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ABSTRACT

General parameters are highly desirable in the natural sciences — e.g., reaction
conditions that enable high yields across a range of related transformations. This
has a significant practical impact since those general parameters can be transfered
to related tasks without the need for laborious and time-intensive re-optimization.
While Bayesian optimization (BO) is widely applied to find optimal parameter
sets for specific tasks, it has remained underused in experiment planning towards
such general optima. In this work, we consider the real-world problem of condi-
tion optimization for chemical reactions to study whether performing generality-
oriented BO can accelerate the identification of general optima, and whether these
optima also translate to unseen examples. This is achieved through a careful for-
mulation of the problem as an optimization over curried functions, as well as
systematic benchmarking of generality-oriented strategies for optimization tasks
on real-world experimental data. Empirically, we find that for generality-oriented
optimization, simple optimization strategies that decouple parameter and task se-
lection perform comparably to more complex ones, and that effective optimization
is merely determined by an effective exploration of both parameter and task space.

1 INTRODUCTION

Identifying parameters that deliver satisfactory performance on a wide set of tasks, which we refer
to as general parameters, is crucial for numerous real-world challenges. Examples are the iden-
tification of sensor settings that allow the sensor to measure accurately in different environments
(Güntner et al., 2019), or the design of footwear that provides good performance for a range of peo-
ple on different undergrounds (Promjun & Sahachaisaeree, 2012). A prominent example comes from
the domain of chemical synthesis, where finding reaction conditions under which different starting
materials can be reliably converted into the corresponding products, remains a critical challenge
(Wagen et al., 2022; Prieto Kullmer et al., 2022; Rein et al., 2023; Betinol et al., 2023; Rana et al.,
2024; Schmid et al., 2024). Such general conditions are of particular interest, e.g., in the pharmaceu-
tical industry, where thousands of reactions are carried out regularly, and optimizing each reaction is
unfeasible (Wagen et al., 2022). While Bayesian Optimization (BO) is increasingly adopted within
reaction optimization (Clayton et al., 2019; Shields et al., 2021; Guo et al., 2023; Tom et al., 2024),
the vast majority of cases neglects generality considerations (Figure 1, left-hand side.)

This lack of consideration can be attributed to the fact that directly observing the generality of
selected conditions is associated with largely increased experimental costs, as experimental evalua-
tions on multiple substrates are required. Attempts at reducing the required number of experiments
inevitably increase the complexity of the decision-making process. Thus, the usage of generality-
oriented optimization in laboratories is hindered in the absence of appropriate decision-making al-
gorithms. Here, generality-oriented optimization turns into a partial monitoring scenario, in which
each condition can only be evaluated on a subset of all possible substrates. As a consequence,
any iterative experiment planning algorithm needs to recommend both the condition and the sub-
strate for the next experimental evaluation (Figure 1, right-hand side). Experimentally measuring
the outcome of the recommended experiment corresponds to a partial observation of the generality
objective, which needs to be taken into account when recommending the next experiment.

In the past two years, isolated studies have targeted the identification of general reaction condi-
tions through variations of BO (Angello et al., 2022) and multi-armed bandit optimization (Wang
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Figure 1: Left: While conditions can be optimized to maximize the reaction outcome for only one
substrate (red), generality-optimized conditions provide a satisfactory reaction outcome for multiple
substrates. Right: Optimization loop for generality-oriented optimization under partial monitoring.

et al., 2024). Concurrently, different algorithms have been proposed to optimize similarly struc-
tured problems, such as BO with expensive integrands (BOEI; Xie et al., 2012; Toscano-Palmerin
& Frazier, 2018) and distributionally robust BO (DRBO; Bogunovic et al., 2018; Kirschner et al.,
2020a). Despite these advances, generality-oriented optimizations are still not commonly performed
in real-world experiments (see Section 2.2.4).This likely arises from the fact that the applicability
and limitations of these algorithms are yet to be understood, which is crucial for their effective
integration into real-world laboratory workflows (Tom et al., 2024).

For these reasons, we herein perform a systematic benchmark study into generality-oriented opti-
mization. To obtain a problem flexibility required for real-world applications (Betinol et al., 2023),
we formulate generality-oriented optimization as an optimization problem over curried functions.
Further, we perform systematic benchmarks on various real-world chemical reaction optimization
tasks.Specifically for the latter, we (i) confirm the expectation that optimization over multiple sub-
strates leads to more general optima, and (ii) demonstrate that finding these optima effectively can
be achieved through a highly explorative acquisition of the next conditions to evaluate.

In summary, our contributions are four-fold:

• Formulation of generality-oriented optimization as an optimization problem over a curried
function.

• Expansion and adaptation of established reaction optimization benchmark tasks, improving
their utility as benchmarks for generality-oriented BO.

• Evaluation of different optimization algorithms for identifying general optima.

• CurryBO as an open-source extension to BoTorch (Balandat et al., 2020) for generality-
oriented optimization problems (noa).

2 FOUNDATIONS OF GENERALITY-ORIENTED BAYESIAN OPTIMIZATION

To formalize the generality-oriented optimization problem, we provide a principled outline by con-
sidering it as an extension of established global optimization approaches over curried functions.
For clarity, we also discuss its distinction to different variations of global optimization, including
multiobjective, multifidelity, and mixed-variable optimization.

2.1 GLOBAL OPTIMIZATION

Global black-box optimization is concerned with finding the optimum of an unknown objective
function f(x):

x̂ = argmax
x∈X

f(x) (1)

2
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Figure 2: Conceptual overview of the generality-oriented optimization problem. Left: The function
values across the joint space X × W . Right: Mean aggregation applied to the function family
f(x;w), that is obtained via currying of the joint space X × W . The quantity ϕ

(
f(x;w),W

)
constitutes the partially observable objective function, of which x̂ = argmaxx∈X ϕ(x) is the
optimum that should be identified.

Suppose f(x) is a function that (a) is not analytically tractable, (b) is very expensive to evaluate,
and (c) can only be evaluated without obtaining gradient information. In this scenario, BO has
emerged as a ubiquitous approach for finding the global optimum x̂ ∈ X in a sample-efficient
manner (Garnett, 2023). The working principle of BO involves a probabilistic surrogate model
g(x) to approximate f(x), which can be used to compute a predictive posterior distribution over
g under all previous observations D = {(xi, f(xi)}ki=1. The most prominent choice for p(g(x) |
D) are Gaussian processes (GPs; Rasmussen & Williams, 2006), with various types of Bayesian
neural networks becoming increasingly popular in the past decade (Hernández-Lobato et al., 2017;
Kristiadi et al., 2023; Li et al., 2024; Kristiadi et al., 2024). Based on the predictive posterior, an
acquisition function α over the input space X is used to decide at which xnext ∈ X the objective
function should be evaluated next. Key to the success of BO is the implicit exploitation–exploration
tradeoff in α, which makes use of the posterior distribution p(g(x) | D) (Močkus, 1975). Common
choices of α are Upper Confidence Bound (UCB; Kaelbling, 1994a;b; Agrawal, 1995), Expected
Improvement (EI; Jones et al., 1998), Knowledge Gradient (Gupta & Miescke, 1994; Frazier et al.,
2008; 2009) or Thompson Sampling (TS; Thompson, 1933). The hereby selected xnext is evaluated
experimentally, resulting in f(xnext), and the described procedure is repeated until a satisfactory
outcome is observed, or the experimentation budget is exhausted.

2.2 GLOBAL OPTIMIZATION FOR GENERALITY

2.2.1 PROBLEM FORMULATION

Extending the global optimization framework, we consider a black-box function f : X ×W → R in
joint space X ×W , where x ∈ X can be continuous, discrete or mixed-variable and W = {wi}ni=1
is a discrete parameter space of size n (see Figure 2). Each evaluation of f is expensive and does not
provide gradient information. In the example of reaction condition optimization, x are conditions
from the condition space X , e.g. the temperature, and w ∈ W the substrates (starting materials of a
reaction) that are considered for generality-oriented optimization. Let curry be a currying operator
on the second argument, i.e., curry(f) : W →

(
X → R

)
. Then, for some w ∈ W , evaluating

curry(f)(w) yields a new function f( · ;w) : X → R, where f(x;w) = f(x,w). Importantly,
these f( · ;w) : X → R correspond to functions that can be evaluated experimentally (i.e. a reaction
for a specific substrate as a function of conditions), even though evaluations are expensive. This
allows us to describe all observable functions through an n-sized set F = {f( · ;wi) : X → R}ni=1.
In the context of reaction condition optimization F consists of all functions that describe the reaction
outcome for each substrate. Evaluation of a specific f(xobs;wobs) then corresponds to measuring
the reaction outcome of a substrate (described by wobs) under specific reaction conditions xobs.

