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Abstract

Transformers have demonstrated tremendous success not only in the natural lan-1

guage processing (NLP) domain but also the field of computer vision, igniting2

various creative approaches and applications. Yet, the superior performance and3

modeling flexibility of transformers came with a severe increase in computation4

costs, and hence several works have proposed methods to reduce this burden. In-5

spired by a cost-cutting method originally proposed for language models, Data6

Multiplexing (DataMUX), we propose a novel approach for efficient visual recog-7

nition that employs additional dim1 batching (i.e., concatenation) that greatly8

improves the throughput with little compromise in the accuracy. We first introduce9

a naive adaptation of DataMux for vision models, Image Multiplexer, and devise10

novel components to overcome its weaknesses, rendering our final model, Concat-11

Plexer, at the sweet spot between inference speed and accuracy. The ConcatPlexer12

was trained on ImageNet1K and CIFAR100 dataset and it achieved 23.5% less13

GFLOPs than ViT-B/16 with 69.5% and 83.4% validation accuracy, respectively.14

1 Introduction15

Deep learning research community has experienced dazzling advances in model performance across16

a wide variety of domains and downstream tasks in the last decade [1, 2, 3, 4, 5, 6, 7]. These improve-17

ments, however, came at the cost of rapidly increasing computational burden, with the introduction18

of Transformer [2, 3, 8] marking a major milestone in this aspect. With the growing popularity19

of transformers, methods to reduce their computational costs have become a prominent research20

topic [9, 10, 11, 12, 13, 14]. However, previous efforts to improve the computational efficiency of21

transformers have been mostly focused on the NLP domain. Data multiplexing (DataMUX) [15]22

pioneered this direction of research for language models by projecting multiple input tokens into a23

single compact representation space and thus enabling the neural network to process them simultane-24

ously. Although DataMUX [15] has delivered promising preliminary results for the concept of data25

multiplexing, there is much room for research remaining unexplored especially in the vision domain.26

For instance, it has mainly trained the transformer on the GLUE benchmark and as a CV task, the27

authors have only experimented on the MNIST dataset with light Multi-Layer Perceptron (MLP) and28

Convolutional Neural Network (CNN). This experimental setting is at best a proof-of-concept and29

thus insufficient to ensure its general applicability in the vision domain.30

In this paper, we explore the potential of data multiplexing in larger scale general vision applications31

such as ImageNet1K [16] classification. To that end, we first show the limitations of naive adaptation32

of DataMUX by constructing a simple baseline named Image Multiplexer that employs DataMUX33

for visual recognition with minimal modifications. We then progressively transform this architecture34

to reach a favorable trade-off between the accuracy and inference speed, presenting our final model,35

ConcatPlexer. ConcatPlexer, in short, is a method for efficiently extracting multiple images’ represen-36
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tation at once. ConcatPlexer extracts high-level feature tokens via Transformer encoder layers. Then37

instead of projecting multiple inputs to a compact representation space, our ConcatPlexer reduces the38

length of input tokens using a learned convolution and concatenates them for simultaneous processing.39

Comparison with the naive Image Multiplexer clearly demonstrates that DataMUX in its native form40

is ill-suited for vision models but can be made effective with our proposed modifications.41

The ConcatPlexer and its MultiPlexer baseline are pretrained and compared on ImageNet1K [16],42

making them generally applicable vision frameworks. We further finetune them on CIFAR100 [17]43

and evaluate the result. For evaluation of this new framework, we suggest a "multiplexed image44

classification task", whose goal is to classify multiple images multiplexed into a single representation.45

ConcatPlexer achieves consistent gains over its baselines in both ImageNet and CIFAR100, supporting46

its effectiveness in visual recognition tasks.47

The contribution of this paper is as follows:48

1. This paper defines the "multiplexed image classification task" and deal with the concept of49

data multiplexing that projects multiple inputs into a single representation for efficient data50

processing in the vision domain.51

2. We propose the ConcatPlexer, a novel framework for multiplexing images, and test its52

performance on ImageNet1K and CIFAR100 benchmark. The ConcatPlexer extracts high-53

level featured tokens using the transformer encoder patchifier and concatenates multiple54

images to process them at once.55

3. We demonstrate that data multiplexing can obtain a favorable trade-off between throughput56

and accuracy. Our model can save up to 66.9% of FLOPs compared to ViT-B/16 with mild57

drop in accuracy.58

2 Related Work59

Data Multiplexing: The concept of data multiplexing was first suggested by DataMUX [15]. The60

