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Abstract

3D facial landmark localization has proven to be of par-
ticular use for applications, such as face tracking, 3D face
modeling, and image-based 3D face reconstruction. In the
supervised learning case, such methods usually rely on 3D
landmark datasets derived from 3DMM-based registration
that often lack spatial definition alignment, as compared with
that chosen by hand-labeled human consensus, e.g., how are
eyebrow landmarks defined? This creates a gap between
landmark datasets generated via high-quality 2D human la-
bels and 3DMMs, and it ultimately limits their effectiveness.
To address this issue, we introduce a novel semi-supervised
learning approach that learns 3D landmarks by directly
lifting (visible) hand-labeled 2D landmarks and ensures bet-
ter definition alignment, without the need for 3D landmark
datasets. To lift 2D landmarks to 3D, we leverage 3D-aware
GANs for better multi-view consistency learning and in-
the-wild multi-frame videos for robust cross-generalization.
Empirical experiments demonstrate that our method not only
achieves better definition alignment between 2D-3D land-
marks but also outperforms other supervised learning 3D
landmark localization methods on both 3DMM labeled and
photogrammetric ground truth evaluation datasets. Project
Page: https://davidcferman.github.io/FaceLift

1. Introduction

3D facial landmark localization plays a critical role in vari-
ous applications, such as talking head generation [39], 3D
face reconstruction [15, 29, 61], and learning 3D face mod-
els [56]. However, existing 3D facial landmark datasets
based on 3D Morphable Model (3DMM) often lack align-
ment with 2D landmark definitions labeled by humans. This
leads to a noticeable ambiguity between 2D and 3D datasets
and limits their overall effectiveness, as shown in Fig. 1. We
propose an algorithm to bridge this ambiguity by directly lift-
ing hand-labeled 2D landmarks into 3D, without additional
3D landmark localization datasets.

Human-labeled 2D datasets are known to exhibit high-
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Figure 1. Comparison of our labels with 300W-LP [60], DAD3D-
Heads [29], which are both labeled via 3DMM, and Microsoft’s
Face Synthetics [40] datasets.

quality facial landmarks for visible facial regions, while
self-occluded regions are labeled in a “landmark-marched”
style [59], i.e., on the nearest visible boundary. On the other
hand, current 3D datasets leave much to be desired in terms
of accuracy and consistency w.r.t 2D landmark definitions.
For example, human-labeled 2D facial landmark datasets fo-
cus on the apparent brow boundaries, whereas 3DMM-based
models define the brow region structurally above the eyes,
as fixed mesh vertices. However, the relationship between
facial structure and brow appearance varies across identities,
and hence, a 2D-3D inconsistency occurs, see Fig. 1.

Inconsistencies are particularly evident in fine-scale de-
tails not captured by the linear 3DMM fitting, often seen
in the mouth and eyes where fine-scale details are crucial
for accurate representation, as noted by [29], see Fig. 1.
Additionally, unlike 2D methods, the SOTA models trained
on such datasets tend to fail to capture blinks, as shown
in Fig. 6. Finally, “hallucinated” self-occluded landmarks
are prone to labeling errors due to the difficulty in labeling
the non-visible regions [49]. We observe that the “visible”
subset of 2D landmarks is fairly 3D consistent, see Fig. 3,
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Figure 2. System Pipeline: We preprocess multi-frame videos, {r"yE |, and multi-view 3D-aware GAN samples, {I/"/ =

GAN (w; c])}‘zgl, predicting 2D landmarks for each image. For each GAN latent w, we optimize a set of 3D landmarks to mini-

mize a masked, occlusion-aware, reprojection error across views ¢; € C, to obtain 3D pseudo-labels. Next, we train a 3D landmark
regressor on batches of 2D pseudo-labeled multi-frame samples and 3D pseudo-labeled multi-view 3D-aware GAN samples, supervising
via a combination of 2D confidence-aware losses and 3D landmark and pose losses, masking the 2D pseudo-labels in an occlusion-aware

manner.

i.e., they mimic what we refer to as “2.5D” (projected from
3D) landmarks. Inspired by these observations, we investi-
gate whether it is feasible to lift visible 2D landmarks into
3D.

Thanks to recent advancements, volumetric 3D-aware
GANSs have enabled the generation of synthetic, yet photo-
realistic, multi-view images with controllable ground-truth
camera information. Despite remarkable progress, we ob-
serve that available methods are still imperfect w.r.t. multi-
view appearance consistency [8, 36], while improved mod-
eling is on-going [2]. In view of the present limitations, we
hypothesize that we can exploit existing 3D-aware GANs
as a 3D prior and 2D landmarks as 2D image constraints to
reveal the 3D awareness of human faces while preserving
the 2D-3D consistency.

In order to obtain 2D-3D consistent 3D landmarks, we
propose a semi-supervised approach for 3D landmark detec-
tion, which leverages 1) a 3D-aware GAN prior for multi-
view and multi-frame information from in-the-wild videos
and 2) 2D landmark pseudo-labels' from a SoTA 2D de-
tector. Our method trains jointly on multi-frame samples,
pseudo-labeled by the 2D landmark detector, and on multi-
view samples, with 3D pseudo-labels obtained via lifting 2D
detections from multiple views. Training purely on multi-
view 3D-aware GAN samples would introduce a bias and
lack of sufficient variation in lighting, image quality, and
facial expressions due to the limited diversity of the dataset,

'Non-ground-truth labels

FFHQ [18] and its extrapolation, while in-the-wild videos
contain such diversity.

