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Figure 1: Jacobian eigenvectors of (a) a simplified one-channel UNet, (b) the UNet introduced in
improved diffusion (Nichol & Dhariwal, 2021), and (c) a DiT (Peebles & Xie, 2023). Kadkhodaie
et al. (2024) find that the generalization of a UNet-based diffusion model is driven by geometry-
adaptive harmonic bases (a), which display oscillatory patterns whose frequency increases as the
eigenvalue λk decreases. We observe similar harmonic bases in split-channel eigenvectors (b) with
standard UNets (Nichol & Dhariwal, 2021). However, a DiT (Peebles & Xie, 2023) does not exhibit
such harmonic bases (c), motivating our investigation into alternative inductive bias of a DiT that
enables its generalization. The RGB channels of the split-channel eigenvectors are outlined with
red , green , blue boxes, respectively. All models operate directly in the pixel space without apply-
ing the patchify operation.

ABSTRACT

Recent work studying the generalization of diffusion models with UNet-based
denoisers reveals inductive biases that can be expressed via geometry-adaptive
harmonic bases. However, in practice, more recent denoising networks are of-
ten based on transformers, e.g., the diffusion transformer (DiT). This raises the
question: do transformer-based denoising networks exhibit inductive biases that
can also be expressed via geometry-adaptive harmonic bases? To our surprise, we
find that this is not the case. This discrepancy motivates our search for the induc-
tive bias that can lead to good generalization in DiT models. Investigating a DiT’s
pivotal attention modules, we find that locality of attention maps are closely asso-
ciated with generalization. To verify this finding, we modify the generalization of
a DiT by restricting its attention windows. We inject local attention windows to a
DiT and observe an improvement in generalization. Furthermore, we empirically
find that both the placement and the effective attention size of these local attention
windows are crucial factors. Experimental results on the CelebA, ImageNet, and
LSUN datasets show that strengthening the inductive bias of a DiT can improve
both generalization and generation quality when less training data is available.
Source code will be released publicly upon paper publication.
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1 INTRODUCTION

Diffusion models have achieved remarkable success in visual content generation. Their training in-
volves approximating a distribution in a high-dimensional space from a limited number of training
samples–a task that is highly challenging due to the curse of dimensionality. Nonetheless, recent
diffusion models (Sohl-Dickstein et al., 2015; Song et al., 2020; Ho et al., 2020; Kadkhodaie &
Simoncelli, 2020; Nichol & Dhariwal, 2021; Song et al., 2020) learn to generate high-quality im-
ages (Nichol et al., 2021; Dhariwal & Nichol, 2021; Saharia et al., 2022; Rombach et al., 2022;
Chen et al., 2023; 2024a) and even videos (Singer et al., 2022; Ho et al., 2022; Girdhar et al., 2023;
Blattmann et al., 2023; OpenAI, 2024) using relatively few samples when compared to the under-
lying high-dimensional space. This indicates that diffusion models exhibit powerful inductive bi-
ases (Wilson & Izmailov, 2020; Goyal & Bengio, 2022; Griffiths et al., 2024) that promote effective
generalization. What exactly are these powerful inductive biases? Understanding them is crucial for
gaining deeper insights into the behavior of diffusion models and their remarkable generalization.

Recent work by Kadkhodaie et al. (2024) on UNet-based diffusion models reveals that the strong
generalization of UNet-based denoisers is driven by inductive biases that can be expressed via a set
of geometry-adaptive harmonic bases (Mallat et al., 2020). Their result is illustrated in Fig. 1 (a):
the harmonic bases are extracted from a simplified one-channel UNet via the eigenvectors of the
denoiser’s Jacobian matrix. It is easy to extend the analysis of Kadkhodaie et al. (2024) to show that
similar harmonic bases are also observed in more complex and classic multi-channel UNets (Nichol
& Dhariwal, 2021), as shown in Fig. 1 (b). Given this observation, it is natural to ask: does the
emergence of harmonic bases also occur in compelling recent transformer-based diffusion model
backbones, e.g., diffusion transformers (DiTs) (Peebles & Xie, 2023)? To explore this possibility,
we perform an eigendecomposition of a DiT’s Jacobian matrix, following Kadkhodaie et al. (2024).
To our surprise, as shown in Fig. 1 (c), a DiT trained in the pixel space does not exhibit geometry-
adaptive harmonic bases, making it different from a UNet. Building on these insights, a natural
question arises: what are the inductive biases that enable the strong generalization of DiTs?

