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ABSTRACT

Hierarchical data arise in countless domains, from biological taxonomies and orga-
nizational charts to legal codes and knowledge graphs. Residual Quantization (RQ)
is widely used to generate discrete, multitoken representations for such data by
iteratively quantizing residuals in a multilevel codebook. However, its reliance on
Euclidean geometry can introduce fundamental mismatches that hinder modeling
of hierarchical branching, necessary for faithful representation of hierarchical data.
In this work, we propose Hyperbolic Residual Quantization (HRQ), which embeds
data natively in a hyperbolic manifold and performs residual quantization using
hyperbolic operations and distance metrics. By adapting the embedding network,
residual computation, and distance metric to hyperbolic geometry, HRQ imparts
an inductive bias that aligns naturally with hierarchical branching. We claim that
HRQ in comparison to RQ can generate more useful for downstream tasks discrete
hierarchical representations for data with latent hierarchies. We evaluate HRQ on
two tasks: supervised hierarchy modeling using WordNet hypernym trees, where
the model is supervised to learn the latent hierarchy - and hierarchy discovery,
where, while latent hierarchy exists in the data, the model is not directly trained or
evaluated on a task related to the hierarchy. Across both scenarios, HRQ hierarchi-
cal tokens yield better performance on downstream tasks compared to Euclidean
RQ with gains of up to 20% for the hierarchy modeling task. Our results demon-
strate that integrating hyperbolic geometry into discrete representation learning
substantially enhances the ability to capture latent hierarchies.

1 INTRODUCTION
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Figure 1: Recall@10 of the hypernym generation based
on tokens generated by HRQ vs tokens generated by
RQ. HRQ consistently outperforms RQ. Furthermore,
HRQ sustains consistent scores across different dimen-
sionalities of the embedding.

Hierarchical structures appear throughout
human knowledge and information orga-
nization, serving as essential frameworks
for understanding complex relationships
between entities. These structures can be
found in biological classifications of liv-
ing organisms (Mayr, 1968), business or-
ganizational structures (Chandler Jr, 1969),
and computer file systems (McKusick et al.,
1984). Studies show that when children
learn, they organize their knowledge in hi-
erarchies (Inhelder and Piaget, 2013). This
pattern extends to numerous other domains
as well: from taxonomic categorization in
libraries and archives to the nested organi-
zation of legal codes and regulations. Gov-
ernment systems typically follow hierarchi-
cal arrangements, with federal, state, and
local levels each containing their own inter-
nal hierarchies. Similarly, academic disci-
plines are organized into fields, subfields,
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and specialized areas. The presence of hierarchical structures across such diverse domains reflects
their importance in how humans conceptualize and organize information.

In the current state of machine learning modeling, most often continuous vectors are used to represent
entities (Bengio et al., 2003; Mikolov, 2013; Bordes et al., 2013). However, it can sometimes be
beneficial to use discrete representations rather than continuous vector embeddings. Discrete tokens
function effectively as labels because in the discrete domain, generation is equivalent to prediction.
This equivalence allows models to avoid complicated generation methods like GANs (Goodfellow
et al., 2020) or diffusion models (Ho et al., 2020), and instead rely on more straightforward prediction
tasks. Discrete representations also tend to be more interpretable as each token can correspond to a
specific concept or attribute in the hierarchy (Rajput et al., 2023).

Residual Quantization Variational Autoencoders (RQ-VAE) (Lee et al., 2022; Zeghidour et al., 2021)
leverage these benefits by creating semantic hierarchical discrete representations through a multilevel
quantization process (van den Oord et al., 2017). At each step of residual quantization, the model
encodes increasingly fine-grained details, with earlier levels capturing broader structural elements
and later levels representing more specific attributes. The result is a list of tokens that together create
an identifier of the entity. We will refer to this hierarchical discrete representation as Multitoken(MT).
By learning discrete tokens at multiple levels of abstraction, RQ-VAE provides a framework for
modeling hierarchical relations directly from dense embedding.

However, RQ-VAE operates within Euclidean space, which imposes fundamental limitations on its
ability to capture hierarchical relationships. Euclidean geometry struggles to efficiently represent
tree-like structures (Gromov, 1987), as the volume of space grows polynomially with distance from
the origin, while the number of nodes in a hierarchy typically grows exponentially with depth. This
geometric mismatch means that Euclidean-based models like RQ-VAE inevitably lose important
hierarchical information during encoding.

In contrast, hyperbolic space (Gromov, 1987), a Riemannian manifold with constant negative cur-
vature, has been shown to model hierarchies remarkably well (Nickel and Kiela, 2017; 2018). The
hyperbolic space can approximately isometrically embed any tree already in two dimensions (Gromov,
1987), whereas the same cannot be said for the Euclidean space of any dimension. The volume in the
hyperbolic space grows exponentially with distance from the origin, aligning well with the growth of
number of nodes in hierarchy.

The ability to encode trees by hyperbolic geometry has inspired numerous advances in machine
learning. Hyperbolic neural networks have also been extensively leveraged in continuous embedding
models to exploit latent hierarchies in a variety of domains. Poincaré embeddings (Nickel and Kiela,
2017), learn continuous hierarchies by mapping symbolic data into an n-dimensional Poincaré ball.
The authors showed that these embeddings outperform the Euclidean ones on tree-structured data in
terms of both representation capacity and generalization ability. Hyperbolic embeddings found use in
data domains rich in latent hierarchies, like knowledge-graph representation(Balazevic et al., 2019;
Chami et al., 2020b; Liang et al., 2024) and recommender systems (Sun et al., 2021; Chamberlain
et al., 2019; Mirvakhabova et al., 2020), and other (Wilson, 2021; Ganea et al., 2018c).

Despite these advances in continuous embedding models, the application of hyperbolic geometry
to discrete representation learning has remained mostly underexplored. HyperVQ (Goswami et al.,
2024) proposes to perform vector quantization in a hyperbolic space by phrasing it as a hyperbolic
multinomial logistic regression. In this paper, we use hyperbolic distance to find the nearest codebook
vector and focus on the hyperbolic version of Residual Quantization. We introduce Hyperbolic
Residual Quantization (HRQ), which performs residual quantization (RQ) in a hyperbolic space
with an adapted process of residual quantization to accommodate the hyperbolic structure. We claim
that for data with latent hierarchies residual quantization benefits from hierarchical inductive bias
induced by hyperbolic space. We implement this approach through several key adaptations: first, we
employ hyperbolic neural networks for the embedding process, ensuring that data representations
reside natively in hyperbolic space. Second, we utilize hyperbolic operations to calculate the residuals
between quantization levels, preserving the geometric properties of the space throughout the quantiza-
tion process. Finally, we incorporate hyperbolic distance metrics in the clustering algorithm, allowing
the model to properly capture the hierarchical relationships between data points. These modifica-
tions enable HRQ-VAE to make use of the natural advantages of hyperbolic geometry to represent
hierarchical structures while maintaining the benefits of discrete token-based representations.
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We evaluate the quality of the multitokens created by HRQ in two scenarios. First, we test its ability
to model hierarchies with supervision on the hierarchy. (H)RQ creates multitokens of nouns (Miller,
1995) based on their hypernymy relation. Then, we test which representation is more useful in gener-
ating the hypernym for a given noun. We show that multitokens learned with Hyperbolic Residual
Quantization significantly outperform tokens learned with Residual Quantization. Furthermore, we
test the model’s ability to create meaningful hierarchies without direct supervision on the hierarchy.
Specifically, we evaluate it in a scenario where hierarchy exists, but the model is not supervised on
modeling the hierarchy and is used for a task not directly related to the hierarchy. We show that the
multitokens generated by HRQ outperform the multitokens generated by RQ in this scenario as well.

