
GradTree: Learning Axis-Aligned Decision Trees with
Gradient Descent

Sascha Marton
University of Mannheim

68131 Mannheim
sascha.marton@uni-mannheim.de

Stefan Lüdtke
University of Rostock

18051 Rostock
stefan.luedtke@uni-rostock.de

Christian Bartelt
University of Mannheim

68131 Mannheim
christian.bartelt@uni-mannheim.de

Heiner Stuckenschmidt
University of Mannheim

68131 Mannheim
heiner.stuckenschmidt@uni-mannheim.de

Abstract

Decision Trees (DTs) are commonly used for many machine learning tasks due to
their high degree of interpretability. However, learning a DT from data is a diffi-
cult optimization problem, as it is non-convex and non-differentiable. Therefore,
common approaches learn DTs using a greedy growth algorithm that minimizes
the impurity locally at each internal node. Unfortunately, this greedy procedure
can lead to inaccurate trees. In this paper, we present a novel approach for learn-
ing hard, axis-aligned DTs with gradient descent. The proposed method uses
backpropagation with a straight-through operator on a dense DT representation,
to jointly optimize all tree parameters. Our approach outperforms existing meth-
ods on a wide range of binary classification benchmarks and is available under:
https://github.com/s-marton/GradTree

1 Introduction

Decision trees (DTs) are some of the most popular machine learning models and are still frequently
used today. In particular, with the growing interest in explainable artificial intelligence (XAI),
DTs have regained popularity due to their interpretability. However, learning a DT is a difficult
optimization problem, since it is non-convex and non-differentiable. Therefore, the prevailing
approach to learn a DT is a greedy procedure that minimizes the impurity at each internal node. The
algorithms still in use today, such as CART [7] and C4.5 [34], were developed in the 1980s and have
remained largely unchanged since then. Unfortunately, a greedy algorithm optimizes the objective
locally at each internal node which constrains the search space, and potentially leads to inaccurate
trees. We illustrate this issue below:

Example 1 The Echocardiogram dataset [11] deals with predicting one-year survival of patients after
a heart attack based on tabular data from an echocardiogram. Figure 1 shows two DTs. The tree
on the left is learned by a greedy algorithm (CART) while the one on the right is learned with our
gradient-based approach. We can observe that the greedy procedure leads to a tree with a significantly
lower performance. Splitting on the wall-motion-score is the locally optimal split (see Figure 1a), but
globally, it is beneficial to split based on the wall-motion-score with different values conditioned on
the pericardial-effusion in the second level (Figure 1b).

Table Representation Learning Workshop at NeurIPS 2023.

https://github.com/s-marton/GradTree

F1-Score: 0.619
Accuracy: 0.577

pericardial-effusion
≥ 0.5

wall-motion-score
≥ 23.5

NoYes

NoYes

Class 1 wall-motion-score
≥ 8.5

Yes No

Class 0 Class 1

Class 1

(a) Greedy DT (CART)

wall-motion-score
≥ 22.2

wall-motion-score
≥ 21.0

pericardial-effusion
≥ 0.5

No

Yes

Yes

No NoYes

Class 1 Class 0 Class 1 Class 0

F1-Score: 0.802
Accuracy: 0.846

(b) Gradient-Based DT (GradTree)

Figure 1: Greedy vs. Gradient-Based DT. Two DTs trained on the Echocardiogram dataset. The
CART DT (left) makes only locally optimal splits, while GradTree (right) jointly optimizes all
parameters, leading to significantly better performance.

In this paper, we propose a novel approach for learning hard, axis-aligned DTs based on a joint
optimization of all tree parameters using gradient descent, which we call Gradient-Based Decision
Tree (GradTree). Similar to optimization in neural networks, GradTree yields a desirable local
optimum of parameters that generalizes well to test data. Using a gradient-based optimization,
GradTree can overcome the limitations of greedy approaches, which are constrained by sequentially
selecting optimal splits, as illustrated in Figure 1. At the same time, GradTree can converge to a local
optimum that offers good generalization, and thus provides an advantage over alternative non-greedy
methods like optimal DTs [10, 1], which often suffer from severe overfitting [39]. Specifically, our
contributions are:

• We introduce a dense DT representation that enables a joint, gradient-based optimization of
all tree parameters (Section 3.2).

• We present a procedure to deal with the non-differentiable nature of DTs using backpropa-
gation with a straight-through (ST) operator (Section 3.3).

• We propose a novel tree routing that allows an efficient, parallel optimization of all tree
parameters with gradient descent (Section 3.4).

We empirically evaluate GradTree on a large number of real-world binary classification datasets
(Section 4) and show that GradTree outperforms existing methods. On several benchmark datasets,
the performance difference between GradTree and other methods is substantial. The gradient-based
optimization also provides more flexibility by allowing split adjustments during training and easy
integration of custom loss functions.

2 Related Work

Greedy DT Algorithms The most prominent DT learning algorithms still frequently used, namely
CART [7] and C4.5 [34], date back to the 1980s. Both follow a greedy procedure to learn a DT.
Since then, many variations to those algorithms have been proposed, for instance C5.0 [21] and
GUIDE [25, 26]. However, until today, none of these algorithms was able to consistently outperform
CART and C4.5 as shown for instance by Zharmagambetov et al. [40].

Optimal DTs To overcome the issues of a greedy DT induction, many researchers focused on
finding an efficient alternative. Optimal DTs aim to optimize an objective (e.g., the purity) through
an approximate brute force search to find a globally optimal tree with a certain specification [40].
Therefore, they most commonly use mixed integer optimization [5] or a branch-and-bound algo-
rithm to remove irrelevant parts from the search space [1, 23]. MurTree [10] further uses dynamic
programming, which reduces the runtime significantly. However, most state-of-the-art approaches
still require binary data and therefore a discretization of continuous features [5, 1, 10], which can
lead to information loss. An exception is the approach by Mazumder et al. [27], which can handle
continuous features out-of-the-box. However, their method is optimized for very sparse trees and
limited to a maximum depth of 3.

While optimal DTs search for a global optimum, GradTree does not necessarily pursue this. Instead,
like optimization in neural networks, it aims for a local optimum that offers good generalization to
test data. We further want to emphasize that the local optima that can be reached by GradTree have
a significant advantage over the local optimum of a greedy approach: While the local optimum of

2

greedy approaches is constrained by sequentially selecting the optimal split at each node, GradTree
overcomes this limitation by optimizing all parameters jointly.

Genetic DTs Another way to learn DTs in a non-greedy fashion is by using evolutionary algorithms.
Evolutionary algorithms perform a robust global search in the space of candidate solutions based on
the concept of survival of the fittest [3]. This usually results in smaller trees and a better identification
of feature interactions compared to a greedy, local search [12].

Oblique DTs In contrast to vanilla DTs that make a hard decision at each internal node, many
hierarchical mixture of expert models [17] have been proposed. They usually make soft splits, where
each branch is associated with a probability [14, 13]. Further, the models do not comprise univariate,
axis-aligned splits, but are oblique with respect to the axes. These adjustments to the tree architecture
allow for the application of further optimization algorithms, including gradient descent. Blanquero
et al. [6] aim to increase the interpretability of oblique trees by optimizing for sparsity, using fewer
variables at each split and simultaneously fewer splits in the whole tree. Tanno et al. [35] combine the
benefits of neural networks and DTs, using so-called adaptive neural trees (ANTs). They employ a
stochastic routing based on a Bernoulli distribution and utilize non-linear transformer modules at the
edges, making the resulting trees soft and oblique. Xu et al. [36] propose One-Stage Tree as a novel
method for learning soft DTs, including the tree structure, while maintaining discretization during
training, which results in a higher interpretability compared to existing soft DTs. However, in contrast
to GradTree, the routing is instance-wise, which significantly hampers a global interpretation of the
model. Norouzi et al. [29] proposed an approach to overcome the need for soft decisions to apply
gradient-based algorithms by minimizing a convex-concave upper bound on the tree’s empirical loss.
While this allows the use of hard splits, the approach is still limited to oblique trees. Zantedeschi et al.
[39] use argmin differentiation to simultaneously learn all tree parameters by relaxing a mixed-integer
program for discrete parameters to allow for gradient-based optimization. This allows hard splits, but
in contrast to GradTree, they still require a differentiable split function (e.g., a linear function which
results in oblique trees). Similarly, Karthikeyan et al. [18] developed a gradient-based approach to
learn hard DTs. Like to GradTree, they use an ST operator to handle the hard step functions. While
their formulation is limited to oblique trees, our approach permits axis-aligned DTs.

In summary, unlike oblique DTs, GradTree allows hard, axis-aligned splits that consider only a single
feature at each split, providing significantly higher interpretability, especially at the split-level. This
is supported by Molnar [28] where the authors argue that humans cannot comprehend explanations
involving more than three dimensions at once.

Oblivious DT Ensembles Popov et al. [32] proposed an oblivious tree ensemble for deep learning.
Oblivious DTs use the same splitting feature and threshold in all internal nodes of the same depth,
making them only suitable as weak learners in an ensemble. They use an entmax transformation of
the choice function and a two-class entmax as split function. This results in oblique and soft trees,
while GradTree is axis-aligned and hard. Chang et al. [8] proposed a temperature annealing procedure
to gradually turn the input to an entmax function one-hot, which can enforce axis-aligned trees. In
contrast, our approach employs an ST operator immediately following an entmax transformation
to yield a one-hot encoded vector. Our experiments substantiate that our method achieves superior
results in the context of individual DTs.