Answering this question is particularly important because of the growing adoption of DiTs in recent
methods (Chen et al., 2024b; Esser et al., 2024), partly for its observed performance at scale (Peebles
& Xie, 2023). In a new study in this paper, using the PSNR gap (Kadkhodaie et al., 2024) as a
metric to evaluate the generalization of diffusion models, we confirm that a DiT indeed exhibits
better generalization than a UNet with the same FLOPs. Yet, as mentioned before, this observation
alone doesn’t reveal the inductive biases which enable generalization.

The generalization mechanism of a DiT may differ from that of UNet-based models, potentially
due to the self-attention (Vaswani, 2017) dynamics which are pivotal in DiT models but not in
UNets. In a self-attention layer, the attention map, derived from the multiplication of query and key
matrices, determines how the value matrix obtained from input tensors influences output tensors.
To shed some light, we analyze the attention maps of a DiT and show that locality of the attention
maps is closely tied to its generalization ability. Specifically, the attention maps of a DiT trained
with insufficient images, i.e., with weak generalization, exhibit a more position-invariant pattern:
the output tokens of a self-attention layer are largely influenced by a certain combination of input
tensors, irrespective of their positions. In contrast, the attention maps of a DiT trained with sufficient
images, which demonstrates strong generalization, exhibit a sparse diagonal pattern. This indicates
that each output token is primarily influenced by its neighboring input tokens. This analysis provides
insight into how the generalization ability of DiTs can be modified, if necessary, such as when only
a small number of training images are available.

Restricting the attention window in self-attention layers should permit modifying a DiT’s general-
ization. Indeed, we find that employing local attention windows (Beltagy et al., 2020; Hassani et al.,
2023) is effective. A local attention window restricts the dependence of an output token on its nearby
input tokens, thereby promoting the locality of attention maps. In addition, the placement of atten-
tion window restrictions within the DiT architecture and the effective size of attention windows are
critical factors to steer a DiT’s generalization. Our experiments show that placing attention window
restrictions in the early attention layers of the DiT architecture yields the most benefit. Experi-
mental results on the CelebA (Liu et al., 2015), ImageNet (Deng et al., 2009), and LSUN (Yu et al.,
2015) (bedroom, church, tower, bridge) datasets demonstrate that applying attention window restric-
tions improves generalization, as reflected by a reduced PSNR gap. We also observe an improved
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Figure 2: The PSNR (a) and PSNR gap (b) comparisons between a UNet and a DiT with the same
FLOPs for different training image quantities (N ). When N=105, both DiT and UNet show small
PSNR gaps between the training and testing sets. Nevertheless, when N=103 and N=104, a DiT
exhibits smaller PSNR gaps compared to a UNet, indicating a better generalization ability under
insufficient training data. All PSNR and PSNR gap curves are averaged over three models trained on
different dataset shuffles. The standard deviations, illustrated by the curve shadows in the zoomed-in
windows, are negligible, indicating minimal variation.

FID (Heusel et al., 2017) when training with insufficient data, confirming that DiT’s generalization
can be successfully modified through attention window restrictions.

In summary, the contributions of this paper include the following: 1) We identify the locality of
attention maps as a key inductive bias contributing to the generalization of a DiT, and 2) we demon-
strate how to control this inductive bias by incorporating local attention windows into a DiT. En-
hancing the locality in attention computations effectively modifies a DiT’s generalization, resulting
in a lower PSNR gap and improved FID scores when insufficient training images are available.

2 ANALYZING THE INDUCTIVE BIAS OF DIFFUSION MODELS

Diffusion models are designed to map a Gaussian noise distribution to a dataset distribution. To
achieve this, diffusion models take a noisy image xt, obtained by adding Gaussian noise ϵ to a
training sample x0 following a noise schedule depending on step t, and estimate noise ϵ. The loss
function of diffusion model training is as follows:

L = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥22

]
. (1)

In Eq. (1), ϵθ(·) represents the backbone network with trainable parameters θ, which plays a cru-
cial role in diffusion model generalization and hence is our primary focus. In this section, we first
compare the generalization ability of a DiT (Peebles & Xie, 2023) and a UNet (Nichol & Dhari-
wal, 2021), two of the most popular diffusion model backbones. Subsequently, we investigate the
inductive biases that drive their generalization.