DataMUX processes multiple inputs by projecting multiple texts into a single compact representation61

space. This enables models to process much larger batch with a same GPU resource. DataMUX62

and its latter version MUX-PLM [18] demonstrate their performance on GLUE Benchmark [19]. In63

this work, our proposed ConcatPlexer gains model efficiency by transplanting the data multiplexing64

method into the vision domain successfully.65

Token Reduction: Though we are the first to apply the concept of data multiplexing to vision66

domain to the best of our knowledge, there are studies that try to cut the computational cost of67

transformer-based models by reducing the number of input tokens. ToMe [14] merges similar tokens68

to reduce the length of the input sequence. The other approaches [13, 12] prune tokens into a single69

token to reduce the length of an input sequence. However, our method processes multiple inputs at70

the same time, naturally reducing the computational cost.71

72

3 Method73

3.1 Preliminary: DataMUX74

Multiplexing: To project multiple inputs into a single compact representation space, a multiplexing75

module is used. Consider (x1, · · ·, xN ) with xi ∈ Rd being a tuple of N inputs within a batch.76

Multiplexing transforms each input by ϕi : Rd 7→ Rd and averages at the end. A backbone takes a77

batch (x1, · · · , xN ) as an input and outputs the multiplexed hidden representation output h1:N .78

h1:N = Φ(x1, · · · , xN ) =
1

N

N∑
n=1

ϕi(xi). (1)

Considering the case for a sequenced token input with length L, the aforementioned multiplexing79

process is done in a token-wise order. For an input sequence xi = {wi
j}j∈[L], each token wj can be80

processed as81

hj
1:N = Φ(w1

j , · · · , wN
j ). (2)
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In DataMUX, either (1) a random fixed orthogonal matrix or (2) a fixed Gaussian random matrix is82

used for the linear projector ϕi. In our naively implemented Image Multiplexer, a fixed orthogonal83

matrix is used.84

85

Demultiplexing: To disentangle the multiplexed hidden representation output h1:N into N indepen-86

dent representation, demuxing module is used. Demultiplexing function Θi extracts ith representation87

from a multiplexed hidden representation as88

yi = Θi(h1:N ),∀i ∈ [N ]. (3)

For demultiplexing function, there are two choices: (1) MLP Demuxing: using N MLPs to extract89

N representation from h1:N and (2) Index Embedding. An MLP Demuxing is used for our naively90

implemented Image Multiplexer.91

Theoretical claim of DataMUX: The major factor that Transformer based models can handle the92

multiplexed task is Transformer’s multi-head attention mechanism. Each multi-head attention can93

extract features of different inputs within the multiplexed representation. Kindly refer to DataMUX94

[15] for more detailed theoretical claim.95

(a) (b)

Figure 1: Overall architecture of (a) Image Multiplexer and (b) ConcatPlexer. The Image Multiplexer
multiplexes NMUX images using MLP and fixed orthogonal matrices. The ConcatPlexer uses a conv
layer to reduce the length of each image token and concatenates them. NMUX is abbreviated as N in
this figure.