Deep Neural Decision Trees (DNDTs) Yang et al. [37] propose DNDTs that realize tree models as
neural networks, utilizing a soft binning function for splitting. Therefore, the resulting trees are soft,
but axis-aligned, which makes this work closely related to our approach. Since DNDTs are generated
via the Kronecker product of the binning layers, the structure depends on the number of features and
classes (and the number of bins). As discussed by the authors, this results in poor scalability w.r.t. the
number of features, which currently can only be solved by using random forests for high-dimensional
datasets (> 12 features). Our approach, in contrast, scales linearly with the number of features,
making it efficient for high-dimensional datasets. Furthermore, using the Kronecker product to build
the tree prevents splitting on the same feature with different thresholds in the same path, which can
be crucial to achieve a good performance. For GradTree, both the split threshold and the split index
are learned parameters, inherently allowing the model to split on the same feature multiple times.

3

𝑥! ≥−1.2 𝑥" ≥ 0.9

𝑥# ≥ 2.0

Class 0 Class 0 Class 0 Class 1

Yes

Yes

Yes No

No

No

(a) Vanilla DT Representation

𝜾! 	= 0.0 0.0 −1.0
𝝉! = 0.0 0.0 −1.2

𝜾" 	= 0.0 1.0 0.0
𝝉" = 0.0 0.9 0.0

𝜾# 	= 1.0 0.0 0.0
𝝉# = 2.0 0.0 0.0

1−𝕊!"(𝒙|𝜾#,𝝉#)𝕊!"(𝒙|𝜾#,𝝉#)

𝕊!"(𝒙|𝜾$,𝝉$) 𝕊!"(𝒙|𝜾%,𝝉%)1−𝕊!"(𝒙|𝜾$,𝝉$) 1−𝕊!"(𝒙|𝜾%,𝝉%)

𝝀# = 1.0 0.0 𝝀! = 1.0 0.0 𝝀" = 1.0 0.0 𝝀$ = 0.0 1.0

(b) Dense DT Representation

Figure 2: Standard vs. Dense DT Representation. Comparison of a standard and the equivalent
dense representation for an exemplary DT with depth 2 and a dataset with 3 variables and 2 classes.
Here, Slh stands for Slogistic_hard (Equation 7).

3 GradTree: Gradient-Based Decision Trees

In this section, we present a new DT representation and a novel algorithm that allows learning
hard, axis-aligned DTs with gradient descent. More specifically, we use backpropagation with a
straight-through (ST) operator (Section 3.3) on a dense DT representation (Section 3.2) to adjust the
model parameters during the training. Furthermore, our novel tree routing (Section 3.4) allows an
efficient optimization of all parameters over an entire batch with a single set of matrix operations.

3.1 Arithmetic Decision Tree Formulation

Here, we introduce a notation for DTs with respect to their parameters. We formulate DTs as an
arithmetic function based on addition and multiplication, rather than as a nested concatenation of rules,
which is necessary for a gradient-based learning. Note that our notation and training procedure assume
fully-grown (i.e. complete, full) DTs. After training, we apply a basic post-hoc pruning to reduce
the tree size for application. Our formulation aligns with Kontschieder et al. [20]. However, they
only consider stochastic routing and oblique trees, whereas our formulation emphasizes deterministic
routing and axis-aligned trees.

For a DT of depth d, the parameters include one split threshold and one feature index for each
internal node, represented as vectors τ ∈ R2d−1 and ι ∈ N2d−1 respectively, where 2d − 1 equals
the number of internal nodes. Additionally, each leaf node comprises a class membership, in the case
of a classification task, which we denote as the vector λ ∈ C2d , where C is the set of classes and 2d

equals the number of leaf nodes.

Formally, a DT can be expressed as a function DT (·|τ , ι,λ) : Rn → C with respect to its parameters:

DT (x|τ , ι,λ) =
2d−1∑
l=0

λl L(x|l, τ , ι) (1)

The function L(x|l, τ , ι) : Rn → {0, 1} indicates whether a sample x ∈ Rn belongs to a leaf l, and
can be defined as a multiplication of the split functions of the preceding internal nodes. We define the
split function S as a Heaviside step function

SHeaviside(x|ι, τ) =

{
1, if xι ≥ τ

0, otherwise
(2)

where ι is the index of the feature considered at a certain split and τ is the corresponding threshold.
By enumerating the internal nodes of a fully-grown tree with depth d in a breadth-first order, we can
now define the indicator function L for a leaf l as

L(x|l, τ , ι) =
d∏

j=1

(1− p(l, j)) S(x|τi(l,j), ιi(l,j)) + p(l, j)
(
1− S(x|τi(l,j), ιi(l,j))

)
(3)

Here, i is the index of the internal node preceding a leaf node l at a certain depth j and can be
calculated as

i(l, j) = 2j−1 +

⌊
l

2d−(j−1)

⌋
− 1 (4)

4

Additionally, p indicates whether the left (p = 0) or the right branch (p = 1) was taken at the internal
node preceding a leaf node l at a certain depth j. We can calculate p as

p(l, j) =

⌊
l

2d−j

⌋
mod 2 (5)

As becomes evident, DTs involve non-differentiable operations in terms of the split function, in-
cluding the split feature selection (Equation 2), which precludes the application of backpropagation.
Specifically, to efficiently learn a DT using backpropagation, we must address three challenges:

C1 The index ι for the split feature selection is defined as ι ∈ N. However, the index ι is a
parameter of the DT and a gradient-based optimization requires ι ∈ R.

C2 The split function S(x|ι, τ) is a Heaviside step function with an undefined gradient for
xι = τ and 0 gradient elsewhere, which precludes an efficient optimization.

C3 Leafs in a vanilla DT comprise a class membership λ ∈ C. To calculate an informative
loss and optimize the leaf parameters with gradient descent, we need λ ∈ Rc where c is the
number of classes.

Additionally, the computation of the internal node index i and path position p involves non-
differentiable operations. However, given our focus on fully-grown trees, these values remain
constant, allowing for their computation prior to the optimization process.

3.2 Dense Decision Tree Representation

In this subsection, we present a differentiable representation of the feature indices ι to facilitate
gradient-based optimization, which is illustrated in Figure 2.

To this end, we expand the vector ι ∈ R2d−1 to a matrix I ∈ R2d−1 × Rn. This is achieved by
one-hot encoding the feature index as ι ∈ Rn for each internal node. This adjustment is necessary
for the optimization process to account for the fact that feature indices are categorical instead of
ordinal. Although our matrix representation for feature selection has parallels with that proposed
by Popov et al. [32], we introduce a novel aspect: A matrix representation for split thresholds. We
denote this representation as T ∈ R2d−1 × Rn. Instead of representing a single value for all features,
we store individual values for each feature, denoted as τ ∈ Rn. This modification is tailored to
support the optimization process, particularly in recognizing that split thresholds are feature-specific
and non-interchangeable. In essence, a viable split threshold for one feature may not be suitable
for another. This adjustment acts as a memory mechanism, ensuring that a given split threshold
is exclusively associated with the corresponding feature. Consequently, this refinement enhances
the exploration of feature selection at every split during the training. We can now reformulate the
Heaviside step function (Equation 2) as

Slogistic(x|ι, τ) = S

(
n∑

i=0

ιixi −
n∑

i=0

ιiτi

)
= S (ι · x− ι · τ) (6)

Slogistic_hard(x|ι, τ) = ⌊Slogistic(x|ι, τ)⌉ (7)

where S(x) = 1
1+e−x denotes the logistic function and ⌊·⌉ represents for rounding to the nearest

integer. In our context, with ι being one-hot encoded, Slogistic_hard(x|ι, τ) = SHeaviside(x|ι, τ) holds.

3.3 Backpropagation of Decision Tree Loss

While the dense representation emphasizes an efficient learning of axis-aligned DTs, it does not solve
C1-C3. In this subsection, we will address those challenges by using the ST operator.

For the function value calculation in the forward pass, we need to assure that ι is a one-hot encoded
vector. This can be achieved by applying a hardmax function on the feature index vector for each
internal node. However, applying a hardmax is a non-differentiable operation, which precludes
gradient computation. To overcome this issue, we use the ST operator [4]: For the forward pass, we
apply the hardmax as is. For the backward pass, we exclude this operation and directly propagate
back the gradients of ι. Accordingly, we can optimize the parameters of ι where ι ∈ R while
still using axis-aligned splits during training (C1). However, this procedure introduces a mismatch

5

between the forward and backward pass. To reduce this mismatch, we additionally perform an entmax
transformation [31] to generate a sparse distribution over ι before applying the hardmax.

Similarly, we employ the ST operator to ensure hard splits (Equation 7) by excluding ⌊·⌉ for the
backward pass (C2). Using the sigmoid logistic function before applying the ST operator (see
Equation 6) utilizes the distance to the split threshold as additional information for the gradient
calculation. If the feature considered at an internal node is close to the split threshold for a specific
sample, this will result in smaller gradients compared to a sample that is more distant.

Furthermore, we need to adjust the leaf nodes of the DT to allow an efficient loss calculation (C3).
Vanilla DTs contain the predicted class for each leaf node and are functions DT : Rn → C. We use
logits at each leaf node and therefore define DTs as DT : Rn → Rc where c is the number of classes.
We can then convert the logits to a probability distribution over the classes by applying a softmax
transformation. Consequently, the parameters of the leaf nodes are defined as L ∈ R2n × Rc for the
whole tree and λ ∈ Rc for a specific leaf node. This adjustment allows the application of standard
loss functions.

