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Abstract

Information extraction (IE) plays a crucial role001
in natural language processing (NLP) by con-002
verting unstructured text into structured knowl-003
edge. Deploying computationally intensive004
large language models (LLMs) on resource-005
constrained devices for information extraction006
is challenging, particularly due to issues like007
hallucinations, limited context length, and high008
latency—especially when handling diverse ex-009
traction schemas. To address these challenges,010
we propose a two-stage information extraction011
approach adapted for on-device LLMs, called012
Dual-LoRA with Incremental Schema Caching013
(DLISC), which enhances both schema identi-014
fication and schema-aware extraction in terms015
of effectiveness and efficiency. In particular,016
DLISC adopts an Identification LoRA mod-017
ule for retrieving the most relevant schemas018
to a given query, and an Extraction LoRA019
module for performing information extraction020
based on the previously selected schemas. To021
accelerate extraction inference, Incremental022
Schema Caching is incorporated to reduce re-023
dundant computation, substantially improving024
efficiency. Extensive experiments across multi-025
ple information extraction datasets demonstrate026
notable improvements in both effectiveness and027
efficiency.028

1 Introduction029

Information extraction (IE) is a core task in nat-030

ural language processing (NLP) that aims to ex-031

tract structured knowledge—such as entities, re-032

lations, and events—from unstructured text (Xu033

et al., 2023; Deng et al., 2024; Yang et al., 2022).034

Large language models (LLMs), with their pow-035

erful generalization abilities, have shown consid-036

erable promise in improving IE tasks (Xu et al.,037

2023; Deng et al., 2024). However, deploying038

LLMs on resource-constrained edge devices for039

information extraction is more challenging (Xu040

et al., 2024), including hallucinations, limitations041

Figure 1: The LLM-Adapters architecture for deploying
LLMs on edge devices with a single on-device LLM
and multiple plug-in LoRA modules.

in context length, and high latency. In particular, 042

on-device LLMs face hallucinations due to insuffi- 043

cient task-specific tuning, while the need to include 044

all extraction schemas in broad scenarios results in 045

long inputs and high latency. 046

To mitigate these challenges, retrieval- 047

augmented generation (RAG) methods have 048

emerged as a promising solution, enhancing 049

extraction accuracy by incorporating external 050

knowledge (Gao et al., 2023; Li et al., 2024). For 051

instance, Shiri et al. (2024) decompose event 052

extraction into two subtasks: Event Detection (ED), 053

which retrieves relevant event examples, and Event 054

Argument Extraction (EAE), which extracts events 055

based on the retrieved examples. In addition, Liang 056

et al. (2025) propose Adaptive Schema-Aware 057

Event Extraction (ASEE), a two-stage paradigm 058

that decomposes the extraction task into schema 059

matching and schema-augmented extraction. 060

ASEE leverages an extensive library of event 061

extraction schemas, adaptively retrieving relevant 062

schemas and assembling extraction prompts to 063

improve accuracy and scalability. 064

Despite the progress of RAG-based methods in 065

information extraction, fully leveraging the unique 066

advantages of on-device LLMs (Xu et al., 2024; 067

Mehta et al., 2024)—such as the LLM-Adapters 068

architecture (Hu et al., 2023)—while enhancing 069

extraction effectiveness and efficiency remains un- 070

derexplored. Figure 1 illustrates the LLM-Adapters 071

architecture for deploying large language models 072

on edge devices. In this design, a single on-device 073
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Figure 2: An illustrative comparison of (a) RAG-based IE with schema retrieval and top-K schema-aware extrac-
tion; (b) Dual-LoRA IE paradigm with schema identification and schema-aware extraction; (c) Dual-LoRA with
Incremental Schema Caching (DLISC) for further enhancing inference efficiency.

