUM-FL (w/o PS) 0.336 29.6 35.6 41.1 35303

Table 8: Comparison results against different settings of
C1,C2 for DRUM-FL.

the efficacy of the FastLog-enhanced methods by
allowing a longer training period.

A.4 Analysis on c; and ¢,

To clarify why the proposed dynamic pruning strat-
egy can improve efficacy, we conducted an analysis
on DRUM-FL using varying settings for c¢; and ca
within a training time limit of 20,000 seconds. The
sub-figure (d) and (h) (resp. (1) and (p)) in Figure 3
illustrates the evaluation results of DRUM-FL with
different setting of c¢; and cy on the WikidataSM
(resp. Freebase) dataset. We can see that DRUM-FL
achieves higher MRR and Hit@1 scores as both
c1 and ¢9 increases to 100,000. We can also see
that the MRR and Hit@1 scores drop as either c;
or co further increases. To clarify why this hap-
pens, we further analyzed the efficacy of DRUM-FL
using varying settings of c¢; and co without limit-
ing the training time, as reported by Table 8. It
can be seen that the Hit@]1 scores for DRUM-FL in-
crease as ¢; and ¢y increase. We can also observe
that DRUM-FL (w/o PS) is able to achieve the same
MRR score as DRUM-FL (¢, co = 1,000, 000) but
spends much more training time. These results re-
veal that the proposed dynamic pruning strategy
improves the efficacy for link prediction within a
training time limit by significantly improving the
training efficiency. Besides, we also analyzed the
impacts of different combinations of c; and ¢, as
reported in Table 9. Results suggest that the min-
imal combination to maximize the Hit@ 10 score
is 1 100, 000 and co 100, 000. Therefore,
we recommend this setting as the default setting of
FastlLog.

B Proofs

In this section, we provide detailed proofs for all
propositions in this work.
B.1 Proof of Proposition 1

Proof. (I) We first prove that the time complexity
of a forward computation step for TensorlLog is



C2
‘1 1,000 10,000 100,000 1,000,000 |K]|
1,000 375 396 39.7 306 395
10,000 378 395 39.9 399 398
100,000 | 380 393 40.0 399 399
1,000,000 | 374 394 39.7 396 396
€| 375 394 400 395 395

Table 9: Hit@ 10 scores against different combinations
of ¢1 and ¢ for DRUM-FL on the validation set of Wiki-
data5SM.

O(NL(|K| +|R||€])). Let nnz(M,,) be the num-
ber of non-zero elements in the sparse matrix
M,,. From Equations (1-2), we know that the

complexity for each step in TensorlLog comes

from 22"“ (ol 1)( (Tkl)Mri). Since the
time complexity of Szl =D (4 lrkl)Mm)is
ZZ"H(HHZ(MM) + [&]), where n = |R|.

Z?”l nnz(M,,) = |K|, we can infer that the
time complexity of a forward computation step
for TensorLog is O(NL(|K| + |R||E]))-

(I) We then prove that the time complexity
of a backward propagation step for TensorLog is
O(NL(|K| + |R]||£])). For a backward propaga-
tion step, we know that only w(:) is trainable.

The time complexity for calculating ¢><k —GoM,, Tis

nnz(M,,) + |€|. Therefore, the time complex1ty

k3

of a backward propagation step for TensorLog is
O(NL Y7 (nnz(My,) + |€]) = O(NL(K| +
IRIIED)- O

B.2 Proof of Proposition 2

Proof. (1) From Equations (3-6), the time complex-
ity of a forward computation step for FastLog is

NL(|K| + |K])
—~ =~

© Fioe

Therefore, the time complexity of a forward com-
putation step for FastLogis O(N L|K]).

(II) For a backward propagation step of FastLog,
we know that only w(*!) is trainable. Let z =

Foot(07D) @ Frap(w™F:D). The time complex-
% is O(|K|). The time
is O(K)).

ity for calculating

complexity for calculating —— 92—
prexity 8 e (D)

The time complexity for calculating W
r2 e

is O(|K|). The time complexity for calculat-
ing %ﬁ:’l)) is O(|K|). Therefore, the time

complexity of a backward propagation step for
FastLogis O(NL|K]). O
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B.3 Proof of Proposition 3

Proof. To prove Proposition 3, we first introduce
three sparse matrices Meqor, M of, and M, where
Mgoe € RIEXIKN (resp. Myop € REHDXIK] op
Mie € RIFIXIE stores the mapping between a
head entity (resp. relation or fact) and its corre-
sponding fact (resp. fact or tail entity).