3.4 Deterministic Tree Routing and Training

Algorithm 1 Tree Pass Function
1: function PASS(I, T, L,x)
2: I ← entmax(I)
3: I ← I − c∗1 where c∗1 = I − hardmax(I) ▷ ST operator
4: ŷ ← [0]c

5: for l = 0, . . . , 2d − 1 do
6: p← 1
7: for j = 1, . . . , d do
8: i← 2j−1 +

⌊
l

2d−(j−1)

⌋
− 1 ▷ Equation 4

9: p←
⌊

l
2d−j

⌋
mod 2 ▷ Equation 5

10: s← S

(
n∑

i=0

Ti,i Ii,i −
n∑

i=0

xi Ii,i

)
▷ Equation 6

11: s← s− c∗2 where c∗2 = s− ⌊s⌉ ▷ ST operator
12: p← p ((1− p) s+ p (1− s)) ▷ Equation 3
13: end for
14: ŷ ← ŷ + Ll p ▷ Equation 1
15: end for
16: return σ (ŷ) ▷ Softmax σ to get probability distribution
17: end function

In the previous subsections, we intro-
duced the adjustments that are nec-
essary to apply gradient descent to
DTs. During the optimization, we cal-
culate the gradients with backpropaga-
tion. The tree pass function to calcu-
late the function values is summarized
in Algorithm 1.Our tree routing facili-
tates the computation of the tree pass
function over a complete batch as a
single set of matrix operations, which
allows an efficient computation. We
also want to note that our dense repre-
sentation can always be converted into
an equivalent vanilla DT representa-
tion. Similarly, the fully-grown nature
of GradTree is only required during the
gradient-based optimization and stan-
dard pruning techniques to reduce the
tree size are applied post-hoc.

Furthermore, our implementation optimizes the gradient descent algorithm by leveraging common
stochastic gradient descent techniques, including mini-batch calculation and momentum using the
Adam optimizer [19] with weight averaging [15]. Moreover, we implement early stopping and
random restarts to avoid bad initial parametrizations, where the best parameters are selected based on
the validation loss. Further details can be found in Appendix C.

4 Experimental Evaluation

Datasets and Preprocessing The experiments were conducted on several benchmark datasets,
mainly from the UCI repository [11]. For all datasets, we performed a standard preprocessing:
Similar to Popov et al. [32], we applied leave-one-out encoding to all categorical features and
further performed a quantile transform, making each feature follow a normal distribution. We used
a 80%/20% train-test split for all datasets. To account for class imbalance, we rebalanced datasets
using SMOTE [9] if the minority class accounts for less than 25% of the data. For GradTree and
DNDT, we used 20% of the training data as validation data for early stopping. As DL8.5 requires
binary features, we discretized numeric features using quantile binning with 5 bins and one-hot
encoded categorical features. Details and sources of the datasets are available in Appendix D.

6

Table 1: Binary Classification Performance. We report macro F1-scores (mean ± stdev over 10
trials) on test data with optimized hyperparameters. The rank of each method is presented in brackets.
The datasets are sorted by the number of features.

Gradient-Based Non-Greedy Greedy

GradTree (ours) DNDT GeneticTree DL8.5 (Optimal) CART

Blood Transfusion 0.628 ± .036 (1) 0.543 ± .051 (5) 0.575 ± .094 (4) 0.590 ± .034 (3) 0.613 ± .044 (2)
Banknote Authentication 0.987 ± .007 (1) 0.888 ± .013 (5) 0.922 ± .021 (4) 0.962 ± .011 (3) 0.982 ± .007 (2)
Titanic 0.776 ± .025 (1) 0.726 ± .049 (5) 0.730 ± .074 (4) 0.754 ± .031 (2) 0.738 ± .057 (3)
Raisins 0.840 ± .022 (4) 0.821 ± .033 (5) 0.857 ± .021 (1) 0.849 ± .027 (3) 0.852 ± .017 (2)
Rice 0.926 ± .007 (3) 0.919 ± .012 (5) 0.927 ± .005 (2) 0.925 ± .008 (4) 0.927 ± .006 (1)
Echocardiogram 0.658 ± .113 (1) 0.622 ± .114 (3) 0.628 ± .105 (2) 0.609 ± .112 (4) 0.555 ± .111 (5)
Wisconcin Breast Cancer 0.904 ± .022 (2) 0.913 ± .032 (1) 0.892 ± .028 (4) 0.896 ± .021 (3) 0.886 ± .025 (5)
Loan House 0.714 ± .041 (1) 0.694 ± .036 (2) 0.451 ± .086 (5) 0.607 ± .045 (4) 0.662 ± .034 (3)
Heart Failure 0.750 ± .070 (3) 0.754 ± .062 (2) 0.748 ± .068 (4) 0.692 ± .062 (5) 0.775 ± .054 (1)
Heart Disease 0.779 ± .047 (1) n > 12 0.704 ± .059 (4) 0.722 ± .065 (2) 0.715 ± .062 (3)
Adult 0.743 ± .034 (2) n > 12 0.464 ± .055 (4) 0.723 ± .011 (3) 0.771 ± .011 (1)
Bank Marketing 0.640 ± .027 (1) n > 12 0.473 ± .002 (4) 0.502 ± .011 (3) 0.608 ± .018 (2)
Congressional Voting 0.950 ± .021 (1) n > 12 0.942 ± .021 (2) 0.924 ± .043 (4) 0.933 ± .032 (3)
Absenteeism 0.626 ± .047 (1) n > 12 0.432 ± .073 (4) 0.587 ± .047 (2) 0.564 ± .042 (3)
Hepatitis 0.608 ± .078 (2) n > 12 0.446 ± .024 (4) 0.586 ± .083 (3) 0.622 ± .078 (1)
German 0.592 ± .068 (1) n > 12 0.412 ± .006 (4) 0.556 ± .035 (3) 0.589 ± .065 (2)
Mushroom 1.000 ± .001 (1) n > 12 0.984 ± .003 (4) 0.999 ± .001 (2) 0.999 ± .001 (3)
Credit Card 0.674 ± .014 (4) n > 12 0.685 ± .004 (1) 0.679 ± .007 (3) 0.683 ± .010 (2)
Horse Colic 0.842 ± .039 (1) n > 12 0.496 ± .169 (4) 0.708 ± .038 (3) 0.786 ± .062 (2)
Thyroid 0.905 ± .010 (2) n > 12 0.605 ± .116 (4) 0.682 ± .018 (3) 0.922 ± .011 (1)
Cervical Cancer 0.521 ± .043 (1) n > 12 0.514 ± .034 (2) 0.488 ± .027 (4) 0.506 ± .034 (3)
Spambase 0.903 ± .025 (2) n > 12 0.863 ± .019 (3) 0.863 ± .011 (4) 0.917 ± .011 (1)

Mean Relative Diff. (MRD) ↓ 0.008 ± .012 (1) 0.056 ± .051 (3) 0.211 ± .246 (5) 0.084 ± .090 (4) 0.035 ± .048 (2)
Mean Reciprocal Rank (MRR) ↑ 0.758 ± .306 (1) 0.370 ± .268 (3) 0.365 ± .228 (4) 0.335 ± .090 (5) 0.556 ± .293 (2)

Methods We compared GradTree to the most prominent approach from each category (see Section
2) to ensure a concise, yet holistic evaluation focusing on hard, axis-aligned DTs. Specifically, we
selected the following methods:

• CART: We use the sklearn [30] implementation, which uses an optimized version of the
CART algorithm. CART typically employs the Gini impurity measure, but we additionally
allowed entropy.

• Evolutionary DTs: We use GeneticTree [33] for learning of DTs with a genetic algorithm.

• DNDT: We use the official DNDT implementation [38]. For a fair comparison, we enforce
binary trees by setting the number of cut points to 1 and ensure hard splits during inference.
As suggested by Yang et al. [37], we limited DNDTs to datasets with no more than 12
features, due to scalability issues.

• DL8.5 (Optimal DTs): We use the official DL8.5 implementation [2] including improve-
ments from MurTree [10] which reduces the runtime significantly.

GradTree is implemented in Python using TensorFlow1. To ensure a fair comparison, we further
applied a simple post-hoc pruning for GradTree to remove all branches with zero samples based on
one pass of the training data. Similar to DNDT, we used a cross-entropy loss.

Hyperparameters We conducted a random search with cross-validation to determine the optimal
hyperparameters. The complete list of relevant hyperparameters for each approach along with
additional details on the selection are in Appendix C.

4.1 Results

GradTree outperforms existing DT learners First, we evaluated the performance of GradTree
against existing methods on the benchmark datasets in terms of the macro F1-Score, which inherently
considers class imbalance. We report the relative difference to the best model (MRD) and mean
reciprocal rank (MRR), following the approach of Yang et al. [37]. Overall, GradTree outperformed
existing approaches for binary classification tasks (best MRD of 0.008 and MRR of 0.758). More
specifically, GradTree significantly outperformed state-of-the-art non-greedy DT methods, including

1The code of our implementation is available under: https://github.com/s-marton/GradTree.

7

https://github.com/s-marton/GradTree

Table 2: Summarized Results. Top: Average tree size. Mid: Mean difference between train and
test performance as overfitting indicator. Bottom: Mean reciprocal rank with default parameters for
performance comparison. Detailed results are in Appendix B.

GradTree DNDT GeneticTree DL8.5 CART

Tree Size 54 887 7 28 67
Train-Test Difference 0.051 0.039 0.204 0.202 0.183
Default Setting (MRR ↑) 0.670 0.306 0.427 0.371 0.571

DNDTs as our gradient-based benchmark. Further, GradTree demonstrated superior performance over
CART, achieving the best performance on 13 datasets as compared to only 6 for CART. Notably, the
performance difference between GradTree and existing methods was substantial for several datasets,
such as Echocardiogram, Heart Disease and Absenteeism.

