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Abstract

Weakly supervised Video Anomaly Detection (wVAD)
aims to distinguish anomalies from normal events based on
video-level supervision. Most existing works utilize Mul-
tiple Instance Learning (MIL) with ranking loss to tackle
this task. These methods, however, rely on noisy predictions
from a MIL-based classifier for target instance selection in
ranking loss, degrading model performance. To overcome
this problem, we propose Normality Guided Multiple In-
stance Learning (NG-MIL) framework, which encodes di-
verse normal patterns from noise-free normal videos into
prototypes for constructing a similarity-based classifier. By
ensembling predictions of two classifiers, our method could
refine the anomaly scores, reducing training instability from
weak labels. Moreover, we introduce normality clustering
and normality guided triplet loss constraining inner bag in-
stances to boost the effect of NG-MIL and increase the dis-
criminability of classifiers. Extensive experiments on three
public datasets (ShanghaiTech, UCF-Crime, XD-Violence)
demonstrate that our method is comparable to or better
than existing weakly supervised methods, achieving state-
of-the-art results.

1. Introduction
On increasing demands of analyzing surveillance videos,

Video Anomaly Detection (VAD) has become an essential
algorithm for human convenience and safety, such as secu-
rity [12], medical imaging [39], factory automation [8] and
autonomous driving [2]. Anomalies are frequently defined
as behavior or appearance patterns that depart from normal
patterns [5, 7]. VAD aims to predict such anomaly score of
each segment in a video sequence. A typical approach is
to regard VAD as a special case of video action classifica-
tion [18, 41], having two classes of normal and abnormal.
However, training the classifier requires large-scale datasets
with fine-grained frame-level annotations, which are expen-
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Figure 1. Illustration of previous MIL ranking model (a) and our
proposed NG-MIL model (b). We refine unreliable initial predic-
tion by Normality Guided Refinement Module (NGRM), which
encodes global characteristics of normal patterns.

sive and time-consuming. To relieve this problem, some re-
searchers have addressed weakly supervised VAD (wVAD)
[33, 52, 46, 9, 38, 17, 48, 29], which needs only video-level
annotations indicating whether anomalous contents exists in
a video or not. Thanks to its competitive performance with
lower laborious costs for annotations, the wVAD approach
has attracted considerable research interest.

To detect abnormal segments of video without fine-
grained labels, a common approach is to formulate wVAD
as Multiple Instance Learning (MIL) problem, in which a
video is represented as a bag of instances containing sev-
eral consecutive frames. The bag (video) is labeled as pos-
itive if any of its instances is abnormal, and negative if it
has only normal instances. After instance scores are esti-
mated by a binary classifier, top-scoring instances are sam-
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pled from positive and negative bags respectively. Then, the
sampled positive and negative instances are constrained to
have a large margin using MIL ranking loss [33]. Recent
wVAD methods [52, 9, 38, 17, 29] are benefited from the
ranking loss, as it improves discriminability of anomalies
against normality. However, the selected top-k targets in
the positive bag might contain some normal segments, since
the MIL-based classifier is prone to produce noisy anomaly
scores. The error might aggravate target instance selection
in ranking loss as training continues, degrading the over-
all performance [27, 1]. Some works have attempted to re-
fine the predictions with self-training [9, 17] or graph neural
network [51], but the re-training is conducted based solely
on the initial prediction of the classifier, which makes the
model easy to be stuck with local minima [42]. Moreover,
abundant normal instances inside the positive bag are ig-
nored in MIL ranking loss, which hinders detecting hard
abnormal instances surrounded by normal ones.

Meanwhile, One-Class Classification (OCC) approaches
[11, 24, 50, 19, 10, 26, 21] focus on encoding frequently
occurred patterns of normal data as a form of centroids [28]
or latent vector [50] to train an one-class classifier. The
encoded compact representation enables the model to cap-
ture the global relation between training samples and the
entire normal feature distribution. The anomalies are de-
tected based on the deviation from the learned normalities.
However, due to a lack of prior knowledge of abnormali-
ties, such OCC methods show relatively low performance
compared to wVAD methods [46].