In generality-oriented optimization, the goal is to identify the optimum x̂ ∈ X that is generally
optimal across W , meaning x̂ maximizes a user-defined generality metric over all w ∈ W (see
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Algorithm 1 Generality-oriented Bayesian optimization
Input:

Set of observable functions F = {f(·;wi) : X → R}ni=1

Initial dataset Dk =
{
xj ,wj , f(xj ;wj)

}k

j=1

Aggregation function ϕ
(
f(x;w),W

)
Surrogate model g(x,w) and acquisition policy A
Budget K

1: while k ≤ K do
2: Compute posterior distribution p

(
gk(x,w) | Dk

)
3: Acquire xk+1,wk+1 = A

(
p
(
gk(x,w) | Dk

)
, ϕ

(
f(x;w),W

))
4: Observe f(xk+1;wk+1)
5: Update Dk+1 = Dk

⋃{
(xk+1,wk+1, f(xk+1wk+1))

}
6: k = k + 1
7: end while

8: return x̂ = argmax
x∈X

E
[
p
(
ϕ(x) | DK

)
| x

]

Figure 2 for illustration). We refer to this generality metric as the aggregation function ϕ:

x̂ = argmax
x∈X

ϕ(x) := argmax
x∈X

ϕ
(
f(x;w),W

)
(2)

In the reaction optimization example, this corresponds to conditions (e.g. reaction temperature) that
give e.g. the highest average yield over all considered substrates. In this scenario, the choice of ϕ is
the mean ϕ(f(x;w),W) = 1/|W|

∑
w∈W f(x;w). An alternative choice of ϕ could be the number

of function values {f(x;wi)}ni=1 above a user-defined threshold (Betinol et al., 2023). Further
practically relevant aggregation functions are described in Appendix A.1.1.

While equation 2 appears like a standard global optimization problem over X , evaluating ϕ(x)
itself is intractable due to the aggregation over W . Indeed, to evaluate ϕ(x) on a single x, one
must perform n-many expensive function evaluations to first obtain {f(x;wi)}ni=1. Due to this
intractability, ideally, the number of such function evaluations is minimized. Thus, this setting
differs from the conventional global optimization problem, due to its partial observation nature:
One can only compute ϕ(x) via a subset of observations {f(x;wj)}mj=1 where m < n.

To maximize sample efficiency, an optimizer should always recommend a new pair (xnext,wnext)
to evaluate next — in other words: ϕ(xnext) is only observed partially via a single evaluation of
f , i.e., m = 1. Treating this in the conventional framework of BO, we can build a probabilistic
surrogate model g(xi;wi) from all k available observations D = {(xi,wi, f(xi;wi)}ki=1, referred
to as p

(
gk(x,w) | D

)
. From the posterior distribution over g, a posterior distribution over ϕ can be

estimated for any functional form of ϕ via Monte-Carlo integration (see Appendix A.1.2 for further
details; Balandat et al., 2020).

Unlike the conventional BO case, we now need a specific acquisition policy A to decide which x ∈
X and w ∈ W the aggregated objective function ϕ(x) should be partially evaluated. Note that A
plays an important role since it must respect the partial observability constraint. That is, it must also
propose a single w at each BO step such that the general (over all wi’s) optimum x̂ is obtained in
as few steps as possible. Given the pair (xk+1,wk+1), the aggregated objective ϕ(xk+1) is partially
observed, D is updated, and the discussed steps are repeated until the experimentation budget is
exhausted. Eventually, owing to the partial monitoring scenario (Rustichini, 1999; Lattimore &
Szepesvári, 2019; 2020), the final optimum after a budget of k experiments, x̂k, is returned as the
x ∈ X that maximizes the mean of the predictive posterior of ϕ. A summary of this is provided in
Algorithm 1.

2.2.2 ACQUISITION STRATEGIES TO SELECT xNEXT AND wNEXT

As outlined above, the efficiency of generality-oriented optimization depends on the selection
of xnext and wnext. Given a posterior distribution p

(
gk(x,w) | D

)
, an aggregation function

4
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ϕ
(
f(x;w),W

)
, any acquisition policy should determine xnext and wnext, which formally requires

optimization over X ×W . Assuming weak coupling between X and W , we can formulate a sequen-
tial acquisition policy, as outlined in Algorithm 2. First, xnext is acquired by optimizing an x-specific
acquisition function αx over the posterior over the aggregation function. Second, a w-specific ac-
quisition αw is optimized over the posterior distribution at xnext. Notably, in this setting, established
one-step-lookahead acquisition functions can be used for both αx and αw.

Algorithm 2 Sequential Acquisition Strategy
Input:

posterior distribution p
(
gk(x,w) | D

)
aggregation function ϕ

(
f(x;w),W

)
acquisition function αx

acquisition function αw

1: compute posterior distribution p
(
ϕ(x) | D

)
= p

(
ϕ
(
gk(x,w),W

)
| D

)
2: acquire xnext = argmax

x∈X
αx

(
p
(
ϕ(x) | D

))
3: acquire wnext = argmax

w∈W
αw

(
p
(
gk(xnext,w) | D

))
4: return xnext,wnext

However, the decoupling of X and W is a strong simplification, and identifying xnext and wnext for-
mally requires a joint optimization over X×W (Algorithm 3). Such a joint optimization necessitates
a two-step lookahead acquisition function α′

α′(xk+1,wk+1) = α

[
argmax
x∈X

αfinal

(
p
(
ϕ
(
x
)
| D∗

k+1

))]
(3)

where α is a classical one-step lookahead acquisition function, which is evaluated at xk+2 ∈ X
which maximizes the final acquisition function αfinal (in our case: the posterior mean) over a fantasy
posterior distribution p

(
ϕ
(
x
)
| D∗

k+1

)
. This distribution is obtained by conditioning the existing

posterior on a new fantasy observation at (xk+1,wk+1). An implementation of equation Equa-
tion (3) using Monte-Carlo integration is given in Algorithm 4.

xnext and wnext are then acquired by optimizing α′ in the joint input space X ×W .

Algorithm 3 Joint Acquisition Strategy
Input:

posterior distribution p
(
gk(x,w) | D

)
aggregation function ϕ

(
f(x;w),W

)
two-step lookahead acquisition function α′

1: compute posterior distribution p
(
ϕ(x) | D

)
= p

(
ϕ
(
gk(x,w),W

)
| D

)
2: acquire xnext,wnext = argmax

x,w∈X×W
α′
(
p
(
ϕ(x) | D

))
3: return xnext,wnext

2.2.3 DISTINCTION FROM EXISTING VARIANTS OF THE BO FORMALISM

Despite seeming similarities with multiobjective, multifidelity, and mixed-variable optimization, the
generality-oriented approach describes a distinctly different scenario:

• In contrast to multiobjective optimization, here, we consider a single optimization objec-
tive, i.e. ϕ(x). However, this objective can only be partially observed. Whereas the overall
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optimization problem aims to identify x̂ ∈ X , finding the next recommended observation
requires a joint optimization over X and W .

• In contrast to multifidelity BO, the functions parameterized by w ∈ W do not correspond
to the same objective with different fidelities. Rather, they are independent functions which
all contribute equally to the objective function ϕ(x).

• Unlike mixed-variable BO (Daxberger et al., 2020), the goal of generality-oriented BO is
not to find (x,w) that maximizes the objective in the joint space. Rather, the goal is to find
the set optimum x̂ that maximizes ϕ

(
f(x;w),W

)
over f(x;w). In the case of ϕ being a

sum, this bears resemblance to maximizing the marginal over x (see Figure 2). Moreover,
X can be continuous or discrete, thus, X ×W can be a fully-discrete space.

2.2.4 RELATED WORKS

Similarly structured problems have been previously described, mostly for specific formulations of
the aggregation function ϕ. Most prominently, if ϕ contains a sum over all f( · ;wi) with wi ∈ W ,
this problem has been referred to as optimization of integrated response functions (Williams et al.,
2000), optimizing an average over multiple tasks (Swersky et al., 2013), or optimization with ex-
pensive integrands (Toscano-Palmerin & Frazier, 2018). The latter work proposes a BO approach,
including a joint acquisition over X × W with the goal of maximizing the value of information.
In the framework discussed above, this corresponds to a joint optimization of a two-step lookahead
expected improvement, and is included in our benchmark experiments as JOINT 2LA-EI. The sce-
nario in which ϕ corresponds to the min operation, i.e. the objective is minw∈W f(x;w), has been
discussed as distributionally robust BO (Bogunovic et al., 2018; Kirschner et al., 2020a; Nguyen
et al., 2020; Husain et al., 2023). While these works provide advanced algorithmic solutions for the
respective optimization scenarios, our goal was to benchmark the applicability of such algorithms
in real-life settings. Therefore, the formulation as optimization over curried functions provides a
flexible framework that covers aggregation functions of arbitrary functional form, and the imple-
mentation of CurryBO allows for rapid integration with the BoTorch ecosystem.