GradTree has a small effective tree size The effective tree size (= size after pruning) of GradTree
is smaller than CART (Table 2). Only the tree size for GeneticTree is significantly smaller, which is
caused by the complexity penalty of the genetic algorithm. DL8.5 also has a smaller average tree size
than CART and GradTree. We can attribute this to DL8.5 being only feasible up to a depth of 4 due
to the high computational complexity. The tree size for DNDTs scales with the number of features
(and classes) which quickly results in large trees. Furthermore, pruning DNDTs is non-trivial due to
the use of the Kronecker product (it is not sufficient to prune subtrees bottom-up).

GradTree is robust to overfitting We can observe that gradient-based approaches were more robust
and less prone to overfitting compared to a greedy optimization with CART and alternative non-greedy
methods. We measure overfitting by the difference between the mean train and test performance
(see Table 2). GradTree exhibits a train-test performance difference of 0.051, considerably smaller
than that of CART (0.183), GeneticTree (0.204), and DL8.5 (0.202). DNDTs, which are also
gradient-based, achieved an even smaller difference of 0.039.

GradTree does not rely on extensive hyperparameter optimization Besides their interpretability,
a distinct advantage of DTs is that they typically do not rely on an extensive hyperparameter
optimization. We show that the same is true for GradTree by evaluating the performance with default
configurations (see Table 2). When using the default parameters, GradTree still outperformed existing
methods (highest MRR and most wins).

GradTree is efficient for large and high-dimensional datasets For each dataset, a greedy
optimization using CART was substantially faster than other methods, taking less than a second.
Nevertheless, for most datasets, training GradTree took less than 30 seconds (mean runtime of 45
seconds). DNDT had comparable runtimes to GradTree. For most datasets, DL8.5 had a low runtime
of less than 10 seconds. However, scalability issues become apparent with DL8.5, especially with
an increasing number of features and samples. Its runtime notably surpassed GradTree on various
datasets, taking for instance around 300 seconds for Credit Card. The complete runtimes for each
dataset are listed in the appendix (Table 8).

Figure 3: Ablation Study Summary. We compare
our approach to deal with the non-differentiable
nature of DTs with alternative methods, reporting
the average macro F1-scores over 10 trials. The
complete results are listed in Appendix B.

ST Entmax
(ours)

ST
Gumbel

Temp.
Annealing

Default 0.764 0.560 0.757
Optimized 0.771 0.569 0.759

ST entmax outperforms alternative methods
In an ablation study (see Table 3 for a summary),
we evaluated our method of utilizing an ST op-
erator directly after an entmax transformation
to address the non-differentiability of DTs. We
contrasted this against alternative strategies used
in related work. Our approach notably surpassed
ST Gumbel Softmax [16] and outperformed the
temperature annealing technique proposed by
Chang et al. [8] to gradually turn the entmax
one-hot.

5 Conclusion and Future Work

In this paper, we proposed GradTree, a novel method for learning hard, axis-aligned DTs based on a
joint optimization of all tree parameters with gradient descent. Our empirical evaluations indicate that

8

GradTree excels over existing methods in binary tasks. The substantial performance increase achieved
by GradTree across multiple datasets highlights its importance as a noteworthy contribution to the
existing repertoire of DT learning methods. Moreover, gradient-based optimization provides greater
flexibility, allowing for easy integration of custom loss functions tailored to specific application
scenarios. Another advantage is the ability to relearn the threshold value as well as the split index.
Therefore, GradTree is suitable for dynamic environments, such as online learning tasks.

Currently, GradTree employs conventional post-hoc pruning. In future work, we want to consider
pruning already during the training, for instance through a learnable choice parameter to decide if a
node is pruned, similar to Zantedeschi et al. [39]. Although our focus was on stand-alone DTs aiming
for intrinsic interpretability, GradTree holds potential as a foundational method for learning hard, axis-
aligned tree ensembles end-to-end via gradient descent. Exploring this performance-interpretability
trade-off is an interesting direction for future research.

Acknowledgments and Disclosure of Funding

This research was supported by the Federal Ministry for Economic Affairs and Climate Action of
Germany (BMWK).

References
[1] Aglin, G., Nijssen, S., and Schaus, P. (2020). Learning optimal decision trees using caching

branch-and-bound search. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3146–3153.

[2] Aglin, G., Nijssen, S., and Schaus, P. (2022). Pydl8.5. https://github.com/
aia-uclouvain/pydl8.5. Accessed 13.11.2022.

[3] Barros, R. C., Basgalupp, M. P., De Carvalho, A. C., and Freitas, A. A. (2011). A survey of
evolutionary algorithms for decision-tree induction. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(3):291–312.

[4] Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432.

[5] Bertsimas, D. and Dunn, J. (2017). Optimal classification trees. Machine Learning, 106(7):1039–
1082.

[6] Blanquero, R., Carrizosa, E., Molero-Río, C., and Morales, D. R. (2020). Sparsity in optimal
randomized classification trees. European Journal of Operational Research, 284(1):255–272.

[7] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and
Regression Trees. Wadsworth.

[8] Chang, C.-H., Caruana, R., and Goldenberg, A. (2021). Node-gam: Neural generalized additive
model for interpretable deep learning. arXiv preprint arXiv:2106.01613.

[9] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357.

[10] Demirović, E., Lukina, A., Hebrard, E., Chan, J., Bailey, J., Leckie, C., Ramamohanarao, K.,
and Stuckey, P. J. (2022). Murtree: Optimal decision trees via dynamic programming and search.
Journal of Machine Learning Research, 23(26):1–47.

[11] Dua, D. and Graff, C. (2017). UCI machine learning repository.

[12] Freitas, A. A. (2002). Data mining and knowledge discovery with evolutionary algorithms.
Springer Science & Business Media.

[13] Frosst, N. and Hinton, G. (2017). Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784.

9

https://github.com/aia-uclouvain/pydl8.5
https://github.com/aia-uclouvain/pydl8.5

[14] Irsoy, O., Yıldız, O. T., and Alpaydın, E. (2012). Soft decision trees. In Proceedings of the 21st
international conference on pattern recognition (ICPR2012), pages 1819–1822. IEEE.

[15] Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and Wilson, A. G. (2018). Averaging
weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407.

[16] Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144.

[17] Jordan, M. I. and Jacobs, R. A. (1994). Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214.

[18] Karthikeyan, A., Jain, N., Natarajan, N., and Jain, P. (2022). Learning accurate decision trees
with bandit feedback via quantized gradient descent. Transactions of Machine Learning Research.

[19] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[20] Kontschieder, P., Fiterau, M., Criminisi, A., and Bulo, S. R. (2015). Deep neural decision forests.
In Proceedings of the IEEE international conference on computer vision, pages 1467–1475.

[21] Kuhn, M., Johnson, K., et al. (2013). Applied predictive modeling, volume 26. Springer.

[22] Leng, Z., Tan, M., Liu, C., Cubuk, E. D., Shi, X., Cheng, S., and Anguelov, D. (2022).
Polyloss: A polynomial expansion perspective of classification loss functions. arXiv preprint
arXiv:2204.12511.

[23] Lin, J., Zhong, C., Hu, D., Rudin, C., and Seltzer, M. (2020). Generalized and scalable optimal
sparse decision trees. In International Conference on Machine Learning, pages 6150–6160.
PMLR.

[24] Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pages 2980–
2988.

[25] Loh, W.-Y. (2002). Regression tress with unbiased variable selection and interaction detection.
Statistica sinica, pages 361–386.

[26] Loh, W.-Y. (2009). Improving the precision of classification trees. The Annals of Applied
Statistics, pages 1710–1737.

[27] Mazumder, R., Meng, X., and Wang, H. (2022). Quant-bnb: A scalable branch-and-bound
method for optimal decision trees with continuous features. In International Conference on
Machine Learning, pages 15255–15277. PMLR.

[28] Molnar, C. (2020). Interpretable machine learning. Lulu. com.

[29] Norouzi, M., Collins, M., Johnson, M. A., Fleet, D. J., and Kohli, P. (2015). Efficient non-greedy
optimization of decision trees. Advances in neural information processing systems, 28.

[30] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830.

[31] Peters, B., Niculae, V., and Martins, A. F. (2019). Sparse sequence-to-sequence models. arXiv
preprint arXiv:1905.05702.

[32] Popov, S., Morozov, S., and Babenko, A. (2019). Neural oblivious decision ensembles for deep
learning on tabular data. arXiv preprint arXiv:1909.06312.

[33] Pysiak, K. (2021). Genetictree. https://github.com/pysiakk/GeneticTree. Accessed
17.08.2022.

10

https://github.com/pysiakk/GeneticTree

[34] Quinlan, J. R. (1993). C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[35] Tanno, R., Arulkumaran, K., Alexander, D., Criminisi, A., and Nori, A. (2019). Adaptive neural
trees. In International Conference on Machine Learning, pages 6166–6175. PMLR.

[36] Xu, Z., Zhu, G., Yuan, C., and Huang, Y. (2022). One-stage tree: end-to-end tree builder and
pruner. Machine Learning, 111(5):1959–1985.

[37] Yang, Y., Morillo, I. G., and Hospedales, T. M. (2018). Deep neural decision trees. arXiv
preprint arXiv:1806.06988.

[38] Yang, Y., Morillo, I. G., and Hospedales, T. M. (2022). Deep neural decision trees. https:
//github.com/wOOL/DNDT. Accessed 13.11.2022.

[39] Zantedeschi, V., Kusner, M., and Niculae, V. (2021). Learning binary decision trees by argmin
differentiation. In International Conference on Machine Learning, pages 12298–12309. PMLR.