The paper is organized as follows. In Section 2.1 we introduce necessary concepts from the theory
of hyperbolic spaces for our method and describe the RQ-VAE algorithm. In Section 3 we describe
HRQ-VAE. In Section 4 we demonstrate our experimental results. In section 5. Finally, in Section 6
we summarize our findings and propose future directions.

2 BACKGROUND

2.1 HYPERBOLIC SPACE

Figure 2: Visualization of the tangent
space and related operations. Exponen-
tial map expcx maps from the tangent
space attached at x to the manifold and
logarithmic map logcx maps from the
manifold to the tangent space attached
at point x.

Hyperbolic geometry operates on manifolds with constant
negative Gaussian curvature. A fundamental characteristic
of hyperbolic geometry is its exponential spatial expansion
relative to the distance from any reference point, creat-
ing abundant capacity to represent branching structures.
This property enables hyperbolic spaces to accommodate
the embedding of complex hierarchical relationships with
minimal distortion. Research has demonstrated that ar-
bitrary tree structures can be embedded within a hyper-
bolic space while approximately preserving their metric
properties (Gromov, 1987; Hamann, 2018). Because of
these results, hyperbolic space can be conceptualized as "a
continuous version of a tree," making it exceptionally valu-
able for computational representations of hierarchical data
structures, complex networks with inherent branching pat-
terns, and systems characterized by nested relationships.

In this work, we use the Poincaré ball model, which is the
most widely used representation of the hyperbolic space
in the context of neural networks. The definition of the
Poincaré ball we use follows Ganea et al. (2018a).

The Poincaré Ball Model. The n-dimensional Poincaré Ball Pn
c with curvature c is a set {x ∈

Rn : c||x||2 < 1} with Riemannian metric gPx = λ2
xg

E , where gE is the Euclidean metric tensor
and λx := 2

1−c||x||2 . The gyrovector spaces (Ungar, 2008) allow one to define the operations
corresponding to the standard operations in the euclidean vector spaces. In the Poincaré ball model
Pn
c the Möbius addition is a hyperbolic analogue of a standard addition operation, defined as

x⊕c y :=
(1 + 2c⟨x, y⟩+ c||y||2)x+ (1− c||x||2)y

1 + 2c⟨x, y⟩+ c2||x||2||y||2
∣∣∣ x⊖c y := x⊕c (−y)

Hyperbolic Distance. Distance in the Poincaré ball model of the hyperbolic space is defined as

dPc(u, v) = arcosh(1 + 2
c||u− v||2

(1− c||u||2)(1− c||v||2)
) (1)

As points get farther from the center, the distance between them grows exponentially, creating
increasingly more space near the boundaries. Conversely, there is limited space near the center,
naturally constraining which points can occupy these central positions - a property that aligns with
hierarchical structures where few elements serve as high-level abstractions. The metric treats distance
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differently when moving toward/away from the center versus moving side-to-side, which helps
capture both how deep items are in the hierarchy and how they branch apart. Items that belong to
the same branch end up close to each other but at different depths, while the exponential growth of
distances ensures effective separation between different branches. This makes it easy to preserve
both the local structure (items close to each other in the hierarchy) and the overall organization (how
different branches relate to each other).

The Tangent Space. The tangent space TxM of the manifoldM at point x is an euclidean space
attached to the manifold at point x that intuitively contains all possible velocities the vector attached
to x can have.

In order to translate between manifold and tangent space, two special maps are used. The exponential
map projects vectors from the tangent space TxM to the manifoldM. In contrast, the logarithmic
map is used to project from the manifoldM to the tangent space TxM. For the Poincaré ball model,
the exponential and logarithmic maps are equal to

expcx(v) = x⊕c

(
tanh

(√
c
λx∥v∥

2

)
v√
c∥v∥

)
logcx(y) =

2√
cλx

tanh−1(
√
c∥ − x⊕c y∥)

−x⊕c y

∥ − x⊕c y∥

Similarly to the addition, scalar multiplication has its own hyperbolic version. These operations
suffice to derive linear layers. Furthermore, with exponential and logarithmic maps, it is possible to
add nonlinearities by translating back and forth from the manifold to the tangent space. Here, we
defined only necessary the concepts that will be explicitly used in the HRQ-VAE algorithm, and
omitted others that are necessary to derive hyperbolic layers (like scalar multiplication). We refer
interested readers to Ganea et al. (2018a) or Cannon et al. (1997)

3 METHOD

Multitoken(MT) is a list of discrete tokens that together identify an entity in the dataset D. While
the typical flat discrete representation is a single number from 0 to |D|−1, the multitoken of length k,
is a list of k tokens [t0, ..., tk−1], such that jointly they identify a corresponding entity. If multitokens
are structured in a semantic way, they can offer representational benefits over flat tokens. Specfically,
tokens can be shared across different multitokens, leading to information sharing and a more efficient
and robust representation than flat tokens, where each entity is treated independently. For example, a
tiger might be identified by a multitoken [12,24] and a lion might be identified by a token [12,364].
In this case, the first token 12 is shared between the two entities and leads to a shared part of the
representation. The difficulty lies in creating good, structurally semantic multitokens.

3.1 HYPERBOLIC RESIDUAL QUANTIZATION.

Hyperbolic Residual Quantization (HRQ) is a method for hierarchical multitoken representation
that performs residual quantization directly in hyperbolic space. The method is inspired by classical
residual quantization (RQ), which approximates vectors by iteratively quantizing their residuals with
respect to multiple codebooks. HRQ generalizes this process to hyperbolic geometry, ensuring that
the hierarchical structure induced by quantization is better aligned with latent hierarchies in the data.

Let C = [C0, . . . , Ck−1] be a sequence of codebooks, where each Ci contains s vectors in Ph
c , the

h-dimensional Poincaré ball of curvature c. For a vector xPc
s ∈ Ph

c , HRQ produces a sequence of
tokens [t0, t1, . . . , tk−1] and corresponding codebook embeddings [e0, e1, . . . , ek−1] as follows. The
initial residual is set to r0 = xPc

s . At each step i, we quantize the current residual using hyperbolic
distance:

ei, ti = qPc

Ci
(ri), where ei ∈ Ci, t

i ∈ {0, . . . , s− 1}.