3.2 ConcatPlexer96

We propose the ConcatPlexer (Figure. 1-b), a model that successfully adapts the concept of DataMUX97

to the vision domain by addressing the structural differences between the two modalities. As explained98

in [20], the most decisive difference between visual signal and natural language lies in data redundancy.99

A pixel that constitutes an image rarely carries significant information by itself while a word token100

more likely carries important semantic information. In order to compensate for this difference and101

suit DataMUX for vision tasks, we compose our ConcatPlexer with the following architectural102

components: Transformer patchifier, ConcatMultiplexer, Demultiplexer, and the Backbone.103

Transformer Encoder Patchifier: To address the redundancy issue of pixel-based data, we extract104

high-level features before feeding to the multiplexing backbone. High-level featured tokens will105

reduce redundancy. This will make the backbone process and distinguish the multiple inputs parallelly.106

Transformer Encoder(TrE) Patchifier is a stacked transformer encoder layer with CNN layer at the107

front. Suppose that the dimension of input images is (bs, 3, W , H) where bs is the batch size, 3 is a108

color channel, W is the width of an image, and H is the height of an image. First, the CNN layer109

patchifies the image into a grid patch turning the input dimension into (bs, L, dim) where bs is the110
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(a) (b)

Figure 2: The architecture of (a) Multiplexer and (b) C-Multiplexer. Both inputs NMUX of inputs
and combine them into a single input. NMUX is N for this figure.

batch size, L is the token length of each image, and dim is the dimension of each token. Then rear111

TrE will turn the (bs, L, dim) tokens into a high-level featured token while retaining the size of input112

the same.113

C-Multiplexer: While training the Image Multiplexer, we observed that the existing multiplexing114

method’s performance degradation outweighs the efficiency gain for the tasks that have low expecta-115

tions on random chance. We optimize the trade-off between computational benefit and performance116

degradation by preventing severe performance degradation while retaining computational efficiency117

to a certain degree. Instead of projecting multiple(NMUX ) image tokens into a single compact118

representation space, we tried to extract the essence of each image and combine them in a different119

manner. In the Figure. 2-b, to extract the essence of each image, conv computation was used on120

high-level featured tokens. Using the conv1d layer with the output channel dim, the dimension of (bs,121

L, dim) tokens from TrE tokenizer becomes (bs, L/NMUX , dim) where NMUX is number of sample122

to multiplex. From this, each image gets shorter in length while retaining necessary information123

as much as possible. Then we concatenated the tokens of NMUX images to train the backbone to124

process NMUX images at the same time and store NMUX representation in a single CLS token.125

From this operation, the input of dimension (bs, L/NMUX , dim) becomes (bs/NMUX , L, dim)126

thereby enables the model to process NMUX times larger batch. As C-Multiplexer is very simple, the127

computational overhead is negligible.128

Demultiplexer and backbone: For the Demultiplexer and backbone, the ConcatPlexer uses the same129

Demultiplexer and backbone as the Image Multiplexer. The backbone is a ViT-like architecture that130

stacks the transformer encoder layers. The backbone takes (bs/NMUX , L, dim) dimension tokens131

as an input and outputs (bs/NMUX , L+ 1, dim) tokens including the CLS token. NMUX of MLPs132

were initialized to separate the representation of each image from a single CLS token of the backbone.133

For more detail, refer to Sec. 4.1.134

3.3 Training135

To train ConcatPlexer, three loss terms were used. Firstly, classification loss using ground truth class136

label was used. To boost the performance of ConcatPlexer, CLIP loss and Label smoothing loss were137

used.138

CLIP Loss: The CLIP loss is intended to train the ConcatPlexer’s demultiplexed CLS output to139

resemble the representation of CLIP vision encoder. By encouraging the model to learn the general140

representation space of the CLIP encoder, CLIP loss can prevent the model from overfitting and141

blindly memorizing the ground truth (GT) label. The CLSx in Eq. 4 is demultiplexed CLS token of142

an image x. CLIP (·) is a CLIP vision encoder that outputs feature token of image x. The similarity143

between the two features is calculated by the contrastive loss.144

LCLIP = Ctrs(CLIP (x), CLSx). (4)

Label Smoothing Loss: In order to take advantage of the ConcatPlexer’s multiplexed input, we145

augmented the image by mixing other high-level image tokens within the multiplexed sample at146
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C-Multiplexer. Tokens of NMUX images are averaged as follows:147