[40] Zharmagambetov, A., Hada, S. S., Gabidolla, M., and Carreira-Perpinán, M. A. (2021). Non-
greedy algorithms for decision tree optimization: An experimental comparison. In 2021 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE.

11

https://github.com/wOOL/DNDT
https://github.com/wOOL/DNDT

A Gradient Descent Optimization

Algorithm 2 Gradient Descent Training for Deci-
sion Trees
1: function TRAINDT(I, T, L,X,y, n, c, d, ξ)
2: I ∼ U

(
−
√

6
22d−1+n

,
√

6
22d−1+n

)
3: T ∼ U

(
−
√

6
22d−1+n

,
√

6
22d−1+n

)
4: L ∼ U

(
−
√

6
22d+c

,
√

6
22d+c

)
5: for i = 1, . . . , ξ do
6: ŷ ← ∅
7: for j = 1, . . . , |X| do
8: ŷj = PASS(I, T, L,Xj)
9: ŷ ← ŷ ∪ ŷj

10: end for
11: I ← I + η ∂

∂I
L(y, ŷ)

12: T ← T + η ∂
∂T
L(y, ŷ)

13: L← L+ η ∂
∂L
L(y, ŷ)

14: end for
15: end function

We use stochastic gradient descent (SGD) to
minimize the loss function of GradTree, which
is outlined in Algorithm 2. We use backpropaga-
tion to calculate the gradients in Line 11-13. Fur-
thermore, our implementation optimizes Algo-
rithm 2 by exploiting common SGD techniques,
including mini-batch calculation and momen-
tum using the Adam optimizer [19]. We further
apply weight averaging [15] over 5 consecutive
checkpoints, similar to Popov et al. [32]. Our
novel tree pass function allows formulating Line
7-9 as a single set of matrix operations for an
entire batch, which results in a very efficient op-
timization. Moreover, we implement an early
stopping procedure based on the validation loss.
To avoid bad initial parametrizations during the
initialization, we additionally implement ran-
dom restarts where the best parameters are se-
lected based on the validation loss.

B Additional Results

Table 3: Ablation Study Optimized Parameters. We report macro F1-scores (mean ± stdev over
10 trials) with optimized parameters. The datasets are sorted by the number of features.

ST Entmax (ours) ST Gumbel Softmax Temperature Annealing

Blood Transfusion 0.628 ± .036 (1) 0.482 ± .083 (3) 0.606 ± .073 (2)
Banknote Authentication 0.987 ± .007 (1) 0.770 ± .144 (3) 0.946 ± .041 (2)
Titanic 0.776 ± .025 (1) 0.543 ± .093 (3) 0.762 ± .036 (2)
Raisins 0.840 ± .022 (2) 0.792 ± .069 (3) 0.846 ± .028 (1)
Rice 0.926 ± .007 (2) 0.859 ± .058 (3) 0.927 ± .006 (1)
Echocardiogram 0.658 ± .113 (1) 0.574 ± .108 (3) 0.619 ± .151 (2)
Wisconsin Breast Cancer 0.904 ± .022 (1) 0.844 ± .059 (3) 0.893 ± .031 (2)
Loan House 0.714 ± .041 (1) 0.522 ± .098 (3) 0.692 ± .051 (2)
Heart Failure 0.750 ± .070 (1) 0.556 ± .095 (3) 0.749 ± .060 (2)
Heart Disease 0.779 ± .047 (1) 0.607 ± .136 (3) 0.754 ± .035 (2)
Adult 0.743 ± .034 (1) 0.583 ± .029 (3) 0.737 ± .045 (2)
Bank Marketing 0.640 ± .027 (1) 0.370 ± .052 (3) 0.611 ± .053 (2)
Congressional Voting 0.950 ± .021 (1) 0.710 ± .201 (3) 0.946 ± .026 (2)
Absenteeism 0.626 ± .047 (1) 0.489 ± .059 (3) 0.604 ± .036 (2)
Hepatitis 0.608 ± .078 (1) 0.395 ± .138 (3) 0.576 ± .122 (2)
German 0.592 ± .068 (2) 0.486 ± .072 (3) 0.634 ± .028 (1)
Mushroom 1.000 ± .001 (1) 0.682 ± .063 (3) 0.996 ± .005 (2)
Credit Card 0.674 ± .014 (1) 0.488 ± .019 (3) 0.668 ± .015 (2)
Horse Colic 0.842 ± .039 (2) 0.442 ± .126 (3) 0.843 ± .039 (1)
Thyroid 0.905 ± .010 (1) 0.449 ± .087 (3) 0.888 ± .017 (2)
Cervical Cancer 0.521 ± .043 (2) 0.333 ± .191 (3) 0.523 ± .042 (1)
Spambase 0.903 ± .025 (1) 0.541 ± .093 (3) 0.875 ± .019 (2)

Mean ↑ 0.771 ± .036 (1) 0.569 ± .094 (3) 0.759 ± .044 (2)
Mean Reciprocal Rank (MRR) ↑ 0.886 ± .214 (1) 0.333 ± .000 (3) 0.613 ± .214 (2)

12

Table 4: Ablation Study Default Parameters. We report macro F1-scores (mean ± stdev over 10
trials) with default parameters. The datasets are sorted by the number of features.

ST Entmax (ours) ST Gumbel Softmax Temperature Annealing

Blood Transfusion 0.627 ± .056 (1) 0.497 ± .086 (3) 0.618 ± .045 (2)
Banknote Authentication 0.980 ± .008 (1) 0.722 ± .126 (3) 0.970 ± .007 (2)
Titanic 0.782 ± .035 (1) 0.623 ± .096 (3) 0.769 ± .033 (2)
Raisins 0.850 ± .025 (2) 0.802 ± .055 (3) 0.853 ± .016 (1)
Rice 0.926 ± .006 (1) 0.802 ± .101 (3) 0.926 ± .006 (1)
Echocardiogram 0.648 ± .130 (1) 0.571 ± .093 (3) 0.595 ± .121 (2)
Wisconsin Breast Cancer 0.902 ± .029 (2) 0.841 ± .129 (3) 0.903 ± .028 (1)
Loan House 0.695 ± .035 (2) 0.490 ± .113 (3) 0.706 ± .040 (1)
Heart Failure 0.745 ± .063 (2) 0.489 ± .095 (3) 0.761 ± .055 (1)
Heart Disease 0.736 ± .069 (1) 0.473 ± .148 (3) 0.721 ± .049 (2)
Adult 0.749 ± .028 (1) 0.601 ± .034 (3) 0.737 ± .042 (2)
Bank Marketing 0.626 ± .017 (1) 0.389 ± .084 (3) 0.626 ± .010 (1)
Congressional Voting 0.953 ± .021 (1) 0.642 ± .161 (3) 0.953 ± .021 (2)
Absenteeism 0.620 ± .050 (2) 0.452 ± .056 (3) 0.625 ± .065 (1)
Hepatitis 0.609 ± .103 (1) 0.390 ± .125 (3) 0.574 ± .124 (2)
German 0.584 ± .057 (2) 0.511 ± .086 (3) 0.596 ± .052 (1)
Mushroom 0.997 ± .003 (1) 0.701 ± .083 (3) 0.949 ± .095 (2)
Credit Card 0.676 ± .009 (1) 0.479 ± .020 (3) 0.669 ± .005 (2)
Horse Colic 0.842 ± .033 (2) 0.458 ± .101 (3) 0.857 ± .050 (1)
Thyroid 0.872 ± .015 (1) 0.457 ± .099 (3) 0.866 ± .013 (2)
Cervical Cancer 0.496 ± .047 (1) 0.354 ± .160 (3) 0.479 ± .048 (2)
Spambase 0.893 ± .015 (1) 0.580 ± .077 (3) 0.891 ± .008 (2)

Mean ↑ 0.764 ± .039 (1) 0.560 ± .097 (3) 0.757 ± .042 (2)
Mean Reciprocal Rank (MRR) ↑ 0.841 ± .238 (1) 0.333 ± .000 (3) 0.705 ± .252 (2)

Table 5: Performance Comparison Default Hyperparameters. We report macro F1-scores (mean
± stdev over 10 trials) with default parameters. The datasets are sorted by the number of features.