In the chemical synthesis, the concept of ”reaction generality” has been discussed on multiple oc-
casions, given its enormous importance for accelerating molecular discovery (Wagen et al., 2022;
Prieto Kullmer et al., 2022; Rein et al., 2023; Betinol et al., 2023; Rana et al., 2024; Gallarati
et al., 2024; Schmid et al., 2024). The first example of actual generality-oriented optimization in
chemistry has been reported by Angello et al. (2022), who describe a modification of BO, sequen-
tially acquiring xnext via αx = PI (Probability of Improvement) and wnext via αw = PV (Posterior
Variance). The authors demonstrate its applicability in automated experiments on Suzuki–Miyaura
cross couplings. A similar algorithm as described in their work is evaluated herein as the SEQ
1LA-UCB-VAR strategy. Following an alternative strategy, Wang et al. (2024) recently formulated
generality-oriented optimization as a multi-armed bandit problem, where each arm corresponds to a
possible reaction condition. While their algorithm has been successful in campaigns with few possi-
ble reaction conditions, the necessity of sampling all conditions at the outset of a campaign renders
its application impractical for a high number of discrete conditions or even continuous variables.
The algorithm described in their work is evaluated herein as the BANDIT strategy.

Despite these recent advances, the applicability and limitations of these algorithmic approaches in
real-life settings have remained unclear. Thus, our work provides a systematic benchmark over
different generality-oriented optimization strategies, at the example of generality-oriented reaction
optimization in chemistry.

Due to the partial monitoring nature of generality-oriented optimization, we want to highlight work
that has been conducted on the partial monitoring case for bandits (Rustichini, 1999; Lattimore &
Szepesvári, 2019; 2020). However, to the best of our knowledge, works in this field has mostly dealt
with an information-theoretic approach towards optimally scaling algorithms. We refer the readers
to select publications (Lattimore & Szepesvari, 2019; Kirschner et al., 2020b; Lattimore & Gyorgy,
2021; Lattimore, 2022). Comprehensive benchmark of different strategies in the early stages of an
optimization has not been applied to generality-optimization for chemical benchmark tasks.
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Table 1: Nomenclature and description of the benchmarked acquisition strategies and acquisition
functions in the main text. Further acquisition functions are described in Table 2.

Acquisition Strategy Acquisition Function

SEQ 1LA: Sequential acquisition of xnext and wnext, each using a one-step
lookahead acquisition function. The final x̂ is selected greedily.

UCB: Upper confidence
bound (β = 0.5).

SEQ 2LA: Sequential acquisition of xnext and wnext, each using a two-step
lookahead acquisition function. The final x̂ is selected greedily.

UCBE: Upper confidence
bound (β = 5).

JOINT 2LA: Joint acquisition of xnext and wnext using a two-step lookahead
acquisition function. The final x̂ is selected greedily.

EI: Expected Improve-
ment.

BANDIT: Multi-armed bandit algorithm as implemented by Wang et al.
(2024).

PV: Posterior Variance.

RANDOM: Random selection of the final x̂. RA: Random acquisition.

3 METHODS

3.1 EXPERIMENTAL BENCHMARK PROBLEMS

In our benchmarks, we consider four real-world chemical reaction problems stemming from high-
throughput experimentation (HTE; Zahrt et al., 2019; Buitrago Santanilla et al., 2015; Nielsen et al.,
2018; Stevens et al., 2022; Wang et al., 2024). Each problem evaluates the optimization of a chem-
ically relevant reaction outcome (such as enantioselectivity ∆∆G‡, yield, or starting material con-
version), and contains an experimental dataset of substrates, conditions and measured outcomes.

Extensive analysis of the benchmark problems can be found in Appendix A.2. At this stage,
it should be noted that, while widely used as such, the problems have not been designed as bench-
marks for reaction condition optimization. To mitigate the well-known bias of HTE datasets towards
high-outcome experiments (Strieth-Kalthoff et al., 2022; Beker et al., 2022), we additionally aug-
ment the search space to incorporate larger domains of low-outcome results using a chemically
sensible expansion workflow (see Appendix A.2.2 for further details).

3.2 OPTIMIZATION ALGORITHMS

Using the benchmark problems outlined above, we perform systematic evaluations of multiple meth-
ods for the identification of general optima. In the main text, we discuss the acquisition strategies
and functions for recommending the next data point (xnext,wnext) as shown in Table 1. We name
each experiment according to the acquisition strategy used, followed by specifications of the used
acquisition functions αx and αw or α for sequential and joint acquisitions, respectively. As an ex-
ample, a sequential two-step lookahead acquisition strategy with an Upper Confidence Bound as αx

and Posterior Variance as αw, is referred to as SEQ 2LA-UCB-PV. Each strategy is evaluated under
two different generality definitions: the mean and the number-above-threshold aggregation (thresh-
old aggregation) functions described in Section 2.2.1 (see Appendix A.1.1 for further details).

In all BO experiments, we used a GP surrogate, as provided in BoTorch (Balandat et al., 2020),
with the Tanimoto kernel from Gauche (Griffiths et al., 2023). Molecules were represented us-
ing Morgan Fingerprints (Morgan, 1965) with 1024 bits and a radius of 2, generated using RDKit
(Landrum, 2023). For each experiment, we provide statistics over 30 independent runs, each per-
formed over different substrates and initial conditions. Further baseline experiments are discussed in
Appendix A.4. To ensure cross-task comparability, we calculate the GAP as a normalized, problem-
independent optimization metric (GAP = (yi − y0)/(y

∗ − y0), where yi is the true generality of the
recommendation at experiment k and y∗ is the true global optimum; Jiang et al., 2020).

4 RESULTS AND DISCUSSION

To assess the utility of generality-oriented optimization, it is necessary to validate the transferability
of these general optima to unseen spaces. Therefore, we commence our analysis by systematically
investigating all benchmark tasks using exhaustive grid search. This analysis reveals that, with an

7
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Figure 3: Normalized test-set generality score as determined by exhaustive grid search for the
four benchmarks on the original (left) and augmented (right) problems for the mean aggregation.
Average and standard error are taken from thirty different train/test substrates splits.

increasing number of substrates in Wtrain considered during optimization, the transferability of the
found optima to a held-out test set Wtest increases (Figure 3, left), as evidenced by Spearman’s
ρ > 0. While this finding is arguably unsurprising, and merely confirms a common assumption in
the field (Wagen et al., 2022), it indicates possible caveats concerning the use of the non-augmented
problems as benchmarks for generality-oriented optimization: Even with larger sizes of Wtrain, the

found optima did not consistently lead to optimal outcomes on the corresponding test sets. In con-
trast, we find that on the augmented benchmark tasks, which are more reflective of experimental
reality, transferability of the identified optima to a held-out Wtest is significantly improved. Notably,
these observations are not limited to the definition of generality as the average over all w ∈ W , but
remain valid for further aggregation functions on a majority of benchmarks (see Appendix A.6.1).
These findings underline that – especially in ”needle in a haystack scenarios” – generality-oriented
optimization is indeed necessary for finding transferable optima. Most importantly, such scenarios
apply to real-world reaction optimization, where for most reactions, the majority of possible con-
ditions do not lead to observable product quantities. This re-emphasizes the need for benchmark
problems that reflect experimental reality.

Having established the utility of generality-oriented optimization, we set out to perform a systematic
benchmark of how to identify those optima using iterative optimization under partial objective mon-
itoring. In the first step, we evaluate those approaches that have been developed in the context of
reaction optimization (Angello et al., 2022; Wang et al., 2024) on two practically relevant aggrega-
tion functions, the mean and threshold aggregation (Appendix A.1.1). As a summary, Figure 4 shows
the optimization trajectories of these different algorithms averaged across all augmented benchmark
problems.. Overall, we find that the BO-based SEQ 1LA-UCB-PV acquisition strategy, as outlined
by Angello et al. (2022), shows faster optimization performance compared to other algorithms used
in the chemical domain. In particular, it significantly outperforms the BANDIT algorithm proposed
by Wang et al. (2024), which can be attributed to the necessity of evaluating each w ∈ Wtrain at
the outset of each campaign, tying up a notable share of the experimental budget Assuredly, both
proposed methods readily outperform the two random baselines RANDOM and SEQ 1LA-RA-RA.