2.1 COMPARING DIT AND UNET GENERALIZATION

We compare the generalization of pixel-space DiT and UNet1 using as a metric the PSNR gap
proposed by Kadkhodaie et al. (2024). The PSNR gap is the zero-truncated difference between the

1https://github.com/openai/improved-diffusion
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Figure 3: Jacobian eigenvector comparison between UNet (Nichol & Dhariwal, 2021) and DiT (Pee-
bles & Xie, 2023) with equivalent FLOPs. (a) The eigenvectors of a UNet tend to memorize the
training images when N=10 and drive the generalization througth harmonic bases (Kadkhodaie
et al., 2024) when N=105. In contrast, (b) the DiT’s eigenvectors exhibit neither the memorization
effect at N=10 nor harmonic bases at N=105.

training set PSNR and the testing set PSNR at a diffusion step t:

PSNR Gap (t) = max (PSNRtrain (t)− PSNRtest (t) , 0) , (2)

where PSNRtrain (t) and PSNRtest (t) are obtained following Kadkhodaie et al. (2024). To elab-
orate, given K images from either training or testing set, we first feed noisy images at step t to
diffusion models and obtain the estimated noise ϵ̂. Next, we get the one-step denoising result x̂0 via

x̂0 = xt − σtϵ̂, (3)

where σt is defined by the diffusion model noise scheduler. Finally, we derive the training and
testing PSNRs at diffusion step t as follows:

PSNRtrain/test (t) = 10 ·

(
log(M2)− log

(
1

K

K∑
k=1

MSE
(
x̂k
0 ,x

k
0

)))
. (4)

Here, x̂k
0 denotes the estimated x0 for image k at diffusion step t obtained by using Eq. (3), M

denotes the intensity range of x0, which is set to 2 since x0 is normalized to [−1, 1]. K is set to 300
following the PSNR gap computation of Kadkhodaie et al. (2024).

Turning to diffusion model backbones, prior work (Peebles & Xie, 2023) has shown that a DiT
achieves better image generation quality than a UNet with equivalent FLOPs. This advantage of
DiT prompts our curiosity to study whether DiT can also demonstrate superiority in generalization,
using the PSNR gap as a metric. Fig. 2 compares the PNSR and PSNR gap of a UNet and a DiT.
Interestingly, when the number of training images is sufficient for the model size, e.g., N=105, the
training and testing PSNR curves of both DiT and UNet are nearly identical, and their PSNR gaps
remain small. This indicates that DiT and UNet have no substantial performance difference in dis-
tribution mapping given sufficient training data. Nevertheless, as shown in Fig. 2 (b), when trained
with less data, e.g., N=103 and N=104, a DiT has a remarkably smaller PSNR gap than a UNet,
suggesting that a DiT has a better generalization ability than a UNet. This discrepancy of the PSNR
gap motivates us to explore the underlying inductive biases that contribute to the generalization
difference between a DiT and a UNet.

2.2 DIT DOES NOT HAVE GEOMETRY-ADAPTIVE HARMONIC BASES

Kadkhodaie et al. (2024) reveal that the generalization of a simplified one-channel UNet is driven
by the emergence of geometry-adaptive harmonic bases. These harmonic bases are obtained from
the eigenvectors of a UNet’s Jacobian matrix. This raises an important question: can the potential
difference in harmonic bases between a DiT and a UNet account for their generalization differences?
To address this, we follow the approach of Kadkhodaie et al. (2024) and perform an eigendecom-
position of the Jacobian matrices for a three-channel classic UNet (Nichol & Dhariwal, 2021) and
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Figure 4: Attention maps of DiTs trained with 10, 103, and 105 images. All attention maps are
linearly normalized to the range [0, 1], with a colormap applied to the interval [0, 0.1] for enhanced
visualization. The top-right insets provide a zoomed-in view of the center patch of each attention
map. As the number of training images increases, DiT’s generalization improves, and attention maps
across all layers exhibit stronger locality. The pink boxes highlight the attention corresponding to a
specific output token, obtained by reshaping a single row from the layer-12 attention map (original
shape: 1×(HW )) into a matrix of shape H×W . As N increases from 10 to 105, the token attentions
progressively concentrate around the region near the output token (highlighted with blue boxes).

a DiT. Specifically, we first feed a noisy image x (xt, t is omitted for simplicity) into a DiT and a
UNet and obtain their Jacobian matrices, where each entry of the Jacobian

∇ϵθ =


∂ϵ̂1
∂x1

∂ϵ̂1
∂x2

· · · ∂ϵ̂1
∂xHW

∂ϵ̂2
∂x1

∂ϵ̂2
∂x2

· · · ∂ϵ̂2
∂xHW

...
...

