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ABSTRACT

Instruction tuning on a mixture of tasks has improved zero-shot capabilities in
natural language processing (NLP) . Nevertheless, existing methods often learn
features that exhibit correlations between instruction-formatted samples and tar-
get labels, rather than causal relationships. Termed as “spurious correlation” in
statistics, such a correlation may change drastically in a new task, making the
effect from the learned features to be misleading. To this end, we develop a meta
Structural Causal Model (meta-SCM) to integrate different NLP tasks under a
single causal structure of the data. Specifically, the meta-SCM introduces multiple
latent factors that represent properties of source context language, only some of
which causally influence the target labels for a specific task. The key idea is to learn
task-required causal factors and only use those to make predictions for a given
task. Theoretically, we prove the causal factor can be identified without mixing
information from others. Guided by the identifiability, we propose a Structural
Instruction Tuning (SIT) method to learn the task-required causal representations
that can mimic the causal factors for each task. The utility of our approach is
verified by improvements of zero-shot ability on a range of unseen datasets and
tasks.

1 INTRODUCTION

Pretrained large language models (LLMs) have achieved remarkable success in numerous natural
language processing (NLP) tasks (Lewis et al., 2020; Raffel et al., 2020; Brown et al., 2020). Recently,
instruction tuning technique has emerged, allowing language models to achieve better generalization
on new tasks (Wei et al., 2021a; Sanh et al., 2021; Zhao et al., 2023). In general, instruction tuning
reformulates different tasks into the sequence-to-sequence (Seq2Seq) form, with natural language
instructions customized for each task. Despite the improved performance of instruction tuning in
zero-shot scenarios, current methods fit data by exploiting surface correlations between instruction-
formatted samples and target labels, ignoring the invariant data generating process (DGP) underlying
the data (Cao et al., 2022). As a result, it may suffer from fragile “spurious correlation” and mislead
the prediction, especially when adapting to new tasks (Wang et al., 2022a).

In recent years, structural causal model (SCM) has attracted extensive attention, which describes
the underlying DGP, enabling the graphical formalization of causal relationships from observed
data (Pearl, 2009a;b; Altman & Krzywinski, 2015; Moraffah et al., 2020; Schölkopf, 2022). Unlike
fragile statistical correlations, causal relationships are invariant across domains (Kaur et al., 2022;
Zhang et al., 2021a; Sun et al., 2021), which are transferable and highly reliable even when applied
to previously unseen domains. To this end, we hope to put the idea of SCM into the practice for
instruction tuning to further improve the generalization ability. In this work, we develop a meta
Structural Causal Model (meta-SCM), a single causal structure that can integrate different NLP
tasks. The causal graph induced by the meta-SCM is depicted on the left in Figure 1.

Specifically, we introduce a set of latent factors to describe the DGP of observed data in NLP tasks.
Since datasets used for each task have inherent properties (possibly from sampling bias), the latent
factors will be influenced by these dataset properties. As later analyzed, inherent dataset properties
cause traditional methods to learn spurious correlations. To address this, we propose identifying and
utilizing causal factors for each task. The causal factors for each specific task are a subset of all
the latent factors. For example, the connotative semantics in a document are the causal factors for
sentiment analysis, while the core denotative semantics are the causal factors for topic classification.
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Figure 1: Left: The causal graph induced by the meta Structural Causal Model (meta-SCM) for
integrating different NLP tasks. White nodes denote observed variables and grey nodes denote
unobserved variables. Dashed lines denote edges that may be absent, while solid lines denote
invariant processes. See Section 3.1 for a detailed description. Right: The model overview of
Structural Instruction Tuning (SIT), aiming at learning the representations for task-required causal
factors. Task information based on prompts guides the causal factor selection. Detailed description
can be found in Section 4.

On the theoretical side, we present the Uniform Identifiability Condition (UIC), a sufficient and
necessary condition to ensure identifiability of latent factors in the meta-SCM. The UIC guarantees
these factors can be separated without mixing information from other factors by fitting observed data.
Importantly, this theoretical result is applicable to a wide range of SCMs with certain topological
structures, shedding light on incorporating causality into other areas, such as fairness and debiasing.

On the experimental side, guided by the meta-SCM with identifiability guarantees, we propose a
novel Structural Instruction Tuning (SIT) method to integrate multiple NLP tasks under the causal
view. The key idea is to learn for each task: (1) the causal factor selection mechanisms, (2) the
task-required causal representations that can mimic the task-required causal factors, and (3) the causal
generative mechanisms to generate the target labels from the causal factors. As shown in the right
of Figure 1, the model architecture consists of four components: (i) SCM Latent Module, to obtain
the causal representation for generating the source and target for each task, where we realize causal
factor selection based on a binary adjacency matrix with 0,1 values. (ii) Task-guided Latent Encoder,
to provide the task-required latent representations of all latent factors for the SCM latent module;
(iii) Source Reconstruction Decoder, to constrain the latent representations by reconstructing source
contexts from all of them; and (iv) Target Prediction Decoder, to predict the target label from the
causal representation, based on the causal generative mechanism. During testing, the prediction is
performed based on the adaptively selected latent factors, according to the learned task-oriented
causal generative mechanism.

In summary, the main contributions of this paper are as follows: (i) Theoretically, we provide uniform
identifiability conditions based on the topology of SCM. It is innovative that this identifiability results
hold across a range of topology structures, rather than being limited to a fixed SCM. (ii) Methodically,
we propose a meta-SCM that integrates multiple NLP tasks and introduces a novel tuning method
using structural instructions. To the best of our knowledge, it is the first work to capture causal
relationships by instruction tuning. (iii) Experimentally, we verify the effectiveness of SIT on
both in-domain and out-of-domain (OOD) datasets, e.g., 60.51% improvement on Gigaword in
terms of Rouge-L. We also show better cross-task adaptability of SIT on unseen tasks, e.g., 31.30%
improvement on RTE in terms of accuracy.

2 RELATED WORK

Causal Representation Learning. Causal representation learning aims to explore the causal re-
lationships underlying data, by modeling data generating processes rather than merely superficial
dependencies (Wang & Jordan, 2021; Schölkopf et al., 2021). This approach has gained signifi-
cant traction in various areas, including recommendation systems (Zheng et al., 2021; Zhang et al.,
2021b; Wei et al., 2021b), computer vision (Niu et al., 2021; Sun et al., 2021; Zhang et al., 2021a),
and information retrieval (Joachims et al., 2017), showing significant enhancements in prediction,
generalization, and interpretability. In NLP, causal representation learning has been introduced in
various tasks such as self-explanation (Liu et al., 2023b), text classification (Qian et al., 2021; Veitch
et al., 2021), text summarization (Xie et al., 2021), information extraction (Nan et al., 2021), and
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language modeling (Cao et al., 2022). Nevertheless, existing approaches often concentrate on specific
NLP tasks, where the typical methodology involves exploring the particular Data Generating Process
(DGP) associated with each task and subsequently formulating a corresponding SCM. However,
when confronted with multitask scenarios, manually designing a SCM for each task can be labori-
ous. Consequently, the integration of different NLP tasks within a single SCM remains relatively
underdeveloped.

Identifiability Analysis. The concept of identifiability encompasses whether a representation learned
from observed data can match the true underlying latent factors which are responsible for the data
generating process, under acceptable transformation operations such as permutation or scaling
(Lehmann & Casella, 2006). When incorporating causality into representation learning, it becomes
crucial for providing an identifiability guarantee for the latent factors, ensuring that they can be
correctly learned. Previous works have analyzed identifiability in various areas, including multi-
modal (Daunhawer et al., 2023), computer vision (Sun et al., 2021; Lu et al., 2021), and graph neural
networks (Chen et al., 2022). However, existing works often follow a paradigm of manually designing
a specific Structural Causal Model (SCM), then performing analysis just for that SCM. Consequently,
the identifiability results lack generalizability.

Instruction-based Learning. Instruction-based learning formulate instances from downstream
tasks into instruction-formatted ones, aiming to alleviate the discrepancy between pre-training and
fine-tuning (Schick & Schütze, 2021; Liu et al., 2023a). Prompt engineering focuses on constructing
effective instructions or prompts, which can be either manually designed (Schick & Schütze, 2021;
Puri & Catanzaro, 2019; Petroni et al., 2019; Brown et al., 2020) or automatically searched (Shin
et al., 2020; Wang et al., 2022b; Gu et al., 2022; Gao et al., 2021). These instructions are typically
composed of discrete words (Shin et al., 2020; Gao et al., 2021), continuous embeddings (Li &
Liang, 2021; Lester et al., 2021) or a hybrid of them (Xu et al., 2022; Chen et al., 2023; Liu et al.,
2021). Based on proper instruction, the model is able to perform few-shot or zero-shot learning
(Gao et al., 2021; Logan IV et al., 2022; Gu et al., 2022; Sun et al., 2022), especially for LLMs
(Brown et al., 2020; Wei et al., 2021a; Sanh et al., 2021). However, existing works tend to exploit
surface correlations of data (Cao et al., 2022), which may be hard to capture the mapping between
instructions and task-required target labels under multitask setting. Thus current multitasking works
based on PLM with limited scale often target at special task clusters, e.g., text matching (Xu et al.,
2022), text classification (Zhong et al., 2021), knowledge-intensive tasks (Chen et al., 2023).

3 PROBLEM FORMULATION AND THEORY

In this section, we formulate various NLP tasks within a single structural causal model, named meta
structural causal model (meta-SCM). Furthermore, we propose a uniform identifiability condition
(UIC) based on the topological structure of SCM, which guarantees that latent factors in the SCM
can be identified without mixing information from others by fitting the observed data.