Forall 1 <k < N,1 <[ < L, itholds that

D = Frpe(Fear(95 D) © Frar(w™*1))
= (%Y Meag) @ (w ™) Miyg)) Mipe
= P (Meor © (™D Myor)) Mpse)

2n+1

- ¢(kl 1) (Z wgr’k’l)Mri)

i=1

Therefore, we have

N
FastLog(6N'F, a,b) = (Z d)ﬁﬁ;L))vb
k=1
N 2n+1
= (Z(( .. (UaT( Z wF 1)Mr1))
k=1 =1
2n+1

2n+1

(3" W™, ) o

i=1

N L 2n+1
k)
va QT Z ;M
k=11=1 i=1
TensorLog(0N'F a,b)

B.4 Proof of Proposition 4

Proof. (1) We first prove that the space complexity
of a forward computation step for TensorlLog is
O(m|&]). Foralll < k < N,1 <1 < L,
TensorlLog requires a space of m/|&| to store the
intermediate estimated truth degrees. Since the
summation of predicate selection is serial, this pro-
cess does not require additional space. Therefore,
the space complexity of a forward computation step
for TensorLog is O(m/|&|).

(I) We then prove that the space complexity
of a backward propagation step for TensorLog is
O(mNL|R||E|). For a backward propagation step,
TensorlLog requires to store all intermediate esti-
mated truth degrees for all L steps for all /V rules
to calculate the gradient. Therefore, the space
complexity of a backward propagation step for
TensorLog is O(mN L|R||E]). O



B.5 Proof of Proposition 5

Proof. (I) We first prove that the space complex-
ity of a forward computation step for FastLog is
O(m|K]). Foralll < k < N,1 <1 < L,
FastLog requires a space of the size m/|K| to store
the intermediate hidden state for all facts. Although
FastLog also requires a space of m|&]| to store the
intermediate estimated truth degrees, it can reuse
the previously opened space. In general, it holds
that || > |€|. Therefore, a forward computation
step for FastLog is O(m|K]).

(I) We then prove that the space complexity
of a backward propagation step for FastlLog is
O(mNL(|K| + |£])). For a backward propagation
step, FastLog requires storing the intermediate hid-
den states for all L steps for all N rules to calculate
the gradients. It also requires storing the interme-
diate estimated truth degrees for all L steps for all
N rules to calculate the gradients. Therefore, the
space complexity of a backward propagation step
for TensorLog is O(mNL(|K| + |€])). O

B.6 Proof of Proposition 6

Proof. (I) We first prove that the time complexity
of a forward computation step for FastLog®"“? is
O(NL(|K| + |£])). From Proposition 2, we know
that the time complexity of a forward computation
step for FastLog is O(N L|K|). From Equation (8),
we know that the dynamic pruning strategy intro-
duces an additional complexity of O(NL|E|) to
calculate top-c; intermediate estimated truth de-
grees. From Equation (9), we know that the dy-
namic pruning strategy introduces an additional
complexity of O(NL|K]|) to calculate top-c in-
termediate hidden states. Therefore, the time
complexity of a forward computation step for
FastLog®® is O(NL(|K| + |£])).

(II) We then prove that the time complexity
of a backward propagation step for FastLog is
O(NLcz). From Equations (8), we know that
only top-c; intermediate estimated truth degrees
are used to calculate the gradients. From Equa-
tions (9), we know that only top-cy intermediate
hidden states are used to calculate the gradients.
Let 2 = F2(Fh(on. (BI=1y (kD). The time

complexity for calculating 8?3272(2) is O(c2) be-
cause z only has ¢y elements. The time complexity
for calculating % is O(c2) because only the

top-co elements in F ggf(@(ﬂgl*l)) are used to calcu-
late gradients. The time complexity for calculating
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8}'C21f( (kyl— 1))
W
ments in Fggf(qﬁrkml 2 ) are used to calculate gradi-
ents. Therefore, the time complexity of a backward
propagation step for FastLog is O(N Les). O

is O(c2) because only the top-c ele-

B.7 Proof of Proposition 7

Proof. (I) We first prove that the space complex-
ity of a forward computation step for FastLog is
O(m|K]). Foralll < k < N,1 <1 < L,
FastLog requires a space of the size m/|K| to store
the intermediate hidden state for all facts. Although
FastLog also requires a space of m|&]| to store the
intermediate estimated truth degrees, it can reuse
the previously opened space. In general, it holds
that || > |€|. Therefore, a forward computation
step for FastLog is O(m|K|).