Mi =

NMUX∑
n=1

f(Tn), f(Tn) =

{
α ∗ Tn, if n = i

(1−α)
NMUX−1 ∗ Tn, otherwise

MGT
i =

NMUX∑
n=1

g(Yn), g(Yn) =

{
α ∗ Yn, if n = i

(1−α)
NMUX−1 ∗ Yn, otherwise

Lsmooth = CE(Mi,M
GT
i ),

(5)

where Tn and Yn are a nth high-level featured tokens among NMUX images after TrE tokenizer and148

ground truth class label of a imagen in one-hot vector format, respectively. As a result, MGT
i is a149

smoothed one-hot vector label, whose i-th component is set to α, and (1− α) is distributed to other150

components corresponding to the labels of other images. This prevents the model from overfitting the151

training dataset and shows a slight performance gain.152

4 Experiment153

4.1 Baseline: Image Multiplexer154

Along with ConcatPlexer, we introduce Image Multiplexer (Figure. 1-a), a naively implemented155

version of DataMUX in the vision domain, as a baseline. Unlike DataMUX in NLP, the Image156

Multiplexer has a long way to go due to several structural differences in vision. For the training,157

classification loss and token retrieval loss were used. For the token retrieval loss, the model is158

trained to restore the original discrete input tokens. This helped boost the performance of the original159

DataMUX. Implementation detail is described in the following section.160

Image Multiplexer: To bring the DataMUX into a vision regime, Image Multiplexer can be broken161

down into four parts: (1) Discrete patchifier, (2) Multiplexer, (3) Backbone, and (4) Demultiplexer.162

Discrete Patchifier: NLP inputs are tokenized into discrete tokens. Original DataMUX exploits this163

nature with token retrieval task. The discrete patchifier is used to make pixel patched into discrete164

tokens. Specifically, DALL-E’s pretrained discrete variational autoencoder (dVAE) [21] was used.165

DALL-E’s dVAE patchifies 8x8 pixels into a single discrete 13-bit code (total 8192 codes). This166

enables the model to be trained with token retrieval loss.167

Multiplexer and Demultiplexer: The Multiplexer multiplexed (Figure. 2-a) NMUX of discretized168

images into a single muxed input. For the Multiplexing module, NMUX of shallow MLPs and random169

fixed orthogonal matrices were used. Each discretized image is projected with a shallow MLP and an170

orthogonal matrix. Then NMUX of projected representations are averaged to be multiplexed into a171

single compact representation space. For the Demultiplexing module, NMUX of shallow MLPs were172

used. Each MLP is trained to extract the representation of each image from muxed representation173

output of the backbone.174

The structure of the Multiplexer is the major difference between Image Multiplexer and the Concat-175

Plexer. Image Multiplexer projects and combines via linear projection and fixed orthogonal matrices176

while C-Multiplexer uses conv computation to reduce tokens of NMUX images and concatenates177

them in a single sequence.178

Backbone: The ViT-like architecture was used for the Image Multiplexer backbone. The backbone179

shares the same configuration as the ViT-base model [3]. 12 transformer encoder layers were stacked180

and the representation dimension was 768.181

4.2 Experimental Detail182

For a multiplexed image classification task, Image Multiplexer and ConcatPlexer are trained on183

ImageNet1K and CIFAR100 datasets. Both models were trained using an AdamW optimizer with a184

learning rate of 1e-4 and weight decay of 0.03 for ImageNet1K dataset. Each model was trained around185

50 epochs until it converged on the training set. As shown in table 1 and mentioned before, Image186

Multiplexer uses DALL-E [21] tokenizer or CNN patchifier, and ConcatPlexer uses a transformer187

encoder (TrE) as a high-level featured tokenizer. The NMUX on table 1 means the number of samples188
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Name Tokenizer Token Length NMUX Concat Point Val Acc
Image Multiplexer DALL-E 784 2 - 54%
Image Multiplexer DALL-E 784 4 - 48%
Image Multiplexer CNN 196 4 - 26%
ConcatPlexer(1) TrE 196 2 1 62.3%
ConcatPlexer(2) TrE 196 2 3 65.3%
ConcatPlexer(3) TrE 196 2 6 69.5%
ConcatPlexer(4) TrE 196 4 1 56.7%

Table 1: Performance of the Multiplexed Models on ImageNet1K.