3.1 META STRUCTURAL CAUSAL MODEL

First, we formulate different NLP tasks from a generative perspective. NLP tasks typically require
generating target labels, such as summaries, sentiments, or text categories, from source contexts. In
our modeling, we abstract the generating process of target labels and source context as a causal graph,
as shown in the left of Figure 1. The rationale for this approach is as follow:

• Xt, Yt represent the source context and target label respectively for NLP tasks, where subscript t
denotes a specific task, such as documents and summaries, or sentences and sentiment polarity.

• L = {L1, L2, L3, ..., Ln} represents the abstract properties of language which are shared across
different tasks. They are unobservable latent factors. The meaning of these properties may refer to
linguistic studies (Saussure, 2011), including lexicon, syntax, semantics, and others. Semantics can
further be divided into connotative and denotative categories, etc.

• D represents inherent dataset properties.

• T = {t1, t2, t3, · · · , tm} represents m different NLP tasks.

• L → Xt, Yt indicates that the source context Xt and target label Yt are generated from the latent
factors L. Considering that source context Xt carries all the information of L, Xt is pointed by
all of L. Differently, not all latent factors are used to generate target label Yt for a certain task.
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Consequently, dashed lines are employed to signify the uncertain connection from these latent
factors to the target labels Yt.

• D → L indicates the abstract language properties are influenced by the inherent dataset properties of
different datasets across tasks. For instance, news summarization datasets may focus on denotative
semantics, while sentiment analysis datasets prioritize connotative elements.

Structural causal models characterize causal relationships between variables through a set of structural
functions, which we denote as generating processes in the remainder of the paper. And these structural
functions induce a corresponding causal graph. Based on the above causal relations, we formalize
the generating process for each variable. Formally, the representations of source contexts can be
viewed as random variables Xt, taking values in source observed representation space Xt ⊆ Rdim(xt).
Similarly, the representations for target labels and latent factors are random variables Yt and L,
taking values in target observation representation space Yt ⊆ Rdim(yt) and latent representation space
L ⊆ Rdim(l) respectively. Now we formalise the generating process for a given task as follow:

Li ∼ pLi
(li|d), Xt := fXt(Pa(Xt)) + εXt , Yt := fYt(Pa(Yt)) + εYt . (1)

In Equation 1, Pa(·) denotes the set of parent nodes in the causal graph, indicating that only task-
required latent factors will be selected. The symbol := is often used in SCMs to emphasize that the
formula represents a data generating process rather than a simple mathematical equation. Equation 1
is categorized as an additive noise model (ANM), which is a widely used type of SCM. For latent
factors Li, considering that exponential family distribution has universal approximation capability
for a given distribution, we assume the prior of latent factors pLi(Li = li|D = d) is given by :

pLi(li|d) =
dim(li)∏
j=1

Qi,j(li,j)

Zi,j(d)
exp

dim(Ti,j)∑
k=1

Ti,jk(li,j)λi,jk(d)

 . (2)

For exponential family distribution (Equation 2), we adopt the common used notation. Upperclass let-
ters denote functions not random variables. Zi are called partition functions, serving to normalization.
Qi are the base measures, Ti are sufficient statistics and λi are the corresponding parameters.

Spurious Correlation. Due to inherent properties in the training dataset, probably from sampling
bias, the target labels exhibit spurious correlation with non-causal latent factors. For example, in a
dataset sampled from pizza enthusiasts for sentiment analysis, pizza, as a food concept, will co-occur
with positive emotion frequently, causing spurious correlation between food and sentiment labels.
Causally speaking, there exist backdoor paths between the target labels and non-causal latent
factors through the inherent dataset properties D. Existing methods that simply use the whole
source text for prediction, and thus include both causal and non-causal information, suffer from this
spurious correlation. To address this issue, an effective approach involves identifying the causal latent
factors for the task and utilizing only those to predict target labels. In the following, we will first
provide a theoretical guarantee for the latent factors’ identifiability (Sec. 3.2). Based on this, we
propose finding the latent factors required for different tasks by maximizing likelihood (Sec. 4).

3.2 UNIFORM IDENTIFIABILITY CONDITION

As discussed previously, identifiability plays an essential role in our methodology. In this section,
we present theoretical results guaranteeing identifiability of the latent factors. Specifically,
we propose a novel Uniform Identifiability Condition (UIC), a sufficient and necessary condition
to determine whether an SCM is identifiable. The term "uniform" signifies that this condition can
effectively apply to a wide range of structural causal models (SCMs) with specific topological
structures, rather than being restricted to a particular SCM.

Identifiability. Intuitively, identifiability means that the latent factors can be learned without any
information mixing. Following, we present the formal definition of identifiability:
Definition 1 (Identifiability). True latent factors [L1, L2, · · · , Ln] are ∼P identifiable to learning
latent factors [L̃1, L̃2, · · · , L̃n] = [f̃−1

Xt
(Xt)L1

, f̃−1
Xt

(Xt)L2
, · · · , f̃−1

Xt
(Xt)Ln

] if the following
condition is met:

∀i ∈ {1, 2, · · · , n}, T̃i(L̃i) = PiTi(Li) + bi. (3)

In Equation 3, Ti denotes sufficient statistics of Li, Pi denotes a permutation matrix, bi is a vector.
Intuitively, Equation 3 means that the difference between true latent factor Li and learning latent
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factors L̃i is no more than a permutation transformation with a linear shift on there sufficient statistics.
Besides, this transformation preserves the individuality of each latent factor and ensures that there is
no information mixing between them.

Previous works have theoretically shown that it is impossible to identify the true latent factors without
any assumptions for the data generating process (Hyvärinen & Pajunen, 1999). In this work, we
adopt follow mild assumptions which are commonly used in other identifiability works (Khemakhem
et al., 2020; Sun et al., 2021; Lu et al., 2021):
Assumption 1 (Bijective). The generating functions fXt , fYt are bijective.

Assumption 2 (Denoising). Characterisitic functions of εXt , εYt are nonzero almost everywhere.

Assumption 3 (Transformation). The sufficient statistics T are linear independent on every nonzero
measure subset of L and are differentiable almost everywhere.

Assumption 4 (Variety). The number of different datasets, with differing inherent properties D, be
nD ≥ n0 = max(dim(li)× dim(Ti,j)) + 1, and the following matrix has full column rank:

Ht = [λ(d1)− λ(d0),λ(d2)− λ(d0), ...,λ(dn0)− λ(d0)]. (4)

The meaning of each assumptions are detailed explained in Appendix A.1.

∼P identifiable for SCM. An SCM is ∼P identifiable if all the true latent factors in the SCM are ∼P

identifiable to the learning latent factors. We propose a uniform identifiability condition, which
guarantees that our meta-SCM, as described in Section 3.1, is ∼P identifiable.
Theorem 1. Considering the data generating process described in Section 3.1, where Xt,
Yt,t∈{t1,t2,··· ,tm} are generated according to Equation 1, and Li,i∈{1,2,··· ,n} has the distribution
specified in Equation 2, as well as the fulfillment of Assumptions 1 - 4. We introduce a set of sets F
that describes the topology structure of a SCM and can be used to determine whether the SCM is
identifiable. F is generated by the following steps:

1. ∅, Pa(Xt1), Pa(Yt1), · · · , Pa(Xtm), Pa(Ytm) ∈ F

2. Set A, B ∈ F ⇒ Set A− B, B −A ∈ F . Here A− B = A ∩ B̄

The SCM is ∼P identifiable if the set of sets F includes all singleton sets Li, that is

{L1}, {L2}, · · · , {Ln} ∈ F .

Proof sketch. (1) Fourier transformation is applied to the marginal probability density equation
to eliminate noise in DGP. Considering latent factors follow exponential family distributions, we
take logarithms on both sides of the equations, converting it to additive form. (2) Notice that the
set F expands gradually through the application of the "set subtraction" operator. Consequently,
performing the subtraction operator on the additive form equations yields new equations with fewer
latent factors. The condition that F contains all singleton sets implies that all the latent factors can
finally be separated in their corresponding equation. (Detailed proofs are provided in Appendix A.2)

We then prove the condition is not only sufficient but also necessary, as stated in Theorem 2.
Theorem 2. Considering the data generating process described in Section 3.1, we employ a binary
adjacency matrix denoted as A to represent the topology relations between Li and Yt. The matrix
A comprises m rows and n columns, where m is the number of Yt, and n is the number of latent
factors Li. Specifically, a value of 1 at position (i, j) indicates that Lj has a direct effect on Yi,
while a value of 0 indicates no direct effect. Latent factors in a SCM are identifiable if and only if the
following equation holds. We refer to the equation as the uniform identifiability condition (UIC).

1

(
1

m

[
A⊤A+ (1−A)⊤(1−A)

]
− In×n

)
= 0n×n. (5)

In Equation 5, 1(·) is an indicator function, which defined as [1(A)]ij =

{
0, 0 ≤ aij < 1

1, aij = 1

Proof sketch. (1) We propose a criterion: For any two distinct latent factors Li and Lj in the SCM,
their child sets (i.e., sets containing Xt and Yt pointed by L) are not identical. We then prove that
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a negative answer to this criterion implies non-identifiability of the SCM, which represents the
contrapositive form of the necessary condition for identifiability. (2) We establish the equivalence
between the criterion and the sufficient result proposed in Theorem 1. (3) Combining the results
(1) and (2), we conclude that both the condition in Theorem 1 and the criterion serve as necessary
and sufficient conditions for determining the identifiability of a SCM. (4) Expressing these results in
matrix form, yielding Equation 5. Detailed proofs and lemmas are provided in Appendix A.3, A.4.

