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Abstract—Accurate extraction and standardization of clinical
diagnoses from unstructured electronic health records (EHRs)
remain a critical challenge in healthcare data science. This study
is among the first to evaluate the performance of scispaCy for
mapping diagnosis concepts extracted from MIMIC-IV clinical
notes to standardized medical codes. Our natural language
processing (NLP) pipeline leverages scispaCy to map diagnosis
concepts to Unified Medical Language System (UMLS) Concept
Unique Identifiers (CUIs) and crosswalk these to ICD-10 and
SNOMED-CT codes. Applied to the MIMIC-IV dataset, the
pipeline demonstrated robust coverage, successfully mapping
94.1% of extracted diagnosis concepts to UMLS CUIs across
98% of patients, with 80.3% of patients having CUIs mapped to
ICD-10. Exact ICD-10 code matches between model output and
MIMIC-IV diagnosis records were observed in 58.3% of patients,
while a hierarchical category level roll-up comparison improved
matching to 83.1%, reflecting clinical coding complexities. The
pipeline’s reliance on UMLS CUIs offers versatility across coding
standards, and its design supports integration with existing
EHR systems using standard hardware, enhancing accessibility.
Our approach poses a lower risk of hallucination and reduces
gender and racial bias compared to large language models, as
it relies on structured vocabularies rather than generative deep
learning. This work highlights the promise of combining rule-
based and statistical NLP methods for scalable, transparent,
and clinically relevant diagnosis mapping, with the potential
to improve research applications and clinical decision support
systems.

Index Terms—Natural language processing, scispaCy, ICD-
10, SNOMED, MIMIC-IV, Clinical coding, Diagnosis mapping,
Medical concept extraction

I. INTRODUCTION

Electronic Health Records (EHRs) have become founda-
tional to modern healthcare, offering a digital infrastructure
for storing both structured and unstructured patient data [1].
Structured data refers to standardized, pre-defined fields such
as lab results, medication codes, and vital signs, etc., organized

in relational formats suitable for computation. In contrast,
unstructured data consists of narrative, free-text entries like
clinical notes, discharge summaries, and diagnosis descrip-
tions, which lack a consistent format and are more difficult
to process automatically [2,3]. While structured data benefits
from established standards that ensure semantic interoper-
ability and machine-readability [4], unstructured clinical text,
despite containing richer and more nuanced insights, presents
challenges due to its inconsistent formatting, lack of standard-
ization, and variable data quality [5,6].

Historically underutilized, unstructured clinical text is gain-
ing renewed attention due to advances in Natural Language
Processing (NLP) and biomedical informatics. These advances
have made it increasingly feasible to extract and structure
meaningful information from narrative content [5,7]. Studies
have shown that unstructured data often captures ambiguity,
missingness, and clinical subtleties that structured data may
overlook [7]. This has important implications for secondary
data use and diagnostic decision-making. In the context of
clinical trials, unstructured text often contains critical informa-
tion such as eligibility criteria for patients, details of adverse
events, and nuanced results that are not routinely captured
in structured fields, thus playing a pivotal role in cohort
identification and trial monitoring [7]. To enhance interoper-
ability and computational utility, there is growing interest in
mapping free-text diagnoses to standardized vocabularies such
as the International Classification of Diseases (ICD-10) and
the Systematized Nomenclature of Medicine - Clinical Terms
(SNOMED-CT).

A range of tools and methods has emerged to support
this codification process, spanning rule-based systems to deep
learning-based classifiers. Dong et al. (2022) highlighted key
challenges in developing robust and explainable clinical coding



systems, particularly around generalization, zero-shot code
prediction in Machine Learning models, and integration of
domain knowledge [8]. Other approaches, such as those by
Silva H et al. (2024), have employed cosine similarity for
ICD-10 code suggestion [9], while models like CODER use
cross-lingual contrastive learning to capture semantic sim-
ilarity in concept embeddings [10], although they are not
directly optimized for codification. Abdulnazar et al. (2024)
proposed an unsupervised bi-encoder model for SNOMED-
CT annotation, showing promise for pre-labeling tasks in low-
resource settings but notes ongoing challenges with contextual
interpretation, false positives, and clinical language variability,
suggesting the need for further refinement [11].