In this paper, we propose Normality Guided Multiple In-
stance Learning (NG-MIL) framework for overcoming the
aforementioned limitations of MIL ranking loss as shown
in Fig. 1. The key idea is to leverage numerous normal
instances in the negative bags, which are noise-free [46],
for eliminating false positives in the anomaly prediction
scores. Inspired by normality representation [10, 26] in the
OCC methods, we encode normal patterns across all normal
video sets into compact prototypes which are the centroids
of normal instances. The generated prototypes are utilized
to formulate an additional anomaly classifier, whose score is
defined as inverted cosine similarity between the prototypes
and unlabeled instances in the positive bag. This similarity-
based classifier allows to refine the anomaly score through
model ensemble [36, 35, 16, 49] with the MIL-based clas-
sifier. Also, we propose normality clustering and normality
guided triplet loss to enhance the discrimination of anoma-
lies with prototypes inside the positive bag.

The main contributions are summarized as follows:

• We propose Normality Guided Multiple Instance
Learning framework to refine the anomaly prediction
of the MIL-based classifier with the similarity-based
classifier. It is composed of normality prototypes, tak-
ing advantage of noise-free instances in the negative

bag.

• We propose normality clustering and normality guided
triplet loss to increase the discriminative ability of clas-
sifiers.

• We conduct extensive experiments to validate the ef-
fectiveness of our method and show that it outperforms
the state-of-the-art methods by a large margin on three
VAD benchmark datasets, namely ShanghaiTech [19],
UCF-Crime [33], and XD-Violence [44].

2. Related Works
Anomaly Detection as One-Class Classification. Con-
ventional anomaly detection frameworks formulate the task
as modeling normality given numerous normal samples and
declaring the anomalies based on the deviation from the
normality. Early works seek to learn a discriminative de-
cision boundary using hand-crafted features, such as OC-
SVM [31], kernel OC-SVM [30], and SVDD [37]. With the
advent of deep convolutional networks, many approaches
adopt image reconstructive model [11, 50, 19, 23] to learn
normal data representations in an unsupervised way. How-
ever, these methods even reconstruct the anomalous test
samples with a small error rate [10], resulting in missed de-
tection. Some recent papers [10, 26] solved the problem
by introducing normality prototypes. Each prototype is up-
dated by aggregating features from training samples, which
is an approximated centroid of normal data. By replacing
the deep features with their nearest prototype, these meth-
ods could lessen the generalization capability of the recon-
struction model.

Our method also leverages the prototypical representa-
tion of normal data. Contrary to the aforementioned OCC
methods, we leverage the prototypes to refine the initial
noisy prediction of the MIL-based classifier.

Weakly Supervised Video Anomaly Detection. wVAD
has recently received much attention because labeling
video-level annotations is much faster and easier than
frame-level annotations. Sultani et al. [33] formulated
wVAD as MIL problem and proposed MIL ranking loss,
which allows the training of classifier with video-level an-
notation [25]. Recent approaches incorporated MIL ranking
loss for optimization and improvement of anomaly detec-
tion performance. For example, Wan et al. [48] extended
MIL ranking loss to the inner positive bag to encourage the
discriminability inside the bag. Zhu et al. [52] proposed
temporal augmented MIL ranking loss considering the tem-
poral context through an attention mechanism. Wu et al.
[43] introduced a causal convolution for feature extraction,
to capture long-range dependencies in accurate anomaly de-
tection. Despite their plausible results, their performance is
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limited by unreliable classification scores from the weak su-
pervisory signal. To alleviate this problem, Zhong et al. [51]
proposed to refine the noisy prediction from video-level la-
bels using graph convolutional neural networks. Inspired by
self-training [45], MIST [9] and MSL [17] iteratively gen-
erate pseudo labels based on the predicted anomaly scores
and re-train the classifier to obtain further refined pseudo
labels. However, these methods still rely on the prediction
of the unreliable MIL-based classifier for pseudo label gen-
eration.