Inspired by these observations, we perform a deeper investigation into the BO approaches formalized
in Section 2.2. Initially, different options of the sequential strategy of acquiring xnext and wnext are
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Figure 4: Optimization trajectories of different algorithms for generality-oriented optimization pre-
viously reported in the chemical domain. The trajectories are averaged over all augmented bench-
mark problems. Note that the BANDIT algorithm is incompatible with the threshold aggregation
function.
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Figure 5: Optimization trajectories using sequential acquisition strategies. The top row shows the
variation of αx, while the bottom row shows the variation of αw). Trajectories are averaged over
four augmented benchmark problems.

evaluated. For this purpose, we compare multiple acquisition functions αx for selecting xnext ∈ X ,
as formalized in Appendix A.4 and Section 3.2. Overall, the empirical results (Figure 5, top half)
indicate largely similar optimization behavior for the different αx. However, it can be observed that a
higher degree of exploration has a positive effect on optimization performance, e.g., when comparing
the baseline method SEQ 1LA-UCB-PV (αx: UCB with β = 0.5) with the more exploratory SEQ
1LA-UCBE-PV (αx: UCB with β = 5.0). While systematic investigations into the generalizability
of this finding are ongoing, we hypothesize that it can be attributed to the partial monitoring scenario,
which leads to larger predictive uncertainties, and therefore less efficient exploitation. Surprisingly,
the use of two-step-lookahead acquisition functions for αx, which should conceptually be well-
suited for the partial monitoring scenario (Section 2.2.2), did not lead to significant improvements
compared to their one-step-lookahead counterparts (e.g., comparing SEQ 1LA-UCB-PV with SEQ
2LA-UCB-PV and SEQ 2LA-EI-PV). Yet, the trend that more exploratory αx lead to improved
optimization behavior can also be observed for two-step-lookahead acquisition functions. However,
we find that, especially for the threshold aggregation function (Figure 5), Expected Improvement
(EI) shows significantly decreased optimization performance, which may be attributed to the partial
monitoring scenario, and the resulting uncertainty in estimating the current optimum.

Similarly, we observe only a small influence of the choice of αw (Figure 5, bottom half). In partic-
ular, an uncertainty-driven acquisition of αw, as used by Angello et al. (2022), shows only slightly
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Figure 6: Optimization trajectories using sequential and joint two-step lookahead acquisition strate-
gies. Note that, owing to computational cost constraints, the trajectories are only averaged over the
N,S-Acetal formation and Deoxyfluorination reaction augmented benchmark problems.

improved optimization performance over a fully random acquisition of wnext (compare SEQ 1LA-
UCB-PV and SEQ 1LA-UCB-RA). Notably, the difference becomes more pronounced for two-
step lookahead acquisition policies (SEQ 2LA-UCB-PV and SEQ 2LA-UCB-RA). These findings
indicate that, in the partial monitoring scenario, predictive uncertainties are not used effectively in
myopic decision making, but their accurate propagation can improve hyperopic decisions. However,
in the case of sequentially acquiring xnext and wnext, this ability to effectively harness uncertainties
for αw does not lead to empirical performance improvements over the one-step lookahead acquisi-
tion policies. This could be attributed to the decoupling of X and Wtrain.

Therefore, we evenutally benchmark acquisitions strategies that recommend xnext and wnext through
a joint optimization over X ×Wtrain, as originally proposed by Toscano-Palmerin & Frazier (2018)
in the context of BO with expensive integrands. Figure 6 shows a comparison of different joint
acquisition strategies to the sequential strategy discussed above. Empirically, we find that jointly
optimizing for xnext and wnext does not lead to improved optimization performance, both when using
EI and UCB as the acquisition function. However, we find that, in the case of joint acquisition, the
discrepancies between EI and UCB that are observed in the sequential case, are no longer present,
showcasing that the algorithm proposed by Toscano-Palmerin & Frazier (2018) can be applied in
this context. However, given the increased computational cost of joint optimization, our empirical
findings suggest that the algorithmically simpler sequential acquisition strategy with one-step looka-
head acquisition functions is well-suited for generality-oriented optimization for chemical reactions,
and performs on par with more advanced algorithmic approaches.

5 CONCLUSION

In this work, we extend global optimization frameworks to the identification of general and trans-
ferable optima, exemplified by the real-world problem of chemical reaction condition optimization.
Systematic analysis of common reaction optimization benchmarks supports the hypothesis that op-
timization over multiple related tasks can yield more general optima, particularly in scenarios with
a low the density of high-outcome experiments across the search space. We provide augmented
versions of these benchmarks to reflect these real-life considerations. For BO aimed at identifying
general optima, we find that a simple and cost-effective strategy ––– sequentially optimizing one-
step-lookahead acquisition functions over X and W — is well-suited, and performs on par with
more complex policies involving two-step lookahead acquisition. Our analyses indicate that the
choice of explorative acquisition function for sampling X is the most influential factor in achiev-
ing successful generality-oriented optimization, likely due to the partial optimization nature of the
problem. While our findings mark an important step towards applying generality-oriented optimiza-
tion in chemical laboratories, they also highlight the continued need for benchmark problems that
accurately reflect real-world scenarios (Liang et al., 2021). We believe that such benchmarks, along
with systematic evaluations of chemical reaction representations, are essential for a principled usage
of generality-oriented optimization. Building on our results, we anticipate that generality-oriented
optimization will see increasing adoption in chemistry and beyond, contributing to the development
of more robust, applicable and sustainable reactions.
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A APPENDIX

A.1 BAYESIAN OPTIMIZATION FOR GENERALITY

A.1.1 AGGREGATION FUNCTIONS

The aggregation function is a user-defined property that determines how the “set optimum” is cal-
culated across objective functions. Through the choice of the set optimum, prior knowledge and
preferences about the specific optimization problem at hand can be included. In this work, the
following aggregation functions are evaluated:

Mean Aggregation

ϕ(f(x;w),W) =
1

|W|
∑
w∈W

f(x;w) =
1

n

n∑
i=1

f(x;wi) (4)

Threshold Aggregation

ϕ
(
f(x;w

)
,W) =

∑
w∈W

σ
(
f(x;w)− fthr

)
=

n∑
i=1

σ
(
f(x;wi)− fthr

)
(5)

Conceivably, other aggregation functions also have practical use-cases, for example:

Mean Squared Error (MSE) Aggregation

ϕ
(
f(x;w),W

)
= − 1

|W|
∑
w∈W

(
fopt(x;w)− f(x;w)

)2
= − 1

n

n∑
i=1

(
fopt,i − f(x;wi)

)2
(6)

Minimum Aggregation

ϕ
(
f(x;w),W

)
= min

wi∈W
f(x;wi) (7)

The above definitions assume that all f(x;wi) have the same range, and that the optimization prob-
lem is formulated as maximization problem.

A.1.2 ACQUISITION FUNCTIONS AND THE SAMPLE AVERAGE APPROXIMATION

For the evaluation of posterior distributions, and the calculation of acquisition function values, we
use the sample-average approximation, as introduced by Balandat et al. (2020). From a posterior
distribution at time point k, p

(
gk(x)

)
, M posterior samples ζm(x) ∼ p

(
gk(x)

)
are drawn. These

posterior samples can be used to estimate the posterior distribution, and to calculate acquisition
function values as expectation values EM over all M samples.

Herein, we use the following common acquisition functions:

• Upper Confidence Bound: UCB(x) = EM

(
ζm(x)

)
+ β · EM

(
ζm(x)− EM (ζm(x))

)
.

• Expected Improvement: EI(x) = EM

(
ζm(x) − f∗), where f∗ is the best value observed

so far.
• Posterior Variance: PV(x) = EM

(
ζm(x)− EM (ζm(x))

)
.

• Random Selection, where the acquisition function value is a random number.

Moreover, we evaluate the optimization performance using a primitive implementation of two-step
lookahead acquisition functions α∗ (see Algorithm 4). The acquisition function value of α∗ at a
location x0 is estimated as follows: For each of the M posterior samples ζm(x0) ∼ p

(
gk(x0)

)
,

a fantasy posterior distribution p′
(
ϕ(gk+1(x0))

)
is generated by conditioning the posterior on the
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new observation (x0, ζM (x0)) and aggregation. From this fantasy posterior distribution, the values
of the inner acquisition function αm can be computed and optimized over x ∈ X . The final value of
the two-step lookahead acquisition function is returned as α∗(x0) =

1
M

∑M
m=1 αm.

Algorithm 4 Two-step lookahead acquisition function using the sample average approximation.
Input:

input space X
location x0 at which to evaluate the two-step lookahead acquisition function
aggregation function ϕ

(
f(x;w),W

)
posterior distribution p

(
gk(x) | D

)
one-step lookahead acquisition function α(x)

1: draw M posterior samples ζm(x0) ∼ p
(
gk(x0)

)
2: empty set of fantasy acquisition function values A = {}
3: for m = 1, . . . ,M do
4: compute fantasy posterior p′(x) = p

(
ϕ
(
gk+1(x) | (D ∪ (x0, ζm(x0))

))
5: optimize one-step-lookahead acquisition function αm = max

x∈X
α(p′(x))

6: update A = A ∪ {αm}
7: end for

8: return α∗(x0) =
1
M

∑M
m=1 αm

A.1.3 BENCHMARKED OPTIMIZATION STRATEGIES FOR SELECTING xNEXT AND wNEXT

Herein, we outline the use of the benchmarked optimization strategies for generality-oriented opti-
mization. The discussed optimization strategies describe different variations of how to pick the next
experiments xnext and wnext.