Among these, scispaCy has emerged as a widely used
general-purpose biomedical NLP toolkit, offering pre-trained
models for tasks such as named entity recognition (NER) and
entity linking [12,13]. Importantly, scispaCy’s entity linking
models are trained to map extracted entities to concepts in the
Unified Medical Language System (UMLS) [14] a compre-
hensive biomedical thesaurus that integrates a wide range of
standard clinical terminologies, including ICD-10, SNOMED-
CT, LOINC, and others. This connection positions scispaCy
as a theoretically promising tool for clinical codification, as
it can inherently leverage semantic interconnections between
medical vocabularies through UMLS.

While recent advances in Large Language Models (LLMs)
have demonstrated few-shot and zero-shot performance on
a variety of clinical NLP tasks, these models are often
computationally intensive and not yet optimized for clinical
mapping [15]. In contrast, lightweight, domain-specific tools
like scispaCy offer a more transparent and resource-efficient
alternative. However, to date, no studies have systematically
evaluated scispaCy’s effectiveness for mapping to ICD-10
or SNOMED-CT using real-world datasets such as Medical
Information Mart for Intensive Care (MIMIC-IV) [16], despite
its widespread use for the extraction of biomedical entities.
Such an evaluation is critical to understanding the practical
utility and limitations of off-the-shelf biomedical NLP tools
in supporting clinical codification workflows.

To address this gap, we propose and evaluate a novel two-
stage pipeline for diagnosis code mapping using scispaCy.
In the first stage, primary diagnosis statements are extracted
from MIMIC-IV clinical notes using a rule-based method
developed for this purpose. In the second stage, these extracted
diagnoses are processed using scispaCy to identify biomedical
entities and map them to ICD-10 and SNOMED-CT codes.
We evaluated the performance and practical implications of
the system, especially its potential for integration into clinical
coding workflows.

To our knowledge, this is the first systematic evaluation
of scispaCy for diagnosis code mapping using MIMIC-IV
discharge summaries. This work contributes practical insights
into the performance of open-source biomedical NLP tools
and highlights their potential, particularly in a low-resource
setting.

II. METHODOLOGY

We outline below the detailed methodology employed in
constructing and assessing the proposed pipeline.

A. Dataset Description
We utilized the Medical Information Mart for Intensive Care

IV (MIMIC-IV) dataset, a publicly available, de-identified
database [17] containing comprehensive clinical data from
patients admitted to critical care units at the Beth Israel
Deaconess Medical Center between 2008 and 2019. Specif-
ically, we focused on the MIMIC-IV Note module, which
includes unstructured clinical documentation such as discharge
summaries, progress notes, and nursing observations.

For this study, we leveraged discharge summaries, as they
routinely contain definitive primary diagnostic statements that
reflect clinicians’ final assessments at the end of a hospital
stay. Our analysis encompassed all discharge summaries as-
sociated with unique subject IDs in the dataset, resulting in
a corpus of over 145,000 patients and their corresponding
diagnosis narratives.

B. Primary Diagnosis Extraction and Cleaning
To isolate relevant diagnosis content, we developed an

automated rule-based script to extract text from sections of
the discharge summaries explicitly annotated as “Discharge
Diagnosis” and “Primary Diagnosis” by MIMIC-IV [17].
Within these targeted segments, we further processed the
text to identify individual diagnosis entities. Multi-condition
spans were parsed into separate entries by applying syntactic
splitting rules, removal of extraneous tokens (e.g., punctuation,
stopwords, section labels), deduplicating concepts, and format-
ting standardization was done as part of cleaning [18]. This
preprocessing enabled the scalable extraction of over 1 million
diagnosis entries across the cohort. To validate extraction accu-
racy, we manually reviewed a random sample of 200 diagnosis
statements, confirming the precision of the heuristic method
of extraction and cleaning. All processing was performed in
Python, and the codebase is publicly available on GitHub
- https://github.com/pnaliyatthaliyazchayil/scispacy pipeline
analysis.