(I) We then prove that the space complexity
of a backward propagation step for FastLog is
O(mNL(c1 + ¢2)). For a backward propagation
step, FastLog requires storing the intermediate es-
timated truth degrees with the size of ¢; for all L
steps for all IV rules to calculate the gradients. It
also requires storing the intermediate hidden states
with the size of ¢y for all L steps for all N rules
to calculate the gradients. Therefore, the space
complexity of a backward propagation step for
FastLogis O(mNL(c1 + ¢2)). O

B.8 Proof of Proposition 8

Proof. From Equations (3-5) and (8-10), we know

that F. e|2f" (resp. F ‘Zf‘ or ]:fge) is equivalent to Feof
(resp. JFrof or Fpe) because both TIENT |( ) and
TIEI(T) return the original set T of tuples. There-
fore, Equation (6) can be derived by:

Z¢<k L)y,
k=1

FastLog( ONL a,

N
foge Fror(wTFL)) & Fuop(
=1

-Fer(]:er(/w(T’kg)) © -Fe2f(
Fize(Fras(w™D) © Fopp(v]
)y

N
= 3 Foo F(FENK
k=1

)

Froe(Flog (Pt ] w
(r k, L)))

rkl)))"..»

= FastLog‘g"‘K‘((){,\[’L, a,b)



C Formalization of Existing Methods

In the following, we introduce four SOTA
end-to-end rule learning methods that employ
TensorLog to learn CRs, including NeurallP,
DRUM, smDRUM, mmDRUM.

C.1 The NeuralLP Method

NeurallP (Yang et al., 2017) is the first work
that exploits TensorLog operators to learn CRs.
Specifically, NeurallP introduces a set of addi-
tional learnable parameters to pay attention to pre-
vious steps, thereby learning CRs with dynamic
length without using the identity relation. Be-
sides, NeurallLP leverages LSTM (Hochreiter and
Schmidhuber, 1997) networks to estimate both
the predicate selection weights and the attention
weights. Note that NeurallLP only simulates the
inference of one CR, i.e., it holds that N = 1. For-
mally, given a query (z,r,7) and the maximum
length of each rule L, NeurallLP first encodes r
as a trainable vector v, € R? where d denotes
the dimensional size. Then an input sequence
(q1,G2, - ,qr+1) is created by setting ¢, = v,
foralll1 <[l < Landqp41 = v where ve2d jg
a special trainable vector to capture the boundary
of the input sequence. Forall1 <[ < L + 1, the
predicate selection weights w1 € [0,1]?" are
estimated by

hl - LSTM(hl—lv ql)7

(13)
w™ ) = Softmax(Wh; + b),

where hg is a zero-padding d-dimensional vector.
W € R?"*? and b € R?" are trainable weights and
bias, respectively. The attention weights a1 ¢
[0, 1] are estimated by

o) = Softmax([hg hus hi hus -+ s b)),
(14)
where [;] is the concatenation operation. The
intermediate truth degrees ¢\ € RIEl for

NeurallP are estimated by

i

-1
>l e MM, 1<i< L,

Q5<1"l) _ i=1 j=0
7 (T1L+1) ( o
a; oL, I=L+1,
=0
15)
where d)(l 0 = v;r . For an arbitrary triple

(z,r,y) € £ X R x &, the truth degree of (z,r,y)
is estimated by

oL L+1)

NeuralLP(6YF z, y) = pi (16)
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where 51 = {v,, W,b} U fr,s10\ is a set of train-
able parameters for the head relation r, and 05T
is the set of parameters used in the LSTM network.

The following Proposition 9 shows the time com-
plexity of NeuralLP .

Proposition 9. Let K = GUG™. The time complex-
ity of a forward computation step for NeurallP is
O(L(K| +|R||E|) + L2|E|). The time complexity
of a backward propagation step for NeurallP is
O(L(IK| + [RIIE]) + L?|€)).