4 METHOD

Guided by above theory, we propose a Structural Instruction Tuning (SIT) method which induces
causality into instruction tuning, so that the model can explicitly capture the causal relationships
among tasks, source contexts and target labels.1 The key idea is to learn (1) the representations for
task-required causal factors, and (2) the task-oriented causal generative mechanisms for generating
target labels given causal factors. In the following, we first introduce the proposed model architecture
(Sec. 4.1), followed by the learning and inference process (Sec. 4.2).

4.1 MODEL ARCHITECTURE

As shown in the right of Figure 1, the model architecture consists of four components: (i) SCM
Latent Module, to realize the DGP in the meta-SCM; (ii) Task-guided Latent Encoder, to learn
the representations of latent factors extracted from source sequences with the guidance of tasks;
(iii) Source Reconstruction Decoder, to constrain the latent representations by reconstructing source
sequences from all of them; and (iv) Target Prediction Decoder, to predict the target sequence from
the automatically selected causal representations of specific tasks.

SCM Latent Module. This module consists of causal factor selection (ht,hl → ht
l) and com-

bination (hl → hx̂ and ht
l → hŷ). Here ht denotes the representations of task variable T ,

hl = {hl1 ,hl2 , ...,hln} denotes the representations of all the latent factors L, and ht
l denotes the

representations of task-required causal latent factors selected from L.

• Causal Factor Selection. We assume all the latent factors are causal for x, while not all are causal
for y. Since the causal factors are difficult to define manually, we design a task-guided selection
mechanism to pick them automatically. Specifically, we encode hybrid prompts to obtain task
representation ht, and map it into a latent mask vector mt of length n (see Appendix C). Then mt

selects the task-required causal factors through element-wise multiplication, i.e., ht
l = mt ⊗ hl.

• Causal Factor Combination. We merge all latent representations to obtain the guidance for
generating x by linear combination of hl1 ,hl2 , ...,hln , i.e., hx̂ = W1hl + b1. Similarly, we linear
combine task-required causal representations ht

l to obtain the guidance for y, i.e., hŷ = W2ht
l + b2.

Task-guided Latent Encoder. To obtain representations hl in the SCM latent module, we learn
the inference model qχ(l|x, t) implemented by a task-guided latent encoder χ, which maps source
sequences x into the latent factors l with the guidance of task variable t. Firstly, we utilize a
Transformer encoder Trmenc as the base encoder to encode the prompted input into the latent space,
i.e., {hs,hp,hx,he} = Trmenc({[s], p, x, [e]}), where p are prompts, and [s]/[e] are special tokens
representing the start and end of the input sequence respectively. Following Karpukhin et al. (2020);
Tang et al. (2021), we extract hs as task-guided source representations hxt ∈ Rdh . Then, we perform
linear transformation to map hxt into a set of latent representations, i.e., hl = W3hxt + b3.

Source Reconstruction Decoder. To reconstruct the source sequence x with the guidance hx̂ from
the SCM latent module, we learn the causal generative mechanisms pθ(x|l) for source generation
by a source reconstruction decoder θ. Firstly, we utilize a Transformer decoder Trmdec to obtain
the output latent space of x. Following Xia et al. (2020), for the decoder input, we replace its first
embedding with hx̂ ∈ Rdh , i.e., o0 = Trmdec(hx̂), for it is essential to guide the generation of the
subsequent tokens. For the decoder output, we add hx̂ to the hidden states to obtain the final latent
space {ôi}|x|i=1 of x, i.e., ôi = hx̂+oi. After that, a language modeling layer calculates the vocabulary
selection probability for generating x, i.e., Pxi = LM(ôi).

Target Prediction Decoder. To predict the target sequence y with the guidance hŷ from the SCM
latent module, we learn the causal generative mechanisms pσ(y|l) for target generation by a target

1Note that both the source and target are formulated into text sequences, with hybrid prompts as instructions
to indicate task information (see Appendix B), which is also necessary for new tasks.
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prediction decoder σ. Similar to source sequence reconstruction, we incorporate hŷ, the combined
representation of selected causal factors, into this prediction decoder composed of a Transformer
decoder and a LM layer.

4.2 LEARNING AND INFERENCE

By learning causal representations and task-oriented causal generative mechanisms, the model can
adaptively select the task-required causal factors to perform a specific task during testing.

Learning Method. During the training stage, we propose four loss function as follow.

• Source Reconstruction Loss is applied to constrain the latent representations by maximizing the
likelihood of the source sequence x, i.e., Lrec = −E[log pθ(x|l)].

• Target Prediction Loss is applied to guide the target sequence prediction by maximizing the
likelihood of the target sequence y, i.e., Lpre = −E[log pσ(y|l)].

• UIC Loss is employed to enforce the identifiability of latent factors l, which incorporates the
theoretical results into our model. It stems from the UIC condition (Theorem 2), with derivation
details provided in the Appendix D. The loss function can be expressed as:

Luic =
1

mα

n∑
i,j=1

[
m∑

k=1

akiakj + (1− aki)(1− akj)−mδij

]α

, (6)

where α is a hyperparameter, δ is the Kronecker delta function defined as: δij =
{
0, i ̸= j

1, i = j

• Task Distinction Loss is employed to guarantee diverse causal factor selection for different tasks.
It penalizes the scenarios where different tasks rely on the same set of causal factors. Drawing
inspiration from the UIC loss, the loss function is designed as:

Ldis =
1

nα

m∑
k,k′=1

[
n∑

i=1

aikaik′ + (1− aik)(1− aik′ )− nδkk′

]α

. (7)

Overall, we combine four learning objectives described above as the final loss function, i.e.,

L = Lrec + Lpre + λuicLuic + λdisLdis, (8)

where Luic and Ldis are regularization terms we call causal factor constraint.

Inference and Prediction. During testing, we predict the target label for given samples x from task t
based on the learned inference model qχ(l|x, t) and the causal generative mechanism pσ(y|l). Task
instructions enable our model to adaptively select the task-required causal factors, even for new tasks.

5 EXPERIMENTAL SETTINGS

Tasks and Datasets. We collect 21 datasets from seven classical NLP tasks including generation and
classification tasks, as shown in Table 1. To evaluate cross-task adaptability, LA and NLI datasets are
fully held out, unseen during training. For the other five tasks, some datasets are sampled to construct
the mixed training set following Wei et al. (2021a); Raffel et al. (2020), while some are reserved as
held-out datasets to test out-of-domain (OOD) performance on training mixture tasks. The details of
task selection and the sample strategy refer to Appendix E.

Baselines. To verify the superiority of SIT, we adopt several baselines for comparison: (i) Multi-task
Fine-Tuning (MFT) trains our backbone PLM on the multitask training dataset without instructions.
(ii) Vanilla Instruction Tuning (Vanilla-IT) apply textual-instruction tuning for the PLM.

Model architecture. SIT is applicable for all the Seq2Seq models2. Considering computational
efficiency, we use BARTlarge

3 for model initialization, which has hidden size dh = 1024 and the
vocabulary size dv = 50265. The additional complexity is from the source reconstruction decoder
(254M) and the SCM latent module (30M), and only the latter one is involved during inference.

2The code will be made available upon publication.
3https://huggingface.co/facebook/bart-large
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Table 1: Datasets for different tasks. Some are included in the training set, while some are held-out.

Task Training-mixture datasets Held-out datasets

Summarization (SUM) XSUM, CNNDM Gigaword
Training Reading Comprehension (RC) Duorcself , Duorcpara Squad
mixture Topic Classification (TC) AG, Trec DBPedia

Paraphrase Detection (PD) PAWS MRPC, QQP
Sentiment Analysis (SA) IMDB, Yelp SST-2

Linguistic Acceptability (LA) CoLA
Held-out Natural Language Inference (NLI) QNLI, RTE, WNLI,

MNLIm,MNLImm

Table 2: In-domain performance over the test set of training-mixture. Best results are marked bold.

Method SUM RC TC PD SA

XSUM CNNDM Duorcself Duorcpara AG Trec PAWS IMDB Yelp

MFT 31.41 26.01 34.92 23.92 87.78 80.8 42.88 90.57 67.28
Vanilla-IT 30.92 36.67 54.81 31.94 90.67 65.0 55.79 95.17 70.32

SIT 33.59 38.33 63.27 38.30 91.75 85.4 76.75 96.11 78.44

Training details. We utilize Adam optimizer with learning rate of 3e-5 and weight decay of 0.01.
Also, we apply warm-up over the first 10% steps. The batch size is 256 and the total training steps
is about 10k. We train on one NVIDIA Tesla V100-32GB GPUs for about 3 days. We set the max
length of source sequences as 550, and that of target sequences as 64. We set m = 5 and select the
best n from 4 to 16. λuic and λdis are selected from 0 to 1. More details refer to Appendix F.

Evaluation details. Similar to the previous work (Wei et al., 2021a; Sanh et al., 2021), We use
ROUGE-L as the evaluation metric for SUM and RC tasks and accuracy for other tasks. We evaluate
over the test set for Duorc and all the datasets of SUM and TC tasks, or the dev set for other tasks.

6 EXPERIMENTAL RESULTS

We target five research questions (RQ) as follows: (RQ1) How does SIT perform on in-domain
datasets? (RQ2) How does SIT perform on out-of-domain datasets? (RQ3) How is the cross-task
adaptability of SIT to unseen tasks? (RQ4) How is the few-shot learning capability of SIT? (RQ5)
What is the impact of causal factor constraint? Accordingly, we organize the following experiments.