Fig. 1. Free-text Diagnosis Mapping Pipeline using SciSpacy

C. Mapping Concepts to UMLS Concept Unique Identifier
Using scispaCy

Each cleaned diagnosis statement was individually pro-
cessed using scispaCy, an open-source Python library de-
veloped by the Allen Institute for AI for biomedical text



processing [13]. Built on top of spaCy, scispaCy provides
pre-trained models optimized for biomedical language tasks,
including named entity recognition (NER) and entity linking to
UMLS [14]. For this task, we employed the ’en core sci lg’
model, which includes a large vocabulary, domain-specific
word embeddings, and an entity linker trained on UMLS[19].
A summary of the end-to-end pipeline is presented in Figure
1.

For each row, this module follows these steps:
• NER Step: The diagnosis text is tokenized and parsed to

identify one or more biomedical entities.
• Entity Linking Step: Each identified entity is matched

against UMLS concepts using a string similarity al-
gorithm, returning the best candidate Concept Unique
Identifier (CUI) along with metadata such as similarity
score.

This process results in a list of recognized biomedical entities
for each diagnosis, each mapped to one or more UMLS CUIs
which serve as standardized representations. The output of this
module is a structured dataset linking free-text diagnosis inputs
to their corresponding UMLS identifiers.

D. Crosswalking UMLS CUIs to ICD-10 and SNOMED-CT
Codes

After assigning UMLS CUIs to the extracted diagnosis
terms, we crosswalked them to ICD-10 and SNOMED-CT
codes using the UMLS, specifically the MRCONSO.RRF file,
which links CUIs to standardized vocabularies [20]. ICD-10
is primarily used for billing, reporting, and epidemiological
surveillance [21], while SNOMED-CT provides a clinically
rich, hierarchically structured terminology suited for documen-
tation, interoperability, and clinical decision support [22].

Since concept CUIs can be associated with both code sys-
tems, we employed a hierarchical mapping strategy: ICD-10
codes were prioritized when available. Otherwise, SNOMED-
CT codes were selected. To improve semantic accuracy, we
restricted mappings to preferred terms (term type: ‘PT’) within
each vocabulary. This strategy improved coding coverage
while preserving alignment with the diagnostic focus of
our use case. The choice to prioritize ICD-10 codes over
SNOMED-CT was driven by the predominance of ICD-10
coding in the MIMIC-IV database. This facilitates direct com-
parison of the scispaCy-generated outputs with the database’s
ground truth.

E. Evaluation

To assess the performance of our mapping pipeline, we
compared the ICD-10 codes generated by the system against
the ground truth ICD-10 codes in the MIMIC-IV dataset. We
conducted two types of evaluations: an exact code comparison
and a roll-up comparison to the category level parent code.
Since clinically relevant predictions can be as important as
exact matches, we included a category-level roll-up, where
both predicted and ground truth ICD-10 codes were rolled up
to their first three characters. This level of abstraction corre-
sponds to the diagnostic category defined by the World Health

Organization (WHO) in the ICD-10 hierarchy [23] and is
widely used in clinical and epidemiological research to group
related conditions [24]. For example, I25.11 (Atherosclerotic
heart disease of native coronary artery with angina pectoris)
and I25.1 both fall under the broader category I25 (Chronic
ischemic heart disease) and are rolled up to it, as illustrated
in Figure 2. By evaluating performance at this level, we
allow partial credit for predictions that capture the correct
clinical condition even when the specific subcode differs. This
approach acknowledges variability in subcode assignment and
emphasizes clinically meaningful alignment.