Proof. (I) We first prove that the time complex-
ity of a forward computation step for NeuralLP is
O(L(|K| + |R||€]) + L?|€]). From Equations (15-
16), we know that the time complexity of a forward
computation step for NeurallP is

LK + Rijel) +
—_—

TensorLog

[E]+ (L +1)(8d43) +
~—————

N——
Aggregation

(d* +d)
N
LSTM network MLP
where d denotes the hidden size. In general, it
holds that L(|K| + [R||€]) + &) > (L +
1)(8d%) + (d? + d). Therefore, the time complex-
ity of a forward computation step for NeuralLP is
O(L(IK| + [RIIE]) + L[£]).

(I) We then prove that the time complexity
of a forward computation step for NeuralLP is
O(L(IK| + |R||€]) + L?&|). From Equations
(13-16), we know that the time complexity of a
backward propagation step for NeurallP is

2L(K| + [R|IE|) + L(L — 1)|E] 4+ 2(L + 1)(8d%) + 2(d? + d)
MLP

TensorlLog Aggregation LSTM network

In general, it holds that L(|K| + |R||€]) + L(L —
DIE] > +2(L + 1)(8d?) + 2(d? + d). Therefore,
the time complexity of a forward computation step
for NeurallLP is O(L(|K| + |R||€]) + L*€]). O

C.2 The DRUM Method

Different from NeurallLP, DRUM (Sadeghian et al.,
2019) introduces more trainable parameters to learn
more CRs, and uses the identity relation to learn
rules with dynamic length. Specifically, DRUM lever-
ages N BiLSTM networks to estimate the predicate
selection weights. Formally, given a query (z, 7, 7),
the maximum number of rules to be learnt IV, the
maximum length of each rule L, DRUM first encodes
r as a trainable vector v, € R%, where d denotes the
dimensional size. Forall 1 < £k < N,1 <[ < L,
the predicate selection weights w("*4) ¢ [0, 1)27+1



is estimated by

7 = BILSTM® (W), 0,),
T, = BISTM® (7, 0,),
wmk — SOftmaX(W[ﬁl(k)’ <ﬁ(Lk 141l +0),

— — (17)
where both h ék) and h (Lkll are set as zero-padding
d-dimensional vectors. W & R(Zn+1)x2d apd
b € R?"*1 are trainable weights and bias, respec-
tively. For an arbitrary triple (z,7,y) € E X R x £,

the intermediate truth degrees gzﬁ,(fggl) e R for
DRUM are estimated by
2n+1
o = Z o ™), ()

where d)(k 0 = v, . The truth degree of (z,7,y) is
estimated by

N
DRUM(ONE 2, y) = > ¢lEFlu, (19)

k=1
where 07" = {v,, W, b} U Ui<k<n 91(3ki£STM isa

set of trainable parameters for the head relation r,

and 9](3]§£STM is the set of parameters used in the
k-th BILSTM network.

C.3 The smDRUM Method

smDRUM (Wang et al., 2024b) is proposed to en-
hance the faithfulness between DRUM and CRs, by
introducing new tensorized operations. Note that
smDRUM uses the same way as DRUM to estimate the
predicate selection weights. For an arbitrary triple
(z,7,9) € EXRxE, the intermediate truth degrees

¢$f‘;;” € RI€l for smDRUM are estimated by

2n+1

o) = Z oV @ (M), 0
where ¢£{‘;;°) = v, ® is the max-production op-

erator, i.e., given two matrices U € R**™ and
Ve R™ (U V)ij = maxj® , Uiy - Vi j for
alll <i<agand1 < j <b. The truth degree of
(x,r,y) is estimated by

N

Z ¢(k L) vy,

k=1

SMDRUM(ON-E ., yy) = 1)

N,L k .
where 6, "~ = {v,, W,b} U Ulgng 9](3i£STM isa
set of trainable parameters for the head relation r.
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C.4 The mmDRUM Method

mmDRUM (Wang et al., 2024b) is another method
proposed to enhance the faithfulness between
DRUM and CRs. mmDRUM employs the same way
in DRUM to estimate the predicate selection weights.
Compared to smDRUM, mmDRUM introduces max-
pooling to aggregate N rules. For an arbitrary triple
(x,r,y) € EXRXE, the intermediate truth degrees

(k l) € RI€I for mmDRUM are estimated by

2n+1

Z ¢(kl 1)

(kl

w L)), (2)

where ¢£{2}0) = v, . The truth degree of (z,r,y) is
estimated by

mmDRUM(GﬁV’L, x,y) = r]?]\éic qbgcg;L)Uy, (23)

where 07" = {v,, W,b} U Ur<ken egl?{STM isa

set of trainable parameters for the head relation r.
The following Proposition 10 shows the time

complexity of DRUM, smDRUM, and mmDRUM.