Concurrent to our method, Liu et al. [20] also learn
normality in noise-free negative bags to enhance the MIL-
based wVAD performance. Unlike this approach using
auto-encoder, we encode normality as prototypes, i.e., cen-
troids of normal features. It allows the model to obtain com-
pact decision boundaries for normal instances [10, 40, 26].
Also, we use the learned normality to refine the score from
the MIL-based classifier in an end-to-end fashion.

3. Method
3.1. Background and Motivation

Multiple instance ranking framework [33, 52, 9, 38, 17,
29] is widely used in weakly supervised video anomaly
detection, thanks to its capability to discriminate anoma-
lous segments using only video-level label. Given a video
B = {vt}Tt=1 with T non-overlapping segments, each in-
stance ft ∈ RD is computed through a feature extractor
E(·) such that ft = E(vt) ∈ RD. The method then defines
the abnormal video as a positive bag Ba = {fa

t }Tt=1 and
the normal video as a negative bag Bn = {fn

t }Tt=1. They
typically aim to maximize the anomaly score between top-k
highest instances in the positive and negative bag through
ranking loss:

Lrank = [1− 1

k

k∑
i=1

c(fa
i ) +

1

k

k∑
j=1

c(fn
j )]+, (1)

where [·]+ is hinge function, and c(fa
i ), c(fn

j ) indicate
ith, jth index of predicted anomaly scores sorted in de-
scending order. Minimizing the ranking objective in Eq. (1)
improves instance discrimination power for abnormal in-
stances against normal instances. However, they still se-
lect the top-k instances using an anomaly classifier solely
trained on the video-level label. It often results in high-
confidence anomaly scores for normal instances in the ab-
normal video, thus accumulating errors in the subsequent
learning process, as demonstrated in Sec. 4.7.

In this paper, we propose Normality Guided Multiple In-
stance Learning (NG-MIL), in which normality prototypes
encoded with diverse normal patterns from normal videos
give guidance in anomaly prediction refinement. By uti-
lizing the similarity between normality prototypes and in-
stances as additional classification scores, we refine the

error-prone initial noisy prediction. In the following, we
elaborate Normality Guided Refinement Module (Sec. 3.2)
and learning objectives (Sec. 3.3). The overall framework
of NG-MIL is illustrated in Fig. 2.

3.2. Normality Guided Refinement Module

Normality Guided Refinement Module (NGRM) is de-
signed to refine the unreliable anomaly scores using a set of
normality prototypes P = {pm}Mm=1, where each normality
is represented by a prototype pm ∈ RD/4. It consists of two
major processes, normality update and anomaly prediction
refinement. The details are introduced as follows.

Normality Update. Our normality update process aims at
capturing global characteristics of normality from all nor-
mal videos. It is inspired by the previous memory-based
methods [32, 13, 10, 26]. To update normality prototype
pm, we first project fn

t into f̂n
t , to align the feature dimen-

sion to pm. We then compute the cosine similarity between
each projected instance feature f̂n

t and all normality proto-
types P :

snt,m =
f̂n
t p

⊤
m

||f̂n
t || ||pm||

, m ∈ {1, ...,M}. (2)

It results in a 2-dimensional similarity map of size T ×M .
Each projected instance is assigned to update the nearest
normality prototype. We denote the set of projected in-
stance indices Um for updating the mth normality proto-
type. Note that the projected instance features can be as-
signed to a single normality prototype. We then update the
normality prototype using the projected instance feature as
follows:

pm ← (1− λ)pm + λ
1

|Um|
∑
t∈Um

f̂n
t , (3)

where λ represents a momentum for exponentially weighted
moving average. Note that we update the normality proto-
type only if the projected instance feature is assigned.