Fig. 2. Example of ICD-10 roll-up to parent level in ground truth and pipeline-
generated codes for evaluation of clinical relevance

III. RESULTS

A. Evaluation of Extracting Diagnosis Concepts

The MIMIC-IV dataset includes Diagnosis records for
221,122 patients. Following automated extraction and cleaning
of “Discharge Diagnosis” and “Primary Diagnosis” sections
from discharge summaries, we obtained 1,078,656 cleaned
diagnosis concepts associated with 145,219 patients. As ex-
pected, individual patients may have multiple diagnoses across
different encounters. Some subject records did not contain the
targeted diagnosis sections within their discharge summaries,
and therefore, it is expected that the number of patients
represented in the extracted data is lower than the total number
available in the MIMIC-IV Diagnosis.

B. Evaluation of Mapping Diagnosis Concepts to UMLS CUIs

Using SciSpaCy, we successfully mapped 1,015,591
(94.1%) of the extracted diagnosis concepts to UMLS CUIs,
covering 142,468 out of the 145,219 patients (98.1%) included
in the diagnosis extraction step. The remaining 1.9% of pa-
tients could not be assigned CUIs due to ambiguous phrasing
of diagnosis terms, limitations in the vocabulary, or unmatched
terminology. An overview of mapping coverage is presented
in Figure. 3.

C. Evaluation of Crosswalking UMLS CUIs to ICD-10 and
SNOMED-CT Codes

After mapping diagnosis concepts to UMLS CUIs, we
crosswalked each CUI to standardized clinical terminologies,
ICD-10 and SNOMED-CT. Out of the 142,468 patients with
mapped CUIs:



Fig. 3. Patients with UMLS CUIs mapped

• 114,501 patients (80.3%) had at least one diagnosis
concept mapped to an ICD-10 code.

• 23,933 patients (16.8%) had diagnosis concepts mapped
to SNOMED-CT codes.

These mapping counts are mutually exclusive due to our
hierarchical mapping strategy, which prioritizes ICD-10 codes
when a concept is linked to both terminologies. Figure. 4
provides a detailed breakdown of both the number of diagnosis
concepts and unique patients successfully mapped to ICD-
10 and SNOMED-CT codes, illustrating coverage from the
perspectives of extracted concepts and patient representation.

Fig. 4. Number of diagnosis concepts and unique patients successfully
mapped to ICD-10 and SNOMED-CT codes

D. Comparison of Model-Generated ICD-10 Codes to
MIMIC-IV Ground Truth

To evaluate the accuracy of our NLP-generated diagnosis
codes, we compared them against the MIMIC-IV Diagnosis
codes. The MIMIC-IV Diagnosis table primarily contains
ICD-10 codes, with a small subset of ICD-9 codes. To ensure
direct comparability, we first crosswalked all ICD-9 codes to
their corresponding ICD-10 equivalents prior to comparison.

Following this standardization, we joined the model-
generated Subject IDs with ICD-10 codes to the ground
truth Subject IDs from the MIMIC-IV Diagnosis table (post-
crosswalk). Only patients with ICD-10 codes present in both
the model output and the ground truth were retained for
evaluation, resulting in a final comparison cohort of 102,539
patients.

We then conducted two types of comparisons against the
MIMIC-IV ICD-10 ground truth codes:

• Direct Code-Level Comparison: We directly compared
the generated ICD-10 codes with the exact ICD-10 codes
documented for each patient in MIMIC-IV. This strict
matching assesses the exact code-level accuracy of the
model output. Out of the 102,539 patients in the evalu-
ation cohort, 59,742 patients (58.3%) had at least one
model-generated ICD-10 code that exactly matched a
ground truth code.

• Hierarchical Roll-up Comparison: Recognizing that some
ICD-10 codes vary only in their level of specificity
(parent vs. child codes), we also performed a roll-up
comparison. Both generated and MIMIC-IV codes were
rolled up to their category level parent codes within the
ICD-10 hierarchy, as shown in an example, Figure 2.
Accuracy was then evaluated by comparing these parent-
level codes, allowing partial credit when the model pre-
dicts a clinically relevant broader category, even if the
precise subcode is missed. Out of the 102,539 patients
in the evaluation cohort, 85,185 patients (83.1%) had at
least one model-generated ICD-10 code that matched a
ground truth code at the parent roll-up level.