As previously noted, 3D-aware GAN sampled data, in
its current state, is still imperfect, as we observe certain
fine-scale details can vary with pose, especially for features
like eyelids and pupils, while large poses often lead to se-
vere appearance degradation and background boundary arti-
facts. While multi-frame samples from videos contain rich
diversity, we cannot rely on these samples exclusively as
they lack the 3D constraints offered by the multi-view 3D-
aware GAN samples, and only a subset of 2D landmarks are
2D-3D consistent, as previously noted. Additionally, while
in-the-wild videos are biased toward frontal camera-facing
head poses [58], sampling from a 3D-aware GAN offers
full controllability over the 3D pose distribution, offering
more balanced training. Thus, by combining the merits of
multi-view and multi-frame samples we are, to the best of
our knowledge, the first to achieve this 2D-3D consistency
and thus enable 3D landmark localization consistent with
2D human-defined labels.

We evaluate our method on the in-the-wild DAD-
3DHeads dataset and on high-quality ground-truth tempo-
rally consistent 3D mesh tracking dataset, Multiface [45]. On
both datasets [29, 45], we achieve state-of-the-art accuracy
when comparing to existing SoOTA methods, despite being
trained without a ground-truth 3D dataset. To summarize,
our main contributions are as follows:

1. We introduce a semi-supervised approach that leverages



high-quality 2D landmarks along with a 3D-aware GAN
prior to tackle the 2D to 3D lifting problem. The result-
ing pipeline is geometric prior free, enabling learning
accurate 3D landmarks that align with 2D hand-labeled
definitions, without any ground-truth 3D labels.

2. A novel 3D transformer formulation that leverages volu-
metric consistency (multi-view constraint) while training
on real videos (multi-frame constraint) for in-the-wild
generalization.

3. State-of-the-art  accuracy on  photogrammetric
ground-truth Multiface [45] and human-labeled DAD-
3DHeads [29] datasets, achieving cross-generalization.

2. Related Work

We review methods for 2D-to-3D pose and keypoint estima-
tion and 3D facial landmark localization. In addition, we
discuss existing facial landmark datasets.

2D-to-3D Uplifting for Pose and Landmark Estimation.
Direct estimation of 3D pose and landmarks from images
is an ill-posed problem [22], and ground truth 3D image
annotations are often limited [30]. As such, methods in this
category often require 3D priors [15, 22, 41] or depth su-
pervision [30]. On the other hand, lifting methods leverage
intermediate representations, such as 2D pose or landmark
detectors [5, 28, 55], or temporal information e.g. via graph
convolutional networks [25, 27, 54] to infer 3D information.
Due to the excellent performance of 2D detectors [7, 14, 37],
2D-to-3D uplifting methods normally outperform direct 3D
regression methods. Interestingly, while 2D-to-3D pose up-
lifting has been investigated more extensively, almost no
work for face landmark estimation has been done [5, 50],
mainly due to the wide availability of 3D face priors [12]
and recent photo-realistic synthetic datasets [40, 60]. We
note that the definitional gap between 2D and “2.5D”, see
bottom Fig. 3, presents an additional challenge for uplifting
facial landmarks, as 2D labels cannot be modeled simply as
projections from 3D, as in the case of human pose estimation.
Despite their impressive performance, 2D-to-3D uplifting
remains an inherently ill-posed problem, even when spatio-
temporal modeling is adopted, since multiple solutions are
available, especially when occlusions occur [24]. Recently,
transformer-based methods have been introduced, which ex-
ploit attention to better reason over temporally neighboring
2D poses for temporal-aware lifting [24, 55]. While these
methods attend to relevant temporal information for lifting
to 3D, the problem of 3D facial localization lacks temporal
ground-truth datasets and remains unexplored. To the best
of our knowledge, no work for 2D-to-3D face landmark up-
lifting has been explored with 3D transformer architectures
without ground truth 3D datasets.

3D Facial Landmark Detection on Images. Methods
for 3D landmark estimation can be categorized as template-
based, 3DMM-based, 3D aware, and 2D-to-3D uplifting.
Template-based approaches exploit the template’s underly-
ing mesh topology for predicting spatial deformation maps
in UV texture space [13, 32, 34] or dense 3D face defor-
mations [4, 38]. 3DMM-based methods utilize a 3D face
model, e.g., BEM [31] or FLAME [23], directly to estimate
model parameters [41], often with surrogate 2D landmark
supervision [15, 29], or as an intermediate representation
for 3D landmark refinement [42, 60, 61]. While template-
and model-based methods have demonstrated robustness for
3D landmark localization, the representation power is lim-
ited by the underlying 3D dense prior [33, 38]. 3D aware
techniques leverage volumetric representations to embed
3D landmarks [51] or generate explicit multi-view image
constraints for 3D consistent landmark prediction [49]. We
note that both of these methods require 3D GAN inversion
of monocular 2D images, either at inference or training,
which is known to fail for large poses and occlusions [47].
Rather than inverting images, we lift 2D landmarks into 3D
by exploiting the multi-view information of 3D-aware GAN
samples, avoiding errors introduced by inversion. Unlike
previous approaches, 2D-to-3D uplifting methods require
no geometry prior and directly regress 3D landmarks [5]
or 3D shape consistent landmarks with moving boundaries
via heatmap-based regression [46, 59]. Alternatively, joint
coordinate and adversarial voxel regression have been pro-
posed [50]. As far as we are aware, the use of transformer-
based 3D architectures without geometric priors for 3D
sparse localization remains unexplored.