LLM remains persistently loaded to maintain re-074

sponsiveness, while multiple plug-in LoRA mod-075

ules are selectively activated to support various076

task-specific adaptations with minimal resource077

overhead.078

In this paper, we propose a two-stage in-079

formation extraction approach adapted for on-080

device LLMs, called Dual-LoRA with Incremental081

Schema Caching (DLISC), which enhances both082

schema identification and schema-aware extraction083

in terms of effectiveness and efficiency. In partic-084

ular, DLISC adopts an Identification LoRA mod-085

ule for retrieving the most relevant schemas to a086

given query, and an Extraction LoRA module for087

performing information extraction based on the pre-088

viously selected schemas. To accelerate extraction089

inference, Incremental Schema Caching is incor-090

porated to reduce redundant computation, notably091

improving efficiency.092

2 Methodology093

To enhance the effectiveness and efficiency of094

on-device information extraction, we propose a095

two-stage information extraction approach adapted096

for on-device LLMs, called Dual-LoRA with097

Incremental Schema Caching (DLISC). Figure 2098

presents the architecture of DLISC with an Iden-099

tification LoRA for identifying the most rele- 100

vant schemas to the query, an Extraction LoRA 101

for performing the information extraction with 102

the matched schemas, and Incremental Schema 103

Caching for accelerating the extraction inference. 104

Dual-LoRA Architecture. The Dual-LoRA in- 105

formation extraction architecture (as shown in 106

Figure 2 (b)) follows the RAG-based two-stage 107

paradigm (Liang et al., 2025) with an Identification 108

LoRA (θI ) and an Extraction LoRA (θE) based on 109

the same LLM (θ). During inference, these two 110

parameter sets are “merged” with the LLM (θ), 111

producing two distinct LLMs (θ′
I ,θ

′
E), 112

θ′
I ,θ

′
E = Merge(θI ,θ),Merge(θE ,θ) (1) 113

each serving identification and extraction functions. 114

In addition, the Identification LoRA (θI ) and Ex- 115

traction LoRA (θE) can be optimized for improv- 116

ing the identification and extraction accuracy, re- 117

spectively. 118

The raw text data, Query Q, is input into θ′
I with 119

Identification Meta Prompt MI to identify the most 120

relevant schemas, i.e. Matched Schemas S, 121

S = θ′
I(MI +Q). (2) 122

The Matched Schemas S are then concatenated 123

with Extraction Meta Prompt ME and Query Q as 124
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the prompt of θ′
E ,125