Following the SAA (Balandat et al., 2020) outlined above, we estimate the predictive posterior
distribution p

(
ϕ(x) | D

)
as follows: For each wi ∈ W , M (typically M = 512 for one-step

lookahead strategies and M = 3 for two-step lookahead strategies to reduce computational costs)
samples ζim(x) ∼ p

(
gk(x,wi)

)
are drawn from the posterior distribution of the surrogate model.

Aggregating over all wi yields M samples ζm(x) ∼ p
(
ϕ(x) | D

)
from the posterior distribution

over ϕ(x), which can be used for calculating the acquisition function values using the sample-based
acquisition function logic, as described in Appendix A.1.2. With this, we implement and benchmark
the acquisition policies in Table 2.

The sequential acquisition is described in Algorithm 2 and refers to a strategy in which xnext and
wnext are selected sequentially. In the first step, xnext is selected by optimizing an x-specific acqui-
sition function αx over x ∈ X . With the selected xnext in hand, wnext is then selected by optimizing
an independent, w-specific acquisition function over w ∈ W . With αx = PI (Probability of Im-
provement) and αw = PV, this would correspond to the strategy described in (Angello et al., 2022).
In contrast, the joint acquisition, as outlined in Algorithm 3, refers to a strategy in which xnext and
wnext are selected jointly through optimization of a two-step lookahead acquisition function (see
Algorithm 4 and Appendix A.1.2).

A.2 BENCHMARK PROBLEM DETAILS

A.2.1 ORIGINAL BENCHMARK PROBLEMS

Four chemical reaction benchmarks have been considered in this work: Reactant conversion opti-
mization for Pd-catalyzed C–heteroatom couplings (Buitrago Santanilla et al., 2015), enantioselec-
tivity optimization for a N,S-Acetal formation (Zahrt et al., 2019), yield optimization for a borylation
reaction (Stevens et al., 2022; Wang et al., 2024) and yield optimization for deoxyfluorination re-
action (Nielsen et al., 2018; Wang et al., 2024). Since it has been well-demonstrated that these
problems can be effectively modeled by regression approaches (Zahrt et al., 2019; Ahneman et al.,
2018; Sandfort et al., 2020), we trained a random forest regressor on each dataset, which was used as
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Table 2: Nomenclature and description of the all benchmarked acquisition strategies and acquisition
functions, as discussed in the main text and the Appendix. Each experiment is named according to
the acquisition strategy used, followed by specifications of the used acquisition functions αx and
αw or α for sequential and joint acquisitions, respectively. As an example, a sequential two-step
lookahead acquisition strategy with an Upper Confidence Bound as αx and Posterior Variance as
αw, is referred to as SEQ 2LA-UCB-PV.

Acquisition Strategy Acquisition Function

SEQ 1LA: Sequential acquisition of xnext and wnext, each us-
ing a one-step lookahead acquisition function. The final x̂ is
selected greedily.

UCB: Upper confidence bound (β = 0.5).

SEQ 2LA: Sequential acquisition of xnext and wnext, each us-
ing a two-step lookahead acquisition function. The final x̂ is
selected greedily.

UCBE: Upper confidence bound (β = 5).

JOINT 2LA: Joint acquisition of xnext and wnext using a two-
step lookahead acquisition function. The final x̂ is selected
greedily.

EI: Expected Improvement.

BANDIT: Multi-armed bandit algorithm as implemented by
Wang et al. (2024).

PV: Posterior Variance.

RANDOM: Random selection of the final x̂. RA: Random acquisition.
SINGLE: Selection of the same substrate
(w) for every iteration.
COMPLETE: Selection of every substrate
(i.e. every w ∈ W) for a selected xnext.

the ground truth for all benchmark experiments (Häse et al., 2021). In the following, the benchmark
problems are described briefly.

Pd-catalyzed carbon-heteroatom coupling

The Pd-catalyzed carbon-heteroatom coupling benchmark is concerned with the reaction of different
nucleophiles with 3-bromopyridine (Figure 7). In total, 16 different nucleophiles were tested in a
nanoscale high-throughput experimentation platform. As reaction conditions, bases (six different
bases) and catalysts (16 different catalysts) were varied. In total, the benchmark consists of 1536
different experiments, for which the conversion is reported.

Figure 7: Reaction diagram of the Pd-catalyzed carbon-heteroatom coupling, where 3-
bromopyridine reacts with a nucleophile. Reaction conditions include a catalyst and a base. The
numbers indicate the amount of different species in the benchmark.

The average conversion is 2.05%, whereas the maximum conversion is 39.81% (Figure 8). The
average of the average conversion of each condition is 2.05%, while the maximum of the average
conversion of the conditions is 7.60% (Figure 8). The catalyst-base combination with the highest
average conversion is shown in Figure 8.

With respect to the threshold aggregation function, the chosen threshold was 7.50%. The average
number of substrates with a conversion above this threshold are 1.615, while the maximum number
of substrates is 7 (Figure 9). The catalyst-base combination with the highest number of substrates
with a conversion above the threshold is the same as shown in Figure 8.
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Figure 8: Top left: Distribution of the conversion for the Pd-catalyzed carbon-heteroatom coupling
in the original benchmark. Top right: Distribution of the average conversion for each catalyst-base
combination for the Pd-catalyzed carbon-heteroatom coupling in the original benchmark. Bottom:
Catalyst-base combination with the highest average conversion in the original benchmark. Tip =
2,4,6-triisopropylphenyl.
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Figure 9: Left: Distribution of the conversion for the Pd-catalyzed carbon-heteroatom coupling in
the original benchmark. Right: Distribution of the number of substrates with a conversion above
the specified threshold for each catalyst-base combination for the Pd-catalyzed carbon-heteroatom
coupling in the original benchmark.

N,S-Acetal formation

The N,S-Acetal formation benchmark is concerned with the nucleophilic addition of different thiols
to imines, catalyzed by chiral phosphoric acids (CPAs) (see Figure 10). In total, five different imines
and five different thiols were tested in manual experiments. As reaction conditions, 43 different CPA
catalysts were considered. In total, the benchmark consists of 1075 different experiments, for which
∆∆G‡, as a measure of the enantioselectivity, is reported.

The average ∆∆G‡ is 0.988 kcal/mol, whereas the maximum ∆∆G‡ is 3.135 kcal/mol (see Fig-
ure 11). The average of the average ∆∆G‡ for each condition is 0.988 kcal/mol, while the maxi-
mum of the average ∆∆G‡ for all conditions is 2.395 kcal/mol (see Figure 11). The catalyst with
the highest average ∆∆G‡ is shown in Figure 11.

With respect to the threshold aggregation function, the chosen threshold was 2.0 kcal/mol. The aver-
age number of substrates with ∆∆G‡ above this threshold are 1.907, while the maximum number of
substrates is 17 (Figure 12). The catalyst with the highest number of substrates with ∆∆G‡ above
the threshold is the same as shown in Figure 11.
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Figure 10: Reaction diagram of the N,S-Acetal formation, where an imine reacts with a thiol. Re-
action conditions include a catalyst. The numbers indicate the amount of different species in the
benchmark.
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Figure 11: Top left: Distribution of ∆∆G‡ for the N,S-Acetal formation in the original benchmark.
Top right: Distribution of the average ∆∆G‡ for each catalyst for the N,S-Acetal formation in the
original benchmark. Bottom: Catalyst with the highest average ∆∆G‡ in the original benchmark.
Cy = Cyclohexyl

Borylation reaction

The borylation reaction benchmark is concerned with the Ni-catalyzed borylation of different aryl
electrophiles (aryl chlorides, aryl bromides, and aryl sulfamates) (Figure 13). In total, 33 different
aryl electrophiles were tested. As reaction conditions, ligands (23 different ligands), and solvents (2
different solvents) were varied. In total, the benchmark consists of 1518 different experiments, for
which the yield is reported.

The average yield is 45.5%, whereas the maximum yield is 100.0% (Figure 14). The average of the
average yield of each condition is 45.5%, while the maximum of the average yield of the conditions
is 65.4% (Figure 14). The ligand-solvent combination with the highest average yield is shown in
Figure 14.