Facial Landmark Datasets. A variety of 2D, 2.5D, and
3D face datasets have been proposed to advance research
in facial landmark localization. 2D datasets contain ground
truth 2D landmarks annotated on real images [20, 26, 35, 43].
Here, visible landmarks are aligned to face image features,
while object-occluded landmarks are hallucinated and self-
occluded landmarks are snapped to image boundaries, thus
destroying overall 3D face likeness. Kumar et al. [21] par-
tially solve this problem by labeling landmarks with three
visibility categories: visible, externally-occluded, and self-
occluded. However, these categories, and especially the
latter, are created based on human perception, not metrics,
and thus they are error prone. 2.5D datasets are either
synthetically generated from rendered 3D meshes that at-
tempt to bridge the photorealism gap [40] or derived from
real images by automatically fitting a 3DMM [60]. Pure
3D datasets are derived from coarse 3DMM-based render-
ings [1] or generated by densely fitting a 3DMM to real
images with human supervision [29]. Both 2.5D and 3D
synthetic datasets have landmarks registered to specific 3D
face mesh locations, which are not always aligned to 2D
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Figure 3. Masked Multiview 3D Landmark Optimization: Top Right: We define a fixed set of camera views and hand-design view-
dependent landmark masks based on 3D landmark visibility and 2D landmark detector competency. For a given identity sampled from the 3D
GAN, we render the set of views, predict landmarks via the 2D detector, and optimize 3D landmarks to minimize the view-dependent-masked
reprojection error across all views. Top Left: Rendering of 3D-aware GAN with camera c parameterized by azimuth, elevation, and roll
angles «, 3, v along a sphere, and translation At. Bottom: Illustration of 2D-3D consistency between optimized 2.5D projections of 3D

pseudo-labels, green, and 2D landmark detections, blue.

facial image features, e.g. eyebrows. As 2.5D and 3D real
datasets are derived from 3DMM-based fitting, which is
an ill-posed problem, perfect annotations cannot always be
achieved, as shown in Fig. 1. While there exist smaller-
scale multiview face datasets captured in controlled studio
setups with photogrammetry data [3, 6, 9, 45, 48, 52, 53],
i.e., metrically accurate 3D reconstructions, these datasets
are not applicable for in-the-wild facial landmark generaliza-
tion. Our semi-supervised approach overcomes limitations
of 2D, 2.5D, and 3D datasets by leveraging the accuracy of
visible 2D landmarks on real images and lifting them via 3D
prior supervision with our novel 3D transformer formula-
tion. Thus, our method requires no large-scale annotated 3D
datasets, which to date are non-existent and nearly impossi-
ble to generate.

3. Method

We introduce a semi-supervised approach for learning 3D fa-
cial landmarks from a 3D-aware GAN prior and high-quality
2D landmarks [14], without the use of 3D labels, see Fig. 2.
Our method consists of a pre-processing stage and a training
stage. We first pre-process our training data by predicting
2D landmarks on multiview 3D-aware GAN samples and
in-the-wild videos. The multiview landmarks from GAN
samples are lifted to 3D via an occlusion-aware masked opti-
mization to obtain 3D landmark pseudo-labels for each GAN
latent. In our second phase, we train jointly on multi-view
GAN samples, supervised by ground-truth 3D pseudo-labels,

and multi-frame in-the-wild videos, supervised via pose-
dependently masked 2D pseudo-labels.

Pre-Processing We obtain data for training our method
from multi-view 3D-aware GAN samples, along with multi-
frame in-the-wild videos. For each video frame, I, f , We
predict N 2D landmarks, L?P € RM*2, using a high-
quality 2D landmark detector [14], which was trained on
the WFLW [43] and LaPa [26] 2D landmark datasets, con-
currently. For each GAN sampled latent code, w, we ren-
der a set of views and fit 3D landmark pseudo-labels via
an occlusion-aware objective on multi-view 2D detections.
In the following, we introduce the camera model of the
3D-aware GAN, and describe our landmark pseudo-label
optimization and 3D landmark localization model.