Anomaly Prediction Refinement. Unlike existing meth-
ods [33, 9, 38, 17, 29] that exploit top-scoring instances for
discriminative representation of anomalous segments, we
extend it by incorporating normality prototypes as guidance
to refine the unreliable anomaly scores. We first compute
cosine similarity between each instance and normality pro-
totypes. We then apply softmax operation along the M nor-
mality prototypes, and use it as attention weight for similar-
ity score as follows:

g(fi, P ) =

M∑
m=1

exp(si,m/τ)∑M
m=1 exp(si,m/τ)

si,m, (4)
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Figure 2. Overall architecture of proposed NG-MIL framework, which is composed of an encoder, NGRM, and MIL-based classifier. First
We feed a pair of abnormal and normal videos into the network, generating feature embedding by a pre-trained backbone and encoder.
Then, the MIL-based classifier predicts anomaly scores, which are refined by NGRM. Finally, NG-MIL ranking loss is applied with the
refined scores. Note that the normal and abnormal branches share the same encoder and classifier. During the testing stage, a single
unlabeled video is the input of the network.

where τ is a temperature hyper-parameter. We further ap-
ply a ReLU function to g to make sure it is non-negative.
Note that our model applies the same rule for both abnormal
and normal videos, so we omit the superscripts a and n for
brevity. We can simply represent anomaly score a(fi, P ) as
an inverted similarity score between the instance and nor-
mality prototype such that:

a(fi, P ) = 1− g(fi, P ). (5)

Finally, we refine the score by ensembling two prediction
scores from each classifier, following [36, 35, 16, 49] :

r(fi) =
1

2
(c(fi) + a(fi, P )). (6)

3.3. Learning Objectives

We utilize three losses for optimizing our network: nor-
mality guided MIL ranking loss LNG−MIL, and two aux-
iliary losses for NGRM, Lclst and Ltri which regularize
the instance features inside the negative and positive bag
respectively.

Normality Guided MIL Ranking Loss. Using NGRM
introduced in Sec. 3.2, we propose NG-MIL ranking loss as
follows:

LNG−MIL = [1− 1

k

k∑
i=1

r(fa
i ) +

1

k

k∑
j=1

r(fn
j )]+, (7)

where i and j are the indices of score r, sorted in descend-
ing order. Compared to the base MIL ranking loss in Eq.

(1), NG-MIL ranking loss allows to select more confident
target instances for ranking loss, which alleviates training
instability from weak labels.

Normality Clustering Loss. Motivated by cluster
loss [6], we further propose normality clustering loss to
encourage clustering between each instance in the negative
bag and its nearest neighbor prototype:

Lclst =
1

T

T∑
i=1

min
pm∈P

∥pm − f̂n
i ∥22. (8)

This clustering loss reduces the intra-class variance of nor-
malities, which facilitates the discriminability of similarity-
based anomaly classification in NGRM.

Normality Guided Triplet Loss. For accurate classifi-
cation from both the MIL-based classifier and similarity-
based classifier, we expect that abnormal instance features
lie far apart from normal instance features in both positive
and negative bags. However, NG-MIL ranking loss in Eq.
(7) only considers top-k instances as optimization units, ig-
noring normal instances in the positive bag. As the majority
of segments in abnormal video contain normal events, this
hinders the classifier from detecting abnormal instances sur-
rounded by normal ones.

From this motivation, we introduce normality guided
triplet loss that penalizes the gap between normal and ab-
normal instance features by a large margin. We first sample
pseudo abnormal set Ωa = {f̂a

1 , ..., f̂
a
k } and pseudo nor-

mal set Ωn = {f̂a
T−k+1, ..., f̂

a
T }, which contain top-k and
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Figure 3. Illustration of normality guided triplet loss. For each
sample (i.e. positive sample) of the pseudo normal set, the nearest
normality prototype becomes an anchor. Then the sample from the
pseudo abnormal set closest to each anchor becomes the negative
sample, forming a triplet set. The normality guided triplet loss
minimizes the distance between the anchor and the positive sample
and maximizes the distance between the anchor and the negative
sample.