Gradient-Based Non-Greedy Greedy

GradTree (ours) DNDT GeneticTree DL8.5 (Optimal) CART

Blood Transfusion 0.627 ± .056 (1) 0.558 ± .059 (5) 0.574 ± .093 (3) 0.590 ± .034 (2) 0.573 ± .036 (4)
Banknote Authentication 0.980 ± .008 (2) 0.886 ± .024 (5) 0.928 ± .022 (4) 0.962 ± .011 (3) 0.981 ± .006 (1)
Titanic 0.782 ± .035 (1) 0.740 ± .026 (4) 0.763 ± .041 (2) 0.754 ± .031 (3) 0.735 ± .041 (5)
Raisins 0.850 ± .025 (2) 0.832 ± .026 (4) 0.859 ± .022 (1) 0.849 ± .027 (3) 0.811 ± .028 (5)
Rice 0.926 ± .006 (2) 0.902 ± .018 (5) 0.927 ± .005 (1) 0.925 ± .008 (3) 0.905 ± .010 (4)
Echocardiogram 0.648 ± .130 (1) 0.543 ± .117 (5) 0.563 ± .099 (3) 0.609 ± .112 (2) 0.559 ± .075 (4)
Wisconsin Breast Cancer 0.902 ± .029 (3) 0.907 ± .037 (1) 0.888 ± .021 (5) 0.896 ± .021 (4) 0.904 ± .025 (2)
Loan House 0.695 ± .035 (1) 0.475 ± .043 (4) 0.461 ± .093 (5) 0.607 ± .045 (3) 0.671 ± .056 (2)
Heart Failure 0.745 ± .063 (2) 0.580 ± .077 (5) 0.740 ± .055 (3) 0.692 ± .062 (4) 0.755 ± .060 (1)
Heart Disease 0.736 ± .069 (1) n > 12 0.704 ± .059 (3) 0.722 ± .065 (2) 0.670 ± .090 (4)
Adult 0.749 ± .028 (2) n > 12 0.478 ± .068 (4) 0.723 ± .011 (3) 0.773 ± .008 (1)
Bank Marketing 0.626 ± .017 (1) n > 12 0.473 ± .002 (4) 0.502 ± .011 (3) 0.616 ± .007 (2)
Congressional Voting 0.953 ± .021 (1) n > 12 0.932 ± .034 (3) 0.924 ± .043 (4) 0.933 ± .032 (2)
Absenteeism 0.620 ± .050 (1) n > 12 0.417 ± .035 (4) 0.587 ± .047 (2) 0.580 ± .045 (3)
Hepatitis 0.609 ± .103 (2) n > 12 0.486 ± .074 (4) 0.586 ± .083 (3) 0.610 ± .123 (1)
German 0.584 ± .057 (2) n > 12 0.412 ± .005 (4) 0.556 ± .035 (3) 0.595 ± .028 (1)
Mushroom 0.997 ± .003 (3) n > 12 0.984 ± .003 (4) 0.999 ± .001 (1) 0.999 ± .001 (2)
Credit Card 0.676 ± .009 (4) n > 12 0.685 ± .004 (1) 0.679 ± .007 (3) 0.679 ± .007 (2)
Horse Colic 0.842 ± .033 (1) n > 12 0.794 ± .042 (2) 0.708 ± .038 (4) 0.758 ± .053 (3)
Thyroid 0.872 ± .015 (2) n > 12 0.476 ± .101 (4) 0.682 ± .018 (3) 0.912 ± .013 (1)
Cervical Cancer 0.496 ± .047 (3) n > 12 0.514 ± .034 (1) 0.488 ± .027 (4) 0.505 ± .033 (2)
Spambase 0.893 ± .015 (2) n > 12 0.864 ± .014 (3) 0.863 ± .011 (4) 0.917 ± .011 (1)
Mean ↑ 0.764 ± .144 (1) - 0.678 ± .197 (4) 0.723 ± .154 (3) 0.747 ± .153 (2)
Mean Reciprocal Rank (MRR) ↑ 0.670 ± .289 (1) 0.306 ± .262 (5) 0.427 ± .287 (3) 0.371 ± .164 (4) 0.571 ± .318 (2)

13

Table 6: Train Performance Comparison. We report macro F1-scores (mean ± stdev over 10 trials)
on the training data. The datasets are sorted by the number of features.

Gradient-Based Non-Greedy Greedy

GradTree (ours) DNDT GeneticTree DL8.5 (Optimal) CART

Blood Transfusion 0.686 ± .032 (3) 0.552 ± .085 (5) 0.615 ± .122 (4) 0.711 ± .045 (2) 0.832 ± .040 (1)
Banknote Authentication 0.995 ± .003 (2) 0.907 ± .012 (5) 0.933 ± .016 (4) 0.967 ± .003 (3) 0.999 ± .001 (1)
Titanic 0.761 ± .128 (5) 0.791 ± .025 (4) 0.908 ± .023 (3) 0.970 ± .006 (1) 0.949 ± .012 (2)
Raisins 0.892 ± .024 (1) 0.829 ± .027 (5) 0.863 ± .004 (4) 0.889 ± .004 (2) 0.866 ± .004 (3)
Rice 0.925 ± .003 (3) 0.913 ± .012 (5) 0.920 ± .002 (4) 0.930 ± .002 (1) 0.927 ± .002 (2)
Echocardiogram 0.827 ± .088 (4) 0.817 ± .034 (5) 0.844 ± .032 (3) 0.935 ± .013 (2) 0.981 ± .009 (1)
Wisconsin Breast Cancer 0.947 ± .015 (2) 0.936 ± .015 (3) 0.907 ± .009 (5) 0.964 ± .005 (1) 0.915 ± .006 (4)
Loan House 0.735 ± .009 (4) 0.712 ± .010 (5) 0.897 ± .012 (3) 0.969 ± .006 (1) 0.938 ± .009 (2)
Heart Failure 0.785 ± .038 (4) 0.773 ± .053 (5) 0.795 ± .024 (3) 0.912 ± .008 (1) 0.818 ± .021 (2)
Heart Disease 0.851 ± .027 (4) n > 12 0.902 ± .020 (3) 0.990 ± .005 (1) 0.964 ± .010 (2)
Adult 0.875 ± .050 (4) n > 12 0.932 ± .013 (3) 0.967 ± .001 (2) 0.973 ± .001 (1)
Bank Marketing 0.603 ± .029 (4) n > 12 0.971 ± .003 (3) 0.981 ± .001 (2) 0.984 ± .001 (1)
Congressional Voting 0.971 ± .019 (4) n > 12 0.978 ± .005 (3) 1.000 ± .001 (2) 1.000 ± .000 (1)
Absenteeism 0.778 ± .050 (4) n > 12 0.842 ± .011 (3) 0.920 ± .009 (2) 0.952 ± .008 (1)
Hepatitis 0.931 ± .038 (4) n > 12 0.967 ± .011 (3) 1.000 ± .000 (1) 0.998 ± .003 (2)
German 0.589 ± .048 (4) n > 12 0.891 ± .010 (3) 0.958 ± .002 (1) 0.940 ± .013 (2)
Mushroom 1.000 ± .000 (1) n > 12 0.993 ± .005 (4) 1.000 ± .000 (1) 1.000 ± .000 (1)
Credit Card 0.651 ± .020 (4) n > 12 0.691 ± .002 (3) 0.710 ± .003 (2) 0.758 ± .008 (1)
Horse Colic 0.882 ± .033 (4) n > 12 0.913 ± .019 (3) 1.000 ± .000 (1) 0.963 ± .008 (2)
Thyroid 0.914 ± .012 (4) n > 12 0.927 ± .014 (3) 0.937 ± .002 (2) 0.987 ± .002 (1)
Cervical Cancer 0.593 ± .128 (4) n > 12 0.691 ± .046 (3) 0.767 ± .020 (2) 0.925 ± .027 (1)
Spambase 0.905 ± .020 (2) n > 12 0.858 ± .020 (4) 0.879 ± .002 (3) 0.965 ± .003 (1)
Mean ↑ 0.823 ± .132 (4) - 0.874 ± .098 (3) 0.925 ± .087 (2) 0.938 ± .065 (1)
Mean Reciprocal Rank (MRR) ↑ 0.358 ± .226 (3) 0.220 ± .045 (5) 0.305 ± .044 (4) 0.712 ± .263 (2) 0.754 ± .282 (1)

Table 7: Tree Size Comparison. We report the average tree size based on the optimized hyperparam-
eters (mean ± stdev over 10 trials). The datasets are sorted by the number of features.

Gradient-Based Non-Greedy Greedy

GradTree (ours) DNDT GeneticTree DL8.5 (Optimal) CART

Blood Transfusion 29.200 ± 8.219 (3) 24.000 ± 0.000 (2) 5.200 ± 3.027 (1) 24.000 ± 1.612 (3) 165.600 ± 21.837 (5)
Banknote Authentication 60.000 ± 11.216 (5) 24.000 ± 0.000 (2) 12.800 ± 5.325 (1) 26.800 ± 0.600 (3) 44.800 ± 4.686 (4)
Titanic 39.600 ± 10.161 (3) 142.000 ± 0.000 (5) 10.400 ± 3.105 (1) 28.200 ± 0.980 (3) 21.600 ± 0.917 (2)
Raisins 114.800 ± 33.686 (4) 142.000 ± 0.000 (5) 3.600 ± 1.800 (2) 29.400 ± 1.497 (3) 3.000 ± 0.000 (1)
Rice 41.000 ± 10.040 (4) 142.000 ± 0.000 (5) 3.000 ± 0.000 (2) 30.200 ± 0.980 (3) 3.000 ± 0.000 (1)
Echocardiogram 43.200 ± 12.820 (4) 272.000 ± 0.000 (5) 9.000 ± 3.098 (1) 30.000 ± 1.342 (2) 36.200 ± 5.810 (3)
Wisconsin Breast Cancer 61.800 ± 13.363 (4) 1,044.000 ± 0.000 (5) 4.000 ± 1.612 (2) 29.400 ± 0.800 (3) 3.000 ± 0.000 (1)
Loan House 19.200 ± 5.250 (2) 2,070.000 ± 0.000 (5) 6.800 ± 2.750 (1) 28.200 ± 1.327 (4) 26.200 ± 2.040 (3)
Heart Failure 27.200 ± 9.442 (3) 4,120.000 ± 0.000 (5) 3.200 ± 0.600 (1) 30.800 ± 0.600 (4) 14.200 ± 0.980 (2)
Heart Disease 36.800 ± 7.454 (4) n > 12 11.000 ± 4.099 (1) 27.600 ± 1.562 (3) 24.600 ± 3.072 (2)
Adult 128.000 ± 37.194 (3) n > 12 9.400 ± 4.964 (1) 25.200 ± 0.600 (2) 156.600 ± 23.079 (4)
Bank Marketing 6.800 ± 3.027 (2) n > 12 3.400 ± 1.200 (1) 27.200 ± 2.272 (3) 110.600 ± 10.500 (4)
Congressional Voting 5.600 ± 2.375 (2) n > 12 5.600 ± 0.917 (1) 20.400 ± 6.696 (4) 19.200 ± 6.416 (3)
Absenteeism 148.800 ± 18.187 (4) n > 12 7.800 ± 0.980 (1) 30.600 ± 0.800 (2) 43.200 ± 2.750 (3)
Hepatitis 12.200 ± 3.600 (2) n > 12 5.800 ± 2.713 (1) 14.800 ± 2.088 (4) 12.600 ± 1.744 (3)
German 27.600 ± 4.104 (2) n > 12 6.200 ± 0.980 (1) 30.400 ± 0.917 (3) 34.600 ± 5.713 (4)
Mushroom 25.600 ± 5.731 (4) n > 12 5.200 ± 1.661 (1) 21.200 ± 2.750 (3) 14.000 ± 1.342 (2)
Credit Card 92.600 ± 39.636 (3) n > 12 3.000 ± 0.000 (1) 31.000 ± 0.000 (2) 354.800 ± 31.603 (4)
Horse Colic 22.400 ± 4.737 (3) n > 12 4.000 ± 1.612 (1) 29.400 ± 1.200 (4) 12.600 ± 1.200 (2)
Thyroid 96.800 ± 16.863 (4) n > 12 5.600 ± 1.800 (1) 30.600 ± 0.800 (2) 66.400 ± 4.652 (3)
Cervical Cancer 34.000 ± 23.669 (3) n > 12 14.000 ± 7.550 (1) 30.800 ± 0.600 (2) 99.000 ± 8.532 (4)
Spambase 120.200 ± 37.010 (3) n > 12 12.400 ± 5.800 (1) 29.600 ± 0.917 (2) 201.000 ± 14.642 (4)