R =θ′
E(ME + S +Q), (3)126

where the returned structured results R are the ex-127

tracted information from the raw text data Q.128

Incremental Schema Caching Acceleration. To129

accelerating the extraction inference, we introduce130

Incremental Schema Caching (ISC) to the extrac-131

tion process (as shown in Figure 2 (c)), inspired132

by the Key-Value (KV) Cache mechanism (Luohe133

et al., 2024) and Prompt Cache (Gim et al., 2024),134

R =θ′
E(ME(Cache) + S(Cache) +Q), (4)135

where ME(Cache) and S(Cache) are the cached Ex-136

traction Meta Prompt and the cached Matched137

Schemas. Specifically, we store the Extraction138

Meta Prompt ME in the cache when it first ap-139

pears, and the Incremental Schema Caching (ISC)140

mechanism for the Matched Schemas works as fol-141

lows:142

• When a Matched Schema S is identified, the143

schema is checked if it is already in the schema144

cache pool.145

• If the schema cache is found, the cached schema146

is directly returned and used for accelerating the147

extraction inference.148

• If the schema cache is not found, the Matched149

Schema is concatenated in text for running the150

inference process, while the computed Matched151

Schema cache is then stored in the schema cache152

pool.153

Overall, by decomposing the information extrac-154

tion task into two stages—Identification and Ex-155

traction—the multi-LoRA structure of on-device156

LLMs can be fully leveraged to optimize each stage157

separately, thereby improving overall extraction158

performance. By incrementally caching previously159

inferenced schemas, we can avoid redundant calcu-160

lations, thereby boosting the extraction inference161

efficiency.162

3 Experiments163

3.1 Experimental Settings164

RAG-based Baselines. We compare our pro-165

posed DLISC approach with the following retrieval-166

augmented baselines (as shown in Figure 2 (a),167

K=5):168

• BM25 (Robertson and Zaragoza, 2009) is a169

probabilistic information retrieval algorithm that170

scores document-query relevance by weighting171

term frequency, inverse document frequency, and 172

document length. 173

• BGE-Reranker-V2-M3 (Chen et al., 2024) is a 174

lightweight reranker model that possesses strong 175

multilingual capabilities, is easy to deploy, and 176

supports fast inference. 177

• LLM-Embedder (Zhang et al., 2024a) compre- 178

hensively support diverse retrieval augmentation 179

scenarios for LLMs with a unified embedding 180

model, addressing the limitations of both general- 181

purpose and task-specific retrievers. 182

On-Device LLMs. We consider the following 183

state-of-the-art on-device LLMs for information 184

extraction: 185

• Llama-3.2-1B (Dubey et al., 2024) delivers pow- 186

erful language model capabilities on edge and 187

mobile devices with its lightweight 1B parameter 188

model. 189

• Qwen2.5-3B (Yang et al., 2024) demonstrate ex- 190

ceptional performance across a wide range of 191

tasks and benchmarks, showcasing its strength in 192

instruction following, generating long texts, un- 193

derstanding structured data, and producing struc- 194

tured outputs. 195

• TinyLlama-1.1B-Chat-v1.0 (Zhang et al., 196

2024b) is a lightweight conversational model 197

based on the TinyLlama project, which aims to 198

pretrain a 1.1 billion parameter Llama model 199

on 3 trillion tokens and is suitable for applica- 200

tions with limited computational and memory 201

resources. 202

Datasets. We conduct experiments on several col- 203

lected datasets, including: 204

• CrossNER_AI (Liu et al., 2020): CrossNER is 205

a well-known English open-source project in 206

the field of NLP, specifically focusing on cross- 207

domain Named Entity Recognition (NER). In 208

particular, CrossNER_AI mainly focuses on the 209

artificial intelligence (AI) domain. 210

• DuEE-Fin (Gui et al., 2024): a large-scale dataset 211

designed for document-level Event Extraction 212

(EE) tasks, particularly focusing on the Chinese 213

financial domain. 214

Evaluation Metrics. We use three metrics to 215

evaluate IE performance in terms of both effec- 216

tiveness and efficiency: 217

• Precision – Assesses the accuracy of schema 218

matching. 219

• F1 Score – Measures the overall quality of infor- 220

mation extraction. 221
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Method Llama-3.2-1B Qwen2.5-3B

BM25 0.2341 0.3968
BGE-Reranker-V2-M3 0.2341 0.3819
LLM-Embedder 0.2341 0.3819
DLISC 0.4179 0.4311

Table 1: Effectiveness of DLISC with baselines on
CrossNER_AI for NER in terms of F1.

Method Llama-3.2-1B Qwen2.5-3B

Dual-LoRA 1.38 6.02
DLISC 0.66 4.59

Table 2: Efficiency of Dual-LoRA without caching and
DLISC in seconds (s) per sample.

Method Identification Extraction
(Precision) (F1)

BM25 0.2120 0.3220
BGE-Reranker-V2-M3 0.2580 0.5714
LLM-Embedder 0.2680 0.7484
DLISC 0.2982 0.7746

Table 3: Ablation exploration on DuEE-Fin dataset with
TinyLlama-1.1B-Chat-v1.0 as the base LLM (θ). “Iden-
tification” represents the schema matching phase, and
“Extraction” represents the end-to-end information ex-
traction phase with the corresponding matched schemas.