In-domain Performance. To answer RQ1, we first compare models on the training mixture task
listed in Table 1 under the consistent training setting. We evaluate the performance on their test set,
as shown in Table 2. We make 3 key observations: (i) On 7 out of 9 datasets, Vanilla-IT outperforms
MFT, indicating the importance of textual instructions to provide task information. (ii) On all the
datasets, SIT outperforms Vanilla-IT in terms of all the metrics, suggesting that SIT with structural
instructions is better at capturing task specifications while learning the shared knowledge. (iii) On the
PAWS from PD task, SIT outperforms Vanilla-IT significantly, which is 37.57% better in terms of
accuracy. The possible reason for the larger margin than other datasets is that the number of training
samples for PD is limited (see Appendix E) and it is harder for Vanilla-IT to learn the mapping
between the instruction-formatted samples and target labels, while SIT can handle it.

Out-of-domain Performance. To answer RQ2, we compare models over the held-out datasets of
training tasks. The results are shown in the left part of Table 3, from which we have 3 observations.
(i) Vanilla-IT outperforms MFT on 5 out of 6 datasets, indicating the adaptability of instruction tuning.
(ii) SIT outperforms Vanilla-IT on 5 out of 6 datasets. For example, SIT outperforms Vanilla-IT
60.51% on Gigaword in terms of Rouge-L. This result demonstrates that SIT capturing the stable
causal relationships of each task helps model deal with the domain transfer, while Vanilla-IT only
capturing superficial correlation performs worse. (iii) Models perform badly on the DBPedia dataset,
for the possible reason that its target categories are totally different from the seen datasets. By
conducting case study, we find that some of the sample topics could be grouped into semantically
similar ones, e.g., classifying “Company” as “Business”, where “Business” are seen during training.
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Table 3: OOD and cross-task performance of held-out datasets. Best results are marked bold.

OOD Performance Cross-task Performance

Method SUM RC TC PD SA LA NLI

Gigaword Squad DBPedia MRPC QQP SST-2 CoLA MNLIm MNLImm QNLI RTE WNLI

MFT 0.43 59.34 0.20 63.97 17.14 80.20 0.00 15.83 18.35 6.94 11.82 19.72
Vanilla-IT 12.51 61.87 0.50 31.62 63.19 92.43 0.00 31.82 31.85 50.52 47.29 56.34

SIT 20.08 70.29 0.50 70.1 68.24 93.23 0.00 39.62 39.89 55.96 62.09 56.34

Table 4: Ablation study for the UIC loss and task distinction loss on zero-shot performance.

Method SUM RC PD SA NLI

Gigaword Squad MRPC QQP SST-2 MNLIm MNLImm QNLI RTE WNLI

SIT 20.08 70.29 70.1 68.24 93.23 39.62 39.89 55.96 62.09 56.34
w/o Luic 19.57 69.59 31.62 63.18 92.89 35.28 35.10 44.28 52.35 54.93
w/o Ldis 19.14 69.04 31.62 63.19 91.74 31.82 31.85 50.45 47.29 43.66

Cross-task Generalization. To answer RQ3, we compare the cross-task adaptability of models on
held-out tasks listed in Table 1 under the zero-shot settings. The results are shown in the right part of
Table 3, from which we have 3 observations. (i) Vanilla-IT outperforms MFT significantly, indicating
the cross-task generalization ability of instruction tuning. (ii) SIT further achieves better results than
baselines on 4 out of 6 datasets of new tasks. For example, SIT outperforms Vanilla-IT 31.30% on
RTE in terms of accuracy. It indicates that by introducing latent factors as structural bridge between
the textual instructions and the target labels, SIT can boost the understanding of human instructions,
which enables model to have better generalizability when transferring to new tasks. (iii) Models
perform the worst on the CoLA dataset. Similar to DBPedia, CoLA also has a totally different target
categories (i.e., acceptable, unacceptable) from seen tasks.
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Figure 2: Few-shot results.

Few-shot Learning Capability. To answer RQ4, we further
evaluate the few-shot performance for both OOD datasets and
unseen tasks. Concretely, we randomly pick 1024 samples from
training set for each task to fine-tune trained models. As shown
in Figure 2, SIT can achieve a noticeable boost (69.03%) which
is twice of the gain (38.16%) of Vanilla-IT, even for the new
task CoLA. This result indicates the better learning capability
of SIT based on structural instructions rather than mere textural
instructions. More few-shot results refer to Appendix G.

Impact of Causal Factor Constraint. To answer RQ5, we conduct ablation studies by setting λuic

and λdis as 0 to remove the UIC loss and task distinction loss, respectively. From Table 4 we can
observe that: (i) Training without the UIC loss harms zero-shot performance, indicating that holding
UIC indeed helps to migrate spurious correlations and boost the generalization ability. (ii) Training
without the task distinction loss will also hurt the performance, indicating that realizing the different
selection of causal factors can help to learn the task-oriented causal generative mechanism.

7 CONCLUSIONS

This paper has explored a novel instruction tuning method based on a meta-SCM proposed to integrate
different NLP tasks. By incorporating the SCM, SIT enables model to capture the underlying causal
relationships and has better adaptability to deal with domain transfer and new tasks. Besides, we
provide a uniform identifiability conditions and apply it to regularize the learning process. We hope
our paper will inspire further research on incorporating the causality into the algorithm design.

A limitation of SIT is the dependence on prescribed human instructions to distinguish different tasks.
We will attempt self-learning from raw data in the future. Besides the preliminary exploration for
conventional NLP tasks, we are interested in more complex tasks like reasoning, which may require
sophisticated SCM designs. The practice combined with LLMs also deserves further exploration,
where strong parametric knowledge may need to be taken into account when designing SCM.
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APPENDIX for “A Unified Causal View of Instruction Tuning”

OVERVIEW:

• Appendix A contains the detailed data generating process, detailed proofs for all theoretical results
in the main paper, as well as the proposed lemmas.

• Appendix B contains the prompt engineering to indicate task information.

• Appendix C contains the details of causal factor selection, including the encoding of the task
representations and the mapping into latent mask vectors.

• Appendix D contains the details of causal factor constraint, including the key idea of the UIC Loss
and the implementation of matrix A from the Theorem 2.

• Appendix E contains the details of tasks and datasets, including task selection and sampling strategy.

• Appendix F contains additional details of training and inference process.

• Appendix G contains additional experimental results under few-shot learning.

A LEMMAS AND PROOFS

This section is structured as follows. We first provide some notations employed in this paper. In
Appendix A.1, we provide a more detailed description for the data generating process in the main
paper. Appendix A.2 presents the complete proof of Theorem 1. In Appendix A.3, we propose and
prove useful lemmas that will be utilized in the proof of Theorem 2. Finally, Appendix A.4 offers the
full proof of Theorem 2.

Notations. In this section, we adhere to a uniform notation scheme as in the main paper. Random
variables are denoted by uppercase letters, while specific values are represented by lowercase letters,
unless specified otherwise. For instance, X is a random variable and x is a particular value. Vector
values are indicated by bold typeface (e.g., x), while scalar values are represented using regular
typeface (e.g., x). Additionally, calligraphic-style letters are used to denote representation spaces.
For example, X represents a representation space where x belongs, with x ∈ X ⊆ Rdim(x).

A.1 DATA GENERATING PROCESS

Before presenting the lemmas and proofs for identifiability, it is crucial to provide a comprehensive
explanation of the data generating process. Understanding the data generating process is pivotal
in the study of causality, as it unveils the causal mechanisms (denoted as assignment functions
in Section 3.1) through which observed variables are produced by latent factors. In this regard,
we employ the structural causal model (SCM), a widely utilized framework, to describe the data
generating process. Formally, let xt ∈ Rdim(xt), yt ∈ Rdim(yt), li ∈ Rdim(li). The parent set of Xt

denoted as Pa(Xt) and the parent set of Yt denoted as Pa(Yt). As explained in Section 3.1, the
source context Xt carries all the information of L, hence Pa(Xt) = {L1,L2,L3, · · · ,Ln}. In order
to simplify the expression of exponential family distribution, we define Θxt ≜ {fxt ,Φxt}, where
fxt denotes the invertible generating function, Φxt represents the set of sufficient statistics T and it’s
coefficient λ.

The joint probability density of source context Xt and latent factors Li can be written as:

pΘxt
(xt, Pa(xt)|d) = pΘxt

(xt, Pa(xt)|d) (9)

= pfxt
(xt|Pa(xt)) · pΦxt

(Pa(xt|d). (10)

According to the additive noise model (ANM) assumption (Equation 1), the data generating process
of xt can be written as:

xt = fxt(Pa(xt)) + εxt , εxt ∼ pε(ε). (11)

15



Under review as a conference paper at ICLR 2024

Using Equation 11, we can rewrite Equation 9 as:

pΘxt
(xt, Pa(xt)|d) = pfxt

(xt|Pa(xt)) · pΦxt
(Pa(xt)|d) (12)

⇒ pΘxt
(xt, Pa(xt)|d) =pεxt

(xt − fxt (Pa(xt))) · pΦxt
(Pa(xt)|d). (13)

Considering that exponential family has universal approximation capability for probability density
function, we assume the conditional probability density function pΦxt

(Pa(xt)|d) is given by:

pΦxt
(Pa(xt)|d) =

n∏
i=1

pTi,λi
(li|d) (14)

⇒ pΦxt
(Pa(xt)|d) =

n∏
i=1

dim(li)∏
j=1

pTi,λi
(li,j |d) (15)

⇒ pΦxt
(Pa(xt)|d) =

n∏
i=1

dim(li)∏
j=1

Qi,j(li,j)

Zi,j(d)
exp

dim(Ti,j)∑
k=1

Ti,jk(li,j)λi,jk(d)

 . (16)

Notice that we employ a slightly different notation, pTi,λi
(li|d), instead of pLi

(li|d), to denote the
conditional probability density of the latent factor li, which is aimed at emphasizing that the latent
factors are represented using exponential family distributions.