With respect to the threshold aggregation function, the chosen threshold was 90%. The average
number of substrates with a yield above this threshold are 1.457, while the maximum number of
substrates is 5 (Figure 15). The ligand-solvent combination with the highest number of substrates
with a yield above the threshold is the same as shown in Figure 14. However, the shown ligand-
solvent combination is only one of four combinations.
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Figure 12: Left: Distribution of ∆∆G‡ for the N,S-Acetal formation in the original benchmark.
Right: Distribution number of substrates with a ∆∆G‡ above the specified threshold for each cata-
lyst for the N,S-Acetal formation in the original benchmark.

Figure 13: Reaction diagram of the borylation reaction, where different aryl electrophiles are bo-
rylated. Reaction conditions include a ligand, and a solvent. The numbers indicate the amount of
different species in the benchmark.

Deoxyfluorination reaction

The deoxyfluorination reaction benchmark is concerned with the transformation of different alcohols
into the corresponding fluorides (Figure 16). In total, 37 different alcohols were tested. As reaction
conditions, sulfonyl fluorides (fluoride sources, five different fluorides) and bases (four different
bases) were varied. In total, the benchmark consists of 740 different experiments, for which the
yield is reported.

The average yield is 40.4%, whereas the maximum yield is 100.6% (Figure 17). The yield larger
than 100% is contained in the originally published dataset. The average of the average yield of each
condition is 40.4%, while the maximum of the average yield of the conditions is 57.2% (Figure 17).
The fluoride-base combination with the highest average yield is shown in Figure 17.

With respect to the threshold aggregation function, the chosen threshold was 90%. The average
number of substrates with a yield above this threshold are 1.400, while the maximum number of
substrates is 5 (Figure 18). The fluoride-base combination with the highest number of substrates
with a yield above the threshold is shown in Figure 18.
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Figure 14: Top left: Distribution of the yield for the borylation reaction in the original benchmark.
Top right: Distribution of the average yield for each ligand-solvent combination for the borylation
reaction in the original benchmark. Bottom: Ligand-solvent combination with the highest average
yield in the original benchmark. Cy = Cyclohexyl.
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Figure 15: Left: Distribution of the yield for the borylation reaction in the original benchmark.
Right: Distribution of the number of substrates with a yield above the specified threshold for each
ligand-solvent combination for the borylation reaction in the original benchmark.

A.2.2 AUGMENTATION

Since the described benchmarks consist of a high number of high-outcome experiments (the respec-
tive search spaces were rationally designed by expert chemists), we augment them with more nega-
tive examples to make them more relevant to real-world optimization campaigns. New substrates are
generated by mutating the originally reported substrates via the STONED algorithm (Nigam et al.,
2021). In a first filtering step, new substrates were removed if they had a Tanimoto similarity to the
original substrate smaller than 0.75 (0.6 for the borylation reaction to obtain a reasonable number
of additinal substrates) or if they did not possess the functional groups required for the reaction.
To ensure that the benchmark is augmented with negative examples, random forests are fitted to
the original benchmarks (see above). The mean absolute errors (MAEs), root mean square errors
(RMSEs) and r2 score (r2), Spearman’s rank correlation coefficient (Spearman’s ρ) of the random
forest regressors fitted to and evaluated on the original benchmarks are shown in Table 3. In ad-
dition, to evaluate the predictive utility of the random forest regressors, we perform 5-fold cross
validation on the original benchmark. The MAE, RMSE, r2 and Spearman’s ρ of the 5-fold cross
validation are reported in Table 4. Even though the predictive performance on the CV does not
achieve a high Spearman’s rank coefficient, the comparably low MAEs and RMSEs, as well as high
r2 values suggest that they are a reasonable oracle. Newly generated substrates were incorporated if
the average reaction outcome over all reported reaction conditions is below a defined threshold. The
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Figure 16: Reaction diagram of the deoxyfluorination reaction, where an alcohol is transformed to
the corresponding fluoride. Reaction conditions include a fluoride source, and a base. The numbers
indicate the amount of different species in the benchmark.
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Figure 17: Top left: Distribution of the yield for the deoxyfluorination reaction in the original
benchmark. Top right: Distribution of the average yield for each fluoride-base combination for the
deoxyfluorination reaction in the original benchmark. Bottom: Fluoride-base combination with the
highest average yield in the original benchmark.

chosen thresholds are 1.0% for the Pd-catalyzed carbon-heteroatom coupling, 0.7 kcal/mol for the
N,S-Acetal formation, 12% for the borylation reaction, and 5% for the deoxyfluorination reaction.
If a substrate passed these filters, the reactions with all different reported conditions were added,
with reaction outcomes being taken from as predicted from the random forest emulator.

Table 3: MAE, RMSE, r2, and Spearman’s ρ of random forest regressors fitted to and evaluated on
the original benchmark problems.

Benchmark problem MAE RMSE r2 Spearman’s ρ

Pd-catalyzed coupling 3.16× 10−3 8.75× 10−3 0.966 0.898
N,S-Acetal formation 4.95 × 10−2

kcal/mol
7.39 × 10−2

kcal/mol
0.989 0.994

Borylation reaction 3.62× 10−2 4.92× 10−2 0.966 0.987
Deoxyfluorination 2.13× 10−2 3.38× 10−2 0.986 0.993
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Figure 18: Top left: Distribution of the yield for the deoxyfluorination reaction in the original bench-
mark. Top right: Distribution of the number of substrates with a yield above the specified threshold
for each fluoride-base combination for the deoxyfluorination reaction in the original benchmark.
Bottom: Fluoride-base combination with the highest number of substrate with a yield above the
threshold in the original benchmark.

Table 4: MAE, RMSE, r2, and Spearman’s rank correlation coefficient with their standard errors of
random forest regressors in a 5-fold cross validation on the original benchmark problems.

Benchmark problem MAE RMSE r2 Spearman’s ρ

Pd-catalyzed coupling (9.3 ± 0.7) ×
10−3

(2.44±0.18)×
10−2

0.73± 0.03 0.429± 0.007

N,S-Acetal formation (1.43±0.07)×
10−1 kcal/mol

(2.11±0.10)×
10−1 kcal/mol

0.908± 0.010 0.474± 0.007

Borylation reaction (1.04±0.03)×
10−1

(1.39±0.04)×
10−1

0.729± 0.013 0.425± 0.009

Deoxyfluorination (5.96±0.14)×
10−2

(8.42±0.15)×
10−2

0.913± 0.004 0.478± 0.003

A.2.3 AUGMENTED BENCHMARK PROBLEMS

Pd-catalyzed carbon-heteroatom coupling

Augmentation increases the number of different nucleophiles from 16 to 31 (see Figure 19). Com-
bined with the 96 reported reaction condition combinations, the augmented dataset consists of 2976
reactions, for which the conversion is reported.

Figure 19: Reaction diagram of the Pd-catalyzed carbon-heteroatom coupling, where 3-
bromopyridine reacts with a nucleophile. Reaction conditions include a catalyst and a base. The
numbers indicate the amount of different species in the augmented benchmark.

Augmentation decreased the average conversion from 2.05% to 1.34%, whereas the maximum con-
version remained the same at 39.81% (see Figure 20). The average of the average conversion of each
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condition is decreased from 2.05% to 1.34%, and the maximum of the average conversion of each
condition is also decreased from 7.60% to 6.00% (see Figure 20). The catalyst-base combination
with the highest average conversion is unaffected by the augmentation and shown in Figure 20.
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Figure 20: Top left: Distribution of the conversion for the Pd-catalyzed carbon-heteroatom coupling
in the augmented benchmark. Top right: Distribution of the average conversion for each catalyst-
base combination for the Pd-catalyzed carbon-heteroatom coupling in the augmented benchmark.
Bottom: Catalyst-base combination with the highest average conversion in the augmented bench-
mark. Tip = 2,4,6-triisopropylphenyl.

With respect to the threshold aggregation function, the chosen threshold was 7.50%. The average
number of substrates with a conversion above this threshold are 1.646, while the maximum number
of substrates is 8 (Figure 21). The catalyst-base combination with the highest number of substrates
with a conversion above the threshold is the same as shown in Figure 20.
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Figure 21: Left: Distribution of the conversion for the Pd-catalyzed carbon-heteroatom coupling in
the augmented benchmark. Right: Distribution of the number of substrates with a conversion above
the specified threshold for each catalyst-base combination for the Pd-catalyzed carbon-heteroatom
coupling in the augmented benchmark.
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N,S-Acetal formation

Augmentation increases the number of thiols from five to 13, while the number of imines remained
constant at five (see Figure 22). Combined with the 43 reported reaction conditions, the augmented
benchmark consists of 2795 reactions, for which ∆∆G‡ is reported.

Figure 22: Reaction diagram of the N,S-Acetal formation, where an imine reacts with a thiol. Re-
action conditions include a catalyst. The numbers indicate the amount of different species in the
augmented benchmark.