Proposition 10. Ler K = GU G~ U {I(e,e) |
e € £}. The time complexity of a forward com-
putation step for DRUM , smDRUM, and mmDRUM is
O(NL(IK| + |R||E|)). The time complexity of a
backward propagation step for DRUM, smDRUM, and
mmDRUM is O(N L(|K| + [R]|E])).

Proof. From Equations (18-23), we know that
DRUM, smDRUM and mmDRUM has the same training
time complexity.

(I) We first prove that the time complexity of a
forward computation step for DRUM, smDRUM, and
mmDRUM is O(N L(|KC| 4+ |R||€|)). From Equations
(17-19), we know that the time complexity of a
forward computation step for DRUM is

NL(IK| + [R||E]) + 2N (L + 1)(8d%) + N((2d)* + 2d)

MLPs

TensorLog BiLSTM networks

where d denotes the hidden size. In general, it
holds that NL(|K| + |R||€]) > N (L +1)(8d?) +
N((2d)? + 2d). Therefore, the time complexity of
a forward computation step for DRUM, smDRUM, and
mmDRUM is O(N L(|K| + |R]|E])).

(II) We then prove that the time complexity of
a forward computation step for DRUM, smDRUM, and
mmDRUM is O(N L(|K| + |R||€|)). From Equations
(17-19), we know that the time complexity of a



backward propagation step for DRUM, smDRUM, and
mmDRUM is

INL(|K| + [R||E]) + AN (L + 1)(8d?) + 2N ((2d)? + 2d)

MLPs

BiLSTM networks

In general, it holds that 2N L(|K| + |R||E]) >
AN(L + 1)(8d?) + 2N ((2d)? + 2d). Therefore,
the time complexity of a forward computation step
for DRUM, smDRUM, and mmDRUM is O(NL(|K| +
RIE). O

TensorlLog

C.5 Training objective

. The intuition of end-to-end rule learning methods
is to search a set of parameters o™ to distinguish
positive facts from negative facts, by minimizing
the following training objective.

LU Y erur-) == Y. logM(ONF,
(z,ry)€EGUG™

z,y),

(24)
where M is an end-to-end rule learning method or
a FastLog-enhanced methods. Note that the loss
is computed in a batch-wise parallel manner for all
methods.

D FastLog-enhanced Methods

SOTA end-to-end rule learning methods can be
enhanced by replacing TensorLog operators with
FastLog operators. By X-FL we denote the
FastLog-enhanced methods, where X can be
NeurallLP, DRUM, smDRUM, and mmDRUM.

D.1 The NeurallLP-FL Method

In the following, we elaborate on enhancing the
NeurallLP method with FastLog. It is worth not-
ing that the use of FastLog does not affect the
estimation of selection weights. Therefore, we can
still use Equation (13-14) for selection weight es-
timation. Let X = G U G~. For an arbitrary triple
(x,r,y) € EXRXE, the intermediate truth degrees

(1 l) e RI€l are estimated by

-1
Froo(Fear (Y M 6l)) © Foar(w™)), 1<1< L,
=0

o =1 .

Z 71L+1)¢1])

j=0

l=L+1,

(25)
where ¢$}a,:0) = v,. The truth degree of (z,7,y) is

estimated by

NeurallP—FL(A} z,y) = ¢£};}L+l)vy, (26)

The following Proposition 11 shows the time com-
plexity of NeurallLP-FL.
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Proposition 11. The time complexity of a forward
computation step for NeurallLP-FL is O(L|K| +
L?|E|). The time complexity of a backward propa-
gation step for NeuralLP-FL is O(L|K| + L?|€|).

Proof. (1) We first prove that the time complexity
of a forward computation step for NeuralLP-FL is
O(L|K| + L?|€|). From Proposition 2, we know
that the time complexity of a forward computa-
tion step for FastLogis O(NL|K|). From Equa-
tions (25-26), we know that the time complexity of
a forward computation step for NeurallLP-FL is

L(L—-1
LIK| +7( 5 )|Ey+(L+1)(8d2)+(d2+d)
~—~— —— N——
FastLog v LSTM network MLP

Aggregation

where d denotes the hidden size. In general, it holds
that L|C] + ZE 8| > (L + 1)(842) + (d2 +
d). Therefore, the time complexity of a forward
computation step for NeurallLP-FL is O(L|K| +
L?|E)).