. . .
...

∂ϵ̂HW

∂x1

∂ϵ̂HW

∂x2
· · · ∂ϵ̂HW

∂xHW

 , ϵ̂ = ϵθ(x, t), x, ϵ̂ ∈ R(HW )×d, (5)

represents the partial derivative of an output pixel w.r.t. all input pixels. Next, we perform an eigen-
decomposition of the Jacobian matrix and obtain the eigenvectors.

Fig. 3 presents the eigenvalues and eigenvectors of a UNet and a DiT trained with 10 and 105

images, respectively. For a UNet which is trained with a small number of images, e.g., N=10, the
Jacobian eigenvectors corresponding to several large eigenvalues tend to memorize the geometry of
the input image. Notably, the leading eigenvalues are significantly larger than the rest, indicating
that the UNet trained with 10 images is governed by memorization of the training images (Carlini
et al., 2023; Somepalli et al., 2023). In contrast, when the training set size is increased to N=105,
the UNet’s eigenvectors show the geometry-adaptive harmonic bases similar to the ones reported
by Kadkhodaie et al. (2024): oscillating patterns which increase in frequency as eigenvalues λk

decrease. This clear transition from memorizing to generalizing, observed as N increases, indicates
that harmonic bases play a key role in driving the generalization of a UNet.

In contrast, harmonic bases do not appear to be the driving factor behind a DiT’s generalization.
As shown in Fig. 3 (b), the eigenvectors of the DiT do not exhibit the harmonic bases similar to
the ones observed for the UNet. Instead, the DiT displays random sparse patterns regardless of the
training dataset size. Additionally, the difference in the distribution of DiT’s eigenvalues between
N=10 and N=105 is much less pronounced compared to that of the UNet. Notably, unlike the
UNet, the Jacobian eigenvectors of the DiT does not transition from memorization to generalization
as the training dataset size increases, indicating that the driving factor of a DiT’s generalization is
fundamentally different from a UNet. This difference calls for a further study about what other
inductive biases drive the generalization ability of a DiT?

2.3 HOW DOES A DIT GENERALIZE?

The generalization of a DiT may originate from the self-attention (Vaswani, 2017) dynamics because
of its pivotal role in a DiT. Could the attention maps of a DiT provide insights into its inductive
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Figure 5: Global and local attention maps: (a) global attention captures the relationship between the
target token and any input token, whereas (b) local attention focuses only on tokens within a nearby
window around the target.

biases? In light of this, we empirically compare the attention maps of DiTs with varying levels
of generalization: three DiT models trained with 10, 103, and 105 images, where a DiT trained
with more images demonstrates stronger generalization. Specifically, we extract and visualize the
attention maps from the self-attention layers of these DiT models as follows,

Attention Map = Softmax

(
QK⊤
√
d

)
, {Q,K} ∈ R(HW )×d, (6)

where Q and K represent the query and key matrices. H and W are the height and width of the
input tensor, while d denotes the dimension of a self-attention layer. For better readability of the
attention maps, we linearly normalize each attention map to the range of [0, 1] and apply a colormap
to the interval [0, 0.1], i.e., values exceeding the upper bound are clipped at 0.1.

Fig. 4 shows the attention maps of DiTs with varying levels of generalization on a randomly selected
image. Empirically, we observe that the attention maps of a DiT’s self-attention layers remain highly
consistent across different images. Further details are provided in Appendix B. As the number of
training images increases from N=10 to N=105, the attention maps of a DiT become increasingly
concentrated along several diagonal lines. A closer inspection of the token attentions of a specific
target token, i.e., a row in the attention map, shows that these diagonal patterns correspond to tokens
near the target token, indicating that the generalization ability of a DiT is linked to the locality of
its attention maps. Delving deeper, can one modify the generalization of a DiT with this inductive
bias? We explore this next.

3 INJECTING INDUCTIVE BIAS BY RESTRICTING ATTENTION WINDOWS

To verify that the locality of attention maps enables the generalization of a DiT, we hypothesize
that it’s possible to adjust the inductive bias of a DiT by restricting attention windows. To test this
hypothesis, we set up baselines by adopting the diffusion model and DiT implementations from the
official repository2 of Peebles & Xie (2023). Specifically, we remove the auto-encoder and set the
patchify size to 1×1, transforming it into a pixel-space DiT. This modification rules out irrelevant
components and ensures more straightforward comparisons in downstream experiments. For model
training, we use images of resolution 32×32, which is equivalent in dimensionality to 512×512 for
a latent-space DiT with a patchify size of 2×2.