This dual evaluation approach balances strict code-level preci-
sion with clinically meaningful hierarchical correctness, pro-
viding a nuanced understanding of the model’s performance.
These two were independent, parallel comparisons, both as-
sessing model-generated ICD-10 codes against the MIMIC-
IV ground truth for the same cohort of 102,539 patients. The
evaluations were conducted separately and are not mutually
exclusive, and are shown in Figure 5.

For external benchmarking, a recent study evaluated the out-
of-the-box performance of several LLMs for ICD coding. The
best-performing LLM (OpenAI O3) achieved 45.3% exact-
code accuracy [25], notably lower than the 58.3% exact-
code accuracy (83.1% at the category level) achieved by this
scispaCy-based pipeline.

Fig. 5. Comparison of ICD10 codes generated by scispaCy to MIMIC-IV

E. F1 score for Model Generated ICD-10 Codes

The F1 score is a harmonic mean of precision and recall,
commonly used to evaluate classification tasks by balancing
false positives and false negatives. In our case, ICD-10 code
prediction is a multiclass, multilabel problem, each patient can
have multiple diagnoses codes. Our model predicted codes also
have multiple ICD-10 codes.



We evaluated ICD-10 code mapping using multilabel F1
scores, balancing precision and recall. Unlike traditional one-
to-one classification, our setting reflects real-world clinical
data, where each patient can have multiple ICD-10 codes. A
match was counted if one or more predicted code matched a
ground truth for each patient. Using exact code matches, the F1
was 0.245; when rolling codes up to ICD-10 category parents,
F1 improved to 0.374, capturing broader diagnostic relevance.
We also used weighted metrics to address class imbalance,
ensuring that common conditions contributed proportionally
to overall performance.

These F1 scores reflect the model’s ability to correctly
identify relevant diagnoses (minimizing false negatives) while
avoiding incorrect ones (minimizing false positives), providing
a clinically meaningful measure of overall diagnostic align-
ment.

F. Distribution of Matching ICD-10 Diagnoses Across Pri-
mary, Secondary, and Tertiary Categories

In MIMIC-IV, each diagnosis is assigned a sequence num-
ber that reflects its clinical priority: 1 indicates the primary
diagnosis, 2 the secondary, and 3 or higher represents tertiary
or additional diagnoses.

To better understand how well our model predicts clinically
important diagnoses, we analyzed the 59,742 exact ICD-10
code matches between our model and the MIMIC-IV ground
truth. Given the many-to-many nature of diagnosis prediction,
where each patient can have multiple predicted and ground
truth codes, we selected the first available sequence number
and its corresponding ICD-10 code per patient to categorize
the match by priority.

Among the exact matches:
• Primary diagnosis (sequence number = 1): 41.1% of

matches
• Secondary diagnosis (sequence number = 2): 17.1% of

matches
• Tertiary or beyond (sequence number ≥ 3): 41.8% of

matches
This indicates that while the model most frequently iden-

tifies the primary diagnosis, a large portion of correct pre-
dictions also capture secondary and tertiary conditions. This
suggests the model’s ability to extract a broad spectrum of
relevant clinical information from unstructured notes. Figure.
6 visualizes the match distribution by sequence number, and
Table 1 reports the exact proportions.