The residual is then updated via Möbius subtraction, ri+1 = ri ⊖c e
i, and the process repeats until k

tokens are obtained. The multitoken [t0, t1, . . . , tk−1] uniquely identifies the representation of xPc
s .

The reconstruction is given by the Möbius sum of selected embeddings denoted as yPc
s =

⊕k−1
i=0 ei.
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Figure 3: HRQ-VAE visualized. In the image HRQ-VAE quantizes given vector x into a multitoken
[t0, t1, t2] and its corresponding embeddings e0C , e

1
C , e

2
C . Green blocks represent mapping to and

from hyperbolic space. Yellow blocks represent hyperbolic autoencoder. The detailed part in the
middle is responsible for hyperbolic residual quantization. The space expands exponentially the
further we go away from the center. In fact, The circle’s border is at infinite distance from point 0. As
a consequence, most of the points must be distant from the center and only a small number of points
can be at a privileged position close to the center. This leads to natural occurence of hierarchies.
Light gray branches represent the possible HRQ-VAE and

We denote the quantization process by HRQC(x
Pc
s ) =

(
[t0, . . . , tk−1], yPc

s

)
. In cases where the

final residual matches the last codebook, i.e. rk−1 ∈ Ck−1, the reconstruction is exact, yPc
s = xPc

s .
Otherwise, the approximation error dPc(x

Pc
s , yPc

s ) is minimized during training. We optimize the
codebooks with the loss

LHRQ(x
Pc
s ) =

k∑
i=1

(
∥sg[ri]− ei∥2 + α∥ri − sg[ei]∥2

)
,

where sg[·] denotes the stop-gradient operator and α controls whether residuals are pulled toward
the codebook vectors or vice versa. This objective ensures stable training and prevents codebook
collapse.To allow backpropagation through the quantization step, the derivative with respect to xPc

s

is modeled using the straight-through estimator, dyPc
s

dxPc
s
≈ I . To solve conflicts between items in the

representations generated by RQ, it adds an additional token that extends multitoken to uniquely
identify the item. In practice, this is rarely necessary to uniquely identify an item as the multitokens
from RQ most often suffice for the identification.

By embedding the residual quantization mechanism in hyperbolic space, HRQ directly exploits the
curvature of the geometry to encode latent hierarchies. The resulting multitokens are more structured,
semantically meaningful, and efficient than those produced in Euclidean space.

3.2 HYPERBOLIC RESIDUAL QUANTIZATION VAE (HRQ-VAE)

We introduce Hyperbolic Residual Quantization VAE (HRQ-VAE), a generative model that
integrates Hyperbolic Residual Quantization into an autoencoder framework. The method is inspired
by RQ-VAE, which applies residual quantization in Euclidean space, but adapted to hyperbolic space,
ensuring that the learned multitoken representations better align with latent hierarchies.

Formally, let Eθ : Rd → Phs
c and DPc

θ : Phs
c → Ph

c denote the encoder and decoder networks,
parameterized as hyperbolic neural networks (Ganea et al., 2018a). Since the input x ∈ Rd lies in
Euclidean space, we map it to the hyperbolic manifold via the exponential map:

zPc = Eθ(exp
c
0(x)).

5
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HRQ quantizes the latent embedding: ([t0, . . . , tk−1], yPc
s ) = HRQC(z

Pc),. The decoder recon-
structs the embedding, which is mapped back to Euclidean space with the logarithmic map:

x̂ = logc0
(
DPc

θ (yPc
s )

)
.

The model is trained with two objectives. The reconstruction loss LR(x) = ∥x− x̂∥2 encourages
faithful reconstruction, while the quantization loss LHRQ(x

Pc
s ) updates the codebooks and controls

the interaction between residuals and code vectors. The total loss is L(x) = LR(x) + LHRQ(x
Pc
s ).

Optimization is performed with Riemannian SGD (Bécigneul and Ganea, 2018), ensuring that both
codebook vectors and network parameters remain consistent within hyperbolic space. We denote the
full process as

HRQ-V AE(x) =
(
[t0, . . . , tk−1], x̂

)
.

By embedding HRQ within a hyperbolic autoencoder, HRQ-VAE learns multitoken representations
that are discrete and natively hierarchical due to hyperbolic structure. The visualization of HRQ-VAE
is shown in the Figure 3. The pseudocode for HRQ-VAE is in the Algorithm 1.

|Ci| k Token type Hidden dimensions

4 8 16 32

64
3 RQ 71.2% 73.7% 69.8% 67.1%

HRQ 79.0%(+10.9%) 79.6%(+8.0%) 79.1%(+13.3%) 78.3%(+16.7%)

4 RQ 71.2% 70.9% 70.3% 64.6%
HRQ 78.8%(+10.7%) 79.2%(+11.8%) 79.2%(+12.6%) 78.9%(+22.1%)

128
3 RQ 71.3% 72.5% 72.4% 66.3%

HRQ 79.5%(+11.4%) 79.5%(+9.7%) 79.5%(+9.8%) 79.1%(+19.3%)

4 RQ 72.2% 72.7% 70.9% 64.6%
HRQ 79.1%(+9.6%) 79.4%(+9.2%) 79.6%(+12.3%) 78.7%(+21.8%)

256
3 RQ 72.4% 73.2% 71.2% 66.2%

HRQ 78.9%(+9.0%) 80.0%(+9.3%) 80.3%(+12.9%) 79.9%(+20.7%)

4 RQ 73.5% 72.2% 70.9% 67.3%
HRQ 79.3%(+7.9%) 79.5%(+10.1%) 80.0%(+12.9%) 79.2%(+17.7%)

Table 1: Top 10 Recall of hypernymy prediction models trained on multitokens generated by RQ and
HRQ. Despite operating on the same model and differing only in the structure of the multitokens,
model that operated on HRQ multitokens produced significantly higher recall than model operating on
RQ multitokens. The value (+x.x%) represents a percentage gain of HRQ w.r.t. RQ: (HRQ-RQ)/RQ.
These results demonstrate that HRQ multitokens capture significantly more semantic information.

4 EXPERIMENTS

In this section, we empirically evaluate the quality of multitokens produced by RQ and HRQ. We
evaluate the quality of tokens in a two-step pipeline. First, we learn the tokens for all entities. Then,
we fix the tokens and investigate how well they perform in a downstream task.

We focus on data with latent hierarchies and our claim is that hyperbolic residual quantization
produces better multitokens for data that contain latent hierarchies. Therefore, all our experiments
are characterized by the clear existence of hierarchies in datasets. We evaluate HRQ in two distinct
scenarios. First, we look at Hierarchy Modeling(Section 4.1), in which the multitokens are explicitly
trained on the hierarchy and the downstream task is related to the hierarchy multitokens are modeling.
The second scenario, which we call Hierarchy Discovery(Section 4.2), operates a dataset which
contains latent hierarchies, but the model that learns multitokens is not supervised on these hierarchies.
Furthermore, the downstream task is not directly related to the latent hierarchy as well.