In the remainder of this section, we show that based on the PSNR gap, injecting local attention can
effectively modify a DiT generalization, often accompanied by an FID change when insufficient
training data is used. Furthermore, we discover that placing the attention window restrictions at
different locations in a DiT and adjusting the effective attention window sizes allow for additional
control over its generalization behavior. Details w.r.t. experimental settings and more results are
deferred to the Appendix A and D.

2https://github.com/facebookresearch/DiT
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(a) DiT-XS/1, hidden size: 252, num heads: 4 (b) DiT-S/1, hidden size: 384, num heads: 6

Figure 6: PSNR gap↓ comparison between a standard DiT and a DiT equipped with local attention
for two architectures: (a) DiT-XS/1 and (b) DiT-S/1. Incorporating local attention reduces the PSNR
gap consistently across N=103, N=104, and N=105. This advantage is robust across six different
datasets and both DiT backbones. In this setup, local attention with window sizes (3, 5, 7, 9, 11, 13)
is applied to the first six layers of the DiT. Textured bars highlight the default DiT baselines.

3.1 ATTENTION WINDOW RESTRICTION

Local attention, initially proposed to enhance computational efficiency (Liu et al., 2021; Yang et al.,
2022; Hatamizadeh et al., 2023; Hassani et al., 2023), is a straightforward yet effective way to
modify a DiT’s generalization. Different from global attention which enables a target token to
connect with all input tokens (Fig. 5 (a)), local attention only permits a target token to attend within
a small nearby window. The resulting attention map structure is depicted in Fig. 5 (b). Notably,
a local attention constrains the attention map to a sparse activation pattern only along the diagonal
direction, thereby enforcing locality of the attention map. The resulting attention map patterns
produced by a local attention align well with the inductive bias that a DiT exhibits when observing
a strong generalization ability, as illustrated in Fig. 4 (row N=105).

Using local attentions in a DiT can consistently improve its generalization (measured by PSNR gap)
across different datasets and model sizes. Specifically, we consider a DiT model with 12 DiT blocks,
and replace the first 6 global attention layers with local attentions, whose window sizes range from
3×3 to 13×13 with a stride of 2. We train both the vanilla DiT and a DiT equipped with local
attentions with N=103, 104 and 105 images for the same 400k training steps. Then we calculate
the PSNR gap between the training and testing images for models trained with different amounts
of images. In Fig. 6, we show the PSNR gap comparison between a DiT with and without local
attentions on CelebA, ImageNet, and LSUN (Church, Bedroom, Bridge, Tower) datasets, using
baseline DiT models of two sizes (DiT-XS/1 and DiT-S/1). Notably, using local attentions reduces
a DiT’s PSNR gap with different amounts of training images. Importantly, the advantage of local
attention is robust across different training datasets and backbone sizes.

7
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Table 1: FID↓ comparison between a standard DiT and a DiT equipped with local attention. † in-
dicates training with different random seeds, train-test splits, and doubled batch sizes. For the DiT-
XS/1 and DiT-S/1 architectures, local attention reduces FID when the DiT’s generalization is not
saturated (N=104). At N=105, local attention achieves comparable or marginally higher FID com-
pared to the standard DiT. These findings are consistent across various datasets, random seeds, train-
test splits, and batch sizes. In this setting, local attention with window sizes of (3, 5, 7, 9, 11, 13) is
applied to the first six layers of the DiT, where both the placement and window size play a crucial
role in determining a DiT’s FID result. Further details are provided in Sec. 3.2 and Sec. 3.3.

Model CelebA ImageNet LSUN Church LSUN Bedroom LSUN Bridge LSUN Tower

N=104 N=105 N=104 N=105 N=104 N=105 N=104 N=105 N=104 N=105 N=104 N=105

DiT-XS/1 9.6932 2.6303 52.5650 17.3114 12.8842 5.2927 14.8354 5.4066 23.1771 8.0791 12.5532 4.6619

w/ Local 8.4580 2.5469 43.8687 18.0671 10.4794 5.2672 11.9566 5.3542 18.1470 8.3546 10.5644 4.8041
−12.74% −3.17% −16.54% +4.37% −18.66% −0.97% −19.40% −0.97% −21.70% +3.41% −15.84% +3.05%