bottom-k instances sampled from the positive bag using re-
fined scores from Eq. (6) sorted in descending order. Then,
the loss is formulated as:

Ltri =
1

k

k∑
i=1

[∥f̂a
T−i+1 − pj∥22 − min

f̂a∈Ωa

∥f̂a − pj∥22 + γ]+,

(9)
where γ is a pre-defined margin and j is an index of the
nearest prototype from each sample in the pseudo normal
set:

j = argmin
m∈M

∥f̂a
T−i+1 − pm∥22. (10)

Our loss enhances the intra-class compactness of normali-
ties and inter-class separability in the positive bag by penal-
izing triplets in (P , Ωn, Ωa), which results in boosting the
refinement quality of NGRM significantly.

Total Loss Our total loss function is defined with the
summation of NG-MIL ranking loss LNG−MIL, normality
clustering loss Lclst, and normality guided triplet loss Ltri.
In addition, following Sultani et al. [33], we incorporate the
temporal smoothness term defined as Lts =

∑T−1
i=1 (r(fi)−

r(fi+1))
2 and sparsity constraints term defined as Ls =∑T

i=1 r(fi), leveraging characteristics of temporal consis-
tency of events and rarity of abnormal events in real-world
scenarios. Finally, the total loss is defined as:

Ltotal =LNG−MIL + λtLclst + λcLtri

+ λr(Lts + Ls),
(11)

where λt, λc, and λr assign relative importance to different
loss signals.

4. Experiments
4.1. Datasets and Evaluation Metrics

We conduct experiments on three video anomaly detec-
tion benchmarks, ShanghaiTech [19], UCF-Crime [33], and
XD-Violence [44].

ShanghaiTech is a medium-scale dataset that contains
437 campus surveillance videos with 130 abnormal events
in 13 scenes. Since the original training dataset contains
only normal videos, Zhong et al. [51] reorganized testing
videos into training data and vice versa.

UCF-Crime is a large-scale complex dataset that contains
1900 indoor and outdoors untrimmed real-world surveil-
lance videos. The training set consists of 800 normal and
810 abnormal videos, and the test set includes 150 nor-
mal and 140 abnormal videos with 13 types of anomalous
events.

XD-Violence is a large-scale diverse dataset collected
from movies, in-the-wild scenes, and surveillance cameras.
The dataset contains 4754 videos, which consists of 2349
normal and 2405 abnormal videos. The training set includes
3954 videos and the test set contains 800 videos.

Evaluation Metrics. Following previous works [33, 52,
46, 9, 38, 17, 48, 29], we plot the area under the curve
(AUC) of the frame-level receiver operating characteris-
tics (ROC) as evaluating the performance of our method.
The ROC curve shows the performance at all classification
thresholds, which is mainly used for the binary classifica-
tion task. In addition, for XD-Violence dataset, we also use
average precision (AP) as an evaluation metric following
[44, 38, 17]. Note that a higher AUC and AP implies better
anomaly detection performance.

4.2. Implementation Details

We extract 2,048D features from the ‘mixed 5c’ layer
of the pre-trained I3D [4] or 4,096D features from the ‘fc6’
layer of the pre-trained C3D [14]. The encoder consists of
temporal convolution layers and ReLU activation function.
Following previous works [38, 33], we divided each video
into 32 non-overlapping segments. The MIL-based clas-
sifier is a 3-layer MLP, where the number of nodes is 512,
128, and 1 respectively. Each layer is followed by ReLU ac-
tivation function and a dropout function with a rate of 0.7.
NGRM contains 32 prototypes for ShanghaiTech and 64 for
UCF-Crime and XD-Violence, initialized by K-means clus-
tering algorithm [22] across all normal videos. The mo-
mentum parameter for normality update is set to 0.1, and
the temperature hyper-parameter in Eq.(4) to 0.5. Note that
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Supervision Method Feature AUC (%)