Additionally, in Appendix D we inspect the structure of the space hypothesize on what causes benefits
of HRQ multitokens. The implementation details for all methods are in Appendix C.
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4.1 HIERARCHY MODELING

In this section, we investigate how effectively HRQ tokens capture hierarchical relationships compared
to RQ. To do that, (H)RQ creates tokens by learning directly to predict hierarchical relation. Our
experimental setup is similar to the main experiments from Nickel and Kiela (2017) that is adapted
to discrete setting to compare the quality of discrete multitokens. Specficially, we use the transitive
closure of the WordNet (Miller, 1995) noun taxonomy. The WordNet taoxnomy contains 82,115
nouns and 743,241 hypernymy relations. A hypernymy is a semantic “is-a” link where a general
word(the hypernym) covers a group of more specific words (its hyponyms). We first learn the
multitokens by simultaneously training an embedding and learning (H)RQ.

After we learn and create multitokens for all nouns, we fix multitokens, and we train a sequence-
to-sequence transfomer model that translates noun to its hypernym, both represented with their
corresponding multitokens. We evaluate the model by measuring recall@10 in the test dataset, which
was not visible neither for the multitoken creation nor for the training of the sequence-to-sequence
model. The test dataset is a randomly selected 15% of all hypernymy relations. We learn the
multitoken of the noun by embedding it in a continuous space, then contrastively pushing away
nouns that are not in the hypernymy relation and pulling closer nouns that are. At the same time,
the embedding is being quantized into multitokens by RQ or HRQ. Both embedding and codebook
vectors are trained joinlty at the same time.

Formally, let N be the set of nouns, and H = {(u, v) : u ∈ N, v ∈ N : u is a hypernym of v} be the
set defining the hypernymy relation. Let Eθ be the h-dimensional embedding network, that embeds
either in Euclidean or hyperbolic space depending on the model. Let H ′(u) = {v : (u, v) /∈ H}∪{u}.
We also have a (H)RQ algorithm with a codebook of length k, each codebook having s vectors. Then
the total loss for (u, v) ∈ H is given by:

L(u, v) = log
e−d(Eθ(u),Eθ(v))∑

v′∈H′(u) e
−d(Eθ(u),Eθ(v′))

+ LRQ(Eθ(u)) + LRQ(Eθ(v))

In practice, we limit H ′(u) to 50 sample nouns from N that are not hypernyms of u and v.

L(u, v) is minimized for θ, C with d being either the euclidean distance for RQ or hyperbolic distance
for HRQ. As a result, it produces multitokens for all nouns T (u) = [t0, ..., tk−1]. In the next step,
a transformer sequence-to-sequence model is trained to predict a hypernym for a given noun, both
represented as their learned multitokens. The idea is that multitokens that better capture the structure
of the space will serve as a more useful representation for the hypernymy generation.

To evaluate the representation quality of multitokens generated by RQ and HRQ, we investigate
different combinations of parameters. We investigate the results for token lengths k ∈ {3, 4}. We vary
the size of codebooks s ∈ {64, 128, 256} and the dimensions of dense embeddings h ∈ {4, 8, 16, 32}.
We focus on small dimensionalities of the dense embedding because usually before the residual
quantization occurs, the embedding is mapped to a low-dimensional space.

The results for k = 4 and |Ci| = 256 are shown in the Figure 1. The complete results are shown in
Table 1. Although the final sequence-to-sequence models differ only in the representations of the
nouns and otherwise have the same architecture, the tokens generated by HRQ sometimes lead to
an improvement of up to 20% over the tokens generated by RQ. It clearly demonstrates the quality
difference in favor of HRQ. The significant improvement is consistent across all dimensions tested.
This demonstrates that HRQ is able to create significantly more semantic multitokens than the RQ,
when it is trained to predict hierarchical relations.

4.2 HIERARCHY DISCOVERY

In real-world applications, the data often contains inherent hierarchical structures that are not explicitly
labeled or available during model training. Although approaches directly supervised on the hierarchy
can effectively learn to mimic known hierarchies, discovering latent hierarchical relationships without
direct supervision presents a more challenging task. We call it the "Hierarchy Discovery", where the
(H)RQ model creates hierarchical structures based solely on patterns present in the embeddings.

In this setting, we evaluate whether the hierarchical inductive bias of HRQ-VAE leads to multitokens
that capture more semantic information compared to the standard RQ-VAE, when neither model has
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access to hierarchical supervision during training. Both approaches must rely entirely on patterns
within the embeddings themselves, but in HRQ-VAE there is an additional inductive bias towards
the formation of hierarchical structures. Our evaluation focuses on downstream task performance
as the primary measure of representation quality, reflecting the practical perspective that better
representations should yield improved results on real-world problems.

We use the Amazon Reviews 2014 (McAuley et al., 2015) dataset, which contains a product catalog
with detailed descriptions. We will generate multitokens of the products and then use them in a
recommender system. We first generate dense embeddings with the MPNet (Song et al., 2020) from
product descriptions, which serve as input for both our RQ-VAE and HRQ-VAE models.

RQ-VAE and HRQ-VAE are trained to produce multitokens without explicit hierarchical supervision.
The quality of these discrete representations is subsequently measured by using them to train a
sequence-to-sequence recommender system, where performance differences directly reflect the
semantic richness captured by each quantization approach. The recommender system is a transformer
encoder-decoder that predicts the next bought item based on all the previous history. Following the
protocol of Rajput et al. (2023) we limit the user histories to those that have at least five items and
truncate the histories to 20 items.

In order to test the model beyond the Amazon Reviews 2014 dataset, we also include the evaluation
on the MovieLens 10M (Harper and Konstan, 2015) dataset. Note that both product and movies can
be structured in latent taxonomical hierarchies, making them suitable for our case. As the MovieLens
dataset does not contain the movie description, we first generate the descriptions with the LLM
Claude (Anthropic, 2024). The prompt used to generate the description is included in the Appendix B.