(I) We then prove that the time complexity
of a backward propagation step for NeurallP-
FL is O(L|K| + L?|&|). For a backward prop-
agation step for NeurallP-FL, we know that

both w10 and alm lll) are trainable. Let
1
» = ]:le(EJ L ;7“ )¢m ) ® _;L-Qf(w(r,l,l))
8.Ff29(2)

The time complexity for calculating is
O(|K|). The time complexity for calculatlng
8 : _

P (51 T, is O(|K]). The time com

LDy

OFear(Xzf ol s

8a(r 1,1)
O(L?|€|). The time complexity for calculating

W is O(|K]). The time complexity for

calculating %ﬁ’”) is O(|K]). Therefore, the
w T4y

time complexity of a backward propagation step

for NeuralLP-FL is O(L|K| 4+ L?|€)). O

plexity for calculating

By being enhanced by FastlLog, the time
complexity of a forward computation step for
NeurallP is reduced from O(L(|K| + |R||E]) +
L2&|) to O(L|K| + L?|€|). The time complexity
of a backward propagation step for NeurallP is
reduced from O(L(|K| + |R||E|) + L?€]) to
O(LIK| + L?|€]). The following Proposition 12
demonstrates the correctness of NeurallLP-FL.

Proposition 12. For an arbitrary triple (a,r,b)
EXRxENVL >1:NeurallP—FL(6+" a,b)
NeurallP(6+" a,b).

c



Proof. To prove Proposition 12, we first introduce
three sparse matrices Meof, M, of, and My, where
Mo € RIEIXIK (resp. Myor € R2XIK] or Mo, €
RIXI*I€]) stores the mapping between a head entity
(resp. relation or fact) and its corresponding fact
(resp. fact or tail entity).

Forall 1 <[ < L, it holds that

-1

]:f2e(]:62f(z a§r,l)¢7({g
7=0

ol ) © Frop(w™))

-1

(3 a0l

7=0

Y Meor © (W™D Myop)) Mige

Z ”)(z)(J)
Jj=

— 2n
= (

ay’”@?gxz wi" M)
j=0

=1
2n -1

S gl

i=1 j=0

(™) Mrog)) Miae)

(r,l)MT.)

Therefore, we have
NeuralLP—FL(6%, a,b) = d),(nffl)vb

L .
Zagr,LJrl)qsg?;

= NeurallP(6%, a,b)
O

This proposition reveals that the efficacy of
NeurallLP will not be impaired by applying
FastLog.

D.2 The DRUM-FL Method

In the following, we elaborate on enhancing the
DRUM method with FastLog. Let X = GU G~ U
{I(e,e) | e € £}. Similarly with DRUM, DRUM-FL
also uses Equation (7) for selection weight estima-
tion. Foralll < k < N,1 <[ < L, the inter-
mediate truth degrees d)g?;l)
by

€ RI€I are estimated

¢$~{€aél) = ]:fze(fe2f(¢,(«f“g;l*1)) ® Frop(wrFD)),
(27)
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where @%O) = v, . The truth degree of (z,r,y) is
estimated by

‘157(~k;éL) )y,

)

-

DRUM—FL(ONL, ,9) = (28)

k=1

The following Proposition 13 shows the time com-
plexity of DRUM-FL.

Proposition 13. The time complexity of a forward
computation step for DRUM-FL is O(N L|K|). The
time complexity of a backward propagation step
for DRUM-FL is O(N L|K)).

Proof. (I) We first prove that the time complex-
ity of a forward computation step for DRUM-FL is
O(NL|K]). From Proposition 2, we know that the
time complexity of a forward computation step for
FastLog is O(NL|K|). From Equations (27-28),
we know that the time complexity of a forward
computation step for DRUM-FL is

NL|K|+2N(L + 1)(8d?%) + N((2d)? + 2d)

BiLSTM networks

FastLog MLPs

where d denotes the hidden size. In general, it
holds that NL|K| > +2N (L41)(8d?)+((2d)? +
2d). Therefore, the time complexity of a forward
computation step for DRUM-FL is O(N L|K|).