One-Class
Classification

Conv-AE [11] - 50.60
Stacked-RNN [24] - 68.00

MNAD [26] - 70.50
AMMC [3] - 73.70
GCL [47] - 78.93

Weakly Supervised

IBL [48] C3D RGB 82.50
GCN-Anomaly [51] TSN RGB 84.44
Sultani et al.* [33] I3D RGB 85.33

AR-Net [40] I3D RGB/Flow 91.24
CLAWS [46] C3D RGB 89.67

MIST [9] C3D RGB 93.13
MIST [9] I3D RGB 94.83

RTFM [38] C3D RGB 91.51
RTFM [38] I3D RGB 97.21
MSL [17] C3D RGB 94.81
MSL [17] I3D RGB 97.32

BN-SVP [29] C3D RGB 96.00

Weakly Supervised Ours C3D RGB 96.02
Ours I3D RGB 97.43

Table 1. Comparison of frame-level AUC performance with other
SOTA methods under one-class classification and weakly supervi-
sion mode on ShanghaiTech. The method with * is reported by
[38]. The highest result is bolded.

we do not update normality prototypes at the testing stage.
We set the margin value of normality guided triplet loss in
Eq. (9) to 8. Our method is trained in an end-to-end manner
using Adam optimizer [15] with a learning rate of 0.001,
a weight decay of 0.0005, and a batch size of 64. Each
mini-batch is composed of 32 randomly selected normal
and abnormal videos. Through the cross-validation using
grid-search in log-scale, we set the hyper-parameters λt, λc,
and λr as 0.1, 0.1, and 0.5, respectively.

4.3. Performance on ShanghaiTech

The AUC results on ShanghaiTech are shown in Table
1. Our method achieves AUC score of 97.43% with I3D
RGB features and 96.02% with C3D RGB features, out-
performing existing state-of-the-art one-class classification
(OCC) [11, 24, 26, 3, 47] and weakly supervised methods
[48, 51, 33, 40, 46, 9, 38, 17, 29]. These results demonstrate
the effectiveness of our proposed NG-MIL.

4.4. Performance on UCF-Crime

The performances on UCF-Crime are demonstrated in
Table 2. Consistent with the results on ShanghaiTech, our
method outperforms all OCC [11, 34] and weakly super-
vised approaches [33, 48, 52, 51, 46, 9, 38, 17, 29] by large
margins. For example, with I3D RGB features, our method
outperforms Sultani et al. [33] by 7.71%, GCN-Anomaly
[51] by 3.51%, MIST [9] by 3.33%, RTFM [38] by 1.60%,
MSL [17] by 0.33%, and BN-SVP [29] by 2.24%. Consid-
ering C3D RGB features, our approach has also achieved
competitive results. Compared to computationally costly al-
ternative training [51] and self-training [17, 9] methods, our

Supervision Method Feature AUC (%)
One-Class

Classification
Conv-AE [11] - 50.60
ST-Graph [34] - 72.70

Weakly Supervised

Sultani et al. [33] C3D RGB 75.41
Sultani et al.* [33] I3D RGB 77.92

IBL [48] C3D RGB 78.66
Motion-Aware [52] PWC Flow 79.00
GCN-Anomaly [51] TSN RGB 82.12

CLAWS [46] C3D RGB 83.03
MIST [9] C3D RGB 81.40
MIST [9] I3D RGB 82.30

RTFM [38] C3D RGB 83.28
RTFM [38] I3D RGB 84.03
MSL [17] C3D RGB 82.85
MSL [17] I3D RGB 85.30

BN-SVP [29] I3D RGB 83.39

Weakly Supervised Ours C3D RGB 83.43
Ours I3D RGB 85.63

Table 2. Comparison of frame-level AUC performance with other
SOTA methods under one-class classification and weakly supervi-
sion mode on UCF-Crime.