Dataset Metric Random RQ-VAE HRQ-VAE

AR Beauty

NDCG@5 1.66%±0.07 2.29%±0.03 2.41%±0.04 (+5.2%)
Recall@5 2.06%±0.09 3.68%±0.03 3.74%±0.04 (+1.6%)
NDCG@10 2.35%±0.09 2.83%±0.05 2.89%±0.05(+2.1%)
Recall@10 3.87%±0.17 4.83%±0.06 5.01%±0.06(+3.7%)

AR TaG

NDCG@5 1.51%±0.07 1.91%±0.02 1.94%±0.02(+1.6%)
Recall@5 1.97%±0.09 2.82%±0.03 2.93%±0.03(+3.9%)
NDCG@10 1.94%±0.09 2.45%±0.03 2.47%±0.03(+0.8%)
Recall@10 2.76%±0.16 4.22%±0.08 4.53%±0.09(+7.3%)

AR SaO

NDCG@5 0.95%±0.07 1.03%±0.02 1.03%±0.02 (+0.0%)
Recall@5 1.34%±0.08 1.58%±0.02 1.62%±0.02(+2.5%)
NDCG@10 1.29%±0.09 1.50%±0.03 1.48%±0.02(−1.4%)
Recall@10 2.41%±0.14 2.78%±0.04 2.85%±0.04(+4.0%)

MovieLens

NDCG@5 11.42%±0.32 11.45%±0.20 11.76%±0.24(+2.7%)
Recall@5 17.43%±0.54 17.62%±0.21 17.90%± 0.25(+1.6%)
NDCG@10 13.21%±0.58 13.89%±0.28 14.27%± 0.40(+2.7%)
Recall@10 23.52%±0.73 25.11%±0.37 25.49%± 0.33(+1.5%)

Table 2: Results of recommender systems for different multitokens (Random, RQ-VAE and
HRQ-VAE) across four datasets. The table reports average metric over 8 runs. The observed
standard deviation is written on the right of the results. For the HRQ-VAE, percentage improvement
over RQ-VAE is in the parantheses.

Apart from the RQ-VAE and HRQ-VAE we also include a baseline that consists of randomly sampled
tokens with additional token that distinguishes conflicts, similarly to (H)RQ. The main results are
shown in Table 2. The multitokens generated by HRQ-VAE consistently outperform RQ-VAE and
the random baseline. The reported results are on the test set with each model type selected with the
highest performance on the validation set.
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5 RELATED WORK

Quantized representations. Quantized discrete representations are an alternative to dense embed-
dings, which recently gained popularity. The aim of a quantized representation is to create coarse
information representations that focus on qualitative properties (Gray, 1984). Van Den Oord et al.
(2017) proposes VQ-VAE that learns the vector codebook simultaneously together with the embed-
dings. This was further enhanced by RQ-VAE (Lee et al., 2022; Zeghidour et al., 2021) that calculates
the sequence of discrete tokens by iteratively quantizing the residuals. Discrete representations are
beneficial to use as labels, as they avoid issues of high-dimensional continuous generation. VQ-GANs
(Esser et al., 2021; Yu et al., 2021) utilize vector quantization for adversarial (Goodfellow et al., 2020;
Schmidhuber, 1991) image generation. Zeghidour et al. (2021); Yang et al. (2023) uses VQ-VAE for
audio generation. RQ-VAE has been introduced both in audio (Zeghidour et al., 2021) and image
processing (Lee et al., 2022).

Hyperbolic Neural Networks. Neural networks operating in hyperbolic space have been demon-
strated to perform well in tasks and modalities with hierarchical structures. Sala et al. (2018); Nickel
and Kiela (2017); Ganea et al. (2018b) demonstrate benefits of hyperbolic embeddings for data with
latent hierarchies. Ganea et al. (2018a) derives multi-layer fully connected hyperbolic neural network.
The benefits of utilizing hyperbolic neural networks can be observed in multiple areas containing
hierarchies. Ma et al. (2021); Yang et al. (2024) model the taxonomy of objects in hyperbolic space.
(Atigh et al., 2022; Khrulkov et al., 2020) applies hyperbolic nets to computer vision. Hyperbolic
neural networks have shown their benefits in reinforcement learning (Cetin et al., 2022) due to the
hierarchical nature of the unrolling episodes. Chamberlain et al. (2019); Chen et al. (2022); Sun
et al. (2021) applies hyperbolic networks to recommender systems with two-fold motivation: 1)
The bipartite graph nature of the interactions between users and items, which has been shown to
correspond to a complex network (Krioukov et al., 2010), and 2) Taxonomical nature of the items.
Hyper-VQ (Goswami et al., 2024) proposes vector quantization in hyperbolic space. It presents the
quantization problem as a hyperbolic multinomial regression and is orthogonal to our contributions
for HRQ-VAE. Both can be combined together and we consider that a promising future work.

Recommender Systems. Traditional recommender systems represent items with ID-based tokens,
though with the advent of LLM usage in recommender systems, content-based tokenazation methods
have been proposed. RQ-VAE has been used in recommender systems (Rajput et al., 2023) to tokenize
item representation and train a transformer-based recommender algorithm (Kang and McAuley, 2018).
Another sequential generative recommendation model Petrov and Macdonald (2023) also applies a
quantization scheme based on collaborative filtering and matrix factorization computed embedding.

6 CONCLUSIONS AND FUTURE WORK

The results shown in this work indicate that HRQ-VAE creates hierarchical representations more
robust than RQ-VAE, when latent hierarchies appear in the dataset. We show that even if the model is
not directly supervised on the latent hierarchy, the multitoken generated by HRQ-VAE might still be
more robust than multitoken generated by RQ-VAE. Due to ubiquity of latent hierarchies in practical
dataset, we see potential for number of applications of HRQ-VAE.

Furthermore, improving the performance of discrete hierarchical tokens leads to more interpretable
models, as the hierarchical tokens can be related to the data taxonomies. This direction of research
might lead to models whose discrete representations remain robust under domain shifts and noisy
inputs, leading to societal benefits such as enhanced transparency in AI-driven decision-making, and
greater public trust through auditability of the deployed systems.

In this work, we limited the scope of investigation to datasets that exhibit clear latent hierarchies.
However, RQ-VAE has shown impressive results in several domains that do not follow this assumption,
such as image and audio processing. HRQ-VAE, after appropriate adaptation, can potentially be
applied to these domains as well. Each modality presents its own unique challenges related to the
scale of experiments, hyperbolic adaptations, and the analysis of performance-contributing factors.
Due to these complexities, we considered these additional modalities outside the scope of the current
paper. However, exploring the application of HRQ-VAE to these diverse domains remains an exciting
direction for future work.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude 3.5 sonnet. https://anthropic.com/claude, 2024.

Mina Ghadimi Atigh, Julian Schoep, Erman Acar, Nanne Van Noord, and Pascal Mettes. Hyperbolic
image segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4453–4462, 2022.

Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. Multi-relational poincaré graph
embeddings. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
4465–4475, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
f8b932c70d0b2e6bf071729a4fa68dfc-Abstract.html.

Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. arXiv
preprint arXiv:1810.00760, 2018.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229, 2013.

Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Christopher J. C. Burges, Léon
Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, editors, Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages
2787–2795, 2013. URL https://proceedings.neurips.cc/paper/2013/hash/
1cecc7a77928ca8133fa24680a88d2f9-Abstract.html.

James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic geometry.
Flavors of geometry, 31(59-115):2, 1997.

Edoardo Cetin, Benjamin Chamberlain, Michael Bronstein, and Jonathan J Hunt. Hyperbolic deep
reinforcement learning. arXiv preprint arXiv:2210.01542, 2022.