Equation 16 is called exponential family distribution, where Qi,j is the base measure, Zi,j is the
partition function, i.e. normalization function, Ti,jk is one of the sufficient statistics and λi,jk is the
corresponding coefficient. We can also rewrite Ti,jk and λi,jk in vector form:

Ti,j(li,j) = [Ti,j1(li,j), Ti,j2(li,j), · · · , Ti,jk(li,j)]
T . (17)

λi,j(d) = [λi,j1(d), λi,j2(d), · · · , λi,jk(d)]
T . (18)

Substituting it in Equation 16:

pΦxt
(Pa(xt)|d) =

n∏
i=1

dim(li)∏
j=1

Qi,j(li,j)

Zi,j(d)
exp

[
λi,j(d)

⊤Ti,j(li,j)
]
. (19)

In this work, we adopt the following mild assumptions for the data generating processes, which are
commonly used in other works(Khemakhem et al., 2020; Sun et al., 2021; Lu et al., 2021):
Assumption 1 (Bijective). The generating functions fXt , fYt are bijective.
Assumption 2 (Denoising). Characterisitic functions of εXt , εYt are nonzero almost everywhere.
Assumption 3 (Transformation). The sufficient statistics T are linear independent on every nonzero
measure subset of L and are differentiable almost everywhere.
Assumption 4 (Variety). The number of different datasets, with differing inherent properties D, be
nD ≥ n0 = max(dim(li)× dim(Ti,j)) + 1, and the following matrix has full column rank:

Ht = [λ(d1)− λ(d0),λ(d2)− λ(d0), ...,λ(dn0)− λ(d0)]. (4)

Note that Assumption 1 is commonly used in identifiability works. Assumption 2 is generally satisfied
for most continuous random variables, including Gaussian, exponential, and beta distributions. By
applying Fourier transformation, this assumption helps eliminate the effect of noise in Equation 1.
Assumption 3 is satisfied for all distributions belonging to the strongly exponential distribution family.
Assumption 4 stipulates that the training datasets should contain a sufficient number of different
datasets, and the full column rank of Ht indicates that datasets should be diverse enough.

A.2 PROOF OF THEOREM 1

Theorem 1. Considering the data generating process described in Section 3.1, where Xt,
Yt,t∈{t1,t2,··· ,tm} are generated according to Equation 1, and Li,i∈{1,2,··· ,n} has the distribution
specified in Equation 2, as well as the fulfillment of Assumptions 1 - 4. We introduce a set of sets F
that describes the topology structure of a SCM and can be used to determine whether the SCM is
identifiable. F is generated by the following steps:
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1. ∅, Pa(Xt1), Pa(Yt1), · · · , Pa(Xtm), Pa(Ytm) ∈ F

2. Set A, B ∈ F ⇒ Set A− B, B −A ∈ F . Here A− B = A ∩ B̄

The SCM is ∼P identifiable if the set of sets F includes all singleton sets Li, that is

{L1}, {L2}, · · · , {Ln} ∈ F .

Proof. The proof of the theorem can be roughly divided into two main steps. First, we transform the
equations of probability density into an additive form. This step allows us to express the equations
as a sum of individual components. Second, we apply the subtraction operator to the additive form
equations, yielding equations with fewer latent factors. Consequently, each final equation contains
only one of the latent factors.

Step 1. Transforming We begin our proof by stating that the learning marginal probability density
on Xt and Yt equals the true marginal probability density. For source context Xt:

pΘxt
(xt) = pΘ̃xt

(xt) (20)

⇒ pfxt ,Φxt
(xt|d) = pf̃xt ,Φ̃xt

(xt|d) (21)

⇒
∫

pfxt
(xt|Pa(xt))pΦxt

(Pa(xt)|d)
n∏

i=1

dli

=

∫
pf̃xt

(xt|Pa(xt))pΦ̃xt
(Pa(xt)|d)

n∏
i=1

dli (22)

⇒
∫

pεxt
(xt − fxt(Pa(xt)))pΦxt

(Pa(xt)|d)
n∏

i=1

dli

=

∫
pεxt

(xt − f̃xt(Pa(xt)))pΦ̃xt
(Pa(xt)|d)

n∏
i=1

dli (23)

⇒
∫

pεxt
(xt − x̄t)pΦxt

(f−1
xt

(x̄t)|d)
∣∣∣det(Jf−1

xt
(x̄t)

∣∣∣ dx̄t

=

∫
pεxt

(xt − x̄t)pΦ̃xt
(f̃−1

xt
(x̄t)|d)

∣∣∣det(Jf̃−1
xt

(x̄t)
∣∣∣ dx̄t (24)

⇒
∫

pε(xt − x̄t)pΦxt ,fxt ,t
(x̄t)dx̄t =

∫
pε(xt − x̄t)pΦ̃xt ,f̃xt ,t

(x̄t)dx̄t (25)

⇒ (pεxt
∗ pΦxt ,fxt ,t

)(xt) = (pεxt
∗ pΦ̃xt ,f̃xt ,t

)(xt) (26)

⇒ F [pεxt
](ω)F [pΦxt ,fxt ,t

](ω) = F [pεxt
](ω)F [pΦ̃xt ,f̃xt ,t

](ω) (27)

⇒ F [pΦxt ,fxt ,t
](ω) = F [pΦ̃xt ,f̃xt ,t

](ω) (28)

⇒ pΦxt ,fxt ,t
(xt) = pΦ̃xt ,f̃xt ,t

(xt). (29)

From Equation 21 to Equation 22, we introduce variables Pa(xt) into the formula and integrate them.
This step is a commonly used technique to incorporate target variables in probability density equations.
In Equation 24, the symbol J represents the Jacobian matrix, while |det | denotes the generalized
determinant of the matrix, det |A| =

√
det(A⊤A). In Equation 25, we introduce pΦxt ,fxt ,t

(x̄t) =

pΦ̃xt
(f̃−1

xt
(x̄t)|d)

∣∣∣det(Jf̃−1
xt

(x̄t)
∣∣∣ for convenience. It is obviously that the Equation 25 is in the form

of convolution. In Equation 26, F means Fourier transformation which is a useful tool to simplify
convolution. From Equation 26 to Equation 28, we make an assumption that the characteristic
function of noise F [pε] is non-zero almost everywhere, hence this term can be eliminated. Finally,
we acquire the denoised result. Then taking the logarithm on the both sides of Equation 29 and
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substituting the pΦxt
with the exponential family distribution, we have

log
∣∣∣det(Jf−1

xt
(xt))

∣∣∣
+

n∑
i=1

dim(li)∑
j=1

Qi,j

([
f−1
xt

(xt)
]
i,j

)
− Zi,j(d) +

dim(Ti,j)∑
k=1

Ti,jk

([
f−1
xt

(xt)
]
i,j

)
λi,jk(d)


= log

∣∣∣det(Jf̃−1
xt

(xt))
∣∣∣

+

n∑
i=1

dim(li)∑
j=1

Q̃i,j

([
f̃−1
xt

(xt)
]
i,j

)
− Z̃i,j(d) +

dim(Ti,j)∑
j=1

T̃i,jk

([
f̃−1
xt

(xt)
]
i,j

)
λ̃i,jk(d)

 .

(30)

Notice that we have sufficient different tasks or datasets t, that is, there exits dim(li)× dim(Ti,j)+ 1
different t. Pluging these different t in Equation 30 resulting to dim(li)× dim(Ti,j) + 1 equations.
By subtracting the first equation from the second equation up to the last equation, we obtain a set of
equations indexed by l = 1, 2, . . . , dim(li)× dim(Ti,j):

n∑
i

⟨Ti

([
f−1
xt

(xt)
]
i

)
,λi(dl) ⟩+

∑
j

log
Zi,j(d0)

Zi,j(dl)


=

n∑
i

⟨T̃i

([
f̃−1
xt

(xt)
]
i

)
, λ̃i(dl) ⟩+

∑
j

log
Z̃i,j(d0)

Z̃i,j(dl)

 . (31)

In Equation 31, we define λi(dl) = λi(dl)− λi(d0). In order to simplified Equation 31 further, we
define wl,i =

∑
j

Z̃i,j(d0)Zi,j(dl)

Z̃i,i(dl)Zi,j(d0)
. Then we rewrite these equations in matrix form:

n∑
i

Hi,⊤
d Ti

([
f−1
xt

(xt)
]
i

)
=

n∑
i

H̃i,⊤
t T̃i

([
f̃−1
xt

(xt)
])

+wl,i, (32)

where Hi
d = [λi(d1)− λi(d0),λi(d2)− λi(d0), ...,λi(dn0)− λi(d0)], n0 = dim(li) ×

dim(Ti,j).