Augmentation decreased the average ∆∆G‡ from 0.988 kcal/mol to 0.757 kcal/mol, whereas the
maximum ∆∆G‡ was slightly decreased from 3.135 kcal/mol to 3.114 kcal/mol (see Figure 23).
This decrease is due to the fact that the augmented benchmark only contains values are taken as
predicted by the random forest emulator (to investigate optimization performance, the random forest
emulator is taken for both the original and augmented benchmarks). Through augmentation, the
average of the average ∆∆G‡ of each condition decreased from 0.988 kcal/mol to 0.757 kcal/mol,
while the maximum of the average ∆∆G‡ of all conditions decreased as well from 2.395 kcal/mol
to 1.969 kcal/mol (see Figure 23). The catalyst with the highest average ∆∆G‡ is unaffected by the
augmentation and shown in Figure 23.
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Figure 23: Top left: Distribution of ∆∆G‡ for the N,S-Acetal formation in the augmented bench-
mark. Top right: Distribution of the average ∆∆G‡ for each catalyst for the N,S-Acetal formation
in the augmented benchmark. Bottom: Catalyst with the highest average ∆∆G‡ in the augmented
benchmark. Cy = Cyclohexyl.

With respect to the threshold aggregation function, the chosen threshold was 2.0 kcal/mol. The aver-
age number of substrates with ∆∆G‡ above this threshold are 1.814, while the maximum number of
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substrates is 16 (Figure 24). The catalyst with the highest number of substrates with ∆∆G‡ above
the threshold is the same as shown in Figure 23.
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Figure 24: Left: Distribution of ∆∆G‡ for the N,S-Acetal formation in the augmented benchmark.
Right: Distribution number of substrates with a ∆∆G‡ above the specified threshold for each cata-
lyst for the N,S-Acetal formation in the augmented benchmark.
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Borylation reaction

Augmentation increases the number of different aryl electrophiles from 33 to 75 (see Figure 25).
Combined with the 46 reported reaction condition combinations, the augmented dataset consists of
3450 reactions, for which the yield is reported.

Figure 25: Reaction diagram of the borylation reaction, where an aryl electrophile is borylated via
a nickel catalyst. Reaction conditions include a ligand, and a solvent. The numbers indicate the
amount of different species in the augmented benchmark.

Augmentation decreased the average yield from 45.5% to 26.2%, whereas the maximum yield re-
mained the same at 100.0% (see Figure 26). The average of the average yield of each condition is
decreased from 45.5% to 26.2%, and the maximum of the average yield of each condition is also
decreased from 65.4% to 38.4% (see Figure 26). The ligand-solvent combination with the highest
average yield is unaffected by dataset and augmentation and shown in Figure 26.
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Figure 26: Top left: Distribution of the yield for the borylation reaction in the augmented benchmark.
Top right: Distribution of the average yield for each ligand-solvent combination for the borylation
reaction in the augmented benchmark. Bottom: Ligand-solvent combination with the highest aver-
age yield in the augmented benchmark. Cy = Cyclohexyl.

With respect to the threshold aggregation function, the chosen threshold was 90%. The average
number of substrates with a yield above this threshold are 1.457, while the maximum number of
substrates is 5 (Figure 27). Several ligand-solvent combinations provide the highest number of
substrates with a yield above the threshold, one of them is shown in Figure 26. The ligand-solvent
combinations are unaffected by the augmentation.
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Figure 27: Left: Distribution of the yield for the borylation reaction in the augmented benchmark.
Right: Distribution of the number of substrates with a yield above the specified threshold for each
ligand-solvent combination for the borylation reaction in the augmented benchmark.

Deoxyfluorination reaction

Augmentation increases the number of different alcohols from 37 to 54 (see Figure 28). Combined
with the 20 reported reaction condition combinations, the augmented dataset consists of 1080 reac-
tions, for which the yield is reported.

Figure 28: Reaction diagram of the deoxyfluorination reaction, where an alcohol is converted to
the corresponding fluoride. Reaction conditions include a fluoride source and a base. The numbers
indicate the amount of different species in the augmented benchmark.

Augmentation decreased the average yield from 40.4% to 28.9%, whereas the maximum yield re-
mained the same at 100.6% (see Figure 29). The yield larger than 100% is contained in the originally
published dataset. The average of the average yield of each condition is decreased from 40.4% to
28.9%, and the maximum of the average yield of each condition is also decreased from 57.2% to
43.8% (see Figure 29). The fluoride-base combination with the highest average yield is unaffected
by augmentation and shown in Figure 29.

With respect to the threshold aggregation function, the chosen threshold was 90%. The average
number of substrates with a yield above this threshold are 1.400, while the maximum number of
substrates is 5 (Figure 30). The fluoride-base combination with the highest number of substrates
with a yield above the threshold is also unaffected by augmentation and shown in Figure 30.
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Figure 29: Top left: Distribution of the yield for the deoxyfluorination reaction in the augmented
benchmark. Top right: Distribution of the average yield for each fluoride-base combination for the
deoxyfluorination reaction in the augmented benchmark. Bottom: Fluoride-base combination with
the highest average yield in the augmented benchmark.
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Figure 30: Top left: Distribution of the yield for the deoxyfluorination reaction in the augmented
benchmark. Top right: Distribution of the number of substrates with a yield above the specified
threshold for each fluoride-base combination for the deoxyfluorination reaction in the augmented
benchmark. Bottom: Fluoride-base combination with the highest number of substrate with a yield
above the threshold in the augmented benchmark.

A.3 GRID SEARCH FOR ANALYZING BENCHMARK PROBLEMS

To analyse the utility of considering multiple substrates in an optimization campaign, we performed
exhaustive grid search on the described benchmark problems. For each problem, the substrates
were split into an initial train and test set among the substrates. In total, thirty different train/test
splits were performed. The obtained train set was further subsampled into smaller training sets
with varying sizes to investigate the influence on the number of substrates. Sampling among the
substrates in the train set was performed either through random sampling, farthest point sampling
or “Average Sampling”, where the required number of substrates was chosen as the substrates with
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the highest average Tanimoto similarity to all other train substrates. For each subsampled training
set, the most general conditions were identified via exhaustive grid search. The general reaction
outcome, as specified by the aggregation function, is evaluated for these conditions on the held-out
test set. Further, this general reaction outcome was scaled from 0 to 1 to give a dataset independent
generality score, where 0 is the worst possible general reaction outcome for the given test set and 1
is the best possible general reaction outcome for the test set. Hence, this score should be maximized.
For the different benchmark problems, we report this generality score, where we also compare the
behaviour of the original and augmented problems. Below, the results of the described data analysis
are shown for the benchmark problems not shown in the main text.

A.4 DETAILS ON BO FOR GENERALITY BENCHMARKING

To identify whether BO for generality, as described above, can efficiently identify the general op-
tima, we conducted several benchmarking runs on the described benchmark problems. On each
problem, we perform benchmarking for multiple optimization strategies, as listed in Table 2.

In each optimization campaign, we used a single-task GP regressor, as implemented in GPyTorch
(Gardner et al., 2018), with a TanimotoKernel as implemented in Gauche (Griffiths et al., 2023).
Molecules were represented using Morgan Fingerprints (Morgan, 1965) with 1024 bits and a radius
of 2. Fingerprints were generated using RDKit (Landrum, 2023). It is noteable that, while such a
representation was chosen due to its suitability for broad chemical spaces, more specific representa-
tions such as descriptors might be able to improve the optimization performance.

The acquisition policies were benchmarked on all benchmark problems with differently sampled
substrates for each optimization run. For each benchmark, we selected the train set randomly, con-
sisting of twelve nucleophiles in the Pd-catalyzed carbon-heteroatom coupling benchmark, three
imines and three thiols in the N,S-Acetal formation benchmark, twentyfive alcohols in the Deoxyflu-
orination reaction, and twenty aryl halides in the Borylation reaction. Thirty independent optimiza-
tion campaigns were performed for each. The generality of the proposed general conditions at each
step during the optimization is shown.

A.5 DETAILS ON BANDIT ALGORITHM BENCHMARKING

The benchmarking of BANDIT (Wang et al., 2024) was performed across the benchmark problems
using their proposed UCB1TUNED algorithm with differently sampled substrates for the optimiza-
tion. For each benchmark, we selected the train set randomly, consisting of twelve nucleophiles in
the Pd-catalyzed carbon-heteroatom coupling benchmark, three imines and three thiols in the N,S-
Acetal formation benchmark, twentyfive alcohols in the Deoxyfluorination reaction, and twenty aryl
halides in the Borylation reaction. Thirty independent optimization campaigns were performed for
each. To ensure fair comparison, the ground truth was set to be the proxy function calculated for
each dataset. To select the optimum x value at each step k, we relied on the authors definition of the
best arm as the most sampled arm at step k.