Supervision Method Feature AP (%)
One-Class

Classification
OC-SVM [31] - 27.25
Conv-AE [11] - 30.77

Weakly Supervised

Sultani et al. [33] C3D RGB 73.20
Sultani et al.* [33] I3D RGB 75.68

Wu et al. [44] I3D RGB 75.41
Wu et al.† [44] I3D RGB/Audio 78.64

RTFM [38] C3D RGB 75.89
RTFM [38] I3D RGB 77.81
MSL [17] C3D RGB 75.53
MSL [17] I3D RGB 78.28

Weakly Supervised Ours C3D RGB 75.91
Ours I3D RGB 78.51

Table 3. Comparison of AP performance with other SOTA meth-
ods under one-class classification and weakly supervision mode
on XD-Violence.

method outperforms these methods by training the model
in an end-to-end fashion, proving the effectiveness of our
model.

4.5. Performance on XD-Violence

The performances on XD-Violence are demonstrated in
Table 3. Our model exceeds OCC methods [31, 11] by
a minimum of 47.74% in AP. Moreover, comparing with
other state-of-the-art weakly supervised methods, our meth-
ods performs better than Sultani et al. [33] by 2.83%, RTFM
[38] by 0.70%, MSL [17] by 0.23% using I3D RGB fea-
tures. Specifically, compared with the trained method with
both RGB and Audio features by Wu et al. [44], it can be
observed that our method even can achieve comparable per-
formance with only RGB features.

4.6. Ablation Study

Top-k precision. To validate the effectiveness of our NG-
MIL framework, we utilize top-k precision metric:

Top-k Precision (%) =
TPI

TPI + FPI
× 100, (12)
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Figure 4. Comparison results on (a) ShanghaiTech and (b) UCF-
Crime measured by Top-k Precision at each epoch (k=3).

Method ShanghaiTech UCF-Crime
Baseline 93.13 83.01

NGRMsim 94.01 83.64
NGRM 97.43 85.63

Table 4. Comparison results of top-k selection strategy on Shang-
haiTech and UCF-Crime, measured by AUC.

where TPI and FPI indicate the number of true and false
positives within the top-k instances. Note that it is mea-
sured on the testing abnormal videos. A higher value of
the measure indicates that the top-k instances are more ac-
curately selected to calculate the ranking loss, which can
boost the overall learning of the model. We compare the
top-k precision performance with other top-k ranking mod-
els, including baseline and RTFM, using I3D RGB features
on the ShanghaiTech and UCF-Crime benchmarks.

In Fig. 4, we observe that our method shows faster con-
vergence speed and higher performance in terms of top-k
precision. For ShanghaiTech, our method outperforms the
baseline and RTFM by 16.03%, 8.12% at the first epoch,
and 11.54%, 2.04% after convergence. A similar result is
observed on UCF-Crime, showing improvement of 16.79%,
8.66% at the first epoch, and 18.81%, 8.79% for after con-
vergence. It indicates that our NGRM contributes to sam-
pling the top-k instances more accurately. Taking advan-
tage of the accurate samples, our model also results in bet-
ter AUC performance compared to the other methods, as
presented in Tables 1 and 2.

Top-k selection strategy. In Table 4, we investigate the
contribution of our refining strategy on ShanghaiTech and
UCF-Crime using I3D RGB features. We consider three
types of top-k selection strategy for MIL ranking loss: (1)
using only MIL-based classifier (Baseline) (2) NGRM us-
ing only similarity-based classifier (NGRMsim), and (3)
NGRM using both MIL-based classifier and similarity-
based classifier (NGRM). Selecting top-k instances by re-
fined score largely outperforms score-only, and similarity-
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Figure 5. AUC with respect to the different number of prototypes
on ShanghaiTech and UCF-Crime.

LNG−MIL Ltri Lclst ShanghaiTech UCF-Crime
✓ 93.13 83.03
✓ ✓ 95.51 84.06
✓ ✓ 96.59 84.87
✓ ✓ ✓ 97.43 85.63

Table 5. AUC results of loss function analysis on ShanghaiTech
and UCF-Crime.

only methods by 4.30%, 3.42% for ShanghaiTech and
2.62%, 1.99% on UCF-Crime. This indicates that NG-MIL
framework contributes to the overall performance, which
learns complementary information between the similarity-
based branch and MIL-based branch, thus avoiding being
trapped in local minima.