DiT-XS/1† 10.5432 2.5215 36.8461 20.1907 13.4921 3.9033 15.6740 4.8256 22.0032 7.7771 13.8952 4.1576

w/ Local†
8.4258 2.4988 31.4555 20.3175 10.2708 4.5322 11.2033 5.0868 17.8903 7.7477 10.1938 4.6146
−20.08% −0.90% −14.63% +0.63% −23.88% +16.11% −28.53% +5.41% −18.69% −0.38% −26.64% +10.99%

DiT-S/1 23.2496 2.3278 36.6378 20.6101 14.8826 3.9390 16.1094 4.6086 51.5729 5.7950 28.9727 3.1897

w/ Local 20.7768 2.3321 33.1807 20.7972 11.7540 4.4097 11.6833 5.0519 37.6523 5.5825 21.8068 3.5586
−10.64% +0.18% −9.44% +0.91% −21.02% +11.95% −27.48% +9.62% −26.99% −3.67% −24.73% +11.57%

DiT-S/1† 14.1763 2.5061 37.3477 20.4165 15.4509 4.2317 15.5820 4.8336 24.4374 7.3170 14.8695 4.4495

w/ Local†
11.1046 2.6598 33.1323 20.6006 11.4956 4.5546 11.3673 5.0552 20.3403 7.5565 12.3236 4.4927
−21.67% +6.13% −11.29% +0.90% −25.60% +7.63% −27.05% +4.58% −16.77% +3.27% −17.12% +0.97%

For a discriminative model, e.g., a classifier, better generalization typically leads to better model
performance when the training dataset is insufficient. Is this also the case for generative models
like a DiT? To investigate, we compare the FID between the default DiT and a DiT using local
attentions. For each dataset, we compare FID values of models trained with 104 and 105 images:
the former represents the case of insufficient training images while the later case refers to use of
sufficient training data. Tab. 1 shows the FID comparison among the same six datasets and two
DiT backbones used when comparing PSNR gaps. Improving the generalization via local attentions
can indeed improve the FID when N=104, which is in line with observations from discriminative
models. When N=105, using the presented approach of adding local attentions either results in
comparable FID values or experiences a slight compromise. Interestingly, we find that modifying the
placement and effective attention window size permits fine-grained control of a DiT’s generalization
and generation quality. More discussions are in Sec. 3.2 and Sec. 3.3 below.

In light of Occam’s razor, reducing the model parameter count has been shown to be yet another
possible strategy to inject an inductive bias. This differs from the attention window restrictions con-
sidered above, as local attentions reduce the FLOPs of a DiT without changing the model parameter
count. In contrast, to inject an inductive bias by reducing the parameter count of a DiT, we explore
sharing of the parameters of a DiT’s attention blocks as well as modifying a DiT’s attention lay-
ers to learn the coefficients of pre-computed offline PCA components. Neither of these methods
shows as compelling improvements of the generalization (measured via the PSNR gap) as using
local attentions. We provide more details regarding the considered techniques in the Appendix C.

3.2 PLACEMENT OF ATTENTION WINDOW RESTRICTION

Given the same set of local attentions, placing them at different layers of a DiT leads to different
results. For local attention, we study three placement schemes: 1) placing local attentions on the
early layers of a DiT, 2) interleaving local attentions with global attentions, and 3) placing local
attentions on the tail layers of a DiT. In Fig. 7, we compare the PSNR gap for the three aforemen-
tioned placement schemes on the CelebA and ImageNet datasets, using two distinct local attention
configurations. Specifically, Local refers to a setting with 6 attention layers, where the window sizes
vary from 3×3 to 13×13 with a stride of 2, which is consistent with the local attention configuration
used in Fig. 6 and Tab. 1 above. Meanwhile, Local∗ represents a different configuration consisting
of 9 local attention layers, arranged as

(
3∗3, 5∗3, 7∗3

)
, where i∗j indicates repeating a local attention

layer with a (i×i) window j times.

The results in Fig. 7 indicate that applying local attention in the early layers of a DiT consistently
leads to a smaller PSNR gap across different training data sizes. Additionally, the FID results in
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Figure 7: PSNR gap↓ comparison for different
local attention placement patterns. We find that
placing local attention in the early layers (head)
results in a smaller PSNR gap compared to mix-
ing local and global attention (mix) or applying
local attention in the later layers (tail). The latter
two configurations may even perform worse than
the vanilla DiT.

Table 2: FID↓ comparison for different local
attention placement patterns. Local∗ represents
using nine local attention layers with window
sizes

(
3∗3, 5∗3, 7∗3

)
in a DiT. Placing local at-

tention in the early layers achieves lower FIDs
when N=104, indicating successful general-
ization modification. In contrast, mix and tail
placements fail to consistently modify the gen-
eralization of a DiT. The lowest FIDs are high-
lighted in bold.