DISCUSSION

In this study, we developed and evaluated a scalable NLP
pipeline using scispaCy to extract diagnoses from MIMIC-IV
discharge summaries and map them to standardized terminolo-
gies such as ICD-10 and SNOMED-CT. Beyond conventional
entity recognition, our approach enables large-scale mapping
of free-text clinical diagnoses and includes a task-specific
pipeline to handle documentation challenges. To our knowl-
edge, this is the first study to both build a scispaCy-based

Fig. 6. Density Plot of Exact ICD-10 Code Matches by First Available
Diagnosis Sequence Number in Ground Truth

TABLE I
PROPORTION OF PATIENTS WITH EXACT ICD-10 CODE MATCHES BASED

ON FIRST AVAILABLE DIAGNOSIS SEQUENCE NUMBER IN GROUND
TRUTH

Sequence Patient Statistics
Number Total Patients Matched Patients Proportion

1 59742 24574 0.411
2 59742 10249 0.171
3 59742 6649 0.111
4 59742 4519 0.075
5 59742 3282 0.054
6 59742 2422 0.040
7 59742 1810 0.030
8 59742 1417 0.023
9 59742 1111 0.018
10 59742 892 0.013
11 59742 608 0.010
12 59742 490 0.008
13 59742 401 0.006
14 59742 293 0.004
15 59742 1088 0.018

pipeline for mapping free-text clinical diagnoses and system-
atically compare the mapped outputs to structured MIMIC-
IV diagnosis codes. All notes were de-identified per HIPAA
standards; real-time EHR applications would require additional
de-identification to ensure patient privacy compliance.

Benchmarking Accuracy and Clinical Relevance

Our pipeline demonstrated robust coverage, successfully
mapping 94.1% of extracted diagnosis concepts to UMLS
CUIs, spanning 98% of patients in the cohort, with 80.1% of
patients subsequently mapped to ICD-10 codes. Comparing to
the MIMIC-IV structured ’Diagnosis’ table, which primarily
contains ICD-10 codes, 58.3% of patients had at least one
exact ICD-10 code match between the model output and
ground truth, reflecting the inherent complexity and granularity
of medical coding [26], where even human coders can vary
in specificity. A preliminary review of the 41.7% unmatched
cases suggests broad reasons for mismatch, including non-
disease entities (e.g., secondary diagnoses, social history),



contextual descriptions (e.g., syncope secondary to hypov-
olemia), synonym or phrasing variation (e.g., COPD exac-
erbation) and granularity differences. A more in-depth error
analysis, including clinical expert review, will be conducted
in future work. To further investigate granularity differences,
we performed a roll-up comparison, where both generated and
ground truth codes were rolled up to their category level parent
codes within the ICD-10 hierarchy. This approach yielded a
higher match rate of 83.1% of patients, reflecting the clinical
relevance of capturing broader diagnostic categories even if the
exact subcode is missed. This dual evaluation balances strict
precision with meaningful clinical context, acknowledging that
perfection in coding may not be the primary goal of automated
tools, designed to aid rather than replace human expertise.

Importantly, we benchmarked our results against a recent
study that evaluated the out-of-the-box performance of several
large language models (including ChatGPT-4, Gemini 1.5,
LLaMA 1.3, DeepSeek R1, and OpenAI’s O3) on ICD coding
tasks. That study found substantially lower accuracy, with the
best model (OpenAI O3) reaching only 45.3% exact-code ac-
curacy and an F1 score of 0.12 [25]. In contrast, our scispaCy-
based pipeline achieved 58.3% exact-code accuracy (83.1% at
the category level). This direct benchmark underscores that a
lightweight, transparent, and computationally efficient pipeline
can not only match but surpass the performance of current
general-purpose LLMs for automated clinical coding.

A notable observation is that, while 41.1% of matched
patients had a correct prediction for their primary diagnosis,
this accounts for only approximately 24% of the full cohort of
102,539 patients with ground truth data, showing the challenge
of accurately predicting the ’primary’ diagnosis despite the
overall accuracy.