Name Tokenizer Token Length NMUX Concat Point Val Acc
Image Multiplexer DALL-E 784 2 - 74%
Image Multiplexer DALL-E 784 4 - 70%
ConcatPlexer(1) TrE 196 2 1 76.1%
ConcatPlexer(2) TrE 196 2 3 78.6%
ConcatPlexer(3) TrE 196 2 6 83.4%

Table 2: Performance of the Multiplexed Models on CIFAR100.

multiplexed in a single sequence. Each model multiplexed from two samples up to four samples at a189

single sequence. The ‘Concat Point’ means at which layer the TrE tokenizer is concatenated. In other190

words, before concat point each sample is processed independently and after the concat point NMUX191

samples are concatenated and processed at once. We call layers before and after the concat point as192

projection layers and backbone layers, respectively. The total number of layers, including both the193

projection layers and the backbone layers, was set to 12. The batch size of the Image Multiplexer and194

the ConcatPlexer is 512-1024 to fit the size of GPU memory. The Image Multiplexer was trained on 8195

A100 GPUs and ConcatPlexer was trained on 4 A100 GPUs, respectively.196

4.3 Experiment on ImageNet1K197

The aforementioned models are pretrained with ImageNet1K and results are reported in Table 1. As198

shown in Table 1, performance tends to drop as NMUX parameter increases in both Image Multiplexer199

and ConcatPlexer. This is natural because NMUX being four means that twice more information200

should be crammed in the same space as NMUX being two. Also, although the total number of201

projection layers and backbone layers is kept to 12 in total, the thicker projection layer tends to show202

better performance in the cost of computational efficiency. This is because the projection layer is a203

layer that comes before muxing and the backbone is a layer that comes after muxing.204

Referring to Table 1, Image Multiplexer using CNN tokenizer saturated at validation accuracy of 26%.205

Replacing the tokenizer with DALL-E has boosted validation performance up to 48%, muxing 4 image206

inputs. The DALL-E tokenizer enables image patches to be discrete, but its token length prohibitively207

increases the computation cost, which makes the purpose of multiplexed image classification task208

pointless. On the contrary, the ConcatPlexer shows validation accuracy of 56% with muxing four209

images at the same time using a single layer TrE tokenizer. The ConcatPlexer with NMUX = 2210

shows validation accuracy of 62% - 69%. Performance gets better as projection Layers increase in211

the cost of computational efficiency. The ConcatPlexer is compared with conventional ViT[3] most212

similar backbone but trained with a non-multiplexed image classification task at section 4.5.213

4.4 Experiment on CIFAR100214

The pretrained models from Table 1 were finetuned on the CIFAR100 dataset. Similar to Table 1,215

the ConcatPlexer with smaller Num Muxed and larger projection Layers performs better in the cost216

of computational cost. Referring to the Table 2, the performance of the ConcatPlexers outperforms217

the Image Multiplexers with less computational cost. As the model is trained on easier task (smaller218

number of classes), the degradation gap between ConcatPlexer and ViT reduces. According to Table219

2 and Table 3, ConcatPlexer(3)’s validation accuracy is 83.4% and ViT-B/16’s validation accuracy is220

87.13%.221
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Model GFLOPs
ViT-B/16 17.58

ConcatPlexer(1) 9.81
ConcatPlexer(2) 11.26
ConcatPlexer(3) 13.45
ConcatPlexer(4) 5.81

Table 3: FLOPs Count Per Image.

Model Dataset Val Acc
ViT-B/16 INET1K 77.91%

ConcatPlexer(3) INET1K 69.5%
ViT-B/16 CIFAR100 87.13%

ConcatPlexer(3) CIFAR100 83.4%

Table 4: Comparison with ViT.

Model ImageNet1K Val Acc
W/O MUX 60.7%

MUX 62.3%

Table 5: Thicker Batch vs. Multiplexing.

IR @1 @5 @10
MMP 32.84% 59.62% 71.42%

Table 6: Flickr zero-shot image retrieval.

