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Abstract

Many studies have proposed attack methods to generate adversarial patterns for
evading pedestrian detection, alarming the computer vision community about the
need for more attention to the robustness of detectors. However, adversarial pat-
terns optimized by these methods commonly have limited performance at medium
to long distances in the physical world. To overcome this limitation, we identify
two main challenges. First, in existing methods, there is commonly an appearance
gap between simulated distant adversarial patterns and their physical world coun-
terparts, leading to incorrect optimization. Second, there exists a conflict between
adversarial losses at different distances, which causes difficulties in optimiza-
tion. To overcome these challenges, we introduce a Full Distance Attack (FDA)
method. Our physical world experiments demonstrate the effectiveness of our FDA
patterns across various detection models like YOLOv5, Deformable-DETR, and
Mask RCNN. Codes available at https://github.com/zhicheng2T0/Full-Distance-
Attack.git

1 Introduction

Currently, various adversarial attack methods have been proposed to evade deep-neural-network-based
pedestrian detectors in the physical world [34, 17, 42] by crafting patches or clothes covered with
adversarial patterns. These works have alarmed the computer vision community on the robustness of
the existing Deep Nerual Network based detectors [37, 26, 14, 8, 43]. However, as shown in previous
works [17, 23], a common limitation of the existing attack methods is that the generated adversarial
patterns are not adversarially effective at medium to long distances (see also Figure 1(a)). This
limitation might brings a false impression to the computer vision community that existing pedestrian
detectors are robust to physical world attacks at such distances.

In this study, we find that the major cause of the aforementioned limitation is the naive distant
image simulation technique used when optimizing the adversarial patterns. More specifically, as
demonstrated in Figure 1(b), to simulate the appearance of a distant adversarial pattern during
optimization, the existing attack algorithms usually naively downscale and apply the adversarial
patterns according to the size of the pedestrians [34, 42, 17]. Such a naive technique creates a
widening appearance gap between the simulated patterns and their real-world counterparts as distance
increases. This leads to the optimization of incorrect adversarial patterns.
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Figure 1: Illustrating FDA. (a) Visualizing attack performance of baseline [42] and FDA pattern. Red
boxes are detection results from YOLOv5 [21] with confidence greater than 0.5. (b) Appearance gap
between the naively simulated patch and its physical world counterparts at different distances.

To solve this problem, we propose a Distant Image Converter (DIC) to convert images of short-
distance objects into an appearance similar to their physical world counterparts at long distances.
In DIC, We find it necessary to simulate three factors in the physical world that contribute to the
appearance gap. These factors include the effect of atmospheric perspective which changes object
colors due to increasing scattering of light as distance increases, the effect of camera hardware which
blurs the field of light projected from the target object to form a digital image, and the effect of the
default effect filters commonly installed in digital cameras which change the color and texture details
of the captured images for better visual appearances.

By applying the DIC during optimization, we found that different low frequency patterns were
required at short and long distances, causing a conflict, hindering full distance attack (FDA) pattern
optimization. To overcome the difficulty, we propose a Multi-Frequency Optimization (MFO)
technique.

By combining DIC and MFO, we form the FDA method which generates effective adversarial
patterns for evading pedestrian detectors at varying distances. Our physical world experiments
demonstrate the effectiveness of our FDA patterns across various detection models like YOLOv5
[21], Deformable-DETR [43], and Mask RCNN [14].

2 Background and Related Work
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Figure 2: Atmospheric perspective. (a) Illustrating the
phenomenon. (b) An example.

Atmospheric Perspective. Atmospheric
perspective refers to the phenomenon that
as distance increases, the observed color of
a target object exponentially shifts toward
the color of the skylight (color of the sky in
the direction of the object) due to the scat-
tering of light by air molecules, dust and
moisture as distance increases. Figure 2 (a)
illustrates the phenomenon and Figure 2
(b) gives an intuitive example, where trees
with a color of green and yellow appear
blue at long distances due to atmospheric perspective.

Camera Imaging Pipeline. To form an image, a camera receives an input light field and processes it
through various lenses, including an anti-aliasing filter that blurs the light to prevent aliasing. Aliasing
occurs when the camera’s sensors naively sample the analog light field, leading to the incorrect
recording of non-existent moiré patterns (e.g., Figure 3 (b)) [32]. The intuition of the phenomenon is
illustrated in Figure 3 (c) with a 1-D example. That is, if the high-frequency blue curve is sampled at
a low frequency, it can be inaccurately recorded as the red dotted curve with a wrong frequency. If
a camera has a limited sampling rate, it may inaccurately sample high-frequency light information,
resulting in moiré patterns. To prevent aliasing, anti-aliasing filters, or blurring filters, are commonly
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applied before the imaging chip to filter out the high-frequency information that the imaging chip
cannot correctly sample. In Figure 3 (d), an example image obtained by applying the anti-aliasing
filter before sampling is demonstrated. After different lenses, the light field would pass through
the aperture and shutter, and get sampled by the imaging chip with an array of rectangular light
sensors. In the imaging chip, each sensor produces an RGB value by averaging the light projected
onto it, resulting in an output image [32] that is further blurred relative to the field of light from the
anti-aliasing filter.
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Figure 3: Factors influencing image effect. (a) Original
light field, represented with an image. (b) Aliasing ef-
fects (simulated by applying sampling). (c) 1D aliasing.
(d) Applying anti-aliasing before sampling. (e) Apply-
ing effect filters of sharpening and contrast. Images are
from [32].