Augmented Camera Space We share a perspective cam-
era model [62] between the volumetric rendering of the 3D-
aware GAN and projecting 3D landmarks to screen space.
Typically, volumetric face GANs use a camera with extrin-
sics M = (Rt) € R*** parameterized by an azimuth
angle, «, and elevation angle, 3, such that the camera is situ-
ated on a sphere pointing at the look-at point. We augment
M with camera roll v and At applied to R and t, respec-
tively, see top-left Fig. 3. 3D-aware face GAN’s also define
camera intrinsics, K € R3*3, with a fixed focal length, as
described in [36]. Let C be the space of cameras projections
st.c = (K,M) e Ciffa € [-A4,A],5 € [-B,B],vy €
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Figure 4. 3D Landmark Regressor Architecture: Face images are embedded via a ViT encoder to obtain image tokens. Landmark and
pose tokens are initialized from a learned embedding and passed through a 3D landmark and pose decoder, in which landmark and pose
tokens cross-attend to the image tokens and perform self-attention over the “sequence” of landmark and pose tokens. Each landmark and
pose token are routed to an MLP head to predict 3D landmarks and 3D pose, respectively. Finally, the 3D landmarks are projected to 2.5D
landmarks via the predicted 3D pose.

[-T,T], and At such that the bounding box of projected
facial landmarks is contained within the image and has mini-
mum dimension greater than half the image dimension. A 3D
landmark, 3P € R3, is projected from the GAN’s canonical

space to screen space via the perspective projection function
2P = 7(13P; ¢):

m(1*P5¢) = [12P, 2P w] " Jw; (1

(2P, 2P w] = K- (R-1°P +1). )

Model Architecture We employ a transformer encoder-
decoder model for predicting 3D landmarks, as shown
in Fig. 4. We use a ViT encoder [1 1], known as FaRL [57],
pre-trained for human face perception tasks, which we show
yields slightly better performance than Resnet152 [16]. We
design a transformer decoder with a token per landmark
and pose tokens for rotation, Txy and Tz. These tokens
pass through three blocks, each containing an image-cross-
attention layer, landmark-pose self-attention layer, and MLP,
with layer-normalization prior to each. Finally, we pass
the landmark and pose tokens individually through MLP
heads, which predict the 3D landmarks, Cholesky factoriza-
tion of the 2D covariances of projected 2.5D landmarks,
and the 3D rotation and translation. We apply the 3D
landmark predictions as offsets to a template, defined as
the landmark-wise mean of our 3D pseudo-labels obtained
during pre-processing, to obtain 3D landmark predictions,
L3P € RN*3_ The pose is predicted via a 6D rotation rep-
resentation, akin to [17] from which a rotation matrix, IA?, is
extracted. From ﬁ, we compute the 3D translation to the cam-
era sphere, tg, and predict At to obtain t = tg+ At. Finally,
we form our predicted camera, ¢ = [K, |\7|], with fixed intrin-
sics, K, and obtain 2.5D landmarks L25° = (L3P, ¢).

- MLPs
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Training Methodology We train our 3D landmark de-
tector jointly on multi-view GAN sampled images, and
multi-frame in-the-wild video frames. For multi-view image,
I = GAN (w; c), we sample a latent code w from a set
of pre-processed latents, along with a random camera ¢ € C.
For each multi-frame sample, we sample a random video
from our pre-processed video dataset followed by a random
frame 1™/ from the video. Each batch of training consists of
4 multi-view samples, (I, L3P” ¢*), and 4 multi-frame
samples, (I;"', L2P™). We formulate our loss function as
a combination of multi-frame and multi-view losses. The
multi-view loss consists of a 2.5D uncertainty-aware land-
mark loss, 3D landmark loss, and 3D pose loss. We employ a
Laplacian Log Likelihood (LLL) objective parametrized by
predicted Cholesky factorization of landmark covariances,
akin to [14, 21]. Such parameterization enables the energy
landscape to adapt to noise caused by rendering artifacts
and allows the model to weigh the loss for each landmark
prediction based on its 2D anisotropic confidences. For 3D
landmark loss, along with the translation loss, on At, we
adopt mean-squared-error, while for 3D rotation, we follow
head pose estimation work [17] and use geodesic loss. Thus,
our multi-view loss is defined as:

Ly = Lysg_ 130 + Lyvse_ae + Lipn_r250 + Leeory (3)

Since the set of views encountered when training on in-the-
wild videos is not fixed, such as in the 3D pseudo-labeling
optimization, we employ a simple heuristic for obtaining
masks, m € {0,1}". We define a template of normal vec-
tors for each landmark, apply the estimated rotation to each
normal, and threshold the dot product with the forward vec-
tor to obtain the mask. Thus, we supervise the multi-frame



video samples via their 2D pseudo-labels, L2P" as:

N
Log =Y my - Lig (12771270 5,), 4)
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where X, refers to the covariance matrix obtained via pre-
dicted Cholesky factorization, and L;; denotes the 2D
laplacian-log-likelihood. Refer to [21] for details. For video
training, this anisotropic confidence weighted loss enables
the energy landscape to adapt to systematic noise from the
2D detector, such as extreme pose samples where the 2D
detector may fail, while GAN-based extreme pose samples
are constrained via fixed 3D losses. Thus, our complete
objective is: L = Liys + Ly