• Latency (seconds, s) – Captures efficiency by222

recording average extraction time over 100 sam-223

ples.224

3.2 Experimental Results225

Effectiveness Comparison. Table 1 presents226

a comparative evaluation between our proposed227

DLISC method and several retrieval-augmented228

information extraction (IE) baselines that dif-229

fer in their retrieval capabilities. Specifically,230

the baselines incorporate three retrieval mod-231

els—BM25, BGE-Reranker-V2-M3, and LLM-232

Embedder—while employing the same information233

extraction backbone model θ′
E as used in DLISC,234

ensuring a fair comparison. As shown in the results,235

DLISC consistently outperforms all RAG-based236

baselines across both Llama-3.2-1B and Qwen2.5-237

3B, demonstrating superior extraction effectiveness.238

These findings highlight that DLISC’s on-device IE239

task decomposition and schema caching strategies240

contribute to more accurate and robust information241

extraction, especially in complex or schema-rich242

scenarios.243

Efficiency Comparison. To assess the impact244

of Incremental Schema Caching on extraction effi-245

ciency, we measure the end-to-end processing time246

(in seconds) required for information extraction 247

over a set of 100 test samples. As shown in Table 2, 248

we compare the baseline Dual-LoRA method with- 249

out caching against our proposed DLISC approach 250

enhanced with Incremental Schema Caching. No- 251

tably, DLISC, when implemented with both Llama- 252

3.2-1B and Qwen2.5-3B, achieves a substantial re- 253

duction in latency, demonstrating a more efficient 254

inference process. The results highlight that Incre- 255

mental Schema Caching notably lowers the aver- 256

age extraction time per sample, thereby improving 257

overall system responsiveness. 258

Ablation Exploration. Our proposed DLISC 259

adopts a two-stage information extraction paradigm 260

involving two distinct LLMs: θ′
I for identifying the 261

most relevant schemas, and θ′
E for schema-aware 262

extraction. Table 3 analyzes the contribution of 263

each component—namely the “Identification” and 264

“Extraction” phases—on the DuEE-Fin dataset, us- 265

ing TinyLlama-1.1B-Chat-v1.0 as the base LLM 266

(θ). The results show that DLISC outperforms 267

all three RAG-based IE baselines, achieving the 268

highest Precision score in the Identification phase 269

and the highest F1 score in the Extraction phase. 270

Overall, DLISC delivers the best end-to-end per- 271

formance, validating the effectiveness of the Dual- 272

LoRA information extraction paradigm. 273

4 Conclusion 274

In this paper, we propose Dual-LoRA with 275

Incremental Schema Caching (DLISC), a novel 276

two-stage information extraction approach tailored 277

for on-device LLMs. Specifically, DLISC employs 278

an Identification LoRA module to retrieve the most 279

relevant schemas for a given query, and an Extrac- 280

tion LoRA module to perform information extrac- 281

tion conditioned on the selected schemas. We con- 282

duct extensive experiments on multiple benchmark 283

datasets, demonstrating that DLISC achieves state- 284

of-the-art performance in both schema identifica- 285

tion and schema-aware extraction when compared 286

with three RAG-based IE baselines. To further im- 287

prove inference efficiency, DLISC integrates Incre- 288

mental Schema Caching, which effectively reduces 289

redundant computation. Future work will explore 290

integrating more fine-grained schema representa- 291

tions and dynamic on-demand generation to fur- 292

ther enhance adaptability across diverse extraction 293

tasks. 294
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5 Limitations295

Our Dual-LoRA with Incremental Schema Caching296

(DLISC) framework has several limitations. First,297

DLISC currently employs only the LoRA adapters,298

so it remains to be explored whether the approach299

can generalize to other adapter types (Hu et al.,300

2023), such as Prefix Tuning, Series Adapter, or301

Parallel Adapter, to improve adaptability and gen-302

eralization. Second, we were unable to deploy on303

real edge devices due to computational resource304

constraints. Additionally, our current implementa-305

tion lacks support for more complex multilingual306

and cross-lingual scenarios, posing additional chal-307

lenges for building scalable and versatile informa-308

tion extraction systems. We hope to address the309

above limitations in the follow-up work.310
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