Benjamin Paul Chamberlain, Stephen R Hardwick, David R Wardrope, Fabon Dzogang, Fabio Daolio,
and Saúl Vargas. Scalable hyperbolic recommender systems. arXiv preprint arXiv:1902.08648,
2019.

Ines Chami, Albert Gu, Vaggos Chatziafratis, and Christopher Ré. From trees to continuous embed-
dings and back: Hyperbolic hierarchical clustering. Advances in Neural Information Processing
Systems, 33:15065–15076, 2020a.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-
dimensional hyperbolic knowledge graph embeddings. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 6901–6914. Association
for Computational Linguistics, 2020b. doi: 10.18653/V1/2020.ACL-MAIN.617. URL https:
//doi.org/10.18653/v1/2020.acl-main.617.

Alfred D Chandler Jr. Strategy and structure: Chapters in the history of the American industrial
enterprise, volume 461. MIT press, 1969.

Yankai Chen, Menglin Yang, Yingxue Zhang, Mengchen Zhao, Ziqiao Meng, Jianye Hao, and Irwin
King. Modeling scale-free graphs with hyperbolic geometry for knowledge-aware recommendation.
In Proceedings of the fifteenth ACM international conference on web search and data mining,
pages 94–102, 2022.

10

https://anthropic.com/claude
https://proceedings.neurips.cc/paper/2019/hash/f8b932c70d0b2e6bf071729a4fa68dfc-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f8b932c70d0b2e6bf071729a4fa68dfc-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 12873–12883, 2021.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Advances in
neural information processing systems, 31, 2018a.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for learning
hierarchical embeddings. In International conference on machine learning, pages 1646–1655.
PMLR, 2018b.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for
learning hierarchical embeddings. In Proceedings of the 35th International Conference on Machine
Learning (ICML), volume 80 of Proceedings of Machine Learning Research, pages 1646–1655.
PMLR, 2018c. URL http://proceedings.mlr.press/v80/ganea18a.html.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Nabarun Goswami, Yusuke Mukuta, and Tatsuya Harada. Hypervq: Mlr-based vector quantization in
hyperbolic space. arXiv preprint arXiv:2403.13015, 2024.

Robert Gray. Vector quantization. IEEE Assp Magazine, 1(2):4–29, 1984.

M Gromov. Hyperbolic groups. Essays in Group Theory, pages 75–263, 1987.

Matthias Hamann. On the tree-likeness of hyperbolic spaces. In Mathematical proceedings of the
cambridge philosophical society, volume 164, pages 345–361. Cambridge University Press, 2018.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Barbel Inhelder and Jean Piaget. The early growth of logic in the child: Classification and seriation.
Routledge, 2013.

Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential recommendation. pages 197–206,
2018. doi: 10.1109%2fICDM.2018.00035.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky.
Hyperbolic image embeddings. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 6418–6428, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná.
Hyperbolic geometry of complex networks. Physical Review E—Statistical, Nonlinear, and Soft
Matter Physics, 82(3):036106, 2010.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11523–11532, 2022.

Qiuyu Liang, Weihua Wang, Feilong Bao, and Guanglai Gao. Fully hyperbolic rotation for knowledge
graph embedding. In Ulle Endriss, Francisco S. Melo, Kerstin Bach, Alberto José Bugarín Diz,
Jose Maria Alonso-Moral, Senén Barro, and Fredrik Heintz, editors, ECAI 2024 - 27th European
Conference on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain -
Including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024), volume
392 of Frontiers in Artificial Intelligence and Applications, pages 1615–1622. IOS Press, 2024.
doi: 10.3233/FAIA240668. URL https://doi.org/10.3233/FAIA240668.

11

http://proceedings.mlr.press/v80/ganea18a.html
https://doi.org/10.3233/FAIA240668


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mingyu Derek Ma, Muhao Chen, Te-Lin Wu, and Nanyun Peng. Hyperexpan: Taxonomy expansion
with hyperbolic representation learning. arXiv preprint arXiv:2109.10500, 2021.

Ernst Mayr. The role of systematics in biology: The study of all aspects of the diversity of life is one
of the most important concerns in biology. Science, 159(3815):595–599, 1968.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pages 43–52, 2015.

Marshall K McKusick, William N Joy, Samuel J Leffler, and Robert S Fabry. A fast file system for
unix. ACM Transactions on Computer Systems (TOCS), 2(3):181–197, 1984.

Tomas Mikolov. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

George A. Miller. Wordnet: A lexical database for english. Communications of the ACM, 38(11):
39–41, 1995. doi: 10.1145/219717.219748.

Leyla Mirvakhabova, Evgeny Frolov, Valentin Khrulkov, Ivan V. Oseledets, and Alexander Tuzhilin.
Performance of hyperbolic geometry models on top-n recommendation tasks. In Rodrygo L. T.
Santos, Leandro Balby Marinho, Elizabeth M. Daly, Li Chen, Kim Falk, Noam Koenigstein, and
Edleno Silva de Moura, editors, RecSys 2020: Fourteenth ACM Conference on Recommender
Systems, Virtual Event, Brazil, September 22-26, 2020, pages 527–532. ACM, 2020. doi: 10.1145/
3383313.3412219. URL https://doi.org/10.1145/3383313.3412219.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
Advances in neural information processing systems, 30, 2017.

Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
hyperbolic geometry. In International conference on machine learning, pages 3779–3788. PMLR,
2018.

Aleksandr V. Petrov and Craig Macdonald. Generative sequential recommendation with gptrec, 2023.
URL https://arxiv.org/abs/2306.11114.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz
Heldt, Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost, Maciej Kula, Ed H. Chi, and Maheswaran
Sathiamoorthy. Recommender systems with generative retrieval. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=BJ0fQUU32w.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323:533–536, 1986.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for hyperbolic
embeddings. In International conference on machine learning, pages 4460–4469. PMLR, 2018.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. 1991.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted
pre-training for language understanding. Advances in neural information processing systems, 33:
16857–16867, 2020.

Jianing Sun, Zhaoyue Cheng, Saba Zuberi, Felipe Pérez, and Maksims Volkovs. Hgcf: Hyperbolic
graph convolution networks for collaborative filtering. In Proceedings of the Web Conference 2021,
pages 593–601, 2021.

12

https://doi.org/10.1145/3383313.3412219
https://arxiv.org/abs/2306.11114
https://openreview.net/forum?id=BJ0fQUU32w
https://openreview.net/forum?id=BJ0fQUU32w


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Abraham Albert Ungar. Analytic hyperbolic geometry and Albert Einstein’s special theory of relativity.
World Scientific, 2008.

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 6306–6315, 2017. URL https://proceedings.neurips.cc/
paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Benjamin Wilson. Learning phylogenetic trees as hyperbolic point configurations. CoRR,
abs/2104.11430, 2021. URL https://arxiv.org/abs/2104.11430.