4. Results & Analysis

Training Implementation Details We train our method
jointly on in-the-wild videos obtained from the CelebV-
HQ [58] dataset, selecting the first 10K videos, along with
GAN samples obtained from IDE-3D [36], sampling la-
tents from the first 10K random seeds. Our pre-processing
stage takes roughly 3 days on a single A10G GPU with
24GB RAM to obtain pseudo-labels. Since geometric aug-
mentations (e.g., scale and translation) would break our
3D ground truth under perspective projection, we render
GAN-generated images on the fly during training, sam-
pling cameras uniformly from augmented camera space, C.
To obtain a sensible pose distribution, we softly decrease
extreme rotation angle combinations by accepting sam-
pled rotations with probability e~ ((5)*+(£)*+()") with
A =110, B = 60,T" = 90. Our IDE-3D renders and video
frame crops are 224x224, to match the input dimension of
our FaRL [57] backbone. We train with a learning rate of
le-5 for 225 epochs, with the Adam [19] optimizer, decay-
ing the learning rate exponentially by a factor of 0.9 every
3 epochs, taking roughly 4 days on a single GPU machine.
We overcome an IDE-3D artifact, where a large pose causes
the background to occlude the face, by exploiting IDE-3D’s
semantic field to set the density of background points in the
near half of the viewing frustum to —oo, prior to rendering.
We ignore GAN-rendered pupil landmarks during training,
as we observe a bias where pupils tend to follow the camera,
breaking multi-view consistency.

Normalized Mean Local Consistency Metric Previous
works [5, 15,42, 49, 60] train and evaluate NME on datasets
where selected indices of face mesh vertices define the land-
marks. Across datasets, we observe that landmark definitions
are globally aligned, i.e., same general semantic position,
but suffer local definition bias, see Fig. 5, due to differences
in vertex selections and mesh topology, e.g., 300WLP [60]
uses BFM [31] and DAD-3DHeads [29] uses FLAME [23],
while ours does not use a mesh. We report cross-dataset

300WLP DAD-3DHeads
BFM FLAME

Figure 5. Global alignment of landmarks with local definition bias.

evaluations in the supplementary document, showing that
traditional NME leads to unfair comparisons due to the lo-
cal definition bias while still capturing a ballpark notion of
global alignment. As such, we need a landmark definition
agnostic metric for meaningful local comparison, which we
introduce as an extension of standard NME. We first define
NME as parametrized by the vertex indices. For a test set
of M images, with predicted landmarks L25° e RN*2,
projected vertex labels, V.25 ¢ RIVIX2 vertex indices,
Ke{1,.,|V]}V:

M N
. 1
ML ViK) = 505 D0 > amllindy = viiR [l2 )

m=1n=1

where 2z = (Rpox X Whosz) ™ 3 the diagonal of the face bound-
ing box. Given the dataset-specific landmark definition, K s
NME = M(L, V; K). Our normalized mean local consis-
tency metric (NMLC) replaces the dataset-specific landmark
definition with a model-specific one:

NMLC = m}%n/\/l([:, V:K), (6)

enabling fair cross-dataset comparison. Unlike NME, con-
sistent local bias w.r.t. a desired landmark definition, K , will
not be penalized. Trivially, NMLC < NME. Non-triviality
of NMLC is ensured by a large test set with pose, identity,
and expression variations. Our NMLC comparisons cor-
relate with qualitative results, see Fig. 6, as our method’s
leading performance appears to be reflected.

Comparisons We evaluate our method on the studio-
captured photogrammetric ground-truth Multiface [45]
dataset, along with 3DMM-labeled in-the-wild images from
DAD-3DHeads [29]. As the Multiface dataset is extremely
large (65TB), we select 6 sequences, which cover a range
of facial expressions, including asymmetric facial deforma-
tions. See supplemental document for curation details. The
DAD3D-Heads training set offers category labels for pose,
expression, occlusion, quality, lighting, gender, and age. So,
we chose the above for our evaluations to obtain fine-grained
analysis (quality, lighting, gender, and age reported in sup-
plementary). Since our detector outputs 98 landmarks, we
generate the corresponding 68 landmark subset to compare
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Figure 6. Visual Results: Ours, SynergyNet [42], 3DDFAv2 [15], DAD-3DNet+ [49], FAN3D [5] on DAD-3DHeads [29] and Multiface [45]
samples.

Face Regions Pose Expression Occlusions
Model | full | contours | brows | nose | eyes | mouth | front | sided | atypical | True | False | True | False

SynergyNet [42] | 2.81 4.17 2.87 | 196 | 2.19 | 239 | 259 | 291 3.27 2.52 | 299 | 3.65 | 2.68
3DDFA [60] | 3.45 4.79 351 | 276 | 278 | 299 | 3.21 | 3.48 4.33 298 | 373 | 462 | 3.26
3DDFA+ [49] | 3.21 4.50 326 | 2.60 | 2.56 | 2.75 298 | 3.26 3.95 2.86 | 342 | 4.06 | 3.07
3DDFAv2 [15] | 2.45 3.76 237 | 1.77 | 1.92 | 2.01 233 | 249 2.77 222 | 259 | 2.81 | 2.39
DAD-3DNet% [29] | 2.08 291 227 | 1.54 | 1.68 1.77 1.87 | 2.19 2.45 1.95 | 2.17 | 2.21 | 2.06
DAD-3DNet+% [49] | 2.06 2.86 226 | 1.54 | 1.68 | 1.75 1.87 | 2.16 2.37 193 | 2.14 | 2.19 | 2.04
FAN3D [5] | 2.46 4.24 234 | 1.58 | 1.77 | 1.82 | 2.35 | 2.52 2.64 226 | 258 | 277 | 241