Mean ↑ 54.245 ± 42.824 (3) 886.667 ± 1,387.861 (5) 6.882 ± 3.457 (1) 27.536 ± 4.146 (2) 66.673 ± 86.224 (4)
Mean Reciprocal Rank (MRR) ↑ 0.331 ± 0.102 (4) 0.267 ± 0.132 (5) 0.932 ± 0.176 (1) 0.367 ± 0.098 (3) 0.430 ± 0.252 (2)

14

Table 8: Runtime Comparison. We report runtime without restarts based on the optimized hyperpa-
rameters (mean ± stdev over 10 trials). The datasets are sorted by the number of features.

Gradient-Based Non-Greedy Greedy

GradTree (ours) DNDT GeneticTree DL8.5 (Optimal) CART

Blood Transfusion 13.007 ± 1.000 (5) 3.704 ± 1.000 (3) 10.514 ± 4.000 (4) 0.031 ± 0.000 (2) 0.002 ± 0.000 (1)
Banknote Authentication 13.209 ± 2.000 (4) 34.425 ± 1.000 (5) 10.318 ± 3.000 (3) 0.025 ± 0.000 (2) 0.003 ± 0.000 (1)
Titanic 29.579 ± 1.000 (5) 6.815 ± 0.000 (4) 3.677 ± 1.000 (3) 0.259 ± 0.000 (2) 0.002 ± 0.000 (1)
Raisins 30.611 ± 2.000 (5) 8.495 ± 1.000 (4) 0.619 ± 0.000 (3) 0.198 ± 0.000 (2) 0.004 ± 0.000 (1)
Rice 21.487 ± 4.000 (5) 11.955 ± 1.000 (4) 1.329 ± 0.000 (3) 0.475 ± 0.000 (2) 0.013 ± 0.000 (1)
Echocardiogram 9.038 ± 1.000 (4) 9.564 ± 2.000 (5) 0.304 ± 0.000 (3) 0.093 ± 0.000 (2) 0.002 ± 0.000 (1)
Wisconsin Breast Cancer 29.246 ± 2.000 (5) 6.837 ± 1.000 (4) 1.187 ± 0.000 (3) 0.461 ± 0.000 (2) 0.003 ± 0.000 (1)
Loan House 10.798 ± 1.000 (4) 52.793 ± 7.000 (5) 6.751 ± 2.000 (3) 0.524 ± 0.000 (2) 0.002 ± 0.000 (1)
Heart Failure 28.395 ± 1.000 (5) 23.747 ± 10.000 (4) 1.473 ± 0.000 (3) 0.201 ± 0.000 (2) 0.002 ± 0.000 (1)
Heart Disease 15.565 ± 2.000 (4) n > 12 4.446 ± 1.000 (3) 0.636 ± 0.000 (2) 0.002 ± 0.000 (1)
Adult 86.241 ± 12.000 (4) n > 12 26.012 ± 7.000 (3) 22.321 ± 1.000 (2) 0.071 ± 0.000 (1)
Bank Marketing 153.494 ± 38.000 (4) n > 12 129.428 ± 8.000 (3) 54.545 ± 1.000 (2) 0.072 ± 0.000 (1)
Congressional Voting 32.935 ± 3.000 (4) n > 12 6.503 ± 1.000 (3) 4.100 ± 7.000 (2) 0.002 ± 0.000 (1)
Absenteeism 28.941 ± 1.000 (4) n > 12 14.045 ± 3.000 (3) 3.893 ± 0.000 (2) 0.003 ± 0.000 (1)
Hepatitis 28.427 ± 1.000 (4) n > 12 2.273 ± 1.000 (3) 0.023 ± 0.000 (2) 0.002 ± 0.000 (1)
German 12.307 ± 2.000 (4) n > 12 3.141 ± 1.000 (2) 10.288 ± 0.000 (3) 0.003 ± 0.000 (1)
Mushroom 58.810 ± 70.000 (4) n > 12 12.507 ± 2.000 (3) 0.507 ± 0.000 (2) 0.007 ± 0.000 (1)
Credit Card 111.425 ± 36.000 (3) n > 12 4.416 ± 0.000 (2) 298.572 ± 6.000 (4) 0.351 ± 0.000 (1)
Horse Colic 9.811 ± 1.000 (4) n > 12 0.316 ± 0.000 (2) 2.365 ± 2.000 (3) 0.002 ± 0.000 (1)
Thyroid 35.965 ± 13.000 (2) n > 12 38.287 ± 15.000 (3) 109.123 ± 3.000 (4) 0.013 ± 0.000 (1)
Cervical Cancer 13.465 ± 2.000 (4) n > 12 2.760 ± 1.000 (3) 0.126 ± 0.000 (2) 0.006 ± 0.000 (1)
Spambase 41.983 ± 5.000 (4) n > 12 19.289 ± 6.000 (3) 4.576 ± 0.000 (2) 0.036 ± 0.000 (1)
Mean ↑ 44.745 ± 38.655 (4) - 13.618 ± 27.539 (2) 23.334 ± 66.445 (3) 0.027 ± 0.075 (1)
Mean Reciprocal Rank (MRR) ↑ 0.244 ± 0.037 (4) 0.243 ± 0.042 (5) 0.352 ± 0.063 (3) 0.462 ± 0.084 (2) 1.000 ± 0.000 (1)

C Hyperparameters

In the following, we report the hyperparameters used for each approach. The hyperparameters were
selected based on a random search over a predefined parameter range for GradTree, CART and
GeneticTree and are summarized in Table 10 to Table 12. All parameters that were considered are
noted in the tables. The number of trials (300) was equal for each approach. For GradTree and
DNDT, we did not optimize the batch size as well as the number of epochs, but used early stopping
with a predefined patience of 200. Additionally, we used 3 random restarts to prevent bad initial
parametrizations and selected the best model based on the validation loss. A gradient-based optimiza-
tion allows using an arbitrary loss function for the optimization. During preliminary experiments,
we observed that it is beneficial to adjust the loss function for specific datasets. More specifically,
we allowed adjusting the cross-entropy loss by adding a focal factor [24] of 3. Additionally, we
considered using PolyLoss [22] within the HPO to tailor the loss function for the specific task. For
DL8.5 the relevant tunable hyperparameters according to the authors are the maximum depth and
the minimum support. However, the maximum depth strongly impacts the runtime, which is why
we fixed the maximum depth to 4, similar to the maximum depth used during the experiments of
Demirović et al. [10] and Aglin et al. [1]. Running the experiments with a higher depth becomes
infeasible for many datasets. In preliminary experiments, we also observed that changing the depth
has no positive impact on the performance. Furthermore, to assure a fair comparison, we fixed the
minimum support to 1 which is equal to the pruning of GradTree. Additionally, we observed in our
preliminary experiments, that increasing the minimum support reduces overfitting, but has no positive
impact on the test performance (i.e. the train performance decreases, but the test performance is
not improved). For DNDT, the number of cut points is the tunable hyperparameter of the model,
according to Yang et al. [37]. However, it has to be restricted to 1 in order to generate binary trees
for comparability reasons. Therefore, we only optimized the temperature and the learning rate.
Furthermore, we extended their implementation to use early stopping based on the validation loss,
similar to GradTree, to reduce the runtime.