Step 2. Separation Similar to xt, we can express the transformed equations for yt as well.
Notice that the parent sets of xt encompass all latent factors li, while the parent sets of yt usually
encompass a subset of latent factors li. We use the notation idx(Pa(Yt)) to represent the indices
of the latent factors comprising the set Pa(Yt). We obtain m transformed equations for each Yts ,
s = 1, 2, 3, · · · ,m:∑

i∈idx(Pa(Yts ))

Hi,⊤
t Ti

([
f−1
yti

(yts)
]
i

)
=

∑
i∈idx(Pa(Yts ))

H̃i,⊤
t T̃i

([
f̃−1
yts

(yts)
])

+wl,i. (33)

Furthermore, it is crucial to note that the latent factors li are shared by Yt. Based on this property,
we can express the transformed equations for the pair of target variables (yts ,yts′ ) as follows:∑
i∈idx(Pa(Yts )∪

Pa(Yt
s′
))

Hi,⊤
t Ti

([
f−1
yti

(yts ,yts′ )
]
i

)
=

∑
i∈idx(Pa(Yts )∪

Pa(Yt
s′
))

H̃i,⊤
t T̃i

([
f̃−1
yts

(yts ,yts′ )
])

+wl,i.

(34)

Notice that the subtraction of the two sets satisfies the following equation:

A− B ≜ A ∩ B̄ = (A ∩ B̄) ∪ (B ∩ B̄) = (A ∪ B) ∩ B̄ = (A ∪ B)− B. (35)

Due to the inclusion property B ⊂ A ∪ B, the expression (A ∪ B) − B represents the removal of
identical elements from the set A ∪ B that are also present in B. It is noteworthy that this type of set
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Figure 3: Identifiable latent factors.

subtraction demonstrates a striking similarity to algebraic subtraction. In parallel with the expansion
of the set of sets F through set subtraction, we can utilize algebraic subtraction on Equations 33 and
Equations 34 to derive new equations that involve fewer latent factors. Given the condition that D
encompasses all singleton sets, it follows that all the latent factors can ultimately be isolated in their
respective equations, as shown below:

Hi,⊤
t Ti

([
f−1
yti

(yts)
]
i

)
= H̃i,⊤

t T̃i

([
f̃−1
yts

(yts)
])

+wl,i,

i ∈ {1, 2, · · · , n}, ts ∈ {t1, t2, · · · , tm}. (36)

Notice that the matrix Hi
t has full rank, we multiply it’s inverse matrix on both sides of Equation 36:

Ti

([
f−1
yti

(yts)
]
i

)
= Mi,⊤

t T̃i

([
f̃−1
yts

(yts)
])

+ vl,i,

i ∈ {1, 2, · · · , n}, ts ∈ {t1, t2, · · · , tm}, (37)

where Mi
t = (Hi,⊤

t )−1H̃i,⊤
t , vl,i = (Hi,⊤

t )−1 wl,i.

Finally, we will prove that the matrix Mi
t is a permutation matrix, demonstrating the ∼P identifiability

of the SCM. We adopt the method from Khemakhem et al. (2020) for this proof. Firstly, we consider
the matrix T. Under Assumption 4, the Jacobian of Ti has a full column rank n, implying that the
Jacobian of Ti(f

−1) is also of rank n. Consequently, the matrix Mi
t is also of rank n. Secondly,

we analyze two cases based on the dimension k of the sufficient statistics: (1) k = 1; (2) k > 1. In
the case of k = 1, the matrix Ti becomes an n × n square matrix. Since Ti has a full rank, the
matrix Mti is also of full rank, indicating its invertibility. In the case of k > 1, we can directly apply
Lemma 3 from Khemakhem et al. (2020) to prove the invertibility of Mi

t . Lastly, assuming that both
f and the sufficient statistics Ti are twice differentiable, we apply Theorem 2 and Theorem 3 from
Khemakhem et al. (2020) to demonstrate that Mi

t is a permutation matrix.

Intuition. To provide an intuitive understanding of Theorem 1, we present an identification process
for Figure 3. Initially, we consider Yt1 , which is pointed by L1 and L2. Solely relying on the
information from Yt1 can not identify these latent factors. Next, we incorporate Yt2 into the analysis.
By leveraging the information of Yt2 , we can identify L1 and L2, for L1 exclusively points to Yt1 ,
while L2 points to both Yt1 and Yt2 . Subsequently, we include Yt3 in our analysis. Following the
same procedure as before, the remaining three latent factors can be identified.

A.3 LEMMAS

Before presenting the complete proof of Theorem 2, we first provide several useful lemmas.
Lemma 1. Considering the data generating process described in Section 3.1. If there exist two
distinct latent factors Li and Lj such that their child sets Ch(Li) and Ch(Lj) are identical, i.e.,
Ch(Li) = Ch(Lj), then Li and Lj can not be identified.

Proof. We begin the proof with the equation of joint probability density:

p(Xt1 ,Yt1 , · · · ,Xtm ,Ytm |d)
= p(Xt1 ,Yt1 , · · · ,Xtm ,Ytm |L1,L2, · · · ,Ln) · p(L1,L2, · · · ,Ln|d) (38)

=

tm∏
t=t1

p(Xt|L1,L2, · · · ,Ln) ·
tm∏

t=t1

p(Yt|Pa(Yt)) · p(L1,L2, · · · ,Ln|d). (39)
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Figure 4: Unidentifiable latent factors.

We denoted Ch(Li) = Ch(Lj) ≜ Ch, Ch = {Xt1 ,Xt2 , · · · ,Xtm ,Yt′1
, · · · ,Yt′q}, in which

{Yt′1
, · · · ,Yt′q} ⊆ {Yt1 ,Yt2 , · · · ,Ytm}.

Back to the Equation 39,

p(Xt1 ,Yt1 , · · · ,Xtm ,Ytm |d)

=

tm∏
t=t1

p(Xt|L1,L2, · · · ,Ln) ·
tm∏

t=t1

p(Yt|Pa(Yt)) · p(L1,L2, · · · ,Ln|d) (40)

=

tm∏
t=t1

p(Xt|(L1,L2, · · · ,L−i,L−j , · · · ,Ln), (Li,Lj))

·
∏

t∈{t′1,··· ,t′q}

p(Yt|(Pa(Yt),L−i,L−j), (Li,Lj)) ·
∏

t/∈{t′1,··· ,t′q}

p(Yt|Pa(Yt)) (41)

· p((L1,L2, · · · ,L−i,L−j , · · · ,Ln), (Li,Lj)|d). (42)

Note that Li and Lj always appear together in a term. Considering the following transformation:

(Li,Lj) → (L′
i,L

′
j), n = min

([
dim(Li)

2

]
,

[
dim(Lj)

2

])
(43)

L′
i =

{
L′

i[1:n] = Lj[1:n]

L′
i[n+1:dim(Li)] = Li[n+1:dim(Li)]

, L′
j =

{
L′

j[1:n] = Li[1:n]

L′
j[n+1:dim(Li)] = Lj[n+1:dim(Li)]

(44)

The purpose of this transformation is to interchange the 1st to nth dimensions of Li and Lj . As
a result, the transformed variables L′

i and L′
j incorporate the information from both Li and Lj .

Note that both the original pair (Li,Lj) and the transformed pair (L′
i,L

′
j) satisfy Equation 39,

indicating that it is impossible to uniquely recover the original pair (Li,Lj) without information
mixing. Consequently, Li and Lj are not identifiable.

Intuition. Figure 4 provides an intuitive understanding of Lemma 1. As depicted in Figure 4, when
two latent factors L3 and L4 share the same child set {Yt1 ,Yt2}, it is equivalent to considering
these two latent factors as a single variable.
Lemma 2. Assuming the number of observed variables Y is m, if the number of hidden variables Z
is greater than 2m − 1, then the causal graph is unidentifiable.

Proof. Lemma 2 can be derived straightforwardly from Lemma 1. The number of different non-empty
subsets of {Yt1 ,Yt2 , · · · ,Ytm} is given by

m∑
i

Ci
m = C1

m + C2
m + · · ·+ Cm

m = 2m − 1. (45)

Intuition. Although the proof for Lemma 2 is technically straightforward, its meaning is quite
interesting. Intuitively, Lemma 2 highlights the necessity of an adequate number of observed
variables to identify latent factors. In this work, these observed variables correspond to distinct tasks
or diverse datasets.
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Lemma 3. Assuming the number of observed variables Y is m, for any observed variables Yti , its
parent set satisfies the following:

|Pa(Yti)| ≤ 2m−1. (46)

In Equation 46, the notation |A| denotes the cardinality of a set A. For a finite set, the cardinality
represents the number of elements it contains.

Proof. We present a proof by contradiction. Let us assume that the given condition is violated, i.e.,
|Pa(Yti)| ≥ 2m−1+1, which implies that there are at least 2m−1+1 latent factors L pointing to Yti .
Considering that all the child sets of these latent factors contain Yti , the only difference lies in the
remaining m− 1 latent factors. According to Lemma 2, the number of different child sets is limited
to 2m−1 − 1 + 1 = 2m−1 (including the empty set). However, the parent set Pa(Yti) contains at
least 2m−1 + 1 latent factors, indicating that there must exist two different latent factors with the
same child set.This contradicts the initial assumption of identifiable latent factors. Consequently, we
conclude that the condition |Pa(Yti)| ≤ 2m−1 holds.

Lemma 4. Considering a set of sets F that describes the topology structure of a SCM. F is generated
by the following steps:

1. ∅, Pa(Xt1), Pa(Yt1), · · · , Pa(Xtm), Pa(Ytm) ∈ F

2. Set A, B ∈ F ⇒ Set A− B, B −A ∈ F . Here A− B = A ∩ B̄

The set of sets F includes all singleton sets Li, that is {L1}, {L2}, · · · , {Ln} ∈ F , if and only if
(⇔), For any two distinct latent factors Li and Lj in the SCM, their child sets are not identical.