(I) We then prove that the time complexity
of a backward propagation step for DRUM-FL is
O(NL|K]|). For a backward propagation step
of DRUM-FL, we know that only w(""%! is train-

able. Let z = egf(¢rkxl 1)) © Frop(w™FD). The
time complexity for calculating afm( is O(|K]).

The time complexity for calculatmg

is O(|K]).
0z
6Fr2f (w(T’k R

calculating aﬂ;ﬂ# is O(|K|). Therefore, the
time complexity of a backward propagation step

for DRUM-FL is O(N L|K|). O

dz
2f(d)7‘ wl 1))
The time complexity for calculating

is O(|K]). The time complexity for

By being enhanced by FastlLog, the time com-
plexity of a forward computation step for DRUM is
reduced from O(N L(|K|+|R||€])) to O(N L|K]).
The time complexity of a backward propaga-
tion step for DRUM is reduced from O(NL(|K| +
|R||IE])) to O(NL|K]|). The following Proposi-
tion 14 demonstrates the correctness of DRUM-FL.

Proposition 14. For an arbitrary triple (a,r,b) €
Ex R x & VN > 1,L > 1
DRUM—FL (62" a, b) = DRUM(BY L a, b).



Proof. To prove Proposition 14, we first introduce
three sparse matrices Meof, M, of, and My, where
Myos € RIEXIKN (resp. Myop € REHDXIK] op
Mo € RIFIXIEN) stores the mapping between a
head entity (resp. relation or fact) and its corre-
sponding fact (resp. fact or tail entity).

Foralll < k < N,1 <[ < L, it holds that

¢(kl ]:fze(fe%(cf)(kl D) © Fror(w™FD))

= ((Qb(kl D Meor) ® (™) Myor)) Mige

LD (Mear @ (w0 Miyog)) Mine)
2n+1

(3 w0y

=1

_ ¢(k,l—1)

- r,a

Therefore, we have

DRUM—FL(0NL 4, b Z¢ (KoL) )y
N 2n+1
= O 0l (X w™ )
k=1 =1

2n+1

(>~ w™ )
=1

2n+1
(3" w0,y
i=1

N L 2n+1

= I’“T(ZH Z ’luy’k’l)]\fy‘z)vb

k=11=1 i=1
= DRUM(ONL, a,b)

O]

This proposition reveals that the efficacy of
DRUM will not be impaired by applying FastLog.
D.3 The smDRUM-FL Method
Similar to DRUM-FL, forall 1 < k£ < N,1 <[ < L,
the formalization of smDRUM-FL is defined as

D = FEO( Foap (951 V) @ Frap(wH0)),

)

(29)
where qbggj;o) = v;. [Pl RIKI — RIE s a
function such that the i-th elements of F52*(v) is
[Frze™(v)]i = max  vj. (30)
j:tail(rj)=1i
The truth degree of (z,r,y) is estimated by
N
smDRUM—FL (0}, z,y) = (Y o5, (31)
k=1

Note that smDRUM-FL has the same time complexity
as DRUM-FL. The following Proposition 15 demon-
strates the correctness of smDRUM-FL.
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Proposition 15. For an arbitrary triple (a,r,b) €
E X R x & VN > 1,L > 1
SMDRUM—FL (62" a, b) = stRUM(eN L oa,b).

Proof. To prove Proposition 15, we first introduce
three sparse matrices Meor, M of, and Mo, where
Mos € RIEXIKN (resp. Mygy € REPHDXIK] op
Moo € R"C‘Xm) stores the mapping between a
head entity (resp. relation or fact) and its corre-
sponding fact (resp. fact or tail entity).

Forall1 <k < N,1 <[ < L, itholds that

o) = FpX(Feas (k1) © Frae(w™H1)))
= ((¢(kl Y Mear) © (wF) Myor)) @ Mige
= ¢EIT(Mear © (W) Miog)) ® Mipe)
= ¢ @ (Mgt © (0™ ) Myag)) Mize)
2n+1
_ k.l
= N @ (Y )
i=1
Therefore, we have
smDRUM—FL HNL,(L b) Zqﬁ
N 2n+1
= (Z(( .. (UI ® (Z wir‘k’l)]\/]rz))
o
@ (Y w™,)
i=1
2n+1
2 (Y w™ D)),
= L 2n+1
— Z@ S w ) VAT
k=1 1=1 i=1
= smDRUM(8™" a, b)
O

This proposition reveals that the efficacy of
smDRUM will not be impaired by applying FastLog.