Number of prototypes. We use ShanghaiTech and UCF-
Crime to study the effect of the number of prototypes M .
We conduct the experiments by using a different number of
prototypes with I3D RGB features and show the results in
Fig. 5. It can be observed that the predicted anomaly scores
have the highest AUC of 97.43% with M = 32 on Shang-
haiTech and 85.63% with M = 64 on UCF-Crime. This in-
dicates that UCF-Crime, captured from real-world surveil-
lance, has more diversity of normal patterns than Shang-
haiTech captured only on campus. Also, an insufficient
number of prototypes (M < 10) degrades the performance
significantly, which validates the importance of modeling
diverse normal patterns.

Effects of loss components. We conduct component
analysis of each proposed loss function on ShanghaiTech
and UCF-Crime using I3D RGB features in Table 5. The
baseline with NG-MIL ranking loss achieves 93.13%, and
83.03% AUC for each dataset. The proposed normality
guided triplet loss Ltri improves 2.38%, 1.03% from NG-
MIL ranking loss on ShanghaiTech and UCF-Crime, while
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Figure 6. Visualization of anomaly scores on ShanghaiTech and UCF-Crime test videos. Orange curves show anomaly scores of our method
and blue curves show anomaly scores of the baseline model without NGRM. Pink areas indicate the ground-truth abnormal frames. Each
red and green box shows the abnormal and normal event. Best viewed in color.

the normality clustering loss Lclst achieves improvement of
3.46% and 1.84%. The model with all of the loss compo-
nents performs best with 97.43% and 85.63%. It demon-
strates that both losses are effective for boosting perfor-
mance along with NG-MIL ranking loss, by increasing the
discriminability of anomalies in a video.

4.7. Qualitative Analysis

In Fig. 6, we visualize some representative results on
several challenging cases in ShanghaiTech and UCF-Crime.
We compare our model with the baseline following Sec.
4.6. The baseline model fails to distinguish abnormal from
normal events where confusing abnormal events (12 0142,
Burglary 037, Shoplifting 007) which are similar to any
other context information, and also miss detects false posi-
tive normal events (04 0003, Explosion 004, Normal 904).
In contrast to the baseline model, our method success-
fully predicts long-term abnormal event (01 0130, 05 0021,
12 0142, Burglary 037), single short-term abnormal event
(Explosion 004), multiple abnormal events (Burglary 037,
Shoplifting 007), and only normal events (04 0003, Normal
904), with large score margins between the normal and ab-
normal events. Furthermore, our model detects some chal-
lenging abnormal events that are similar to normal events
(Burglary 037, Shoplifting 007), showing the effectiveness
of our normality guided triplet loss.

5. Conclusion
In this work, we identified the inherent limitations of ex-

isting weakly supervised video anomaly detection methods

based on multiple instance learning ranking model. We ob-
served that the majority of the methods solely relied on un-
reliable anomaly scores for high-confidence anomalous in-
stance selection, which might lead to erroneous anomaly
prediction. To address this problem, we proposed to refine
anomaly scores from the MIL-based classifier by normality
prototypes which describe global characteristics of normal
information. Furthermore, we introduced normality cluster-
ing and normality guided triplet loss to boost the quality of
the refinement process. Experimental results on three pop-
ular VAD datasets show the effectiveness of our method,
demonstrating improved performance over the state-of-the-
art methods.

Broader Impacts. Our method can be used in the real-
time intelligent video surveillance system, which signifi-
cantly increases monitoring efficiency. The video anomaly
detection system is designed to enhance social safety, how-
ever, it can also have some potential negative societal im-
pacts. The surveillance data and VAD datasets may cause
privacy issues on irrelevant individuals. Therefore, the col-
lection process of these data should inform the persons who
are in the collection, and it must be well institutionalized
for using VAD algorithms.
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