Ours | 1.91 3.13 2.02 1.28 | 1.33 1.45 1.76 | 2.00 2.07 1.77 1.99 | 2.07 1.88

Ours (Resnet50) | 2.23 3.71 223 | 1.59 | 1.51 1.71 2.05 | 236 2.38 205 | 235 | 2.68 | 2.16
Ours (Resnet152) | 2.06 3.46 211 | 1.36 | 145 1.53 1.89 | 2.17 2.18 1.88 | 2.17 | 2.51 | 1.99
Ours (MF only) | 2.06 3.62 210 | 1.31 | 1.40 | 145 1.76 | 2.26 2.26 1.88 | 2.17 | 2.17 | 2.04

Ours (MV only) | 2.33 3.46 2.31 1.70 | 1.83 | 1.95 2.14 | 243 2.56 2.13 | 244 | 285 | 2.24
Ours (100) | 2.12 3.27 221 | 147 | 159 | 171 1.96 | 2.22 2.26 1.96 | 222 | 2.50 | 2.06

Ours (1k) | 2.00 3.17 209 | 140 | 147 | 157 1.85 | 2.09 2.13 1.86 | 2.09 | 2.24 | 1.96

Table 1. SoTA evaluation (top) and ablations (bottom) on DAD-3DHeads [29]. We report the NMLC for each model, when averaging across
various facial regions and categories. {Model}¥% denotes the model was trained on the data samples used for our evaluation, and thus not
included in our statements relating accuracy.

with SoTA methods. We observe that, despite training with- SoTA on each dataset by 22% and 19%, as shown in Tab. 1
out ground-truth 3D labels, our method outperforms previous and Tab. 2, respectively. Fig. 6 shows that our method cap-
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Figure 7. We observe failure cases for our model, including extreme
asymmetric expressions and overlapping faces with occlusion, and
visualize our model outputs alongside the outputs of the 2D detector
used in pseudo-labeling.

Model | full | contours | brows | nose | eyes | mouth
SynergyNet [42] | 3.59 4.59 3.16 | 3.05 | 2.66 | 3.74
3DDFA [60] | 5.06 7.31 429 | 436 | 370 | 4.66
3DDFA+ [49] | 4.92 6.88 419 | 439 | 356 | 4.69
3DDFAV2 [15] | 3.25 4.46 263 | 257 | 234 | 3.39
DAD-3DNet [29] | 3.30 433 321 | 2.80 | 2.54 | 3.16
DAD-3DNet+ [49] | 3.28 4.29 3.18 | 285 | 253 | 3.10
FAN3D [5] | 3.13 5.04 258 | 2.14 | 2.18 | 2.80
Ours | 2.52 3.49 2.27 2.11 1.57 2.56
Ours (Resnet50) | 2.87 4.13 2.61 1.79 | 213 | 2.86
Ours (Resnet152) | 2.62 3.75 238 | 2.14 | 1.60 | 2.60
Ours (MF only) | 3.51 6.21 294 | 244 | 224 | 275
Ours (MV only) | 2.98 3.70 281 | 246 | 2.07 | 322
Ours (100) | 2.84 3.82 249 | 1.84 | 2.37 3.0
Ours (1k) | 2.73 3.69 249 | 231 | 1.72 | 2.84

Table 2. SoTA evaluation (top) and ablations (bottom) on Multi-
face [45]. We report the NMLC for each model, when averaging
across various facial regions.

tures more fine-scale details in the eye, mouth, and brow
regions, and it can properly handle blinks while other meth-
ods fail. We remark, however, that our method still fails for
extreme expressions such as “puckers” and asymmetric de-
formations. We hypothesize that improving the 2D detector
for such cases will propagate through our pipeline toward
improving 3D results, as suggested by observations in Fig. 7.
Note that the model used for 2D pseudo-labels fails similarly
for mouth deformations.

Ablation Studies We conduct ablation studies to observe
the effects of the two data sources independently, our choice
of encoder backbone, and the impact of sample size. We
train our method with multi-view GAN samples and multi-
frame video samples independently, referred to as Ours
(MV only) and Ours (MF only), respectively, to observe the
strengths and weaknesses of each in isolation. We also train
our method with a standard Resnet152 [16] backbone, pre-
trained on ImageNet [10], of similar parameter count (60M)
to our FaRL [57] backbone (87M), and refer to this model as

Ours (Resnet152). Additionally, we include Ours (Resnet50)
to compare with the same backbone used by [29, 49]. Finally,
we decrease the number of videos/GAN latents from 10k to
1k and 100 samples, referred to as Ours (1K) and Ours (100).
Tab. 1 and Tab. 2 show that, when training without multi-
view samples (MF only), the model failures for the Multiface
dataset are quite pronounced for the contours, as the method
struggles to capture large pose variation without the 3D con-
straints of the multi-view training, which is accentuated for
contour landmarks. When training without multi-frame sam-
ples (MV only), we observe a sizable performance decrease
for both mouth and occlusions, as its training distribution is
limited by the FFHQ-trained GAN. Replacing our ViT back-
bone with a Resnet152 of similar parameter count yielded a
slight drop in performance. Interestingly, occlusions yield
a more significant drop. We hypothesize that it is a result
of the ViT’s global reasoning capacity, ability to selectively
ignore occluded regions, and the backbone encoder’s (FaRL)
face image embedding prior. We observe a trend that perfor-
mance improves with the number of training pseudo-labels
we generate.