Dongchao Yang, Songxiang Liu, Rongjie Huang, Jinchuan Tian, Chao Weng, and Yuexian Zou.
Hifi-codec: Group-residual vector quantization for high fidelity audio codec. arXiv preprint
arXiv:2305.02765, 2023.

Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. Hyp-
former: Exploring efficient hyperbolic transformer fully in hyperbolic space. arXiv preprint
arXiv:2407.01290, 2024.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
arXiv preprint arXiv:2110.04627, 2021.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
stream: An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 30:495–507, 2021.

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan
Wang, and Ji-Rong Wen. S3-rec: Self-supervised learning for sequential recommendation with
mutual information maximization. In Proceedings of the 29th ACM international conference on
information & knowledge management, pages 1893–1902, 2020.

13

https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://arxiv.org/abs/2104.11430


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A HRQ-VAE

Algorithm 1 HRQ-VAE

Input: x ∈ Rd

xPc ← expc0(x)

xPc
s ← EPc

θ (xPc)
yPc
s ← 0, r0C = xPc

s
for i ∈ {0, .., k − 1} do
eiC , ti = qC(r

i
C)

add ti to the return sequence
ri+1
C ← riC ⊖c e

i−1
c

yPc
s ← yPc

s ⊕c e
i
C

end for
yPc ← DPc

θ (yPc
s )

y ← logc0(y
Pc)

lrec = ||x− y||2
lcmt =

∑k−1
i=0 (||sg[riC ]− eiC ||2 + α||riC − sg[eiC ]||2)

l← lrec + lcmt
∇θ ← dl

dθ ;∇C ← dl
dC

return t0, t1, ..., tk−1,∇θ,∇C

Algorithm 2: HRQ-VAE

B DATASETS DETAILS

B.1 HIERARCHY MODELING

WordNet is a large, manually curated lexical database of English that groups words into synonym
sets (synsets) and interlinks these synsets via semantic relations such as hypernymy and hyponymy,
enabling rich hierarchical modeling of concepts (Miller, 1995). Each synset contains a gloss (brief
definition) and example usages, and synsets are organized into noun, verb, adjective, and adverb
hierarchies (?). For our hierarchy modeling, we focus exclusively on the noun subnetwork, where the
“is-a” (hypernym) relation defines a directed acyclic graph representing a noun hierarchy.
The noun subnetwork consists of 82, 115 nouns and 743, 241 hypernymy relations. We split it into
the train set and test set by randomly choosing 85% of the hypernymy relations to be selected for the
the train set. The Embedding, RQ and the sequence-to-sequence models are all trained on the train
set. We use the remaining 15% as the test set on which we report the performance.

B.2 HIERARCHY DISCOVERY

We used four datasets to evaluate the HRQ-VAE performance in the Hierarchy Discovery section.
Three data sets are the categories ’Beauty’, ’Sports and Outdoors’ and ’Toys and Games’ from
the Amazon Reviews 2014 suite (McAuley et al., 2015). We also evaluate HRQ-VAE on the
MovieLens10M dataset (Harper and Konstan, 2015).
The (H)RQ-VAE uses dense embeddings of the items to learn the corresponding hierarchical tokens. In
order to create dense embeddings of the items, we use a pretrained, fixed language model embedding
(Song et al., 2020), which embeds the description of the item. The descriptions of the items are
included in the Amazon Reviews 2014 datasets. For MovieLens, we first create the description from
the movie title with the help of a Claude 3.5 Sonnet (Anthropic, 2024) language model.
In all experiments, we focus on predicting the next item the user interacted with (whether watched
a movie or bought a product) and disregard the scores. This is a standard practice in the area of
recommender systems (Rajput et al., 2023; Kang and McAuley, 2018; Zhou et al., 2020).
In order to use MovieLens, we first create the descriptions with Claude 3.5 Sonnet (Anthropic, 2024).
We use the following prompt to generate the movie description:

You are an expert in movie descriptions. Your task is
to generate movie description that:
- contains a maximum of 100 words

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Dataset Users Items
AR Beauty 22,363 12,101
AR Toys and Games 35,598 18,357
AR Sports and Outdoors 19,412 11,924
MovieLens10M 71,567 10,681

Table 3: Quantitative statistics of datasets used in Hierarchy Discovery experiments.

- captures the general theme of the movie and
interesting specifics of the story
- can be used adequately in a search engine to
search for a movie Your task is to generate a movie
description for the following movie title. Return the
movie description and do not return anything else.

From the description, we generate a dense embedding in the same way as for AR datasets. In all
datasets, we cut the histories shorter than 5 elements and limit the length of user histories to 20.

Test/train split. Following the standard evaluation (Rajput et al., 2023) method, we divide user
histories into the test, validation, and training part with a leave-one-out strategy. If the user history
is a sequence of items [i1, ..., iT ], with T elements. The training set consists of history limited to
T − 2 tokens. The validation set is a prediction of iT−1 based on [i1, ..., iT−2] and the test set is a
prediction of iT based on [i1, ..., iT−1]. The last and second-to-last items are taken from all users for
the validation and test split, regardless of the length trajectory. Note that iT in the notation above
represents an item, not a token. Hence, for a multitoken scenario of tokens trained with (H)RQ-VAE,
a single item iT will be represented by a multitoken of length k and all k atomic tokens will be
selected for the test/validation set.

C IMPLEMENTATION DETAILS

C.1 HIERARCHY MODELING

Figure 4: The embedding space structure induced
by RQ-VAE and HRQ-VAE, respectively for a hier-
archical tokens of length 2. The data is represented
by coloured dots. Hue of the dot represents first
hierarchical token. The shade represents second
token. For the RQ-VAE the result is a typical ef-
fect of hierarchical clustering. HRQ-VAE due to
exponential growth of the space has inductive bias
to putting leaf nodes away on a similar distance
away from the center.

(H)RQ. To create multitokens of nouns we
learn at the same time the embedding of the
nouns and the codebook that quantizes the to-
kens.
We investigate the results for token lengths
k ∈ {3, 4}. We vary the size of the codebooks
s ∈ {64, 128, 256} and the dimensions of dense
embeddings h ∈ {4, 8, 16, 32}. Other param-
eters follow Nickel and Kiela (2017). We use
Stochastic Gradient Descent (Rumelhart et al.,
1986) or Riemannian Stochastic Gradient De-
scent (Bonnabel, 2013) for the optimization of
encoders and RQ/HRQ codebook respectively.
We use the learning rate 1.0. We train both mod-
els for 1500 epochs, out of which first 20 epochs
are warm-up epochs with learning rate equal to
0.01.