Proof. We will first prove the direction "⇒" (i.e., "only if"). We present a proof by contradiction. Let
us assume that there exists two distinct latent factors Li and Lj that have the same child sets, denoted
as Ch = {Xt1 ,Xt2 , · · · ,Xtm ,Yt′1

, · · · ,Yt′q}, where {Yt′1
, · · · ,Yt′q} ⊆ {Yt1 ,Yt2 , · · · ,Ytm}.

Let C̄h = {Xt1 ,Yt1 , · · · ,Xtm ,Ytm} − Ch = {Yt′q+1
,Yt′q+2

, · · · ,Yt′m}.

Notice that the original set F = {∅, Pa(Xt1), Pa(Yt1), · · · , Pa(Xtm), Pa(Ytm)} can be di-
vided into two distinct partition based on the sets Ch and C̄h. The sets in one partition,
{∅, Pa(Yt′q+1

), · · · , Pa(Yt′m)} ⊂ F do not includes either Li or Lj , while the sets in the other
partition, {Pa(Xt1), Pa(Xt2), · · · , Pa(Xtm), Pa(Yt′1

), · · · , Pa(Yt′q)} ⊂ F , contains both Li

and Lj . Therefore, when performing the set subtraction, the result set can either contains both Li and
Lj , or it can contains neither Li nor Lj , both of which still belong to one of the partitions. Hence, it
is impossible to generate the singleton {Li} and {Lj}, thus contradicting the assumption "the set of
sets F includes all singleton sets". Consequently, we conclude that the direction ⇒ holds.

Next, we will prove the direction "⇐" (i.e., "if"). To begin, let us introduce the property of set
subtraction. Consider two sets, denoted as A and B. Performing set subtraction on these two sets
yields three distinct sets: A − B, B − A, and A − (A − B). Notably, B − (B − A) is equal to
A− (A− B), thus obviating the need to introduce this particular set. Furthermore, it is obvious that
(A− B) ∪ (B −A) ∪ (A− (A− B)) = A ∪ B. And the cardinality of three generated new sets are
constrained by: min(|A − B|, |B − A|, |A − (A− B)|) ≤ 1

2 max(|A|, |B|).
Let us now consider the original set F = {∅, Pa(Xt1), Pa(Yt1), · · · , Pa(Xtm), Pa(Ytm)}. Note
that the parent sets of every Xt contain all the latent factors L, which can be represented as the
universal set U . Therefore, we can select one of the Xt, denoted as X, as it encompasses the
entire set of latent factors. Next, we consider a total of m + 1 observed variables, where m of
them are denoted as Yt, and one of them is X. According to Lemma 3, the cardinality of their
parent sets is no more than 2m. Here we present a set generating process: Firstly, we have a set
Pa(X). Next, by introducing the set Pa(Yt1) and performing set subtraction, we obtain three new
sets Pa(X) − Pa(Yt1), Pa(Yt1) − Pa(X) and Pa(X) − (Pa(X) − Pa(Yt1)). Subsequently,
we introduce the set Pa(Yt2) and perform set subtraction on each of these three sets, resulting in
nine new sets. We repeat this process by introducing Pa(Yt2), · · · , Pa(Ytm) and performing set
subtraction. Finally, we obtain 3m generated sets denoted as S . As mentioned earlier, the union set of
these 3m generated sets is the universal set U . Moreover, the cardinality of these sets is constrained
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by the following condition:

|S| ≤ 1

2
· 1
2
· · · 1

2
· |Pa(X)| ≤ (

1

2
)m · 2m = 1. (47)

Equation 47 indicates that the cardinality of each generated set is no more than 1, implying that they
are either empty sets or singletons. Combining this with the fact that the union set is the universal set,
we can conclude that {L1}, {L2}, · · · , {Ln} ∈ F . Therefore, the direction ⇐ holds.

A.4 PROOF OF THEOREM 2

Theorem 2. Considering the data generating process described in Section 3.1, we employ a binary
adjacency matrix denoted as A to represent the topology relations between Li and Yt. The matrix
A comprises m rows and n columns, where m is the number of Yt, and n is the number of latent
factors Li. Specifically, a value of 1 at position (i, j) indicates that Lj has a direct effect on Yi,
while a value of 0 indicates no direct effect. Latent factors in a SCM are identifiable if and only if the
following equation holds. We refer to the equation as the uniform identifiability condition (UIC).

1

(
1

m

[
A⊤A+ (1−A)⊤(1−A)

]
− In×n

)
= 0n×n. (5)

In Equation 5, 1(·) is an indicator function, which defined as [1(A)]ij =

{
0, 0 ≤ aij < 1

1, aij = 1

Proof. The proof consists of three steps, and an overview of the proof is presented in Figure 5.

Figure 5: Overview of the proof. Each step focuses on the element marked in black. In Step 1, we
demonstrate that the condition stated in Proposition 1 is a necessary condition for determining SCM
identifiability. In Step 2, we establish the equivalence between the conditions in Proposition 1 and
Theorem 1, thereby showing that both conditions are necessary and sufficient. Finally, in Step 3, we
present the matrix form representation of the condition in Proposition 1.

Step 1. Proving Necessity We introduce a criterion to determine the identifiability of a given
SCM. The criterion is that: For any two distinct latent factors Li and Lj in the SCM, their child sets
(i.e., sets containing Xt and Yt pointed by L) are not identical. Then, according to Lemma 1, a
negative answer to this criterion implies the non-identifiability of the SCM. Thus it can be seen as
the contrapositive form of the necessary condition for identifiability. We can express the equivalent
necessary condition in the form of a proposition:

Proposition 1. If the SCM is identifiable, then for any two distinct latent factors Li and Lj in the
SCM, their child sets are not identical.

Step 2. Combining Necessity and Sufficiency Notice that Theorem 1 provides a sufficient
condition for the identifiability of SCM, while Proposition 1 presents a necessary condition for
the identifiability of SCM. According to Lemma 4, these two conditions are exactly equivalent.
Consequently, we conclude that both conditions are both necessary and sufficient for the identifiability
of SCM. Based on the conclusion, we can strengthen Proposition 1 by incorporating the sufficiency
aspect, as presented in Proposition 2.

Proposition 2. A SCM is identifiable, if and only if for any two distinct latent factors Li and Lj in
the SCM, their child sets are not identical.
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Step 3. Matrix Representation In this step, we will represent the conditions using matrix notation.
Notice that the condition described in Theorem 1 involves a generative process, which poses chal-
lenges when attempting to express it in matrix form. Therefore, we choose to employ the condition
introduced in Proposition 2, i.e., for any two distinct latent factors Li and Lj in the SCM, their child
sets are not identical. This condition can be naturally expressed using a binary adjacency matrix
denoted as A. The matrix A comprises m rows and n columns, where m is the number of Yt, and n
is the number of latent factors Li. Specifically, a value of 1 at position (i, j) indicates that Lj has
a direct effect on Yi, while a value of 0 indicates no direct effect. The condition that the child sets
are not identical is equivalent to stating that any two distinct columns in matrix A are not the same.
Hence, we can express Proposition 2 in matrix form as Proposition 3.

Proposition 3. Considering the binary adjacency matrix A described in Step 3, a SCM is identifiable,
if and only if any two distinct columns in matrix A are not the same.

Notice the following Equation 48 holds:

x1 = {0, 1}, x2 = {0, 1}, x1x2 + (1− x1)(1− x2) =

{
1 x1 = x2

0 x1 ̸= x2
(48)

The formula x1x2 + (1− x1)(1− x2) can be regarded as a correlation function for x1 and x2, and
this correlation function can be straightforward generalized to a vector form:

Cij ≜ Corr(vi,vj) =
1

dim(v)

[
(v⊤

i vj) + (1− vi)
⊤(1− vj)

]
, (49)

where the term 1
dim(v) serves as a normalization factor. Cij = 0 if all of the elements in the same

position of vi and vj are different. 0 < Cij < 1 if some of the elements in the same position of vi

and vj are the same. Cij = 1 if vi and vj are exactly the same.

Based on that, we can express the condition that "any two distinct columns in matrix A are not the
same" using an equivalent matrix formula, as shown in Equation 5:

1

(
1

m

[
A⊤A+ (1−A)⊤(1−A)

]
− In×n

)
= 0n×n.

Here the indicator function 1(·) acts as a selector to identify which two columns are identical.

B PROMPT ENGINEERING

Table 5: Design of discrete prompt described in natural language. For classification tasks, we provide
category options as part of prompt.

Task Discrete Prompt
SUM Summarize the document:
RC Answer the question based on its following passage:
TC Distinguish which topic the text is (options are [option]):
PD Distinguish whether the two sentences have the same meaning (options are [option]):
SA Distinguish which sentiment the review is (options are [option]):
LA Distinguish whether the sentence is linguistically acceptable (options are [option]):
NLI Distinguish whether the first sentence can infer its following sentence (options are [option]):

For both Vanilla-IT and SIT, we apply the same setting of prompt engineering as follow.

We adopt hybrid prompts p = {pd, pc} as instructions following (Xu et al., 2022; Chen et al.,
2023), where discrete prompts pd are natural words, while continuous prompts pc are continuous
embeddings.For the discrete prompts pd, we manually design them as shown in Table 5. For the
continuous prompts pc, we utilize an individual prompt encoder to encode a sequence of trainable
dense vectors. The prompt encoder is composed of two-layer bidirectional long-short term memory
network (BiLSTM) (Graves & Graves, 2012) followed by a multilayer perceptron (MLP), i.e.,
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pc = MLP(BiLSTM([p1], [p2], ..., [p|pc|])), where [pj ]
|pc|
j=1 represents placeholders to be replaced

by trainable dense vectors, of length |pc| = 6 for each input sequence. Note that multiple source
sequences are concatenated into one as input. In this work, there are at most two source sequences,
and the prompted input is < p, x1, x2 >= {[s], pd, pc, x1, [e], pc, x2, [e]} for such tasks.