Table 9: DNDT Hyperparameters
Dataset Name learning_rate temperature num_cut

Blood Transfusion 0.050 0.100 1
Banknote Authentication 0.001 0.100 1
Titanic 0.050 0.001 1
Raisins 0.050 0.001 1
Rice 0.100 0.010 1
Echocardiogram 0.005 1.000 1
Wisconsin Breast Cancer 0.100 0.010 1
Loan House 0.001 1.000 1
Heart Failure 0.005 1.000 1

15

Table 10: GradTree Hyperparameters
Dataset Name depth lr_index lr_values lr_leaf loss polyLoss polyLossEpsilon

Blood Transfusion 8 0.010 0.100 0.010 crossentropy False 2
Banknote Authentication 7 0.050 0.050 0.100 focal_crossentropy True 2
Titanic 10 0.005 0.010 0.010 crossentropy False 2
Raisins 10 0.005 0.005 0.100 crossentropy True 5
Rice 7 0.050 0.010 0.010 crossentropy False 2
Echocardiogram 8 0.010 0.050 0.100 crossentropy True 5
Wisconsin Breast Cancer 10 0.050 0.010 0.100 crossentropy True 2
Loan House 8 0.005 0.100 0.010 focal_crossentropy False 2
Heart Failure 10 0.005 0.250 0.100 crossentropy False 2
Heart Disease 9 0.010 0.050 0.005 focal_crossentropy False 2
Adult 8 0.050 0.005 0.050 crossentropy True 5
Bank Marketing 8 0.250 0.250 0.050 crossentropy False 2
Cervical Cancer 8 0.005 0.010 0.100 crossentropy True 2
Congressional Voting 10 0.005 0.050 0.010 focal_crossentropy True 5
Absenteeism 10 0.050 0.010 0.050 focal_crossentropy True 5
Hepatitis 10 0.005 0.050 0.010 focal_crossentropy True 5
German 7 0.005 0.050 0.010 crossentropy True 2
Mushroom 9 0.010 0.010 0.050 focal_crossentropy False 2
Credit Card 8 0.050 0.100 0.010 focal_crossentropy False 2
Horse Colic 8 0.250 0.250 0.010 focal_crossentropy False 2
Thyroid 8 0.010 0.010 0.050 crossentropy False 2
Spambase 10 0.005 0.010 0.010 crossentropy False 2

Table 11: GeneticTree Hyperparameters
Dataset Name n_thresholds n_trees max_iter cross_prob mutation_prob

Blood Transfusion 10 500 500 1.0 0.2
Banknote Authentication 10 500 500 0.8 0.6
Titanic 10 500 250 0.2 0.3
Raisins 10 100 50 1.0 0.6
Rice 10 100 250 0.4 0.3
Echocardiogram 10 50 100 0.8 0.4
Wisconsin Breast Cancer 10 250 100 0.2 0.7
Loan House 10 500 500 1.0 0.2
Heart Failure 10 500 50 0.4 0.6
Heart Disease 10 400 500 0.6 0.4
Adult 10 100 500 0.6 0.6
Bank Marketing 10 500 250 0.8 0.6
Cervical Cancer 10 100 500 0.4 0.9
Congressional Voting 10 500 500 1.0 0.7
Absenteeism 10 500 500 1.0 0.7
Hepatitis 10 500 250 0.2 0.3
German 10 250 500 0.4 0.8
Mushroom 10 400 500 0.6 0.4
Credit Card 10 50 50 0.4 0.1
Horse Colic 10 50 100 0.8 0.4
Thyroid 10 500 500 1.0 0.7
Spambase 10 250 500 0.8 0.6

Table 12: CART Hyperparameters
Dataset Name max_depth criterion max_features min_samples_leaf min_samples_split ccp_alpha

Blood Transfusion 9 entropy None 1 5 0.0
Banknote Authentication 9 gini None 1 5 0.0
Titanic 7 entropy None 1 50 0.0
Raisins 8 gini None 5 2 0.2
Rice 8 gini None 5 2 0.2
Echocardiogram 9 entropy None 1 5 0.0
Wisconsin Breast Cancer 7 entropy None 5 2 0.4
Loan House 10 entropy None 10 2 0.0
Heart Failure 9 gini None 5 50 0.0
Heart Disease 8 entropy None 5 10 0.0
Adult 10 entropy None 10 2 0.0
Bank Marketing 8 entropy None 5 10 0.0
Cervical Cancer 9 entropy None 1 5 0.0
Congressional Voting 10 gini None 1 2 0.0
Absenteeism 7 entropy None 1 10 0.0
Hepatitis 9 entropy None 1 5 0.0
German 7 entropy None 1 10 0.0
Mushroom 9 entropy None 1 5 0.0
Credit Card 9 gini None 1 5 0.0
Horse Colic 10 entropy None 10 2 0.0
Thyroid 10 entropy None 10 2 0.0
Spambase 10 gini None 1 2 0.0

16

D Datasets

The datasets along with their specifications and source are summarized in Table 13. For all datasets,
we performed a standard preprocessing: We applied Leave-one-out encoding to all categorical features.
Similar to Popov et al. [32], we further perform a quantile transform, making each feature follows a
normal distribution. We use a random 80%/20% train-test split for all datasets. To account for class
imbalance, we rebalanced the training data using SMOTE [9] when the minority class accounts for
less than 25% of the data points. Since GradTree and DNDT require a validation set for early stopping,
we performed another 80%/20% split on the training data for those approaches. The remainder of
the approaches utilize the complete training data. For DL8.5 additional preprocessing was necessary
since they can only handle binary features. Therefore, we one-hot encoded all categorical features
and discretized numeric features by one-hot encoding them using quantile binning with 5 bins.

Table 13: Dataset Specifications.
Dataset Name Number of

Features
Number of
Samples

Fraction of
Minority Class Source

Blood Transfusion 4 748 0.238 https://archive.ics.uci.edu/ml/datasets/Blood+
Transfusion+Service+Center

Banknote
Authentication 4 1,372 0.445 https://archive.ics.uci.edu/ml/datasets/banknote+

authentication
Titanic 7 891 0.384 https://www.kaggle.com/c/titanic

Raisin 7 900 0.500 https:
//archive.ics.uci.edu/ml/datasets/Raisin+Dataset

Rice 7 3,810 0.428 https://archive.ics.uci.edu/ml/datasets/Rice+
%28Cammeo+and+Osmancik%29

Echocardiogram 8 132 0.189 https:
//archive.ics.uci.edu/ml/datasets/echocardiogram

Wisconsin Breast
Cancer 10 569 0.373 https://archive.ics.uci.edu/ml/datasets/breast+

cancer+wisconsin+(diagnostic)

Loan House 11 614 0.313 https://www.kaggle.com/code/sazid28/
home-loan-prediction/data

Heart Failure 12 299 0.321 https://archive.ics.uci.edu/ml/datasets/Heart+
failure+clinical+records

Heart Disease 13 303 0.459 https:
//archive.ics.uci.edu/ml/datasets/heart+disease

Adult 14 32,561 0.241 https://archive.ics.uci.edu/ml/datasets/adult

Bank Marketing 14 45,211 0.117 https:
//archive.ics.uci.edu/ml/datasets/bank+marketing

Congressional Voting 16 435 0.386 https://archive.ics.uci.edu/ml/datasets/
congressional+voting+records

Absenteeism 18 740 0.377 https://archive.ics.uci.edu/ml/datasets/
Absenteeism+at+work

Hepatitis 19 155 0.206 https:
//archive.ics.uci.edu/ml/datasets/hepatitis

German 20 1,000 0.300 https://archive.ics.uci.edu/ml/datasets/statlog+
(german+credit+data)

Mushrooms 22 8,124 0.482 https://archive.ics.uci.edu/ml/datasets/mushroom

Credit Card 23 30,000 0.221 https://archive.ics.uci.edu/ml/datasets/default+
of+credit+card+clients

Horse Colic 26 368 0.370 https:
//archive.ics.uci.edu/ml/datasets/Horse+Colic

Thyroid 29 9,172 0.262 https://archive.ics.uci.edu/ml/datasets/thyroid+
disease

Cervical Cancer 31 858 0.064 https://archive.ics.uci.edu/ml/datasets/Cervical+
cancer+%28Risk+Factors%29

Spambase 57 4,601 0.394 https://archive.ics.uci.edu/ml/datasets/spambase

17

https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
https://archive.ics.uci.edu/ml/datasets/banknote+authentication
https://archive.ics.uci.edu/ml/datasets/banknote+authentication
https://www.kaggle.com/c/titanic
https://archive.ics.uci.edu/ml/datasets/Raisin+Dataset
https://archive.ics.uci.edu/ml/datasets/Raisin+Dataset
https://archive.ics.uci.edu/ml/datasets/Rice+%28Cammeo+and+Osmancik%29
https://archive.ics.uci.edu/ml/datasets/Rice+%28Cammeo+and+Osmancik%29
https://archive.ics.uci.edu/ml/datasets/echocardiogram
https://archive.ics.uci.edu/ml/datasets/echocardiogram
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://www.kaggle.com/code/sazid28/home-loan-prediction/data
https://www.kaggle.com/code/sazid28/home-loan-prediction/data
https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records
https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records
https://archive.ics.uci.edu/ml/datasets/heart+disease
https://archive.ics.uci.edu/ml/datasets/heart+disease
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://archive.ics.uci.edu/ml/datasets/congressional+voting+records
https://archive.ics.uci.edu/ml/datasets/congressional+voting+records
https://archive.ics.uci.edu/ml/datasets/Absenteeism+at+work
https://archive.ics.uci.edu/ml/datasets/Absenteeism+at+work
https://archive.ics.uci.edu/ml/datasets/hepatitis
https://archive.ics.uci.edu/ml/datasets/hepatitis
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/mushroom
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/Horse+Colic
https://archive.ics.uci.edu/ml/datasets/Horse+Colic
https://archive.ics.uci.edu/ml/datasets/thyroid+disease
https://archive.ics.uci.edu/ml/datasets/thyroid+disease
https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29
https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29
https://archive.ics.uci.edu/ml/datasets/spambase

	Introduction
	Related Work
	GradTree: Gradient-Based Decision Trees
	Arithmetic Decision Tree Formulation
	Dense Decision Tree Representation
	Backpropagation of Decision Tree Loss
	Deterministic Tree Routing and Training

	Experimental Evaluation
	Results

	Conclusion and Future Work
	Gradient Descent Optimization
	Additional Results
	Hyperparameters
	Datasets