The Ground Truth Dilemma: Limitations of Structured Diag-
noses

It is also critical to consider that the MIMIC-IV Diagnosis
table serves as the ground truth in this study; however, the
absence of raw strings from structured diagnosis data limits
our ability to verify the validity of these mapped codes in the
ground truth. Therefore, some NLP-identified codes missing
from the ground truth may reflect true clinical findings rather
than errors. This limitation likely contributes to the observed
low F1 scores, 0.245 for exact matches and 0.374 for the cat-
egory roll-up approach, as discrepancies may reflect genuine
clinical information not captured in the ground truth dataset
rather than just false positives or false negatives. Additionally,
our evaluation is limited to a single institution’s data, which
may impact generalization. To improve these limitations of
our study, future work will focus on expanding to multiple
institutional datasets and those that contain raw clinical strings
alongside human-coded mappings in ground truth, to enable
more comprehensive validation. We also note that this study
did not include validation by clinical experts, which limits our
ability to fully assess the clinical correctness of the model-
generated codes.

Built for Deployment: Efficient, Scalable, Transparent, and
Flexible

Despite some limitations, scispaCy offers practical advan-
tages for clinical use. By leveraging UMLS CUIs, it flexibly
maps to standard terminologies like ICD-10 and SNOMED-
CT, with high entity match rates supporting research and
decision-making. Its modular, rule- and statistics-based de-
sign runs on standard hardware(16 GB RAM, 4-core CPU),
scales efficiently (processing over one million diagnoses from
100,000+ notes in 20 minutes), and can integrate with EHRs
via standard APIs. Unlike black-box deep learning models, it
ensures transparency and can be extended through APIs or
LLM integration via the Model Context Protocol (MCP).

While MIMIC-IV contains unstructured notes with labeled
section headers, many real-world clinical notes may lack such
structure or follow different documentation practices, includ-
ing variations in formatting, section naming, abbreviations,
and phrasing. Our pipeline is flexible and does not rely on
structured formatting. If headers are present, section-based
filtering can be used or customized; if absent, the pipeline
proceeds directly, as scispaCy maps clinical entities to UMLS
CUIs, and a single line of code filters for the semantic type
‘Disease or Syndrome’ to isolate diagnosis-relevant concepts.
These entities can then be mapped to standardized codes such
as ICD-10 or SNOMED, enabling robust extraction even from
fully unstructured notes. At the same time, national interoper-
ability efforts, such as those led by the Office of the National
Coordinator for Health IT (ONC) and the adoption of HL7
FHIR standards, continue to encourage more consistent struc-
turing of EHR unstructured documentation [27]. Increased use
of standardized templates and controlled vocabularies could
reduce variability in clinical notes, complementing NLP-based
approaches and further improving the reliability of automated
diagnosis extraction.

scispaCy as a Safer Alternative to LLMs for semantic mapping

Ethically and practically, our approach offers advantages
over black-box LLMs. Unlike LLMs, which can sometimes
hallucinate or generate inaccurate information [28,29], the
scispaCy-based NLP pipeline uses rule-based mappings to
UMLS CUIs, minimizing such risks. This approach ensures
that extracted clinical concepts are reliable and grounded in
established medical vocabularies. The deterministic nature of
scispaCy provides consistent and interpretable results, making
it well-suited for clinical applications requiring high accuracy
and traceability. The risk of perpetuating racial or gender bi-
ases is relatively low in scispaCy, as it is trained on the UMLS
Metathesaurus, a structured and curated vocabulary, unlike
LLMs. While LLMs offer broader conceptual understanding,
they carry a higher risk of reinforcing biases and often require
additional mitigation tools [29].

CONCLUSION

In a fragmented U.S. healthcare system, where interoper-
ability remains challenging despite initiatives like the 21st
Century Cures Act, our lightweight, transparent, and adaptable



pipeline provides a practical path for standardizing clinical
data. It efficiently maps large volumes of unstructured notes to
standard terminologies, supporting smaller organizations that
lack resources for complex AI solutions. Dual-level evaluation,
exact code matching and category roll-up, highlights the
complexity of clinical coding. Compared to large language
models, scispaCy offers a more controlled, interpretable, and
less biased alternative. Future work should integrate richer
datasets and explore human-in-the-loop frameworks to im-
prove accuracy and clinical utility.
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