A.6 ADDITIONAL RESULTS AND DISCUSSION

A.6.1 ADDITIONAL RESULTS ON THE DATASET ANALYSIS FOR UTILITY OF
GENERALITY-ORIENTED OPTIMIZATION

In addition to analysing the utility of generality-oriented optimization for ϕ as the mean aggregation,
which is shown in Figure 3, we also perform a similar analysis for ϕ as the threshold aggregation,
where the chosen thresholds are as described in Appendix A.2. The results of this analysis are shown
in Figure 31. Similar to the case where ϕ is the mean aggregation, we observe that in the major-
ity of benchmark problems, more general reaction conditions are obtained by considering multiple
substrates. The only exemption to this observation is the Deoxyfluorination reaction benchmark, a
benchmark with a particularly low number of conditions with a high threshold aggregation value (see
Figure 30). In addition, we also observe a highly similar behaviour of the original and augmented
benchmarks, which is due to the addition of low-performing reactions in the augmentation, which
only slightly influences the results of the threshold (i.e. number of high-performing reactions).
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Figure 31: Normalized test-set generality score as determined by exhaustive grid search for the
four benchmarks on the original (left) and augmented (right) problems for the threshold aggregation.
Average and standard error are taken from thirty different train/test substrates splits.

Furthermore, we studied how different sampling techniques among the train set substrates influence
the obtained generality scores. As sampling techniques, we used random sampling, farthest point
sampling and “average sampling”, as outlined in Appendix A.3. For ϕ as the mean aggregation,
the results for the four different benchmarks are shown in Figure 32, Figure 33, Figure 34, and
Figure 35. For ϕ as the threshold aggregation, the results for the two different benchmarks are
shown in Figure 36, Figure 37, Figure 38, and Figure 39. Throughout the different benchmarks
and aggregation functions, we observe that the generality score obtained through using the sampled
train substrates are highly similar and no method clearly outperforms the others. It is particularly
notable that farthest point sampling did not outperform other sampling techniques, as this strategy
is commonly used to select chemicals to broadly cover chemical space (Henle et al., 2020; Gensch
et al., 2022a;b; Schnitzer et al., 2024). We hypothesize that this method insensitivity is due to the low
number of substrates chosen for the train set, which was chosen to still reflect realistic experimental
cases.

A.6.2 ADDITIONAL RESULTS ON THE BENCHMARKING ON THE AUGMENTED BENCHMARKS

In addition to the experiments shown in the main text, we benchmarked the sequential one-step and
two-step lookahead functions where either a single substrate is selected or in the complete mon-
itoring case. For both the one-step and two-step lookahead acquisition strategies we observe a
significant loss in optimization efficiency for generality-oriented optimization, when only a single
substrate is considered (see Figure 40). This is expected, as the constant observation of only one sub-
strate does provide limited information into how different substrates might react, which is unsuitable
for generality-oriented optimization. Similarly, the results shown in Figure 41 clearly demonstrate
that a complete monitoring scenario is not optimally efficient for generality-oriented optimization.
We hypothesize that this is because the X can be more efficiently explored, as not every substrate
has to be tested for a specific set of reaction conditions. This underlines the utility of improved and
efficient decision-making algorithms in complex optimization scenarios.
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Figure 32: Generality score as determined by exhaustive grid search for the Pd-catalyzed carbon-
heteroatom coupling benchmark on the original (left) and augmented (right) problems for the mean
aggregation as ϕ. Average and standard error are taken from thirty different train/test substrates
splits.
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Figure 33: Generality score as determined by exhaustive grid search for the N,S-Acetal formation
benchmark on the original (left) and augmented (right) problems for the mean aggregation as ϕ.
Average and standard error are taken from thirty different train/test substrates splits.

A.6.3 ADDITIONAL RESULTS ON THE BENCHMARKING ON THE ORIGINAL BENCHMARKS

In addition to the results described above, we also benchmark the strategies described in Table 2
on the original benchmarks. In general, we observe highly similar results compared to the aug-
mented benchmarks that have already been discussed. This emphasizes that, while augmentation
of established benchmarks remains necessary to reflect real-world conditions, the conclusions on
algorithmic performances remain largely unaffected from the biases within the benchmarks. A high
robustness in optimization performance on benchmark distribution further increases the utility of
generality-oriented optimization in the laboratory.

Specifically, we find that, similar to the augmented benchmarks, the SEQ 1LA-UCB-PV strat-
egy shows a significantly better optimization performance than other algorithms published in the
chemical domain (see Figure 42). Comparing multiple one-step and two-step lookahead acquisition
strategies, with varying αx again emphasizes that both strategies perform similarly and that an explo-
rative acquisition of xnext is crucial for successful generality-oriented optimization (see Figure 43).
Confirming results from the augmented benchmarks, we also observe that a variation in αw does not
affect the optimization performance of the one-step lookahead acquisition strategy, while a random
acquisition of wnext leads to less efficient optimizations for two-step lookahead strategies (see Fig-
ure 43). In addition, we also confirm the surprising empirical observation that a joint acquisition of
xnext and wnext does not yield to a significantly improved optimization performance compared to a
sequential acquisition (see Figure 44).
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Figure 34: Generality score as determined by exhaustive grid search for the Borylation reaction
benchmark on the original (left) and augmented (right) problems for the mean aggregation as ϕ.
Average and standard error are taken from thirty different train/test substrates splits.
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Figure 35: Generality score as determined by exhaustive grid search for the Deoxyfluorination re-
action benchmark on the original (left) and augmented (right) problems for the mean aggregation as
ϕ. Average and standard error are taken from thirty different train/test substrates splits.

Lastly, we also demonstrate that a generality-oriented optimization with a single substrate and in the
complete monitoring case leads to suboptimal optimization performance, as shown in Figure 45 and
Figure 46, respectively.
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Figure 36: Generality score as determined by exhaustive grid search for the Pd-catalyzed carbon-
heteroatom coupling benchmark on the original (left) and augmented (right) problems for the thresh-
old aggregation as ϕ. Average and standard error are taken from thirty different train/test substrates
splits.
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Figure 37: Generality score as determined by exhaustive grid search for the N,S-Acetal formation
benchmark on the original (left) and augmented (right) problems for the threshold aggregation as ϕ.
Average and standard error are taken from thirty different train/test substrates splits.
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Figure 38: Generality score as determined by exhaustive grid search for the Borylation reaction
benchmark on the original (left) and augmented (right) problems for the threshold aggregation as ϕ.
Average and standard error are taken from thirty different train/test substrates splits.
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Figure 39: Generality score as determined by exhaustive grid search for the Deoxyfluorination reac-
tion benchmark on the original (left) and augmented (right) problems for the threshold aggregation
as ϕ. Average and standard error are taken from thirty different train/test substrates splits.
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Figure 40: Optimization trajectories of different algorithms used for generality-oriented optimiza-
tion considering multiple or a single substrate. The trajectories are averaged over all augmented
benchmark problems with the mean (left) and threshold (right) aggregations. Optimization algo-
rithms are described in Table 1.
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Figure 41: Optimization trajectories of different algorithms used for generality-oriented optimiza-
tion considering the partial or complete monitoring case, respectively. The trajectories are averaged
over all augmented benchmark problems with the mean (left) and threshold (right) aggregations.
Optimization algorithms are described in Table 1.
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Figure 42: Optimization trajectories of different algorithms used for generality-oriented optimiza-
tion in the chemical domain. The trajectories are averaged over all original benchmark problems
with the mean (left) and threshold (right) aggregations. Optimization algorithms are described in
Table 1.
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Figure 43: Optimization trajectories of different sequential acquisition strategies for generality-
oriented optimization. The top row shows the influence of variation of the acquisition strategy of
xnext (i.e., variation of αx), while the bottom row shows the influence of variation of the acquisition
strategy of wnext (i.e., variation of αw). The trajectories are averaged over all original benchmark
problems with the mean (left) and threshold (right) aggregations. Optimization algorithms are de-
scribed in Table 1.
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Figure 44: Optimization trajectories of sequential and joint two-step lookahead acquisition strategies
for generality-oriented optimization. The trajectories are averaged over the N,S-Acetal formation
and Deoxyfluorination reaction original benchmark problems with the mean (left) and threshold
(right) aggregations. Optimization algorithms are described in Table 1.
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Figure 45: Optimization trajectories of different algorithms used for generality-oriented optimiza-
tion considering multiple or a single substrate. The trajectories are averaged over all original bench-
mark problems with the mean (left) and threshold (right) aggregations. Optimization algorithms are
described in Table 1.
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Figure 46: Optimization trajectories of different algorithms used for generality-oriented optimiza-
tion considering the partial or complete monitoring case, respectively. The trajectories are averaged
over all original benchmark problems with the mean (left) and threshold (right) aggregations. Opti-
mization algorithms are described in Table 1.
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