D.4 The mmDRUM-FL Method

Similar to DRUM-FL and smDRUM-FL, the formaliza-
tion of mmDRUM-FL is defined as

(Z)(kl ( 62f(d)(kl 2 ) © erf(w(nk’l)))a
(32)
where gb%’,o) = v, . The truth degree of (z,r,y) is
El x ) )
estimated by

max

er

mmDRUM—FL (0L 2, y) = r?ax oLy, (33)
Note that mmDRUM-FL has the same time complexity
as DRUM-FL and smDRUM-FL. The following Propo-

sition 16 shows the correctness of mmDRUM-FL.



Proposition 16. For an arbitrary triple (a,r,b) €
E xR x & VN > 1,L > 1
mmDRUM—FL (62" a, b) = mmDRUM(HN L ab).

Proof. To prove Proposition 16, we first introduce
three sparse matrices Meor, M, of, and Mpae, where
Meos € RIEXIKN (resp. M,op € REHDXIK] of
My € RIKIx[€ |) stores the mapping between a
head entity (resp. relation or fact) and its corre-
sponding fact (resp. fact or tail entity).

Foralll < k < N,1<1[ < L,itholds that

o) = FH (Fear(8 ™)) © Frar(w™0))
= ((¢kl D M) @ (w™ ) Migg)) @ Mige
= "IV (M, Qf@<w<’”»’“”Mrzf)>®Mfze>

= ¢%D @ (Mear © (0D Migr)) Mine)
2n+1

o (ki1-1) kD ar

— (b (Z wl- ri)
i=1

Therefore, we have

mmDRUM—FL (6N, a

This proposition reveals that the efficacy of
mmDRUM will not be impaired by applying FastLog.

E Discussion on Embedding-based
Methods

Knowledge graph embeddings (KGEs) (Bordes
et al., 2013; Wang et al., 2014; Yang et al., 2015;
Trouillon et al., 2016; Sun et al., 2019) are a kind of
typical methods for link prediction over KGs. They
usually represent entities and relations in KGs as
low-dimensional real-value vectors, and then esti-
mate the truth degree of a triple based on the se-
mantic distance or similarity calculated from entity
and relation embeddings. However, KGE meth-
ods can hardly measure the triples involving pre-
viously unseen entities as their embeddings have
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not been trained. Besides, the learnt embeddings
are real-value vectors that can hardly be interpreted.
Adapting KGE methods to large KGs is non-trivial.
Kochsiek and Gemulla (2021) employed 8 GPUs
with a total of 88GB memory to train SOTA KGE
methods on WikidataSM and Freebase. In contrast,
FastLog enables scalable end-to-end rule learning
from large-scale KGs using a single GPU with 24
GB memory.

Graph neural networks (GNNs) (Schlichtkrull
et al., 2018; Teru et al., 2020; Zhu et al., 2021;
Zhang and Yao, 2022; Zhu et al., 2023) are a kind
of embedding-based methods for link prediction.
They can handle the inductive setting where miss-
ing triples involve unseen entities. However, GNN-
based methods are still black-box methods that are
difficult to interpret. In contrast, we focus on learn-
ing logical rules from large-scale KGs for better
explainability. It is worth noting that TIGER (Wang
et al., 2024a) employs a rapid sub-graph extraction
algorithm to facilitate GNNs for link prediction
over large-scale KGs. However, sub-graph extrac-
tion cannot take effect in reducing the time cost
in some application scenarios where the given KG
has no small sub-graphs for multi-hop reasoning.
Therefore, we do not consider exploiting sub-graph
extraction to enhance the efficiency of end-to-end
rule learning.

More recently, there has been an increasing in-
terest in leveraging pre-trained language models
(PLMs) (Wang et al., 2021; Saxena et al., 2022;
Liu et al., 2022) or even large language models
(LLMs) (Luo et al., 2024; Pan et al., 2024) for
link prediction over KGs. These methods are also
embedding-based. They aim to leverage the pre-
trained knowledge from text corpora and the con-
textual information of entities and relations to en-
hance the efficacy for link prediction. Based on
the contextual information, PLM-based methods
can handle previously unseen entities and rela-
tions. However, PLMs especially LLMs require
massive computation resources such as GPU mem-
ory. Besides, they are black-box methods that
lack interpretability. In contrast, the FastLog-
enhanced methods have only moderate memory
cost on GPUs, and they can interpret logical rules
as explanations for missing triples.
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