5. Conclusion

In this paper, we have introduced a semi-supervised method
for geometric prior-free localization with accurate 3D facial
landmarks, aligned with 2D human labels, by exploiting
multi-view 3D-aware GANs and using 2D landmarks with
no ground-truth 3D dataset. We have shown, for the first
time, that SOTA 3D landmarks can be learned without 3D la-
bels, paving the way toward improving 3D facial landmarks
beyond the limitations of current 3D labeling techniques.

Limitations & Future Directions Despite the promising
results demonstrated by our 3D facial landmark localization
method, there are still some limitations. We are heavily de-
pendent on the quality of both a 2D landmark detector and
a 3D-aware facial GAN. Improvements to either of these
dependencies should result in improvements when training
with our approach. Currently, we observe limitations in the
2D landmark detector for facial expressions, such as puckers
and asymmetric deformations, constraining the performance
of 3D uplifting. However, correcting this may be as simple
as labeling such examples when training the 2D detector.
As has been noted by previous approaches [44], 3D-aware
GANSs have limited pose and expression distributions, limit-
ing their downstream application for multi-view consistency.
Noting the failure case observed where the method fails due
to an occlusion Fig. 7, future work may include investigating
GAN sample augmentation via volumetrically generated oc-
clusions. Finally, as we observe a strong trend in increasing
performance improvement with the number of pseudo-labels
generated, future work may explore the asymptotic limits of
such improvement.
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A. Implementation Details

3D Landmark Transformer Architecture Fig. 8 presents
a more detailed figure of our 3D landmark transformer ar-
chitecture. 3D head pose and facial landmarks are estimated
via cross-attention and self-attention heads and MLP layers.

Loss Implementation Details In order to compute
occlusion-aware masks, m € {0,1}", used in Eq. 4, we
apply the predicted rotation matrix to a template of normal
vectors for each landmark, and threshold the dot product
with the forward vector to obtain the mask. We obtain our
normal template by selecting the landmarks on a face mesh,
and computing the normals at those locations. We set the
threshold so that products above 0.5 were considered visible,
while lowering this threshold to —0.1 for the nose bridge.
We found this conservative masking strategy reasonable in
our experiments.

Multi-view Camera Optimization In obtaining 3D
pseudo-labels for 3D-aware GAN-generated samples, we
perform a multi-view 3D landmark optimization over detec-
tions from renders of camera views, ¢; € C , represented by
(a, ) azimuth and elevation pairs. Fig. 9 illustrates all these
|C| = 41 sample views.

B. Evaluation Set Preparation

When comparing our model on the DAD3D-Heads [29]
dataset, we upsample the meshes to ensure that the mesh
is dense enough that the distance between vertices is much
smaller than the model’s inconsistencies.

Due to the enormous size of the Multiface [45] dataset, we
sample a subset for our evaluations. We selected 6 sequences:
Neutral Eyes Open, Relaxed Mouth Open, Open Lips Mouth
Stretch Nose Wrinkled, Mouth Nose Left, Mouth Open Jaw
Right Show Teeth, Suck Cheeks In, which include closed eyes,
wide mouth openings, and asymmetric facial deformations.
The data covers a wide range of cameras, and we discard
several in which the face is not visible, including cameras
numbered 400055, 400010, 400067, 400025, 400008, and
400070. To eliminate redundancy in the evaluation set, we
sample every 15 frames from the downloaded sequences.

C. Additional Experiments

Pseudo-labels Visualized In Fig. 10, we visualize 3D-
aware GAN samples, obtained via 3D pseudo-labeled IDE-
3D [36] latent renders, which are sampled from our aug-
mented camera space, C.

Additional Qualitative Results on CelebV-HQ Addi-
tional qualitative results on the CelebV-HQ [58] dataset are
shown in Fig. 11.

Evaluations on Additional DAD3D-Heads Categories
In Tab. 3, we report the DAD3D-Heads [29] evaluation
results for additional categories, including image quality,
lighting, gender, and age.

Loss Function Ablations We compare the loss function
used by our method, Laplacian Log Likelihood, with other
common loss functions, L1 and MSE, in Tab. 4. Our choice
yields the best results on our benchmark datasets.