Model CelebA ImageNet

N=104 N=105 N=104 N=105

DiT-XS/1 9.6932 2.6303 52.5650 17.3114

w/ Local (head) 8.4580 2.5469 43.8687 18.0671
w/ Local (mix) 11.8858 2.5015 37.6397 18.4266
w/ Local (tail) 18.0717 2.4288 59.8510 17.5818

w/ Local∗ (head) 7.2307 3.0991 29.2520 23.7896
w/ Local∗ (mix) 10.9537 2.7068 51.8233 18.7975
w/ Local∗ (tail) 17.0445 3.0400 49.6403 22.1723

Sa
m

e
Si

ze
Sm

al
le

rS
iz

e
L

ar
ge

rS
iz

e

(a) CelebA (b) ImageNet

Figure 8: PSNR gap↓ changes when the effective
attention window size is kept constant, decreased,
or increased. Reducing the window size results in
a smaller PSNR gap, indicating improved gener-
alization.

Table 3: FID↓ changes when the effective
attention window size is kept constant, de-
creased, or increased. Modifying the attention
window distribution while keeping the overall
window size unchanged results in minimal FID
changes when N=104. Decreasing the win-
dow size improves generalization, leading to
lower FID at N=104, whereas increasing the
window size has the opposite effect.

Model CelebA ImageNet

N=104 N=105 N=104 N=105

Local Attn (5∗6) 12.9798 2.3348 40.7373 17.8686

(3∗2, 5∗2, 7∗2)
12.6680 2.3455 40.7499 17.7538
−2.40% +0.46% +0.03% 0.64%

Local 8.4580 2.5469 43.8687 18.0671

(smaller win size) 8.0543 2.7174 39.5779 18.9400
−4.77% +6.69% −9.78% +4.83%

Local∗ 7.2307 3.0991 29.2520 23.7896

(larger win size) 7.8800 2.8577 37.8708 19.3568
+8.98% 7.79% +29.46% 18.63%

Tab. 2 demonstrate that the first placement scheme generally improves FID when the training data is
limited (N=104). In contrast, interleaving local and global attention, or applying local attention to
the tail layers, enhances the model’s data-fitting ability but often compromises generalization. These
two placement schemes tend to improve FID when N=105, though this improvement comes at the
cost of reduced FID when N=104, further supporting the generalization results as measured by the
PSNR gap.

3.3 EFFECTIVE ATTENTION WINDOW SIZE

Adjusting the effective attention window size provides an additional mechanism to control the gener-
alization of a DiT. Specifically, our analysis reveals that smaller attention windows lead to stronger
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generalization, while larger windows enhance data fitting, typically at the cost of generalization.
Furthermore, maintaining the total attention window size but altering the distribution across local
attentions generally preserves the overall behavior of a DiT. These observations are based on an em-
pirical study using the CelebA and ImageNet datasets, involving three paired comparisons of local
attention configurations. The PSNR gap and FID results are shown in Fig. 8 and Tab. 3, respectively.

Specifically, in the first comparison, we apply two configurations of local attentions with window
sizes (5, 5, 5, 5, 5, 5) and (3, 3, 5, 5, 7, 7) to the first six layers of a DiT. We observe that altering the
attention window size distribution, while keeping the total window size fixed, has a limited impact
on a DiT’s generalization, as indicated by the similar PSNR gaps across N=103, 104, and 105.
This similarity in generalization is further corroborated by their comparable FID values. In the
second and third comparisons, using the DiT-XS/1 configurations with Local and Local∗ attention
settings, we find that reducing the attention window size enhances generalization, while increasing
the window size diminishes it. This is evidenced by a decrease in the PSNR gap for smaller window
sizes and an increase for larger ones. Furthermore, the improved generalization is associated with
better FID values under comparably insufficient training data, and vice versa.