4.5 Ablation222

Comparison with non-multiplexing method: The ConcatPlexer uses TrE patchifier to get high-level223

patch tokens. Then token length is reduced by the conv layer and multiple inputs are concatenated.224

Instead of concatenating and just stacking the reduced length inputs after conv computation may look225

like a good option. Table 5 indicates that ConcatPlexer performs better than Without MUX model.226

Comparing with conventional ViT: Table 4 indicates that ConcatPlexer lacks performance in227

ImageNet1K compared to ViT-B/16 . This is because the ConcatPlexer is tackling a harder task:228

multiplexed image classification. However, the performance gap narrows if the model is trained on229

an easier dataset: CIFAR100. Considering that we are the first to propose the multiplexed image230

classification task, there is more room for improvement. Therefore, we believe that the current aspect231

seems encouraging.232

The computational cost of the Image Multiplexer using CNN patchifier was not calculated as its233

performance was not comparable with other models. The computational cost of the Image Multiplexer234

using DALL-E dVAE was also not calculated as its computational cost was prohibitively large due to235

the long sequence length.236

As the main purpose of the ConcatPlexer is to attain increased computation efficiency and throughput,237

we also compared the FLOPs of the ConcatPlexers and ViT-B/16. Table 3 indicates that the Concat-238

Plexers require less FLOPs compared to ViT. The FLOPs were counted using fvcore library of Meta239

Research.240

Comparison with original DataMUX: Original DataMUX and its descendent [15, 18] demonstrated241

its effectiveness on GLUE benchmark [19]. However, an expectation of random chance of CIFAR100242

and ImageNet1K is much lower, considering that tasks in the GLUE benchmark usually have two to243

three classes to predict. Of course, DataMUX shows an impressive performance in the aspect that it244

can multiplex extremely many inputs (up to 10 for MUX-PLM). The ConcatPlexer multiplexes fewer245

inputs and the performance gap may be seen as quite large. However, the ConcatPlexer deals with the246

trickier task in the sense of expectation of random chance.247

Possibility toward multimodal multiplexing: As a proof of concept, we adapt data multiplexing in248

the Vision&Language(VL) domain: Multimodal Multiplexer (MMP). It is a single ViT-architectured249

model that represents images and texts in a modality-agnostic manner, with no modality-specific250

transformer blocks or projection layers. As shown in Table 6, the model achieves 32.84%, 59.62%,251

and 71.42% accuracy at recall@1, recall@5, and recall@10 on Flickr30K [22] with zero-shot252

image retrieval task. Despite its modality-agnostic information processing mechanism and parameter253

efficiency (compared to typical VL models that employ separate transformer towers for each modality),254

MMP achieves promising preliminary results on challenging multimodal retrieval task, which we255

believe indicates great potential for future follow-up works.256
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5 Limitations and Future works257

We propose a new vision classification called multiplexed image classification task to multiply the258

throughput of the neural network. Though this approach can drastically drag up the computational259

efficiency and throughput by increasing NMUX , the concept of calculating multiple data at the260

same time makes the previous task much harder, which causes a clear trade-off between NMUX and261

performance.262

The performance of transformer-based models in vision tends to be heavily affected by hyperparameter263

tuning. With more delicate tuning, the ConcatPlexer may have more performance gain. As our264

Conv-based multiplexing method is somewhat heuristic, we believe that there is more room for265

improvement if other token length reduction methods are used together. Also, there is room for266

computation efficiency gain of the ConcatPlexer if we use a method similar to Swin Transformer267

[23], which separates images from the entire sequence and divides them into partitions, applies local268

self-attention, and combines information from the CLS token.269

6 Conclusion270

From this paper, we would like to bring constructive discussion for the computational efficiency of271

transformer-based models. Our paper tries to transplant the idea of DataMUX [15] of NLP into the272

vision field. We propose the multiplexed image classification task and its baseline ConcatPlexer and273

Image Multiplexer. The proposed model shows the feasibility that idea of DataMUX can be applied274

in the vision field.275
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