Cross-Dataset Evaluations Our investigations into cross-
dataset evaluations reveal a notable limitation in model gen-
eralizability between datasets with differing labeling con-
ventions. We report cross-dataset evaluations in Tab. 5 on
both AFLW2000-3D [60] and the DAD3D-Heads [29] vali-
dation set, comparing our method with methods trained on
DAD3D-Heads and 300WLP [60], noting that 300WLP’s
compatible evaluation set is the AFLW2000-3D dataset. We
observe that despite a global alignment in how landmarks
are defined, cross-dataset scores of every SoTA model are all
worse than the SOTA models of the compatible dataset. This
is expected due to the local definition bias w.r.t. a different
dataset’s landmark definition, which yields a consistent error.
For each dataset, our model achieves the best cross-dataset
score. The cross-dataset metrics do not disentangle the local
definition bias from some notion of actual error with respect
to the model’s landmark definition. Intuitively, if our model’s
landmark definition were the midway interpolation between
the two dataset definitions, our model would incur half of the
error from local definition bias than that of the other models.
Hence, for fair comparisons, we compare against other meth-
ods using our proposed NMLC metric, which removes the
local definition bias from the evaluated error. Nevertheless,
cross-dataset evaluation remains a useful proxy for assessing
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Quality Standard Light Gender Age
Model High | Low | True | False | female | male | undefined | child | young | middle aged | senior
SynergyNet [42] 227 | 3.70 | 2.55 3.29 2.35 2.78 6.15 2.44 2.74 2.95 2.67
3DDFA [60] 2.80 | 450 | 2.95 4.34 2.99 3.41 6.71 2.94 3.45 3.53 3.30
3DDFA+ [49] 2770 | 4.04 | 2.88 3.79 2.81 3.21 5.70 2.82 322 3.26 3.14
3DDFAv2 [15] 213 | 297 | 2.33 2.67 2.17 251 3.77 2.23 245 2.49 243
DAD-3DNetx [29] 1.84 | 248 | 1.99 2.26 1.87 2.15 2.88 1.83 2.05 2.16 1.96
DAD-3DNet+% [49] | 1.84 | 243 | 1.98 2.21 1.87 2.13 2.75 1.83 2.03 2.13 1.97
FAN3D [5] 1.99 | 322 | 221 291 2.08 251 4.46 2.02 232 2.67 2.36
Ours 1.68 | 2.28 1.81 2.07 1.72 1.95 2.72 1.70 1.90 1.95 1.85
Ours (Resnet50) 1.92 | 275 | 2.11 2.45 2.03 2.23 3.55 1.91 2.24 2.29 2.07
Ours (Resnet152) 1.81 | 2.47 | 1.96 2.23 1.87 2.08 3.05 1.80 2.07 2.09 1.98
Ours (MF only) 1.80 | 2.48 | 1.96 2.24 1.87 2.12 2.78 1.83 2.10 2.08 1.88
Ours (MV only) 201 | 2.85 | 2.17 2.60 2.10 2.33 3.75 2.03 2.36 2.35 221
Ours (100) 1.89 | 2.50 | 2.02 2.30 1.93 2.14 3.13 1.92 2.14 2.14 2.03
Ours (1k) 1.78 | 2.37 | 191 2.17 1.81 2.04 2.89 1.82 2.01 2.03 1.94

Table 3. SoTA evaluation (top) and ablations (bottom) on DAD-3DHeads [29], for additional categories. We report the NMLC for each
model when averaging across various facial regions and categories. {Model}% denotes the model was trained on the data samples used for
our evaluation.

Model | Multiface | DAD3D-Heads
Ours (LLL Loss) 2.52 1.68
Ours (L1 Loss) 2.82 2.08
Ours (MSE Loss) 3.01 2.49

Table 4. Ablation studies concerning the loss function used, where
Ours uses Laplacian Log Likelihood (LLL), evaluated on the full
set of landmarks from Multiface [45] and DAD3D-Heads [29]. We
report the NMLC for each model, when averaging across various
facial regions.

the global consistency of landmark definitions across models,
a presupposition integral to the NMLC metric.
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Figure 9. Masked Multiview 3D Landmark Optimization’s Camera “Rig”: Sample camera views used to perform the masked multiview
3D landmark optimization.



Figure 10. 3D-aware GAN Pseudo-labeled Samples. Our approach can faithfully reconstruct 3D landmarks under extreme 3D head poses,
and face outline landmarks are not affected by inherent GAN noise around face boundaries.

Model Training Set AFLW2000-3D-reannotated NME | DAD3D-Heads NME
FAN3D [5] 300WLP 2.85 3.83v
SynergyNet [42] 300WLP 2.65 3.46v
3DDFAV2 [15] 300WLP 3.33 3.10v
DAD-3DNet [29] DAD3D-Heads 5.10v 2.71
DAD-3DNet+ [49] | DAD3D-Heads+ 5.00v 2.71
Ours FaceLift 351V 278V

Table 5. Cross-dataset evaluation of NME on AFLW2000-3D-reannotated [60] and the validation set of DAD3D-Heads [29]. v'denotes that
the score is cross-dataset, meaning the training set definition is not compatible with the evaluation dataset and definition. We see that while
our model is the best on the cross-dataset comparisons for each dataset, compatible SoOTA models yield better scores since they do not incur
the local definition bias of cross-dataset evaluation.



Figure 11. Additional Qualitative Results on CelebV-HQ [58] dataset. Here, the blue, green, and red axes represent Cartesian coordinates
and denote the forward, up, and right vectors, respectively. Our approach can faithfully reconstruct 3D landmarks under challenging 3D
head poses and harsh lighting.
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