4 RELATED WORK

Inductive Biases of Generative Models. Current diffusion models (Sohl-Dickstein et al., 2015;
Song et al., 2020; Ho et al., 2020; Kadkhodaie & Simoncelli, 2020; Nichol & Dhariwal, 2021; Song
et al., 2020; An et al., 2024) exhibit strong generalization abilities (Zhang et al., 2021; Keskar et al.,
2016; Griffiths et al., 2024; Wilson & Izmailov, 2020), relying on inductive biases (Mitchell, 1980;
Goyal & Bengio, 2022). Prior to the emergence of diffusion models, Zhao et al. (2018) show that
generative models like GANs (Goodfellow et al., 2020) and VAEs (Kingma, 2013) can generalize to
novel attributes not presented in the training data. This generalization ability of generative models
is possibly due to the inductive biases (Zhang et al., 2021; Keskar et al., 2016) introduced by model
design and training. Following this line of research, Kadkhodaie et al. (2024) show that the gener-
alization of diffusion models arises due to geometry-adaptive harmonic bases (Mallat et al., 2020).
However, their work only studies the generalization of a simplified one-channel UNet. It remains
unclear whether their study can be generalized to commonly used three-channel UNets (Nichol &
Dhariwal, 2021) and more compelling DiTs (Peebles & Xie, 2023). This work fills this gap and
reveals that a classic UNet still exhibits the harmonic bases but a DiT does not. Further studies show
that a DiT’s generalization is associated with a different inductive bias: locality of attention maps.

Attention Window Restrictions. Prior studies have shown that restricting attention windows
through mechanisms such as local attention (Beltagy et al., 2020; Liu et al., 2021; Hassani et al.,
2023), strided attention (Wang et al., 2021; Xia et al., 2022), and sliding attention (Pan et al., 2023),
among others, can significantly improve the efficiency of attention computation (Yang et al., 2022;
Hatamizadeh et al., 2023; Hassani et al., 2023; Apple, 2024). These techniques limit the attention
scope, reducing computational complexity while retaining the model’s ability to capture important
contextual information. However, our work explores a different direction by investigating how at-
tention window restrictions, especially through local attention, affect the generalization properties
of DiTs. We show that beyond efficiency gains, local attention can be used to modulate the model’s
generalization by enforcing the inductive bias of locality within attention maps.

5 CONCLUSION

This paper investigates the inductive biases that facilitate the generalization ability of DiTs. For
insufficient training data, we observe that DiTs achieve superior generalization, as measured by the
PSNR gap, compared to UNets with equivalent FLOPs. However, unlike simplified and standard
UNet-based diffusion models, DiTs do not exhibit geometry-adaptive harmonic bases. Motivated
by this discrepancy, we explore alternative inductive biases and identify that a DiT’s generalization
is instead influenced by the locality of its attention maps. Consequently, we effectively modulate the
generalization behavior of DiTs by incorporating local attention layers. Specifically, we demonstrate
that varying the placement of local attention layers and adjusting the effective attention window size
enables fine-grained control of a DiT’s generalization and data-fitting capabilities. Enhancing a
DiT’s generalization often leads to improved FID scores when trained with insufficient data.
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Stéphane Mallat, Sixin Zhang, and Gaspar Rochette. Phase harmonic correlations and convolutional
neural networks. Information and Inference: A Journal of the IMA, 2020. 2, 10

Tom M Mitchell. The need for biases in learning generalizations, 1980. 10

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021. 2

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In ICML, 2021. 1, 2, 3, 4, 10

OpenAI. Video generation models as world simulators, 2024. 2

Xuran Pan, Tianzhu Ye, Zhuofan Xia, Shiji Song, and Gao Huang. Slide-transformer: Hierarchical
vision transformer with local self-attention. In CVPR, 2023. 10

William Peebles and Saining Xie. Scalable diffusion models with transformers. In CVPR, 2023. 1,
2, 3, 4, 6, 10

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022. 2

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. In NeurIPS, 2022. 2

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
data. In ICLR, 2022. 2

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015. 2, 10

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion
art or digital forgery? investigating data replication in diffusion models. In CVPR, 2023. 5

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020. 2, 10

A Vaswani. Attention is all you need. In NeurIPS, 2017. 2, 5

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In ICCV, 2021. 10

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. In NeurIPS, 2020. 2, 10

Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, and Gao Huang. Vision transformer with de-
formable attention. In CVPR, 2022. 10

Chenglin Yang, Siyuan Qiao, Qihang Yu, Xiaoding Yuan, Yukun Zhu, Alan Yuille, Hartwig Adam,
and Liang-Chieh Chen. Moat: Alternating mobile convolution and attention brings strong vision
models. In ICLR, 2022. 7, 10

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of
a large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015. 2

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 2021. 10

Shengjia Zhao, Hongyu Ren, Arianna Yuan, Jiaming Song, Noah Goodman, and Stefano Ermon.
Bias and generalization in deep generative models: An empirical study. In NeurIPS, 2018. 10

13