Downstream Model. The sequence-to-
sequence model is trained to generate
hypernyms of a noun, both represented as
multitokens. Hence, both the input and the
output of the model are a list of k tokens from
0 to s. The transformer model has 4 layers for
both the encoder and the decoder. The hidden
dimension is equal to 256 with the feedforward dimension equal to 1024 and 8 attention heads. The
embeddings of the encoder and decoder are tied. It is trained for 100 epochs with Adam (Kingma
and Ba, 2014) optimizer with a learning rate equal to 0.001.
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C.2 HIERARCHY DISCOVERY

(H)RQ-VAE. The initial dense embedding of the text is calculated with 768 dimensional MPNET
(Song et al., 2020). From the dense embedding, we train the (H)RQ-VAE and assign the new
hierarchical token produced by the model to each item. The encoder in (H)RQ-VAE has 3 intermediate
layers of size 512, 256, 128 with (H)ReLU activation and the output layer of size 32. The decoder has
symmetric architecture to the encoder. The codebook has length 256 for each token and is not shared
across tokens. We use batch size of 128, and train the (H)RQ-VAE for 5000 epochs with learning
rates [10−3, 10−4, 10−5]. We choose the learning rate that performed the best on the validation split
of the downstream task and report the corresponding test result.

Downstream Model. We train the recommender system to evaluate the quality of the discrete
representations produced by (H)RQ-VAE. User history is a sequence of items the user interacted with:
either a movie they watched, or an item they bought. At each step, we predict the next item the user
will interact with; specifically, we generate k ∈ {5, 10} ranked guesses. To evaluate the quality of the
set of guesses, we use two most popular recommender system metrics: Recall@K and NDCG@K.
In our case of multitokens, each item is represented by a multitoken. Each user history has concanted
multitokens of all items given a user bought(or a movie watched), and each specific recommendation
is considered good if the entire multitoken corresponds to the true item the user interacted with.
We split all the datasets into train,validation, and test set in the same way. We limit the histories to
20 interactions and filter the histories with less than 5 interactions. Furthermore, we select the last
interaction as a test set, the second to last as a validation set, and everything else as a training set.
We train a sequence-to-sequence transformer model (Vaswani, 2017) with T5 (Raffel et al., 2020)
architecture. For each datapoint, an output sequence is the hierarchical representation of the next
item, whereas the input is all their previous history. The model has a token embedding size of 384, 6
attention heads with 64 dimension each. and 1024 dimension of the feedforward net.

RQ-VAE HRQ-VAE
Variable ∥xs∥2 ∥ logc0(xPc

s )∥2
EV 0.7213 0.3251
Std. dev 0.2696 0.0664
CV 0.3738 0.2042

Table 4: Analysis of the norms for RQ-
VAE and HRQ-VAE. We compare the eu-
clidean norm of the low dimensional vec-
tor xs to the euclidean norm of hyperbolic
xPc
s after mapping to the tangent space

with logarithmic map. For the compar-
ison we use the Coefficient of Variation
defined as CV (X) = σ(X)

µ(X) . It is used to
compare the variability of a random vari-
ables with different orders of magnitude.
RQ-VAE has almost twice the CV of HRQ-
VAE which supports our claim about the
structure of their corresponding spanning
trees.

Our setup for hierarchy discovery follows the parame-
ters of Rajput et al. (2023). However, the results differ
significantly on the AR dataset. The fact that they differ
consistently across all tokens and also across random
baselines suggests that the cause of the inconsistency
must lie in the final recommender system. However, af-
ter a detailed inspection and testing of different libraries,
we were unable to reproduce the original results. How-
ever, please note that, contrary to Rajput et al. (2023)
our claim is not about creating the best recommender
system, but about comparing HRQ to RQ, and if the shift
in the performance is caused by the downstream model -
it is not important for our claim, as we use recommender
system only as a downstream task to evaluate the quality
of HRQ multitokens in comparison to RQ multitokens.
All experiments were ran on a device equiped in a single
16GB Nvidia-V100 card.

D STRUCTURE OF THE SPACE

Suppose we have a set of points S and we want to find a
point that minimizes average distance to all points from
S. In Euclidean space this point will be the center of
mass of points, a simple average of all points from S.
However, in hyperbolic space, the point that minimizes
the average hyperbolic distance (Eq. 1) will be a contin-
uous analogue to the nearest common ancestor node of
all the nodes.
This leads to a vastly different structures when these spaces are clustered hierarchically and, as a
consequence, to a vastly different structures for spanning trees of the residual quantization. In the
Euclidean space the points corresponding to the leafs will be splattered around the space with the
qunatization tree cutting into the centers of respective subclusters. Meanwhile, in the hyperbolic
case, the leafs will be mostly spread around with the cluster "centers" being closer to 0 than the
cluster points. This behavior has been observed in the hyperbolic clustering (Chami et al., 2020a).
We visualize the structural differences in Fig. 4.
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This structure is beneficial for learning hierarchical relations for several reasons. Because the space is
split radially most of the time the regions can have their own infinite part of the space, whereas in
Euclidean division some regions are crammed close to center. As a consequence, the edges between
regions are sharper than in the hyperbolic space, which might lead to poorer generalization. Finally,
the structure imposed by the hierarchical euclidean quantization leads to strong utilization of the
vector norms to select the cluster. On the other hand, hyperbolic quantization that leads to leafs being
set the most outward in the spanning tree leaves the norm for the optimizer to choose, which can be
an important benefit for gradient-based learning.
We argue that these structural difference of the hierarchical space of HRQ-VAE in comparison to
space of RQ-VAE leads to the superior performance of HRQ-VAE in downstream tasks.
To quantitatively support this argument we inspect the norms of low-dimensional encoded representa-
tions xs and xPc

s . Specifically, we argue that the norms will vary less in the hyperbolic space. To make
a fair comparison we compare Euclidean norms, so the hyperbolic xPc

s vector is first transformed to
the tangent space with logarithmic map. Moreover, as the models differ in the average norm we look
at the Coefficient of Variation as a measure of interest. The coefficient of variation is defined for
positive variables as CV (X) = σ(X)

µ(X) . The results are shown in Table 4 and confirm that the norms
vary significantly more for the vectors to be quantized in the euclidean space.

E LIMITATIONS

Although HRQ and HRQ-VAE demonstrate better performance in the discussed tasks, they come with
some limitations. The biggest limitation is the strong assumptions about the type of data. Currently,
we limit the claim to the situation where the dataset has latent hierarchies, and at the same time, we
are interested in discrete representations. This is a very specific situation. Extending the evaluation
to domains of general application in which RQ-VAE succeeded, such as image or audio, would
greatly increase the influence. However, the current version does not investigate performance in this
direction.

F REPRODUCIBILITY STATEMENT

To ensure reproducibility, we report standard deviations in Table 2. In addition, we provide detailed
descriptions of our models and implementation choices, including the exact prompt used to generate
the movie title descriptions for the Movielens dataset, in the Appendix.

G LLM USAGE

In preparing this manuscript, large language models (LLMs) were employed solely as writing
assistants to polish the text. Their role was limited to improving readability, grammar, and style,
without contributing to the development of ideas, the design of experiments, the analysis of results,
or the generation of original content. All scientific contributions, including conceptualization,
methodology, and interpretation, are entirely the authors’ own.
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