For the prompt encoder, the mid-hidden size and output size of the LSTM is 512 and 1024, respectively.
Dropout with probability 0.1 is applied for LSTM. MLP is composed of two linear layers with a
ReLU activation function in between. The hidden size and output size of the two-layer MLP is 1024.

C DETAILS OF CAUSAL FACTOR SELECTION

In this section, we introduce the implementation details of the task representation ht and the latent
mask vector mt.

Task Representation. We obtain task representation ht by encoding hybrid prompts p = {pd, pc}
introduced in Appendix B. Specifically, for discrete prompts with variable length, we derive a single
embedding epd

∈ Rdh through the utilization of average pooling, applied to the output embedding
sequence generated from a word embedding layer. Also, for continuous prompts with the maximum
length of 12 (the length twice as long as 6 for two source sequences), we linearly transform the output
embedding sequence from the prompt encoder into another embedding epc ∈ Rdh . Then, we linearly
combine them to achieve the task representation ht ∈ Rn, i.e., ht = W4epd

+ W5epc + b4.

Latent Mask Vector. We obtain the latent mask vector mt based on the task representation ht.
Firstly, ht is normalized by a sigmoid activation function into ĥt, a soft version of latent mask vector,
i.e.,

ĥt = Sigmoid(ht), (50)

whose continuous value ĥti ∈ (0, 1) in each dimension represents the selected probability of each
latent factor. Then, we utilize bernoulli sampling to obtain the hard latent mask vector mt according
to ĥt, where the discrete value mti ∈ {0, 1} in each dimension is sampled from {0, 1} and only 1
represents "selected". To increase the stability of sampling results, we additionally multiply a scaling
coefficient selected from (50, 200) for ht before the sigmoid activation.

D DETAILS OF CAUSAL FACTOR CONSTRAINT

UIC Loss Function. Note that Equation 5 provides a necessary and sufficient condition for identifying
latent factors. Using this equation, we can design a loss function to ensure identifiability in our model.
However, a challenge arises with the indicator function in Equation 5, which is non-differentiable
at aij = 1. This prevents direct application of gradient-based optimization methods. One solution
is to replace the indicator function with an approximate, but differentiable function. In this work,
we choose the power function xα, which becomes increasingly similar to the indicator function as
α approaches infinity (Practically, α = 50 is quite enough) . Therefore, our loss function can be
expressed as:

Luic =
1

mα

n∑
i,j=1

[
m∑

k=1

akiakj + (1− aki)(1− akj)−mδij

]α

, (6)

In Equation 6, δ is the Kronecker delta function, which defined as δij =
{
0, i ̸= j

1, i = j

Implementation of Matrix A. To apply the UIC loss and task distinction loss, we construct a discrete
task-latent matrix Mtl to implement the binary adjacency matrix A described in Theorem 2, whose
elements a are utilized in Luic (Equation 6) and Ldis (Equation 7).

First, we construct a continuous version of this matrix. Specifically, we collect the soft latent mask
vectors ĥt ∈ Rn (introduced in Appendix C) for m training mixture tasks, and stack m vectors into a
continuous matrix M ∈ Rm∗n. Collected from training batches, this matrix changes dynamically.
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Then, we discretize this continuous matrix. Since the bernoulli sampling does not meet the require-
ment of derivability, we apply gumbel-softmax rather than bernoulli sampling to realize discretization
of Mtl for parameter optimization during training.

E DETAILS OF TASKS AND DATASETS

In this section, we present the task selection as well as our sampling strategy.

Task Selection. We selected tasks based on established prior works like FLAN and T0, choosing
widely-adopted datasets to validate our approach. This selection covers a diverse range of classical
NLP tasks, including the General Language Understanding Evaluation (GLUE) benchmark, which
is one of the most popular evaluation benchmarks used for multitask learning (Worsham & Kalita,
2020). Besides Natural Language Understanding (NLU) tasks, we also consider Natural Language
Generation (NLG) tasks, e.g., Summarization and Reading Comprehension.

The training datasets consist of XSUM (Narayan et al., 2018), CNNDM (See et al., 2017),
Duorcself (Saha et al., 2018), Duorcpara (Saha et al., 2018), AG (Zhang et al., 2015), Trec (Li
& Roth, 2002), PAWS (Zhang et al., 2019), IMDB (Maas et al., 2011) and Yelp (Zhang et al., 2015).
The held-out datasets used are Gigaword (Napoles et al., 2012), Squad (Rajpurkar et al., 2016), DBPe-
dia (Lehmann et al., 2015), MRPC (Dolan & Brockett, 2005), QQP (Wang et al., 2018), SST-2 (Socher
et al., 2013), CoLA (Warstadt et al., 2019), MNLIm (Williams et al., 2018), MNLImm (Williams
et al., 2018), QNLI (Rajpurkar et al., 2018), RTE (Dagan et al., 2006), WNLI (Levesque et al., 2012).
Details of all datasets are provided in Table 6a.

Sampling Strategy. To construct the training mixture dataset, we randomly sample and mix data
from each dataset listed in Table 6a. Following the approach described in (Wei et al., 2021a; Raffel
et al., 2020), we adopt the examples-proportional mixing scheme and limit the number of training
examples per dataset to 15k. In order to increase the coverage of the sampled dataset with respect to
the original dataset, we prioritize sampling data that has not been sampled before. Consequently, the
sample size of the training mixture datasets in our work can be expressed as:

size = min (num(epochs)× 15k, size(original dataset)) , (51)

where the number of training epochs is 10 in our works. The statistics of the final training mixture
datasets and the held-out datasets are shown in Table 6.

Table 6: Data statistics.

(a) The training mixture datasets.

Task Dataset Train (sampled) Test

SUM XSUM 150,000 11,334
CNNDM 150,000 11,490

RC Duorcself 60,721 12,559
Duorcpara 69,524 15,857

TC AG 120,000 7,600
Trec 5,452 500

PD PAWS 49,401 8,000

SA IMDB 25,000 25,000
Yelp 150,000 50,000

(b) The held-out datasets.

Task Dataset Split Size

SUM Gigaword test 1,951

RC Squad dev 10,570

TC DBPedia test 70,000

PD MRPC dev 408
QQP dev 40,430

SA SST-2 dev 872

LA CoLA dev 1,043

NLI MNLIm dev 9,815
MNLImm dev 9,815
QNLI dev 5,463
RTE dev 277
WNLI dev 71
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F DETAILS OF TRAINING AND INFERENCE

In this section, we supplement more details about the training and inference process. For the tasks
with one source sequence, we set the max length as 550, while for those with two source sequences,
we set the max length as 350 for the first sentence, and 200 for the second sentence. For other hyper-
parameters, we manually tune them based on the validation set or a subset of training set. Specifically,
the batch size is selected from {256, 512}, the learning rate is selected from {1e−5, 3e−5, 5e−5}.
The total training steps contain 10 epochs, and we conduct evaluation for early stopping every epoch
and every 500 steps. During inference, we apply beam search for text generation and set beam size as
6. Specifically, we use Huggingface Transformers library 4 for implementations 5. All the reported
results come from evaluation on models trained in the mixture datasets, which are subsets sampled
from the full datasets.

G FEW-SHOT LEARNING

In this section, we show all the experimental results under the few-shot setting in Table 7. The
hyper-parameter setup is the same as the setup during training stage, except for the warm-up strategy
absent in few-shot training. The last checkpoint are picked for prediction.

As shown in Table 7, SIT outperforms Vanilla-IT on 9 out of 12 datasets, demonstrating the better
learning capability and generalization ability of SIT, which benefits from SCM capturing the un-
derlying causal relationships. On the whole, the model performance improves more on the difficult
tasks after few-shot learning, e.g. SUM task, while the performance on the simple tasks maybe
decrease, e.g., RC task. We analyze the two cases in detail as follows. (i) On the datasets that have
poor zero-shot performance, e.g., DBPedia and CoLA, both Vanilla-IT and SIT gain significantly
under the few-shot setting as shown in Figure 2. The larger gain of SIT than Vanilla-IT indicates that
structural instructions can adapt faster and better to a new target space with SCM as bridge between
the task and target. (ii) On the datasets that have good zero-shot performance, e.g., SST-2, Vanilla-IT
can only improve 0.87% in terms of accuracy by learning few samples, while SIT leads to a decrease
in model performance. The possible reason is that with 3e−5 as learning rate the same as training
stage, the update rate of the model parameters is too fast, so that the prediction behavior is unstable
or even worse for the tasks previously performed well. More suitable hyper-parameter setup needs to
be determined by grid search.

Table 7: Few shot performance of all the held-out datasets, including OOD and cross-task situations.

OOD Performance Cross-task Performance

Method SUM RC TC PD SA LA NLI

Gigaword Squad DBPedia MRPC QQP SST-2 CoLA MNLIm MNLImm QNLI RTE WNLI

Vanilla-IT 29.82 54.02 76.33 68.38 36.82 93.23 38.16 32.65 32.94 50.52 16.97 43.66
SIT 30.05 75.99 93.16 68.38 74.52 87.96 69.03 35.39 35.21 50.54 47.29 43.66

4https://github.com/huggingface/transformers
5The code is available at https://anonymous.4open.science/r/SIT-34DB/
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