Effect Filters. After obtaining a digital
image with the imaging chip, digital cam-
eras typically apply a variety of effect fil-
ters to enhance the visual appeal of the im-
ages [32]. Common effect filters include
brightness, saturation, sharpening, expo-
sure, contrast, highlight, shadow, vibrance,
color temperature and so on. See Figure 3
(d) and (e) for visualization on the effect
of applying the sharpening and contrast fil-
ters.

Physical World Attacks with Adversar-
ial Pattern. A well-known limitation to
deep learning models [13, 6, 30, 37, 26,
14, 8, 43] is that they are vulnerable to ad-
versarial attacks [39, 9, 5, 28, 2]. Such a
limitation makes crafting adversarial pat-
terns effective for evading pedestrian detectors possible. Adv-Patch [34] is one of the earliest works
that discovered adversarial patterns can disrupt detector decisions in the physical world. After that,
many methods have been proposed to keep adversarial patterns effective when printed onto clothing
(Adv-Tshirt [42]), to improve adversarial clothing performance at different angles (TCA [17]) and
to improve naturalness of the adversarial clothing [33, 16, 18, 10]. In addition, many physical
adversarial attack methods have been proposed for attacking vehicle detectors [35, 20, 7, 31, 15, 40],
person re-identification models [38] and object tracking models[41, 4]. However, to the best of our
knowledge, few works have addressed the decline of attack performance when distance increases.

3 Distant Image Converter
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Figure 4: The overall pipeline of the DIC. The continuous arrows
indicate the inference pipeline. The dashed arrows are used during
training.

To bridge the appearance gap be-
tween distant adversarial pedes-
trian images in the physical and
digital worlds, we propose to im-
plement a Distant Image Con-
verter (DIC). An intuitive solu-
tion is to train multiple neural
networks, each specialized for
image conversion at specific dis-
tances. However, this approach
demands a large training set due
to the large amount of parame-
ters involved. In this work, we
address this by implementing a
physics-based DIC, leveraging
principles of physics and cam-
era hardware design. This en-
sures realistic image conversion
with only 15 learnable parame-
ters. Specifically, when given an input image, target distance, and environmental parameters like
skylight RGB and turbidity values, the DIC should produces an output image that simulates the visual
effect of positioning the input image at the target distance.
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Figure 5: Camera simulation module. (a) An illustration of the blurring operations performed by the
camera simulation module. (b) Visualizing outputs of function f̃ with different parameters.

The inference pipeline of our DIC is illustrated in Figure 4. That is, the DIC converts an input image
with the atmospheric perspective module, the camera simulation module, and the effect filter module,
simulating the physical world factors contributing to the appearance gap in sequence. We make the
unknown physical world parameters controlling the effect of each module θθθA, θθθC , θθθE learnable so
that they can be effectively estimated through Stochastic Gradient Descent (SGD) with some training
data. In the following, we first introduce each module then the training method.

3.1 Atmospheric Perspective Module

As demonstrated in Figure 2 (a), when an observer takes photos of a distant target at distance d, the
ray of lights emitted from the target toward the observer (represented by image Iobj ∈ R3×w×h, w
and h being image width and height respectively) would be scattered away by molecules in the air,
causing a decrease in brightness. At the same time, skylight with RGB values of Psky ∈ R3 would be
scattered toward the observer, shifting the target object’s observed color towards the skylight.

To simulate the effect, we implement an atmospheric perspective module FA following previous
works [29, 12]. The inputs of the module include image Iobj of the target object, a turbidity value T
representing air quality, the target distance d to convert the image, and the skylight RGB value Psky.
The module produces an output image IMd that simulates the effect of the target object at distance d

by processing Iobj with

IAd = FA(Iobj, T, d,Psky, θθθA) = Iobje−β(θθθA,T )d + tile(Psky)(1− e−β(θθθA,T )d), (1)

where tile is the tiling function that repeats Psky to form an image with the same shape of Iobj, θθθA
represents the estimated physics-related parameters and the β function represents the decay rate. See
Appendix A for more details on θθθA and β.

3.2 Camera Simulation Module

To simulate the blurring effect introduced by the Anti-Aliasing Filter (AAF) and the Imaging Chip
(IC) in camera, we model the camera using two convolutional layers in sequence. The blurring done
by the layers is illustrated in Figure 5(a).

Convolutional Layer Kernel Generation. The AAF blurs each ray of light with neighboring light
rays within a certain radius and the sensors on the IC to form their outputs by averaging all light rays
projected onto them. To simulate their effects, convolutional layers with blurring kernels that take
averages within circular and square regions in their local input windows at each stride should be used
[32]. Additionally, since the camera simulation module needs to approximate the unknown AAF
blurring strength and IC sensor size of different target cameras, the amount of pixels averaged by the
kernels should be learnable through back-propagation.

To achieve this goal, although there are many alternative ways, we found that an effective approach
is to implement a unified kernel generation function f for both the AAF and IC simulation layers.
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That is, as illustrated in Figure 5(b), we first implement a function f̃ , which outputs values close to 1
when the Ln norm of the coordinate (i, j) within the kernel is less than γ

2 and outputs values near 0
otherwise:

f̃(γ, i, j, n) = sigmoid((in + jn)
1
n +

γ

2
) ∗ 3 + sigmoid(

γ

2
− (in + jn)

1
n ) ∗ 3 − 1. (2)

Then, we take the normalized version of f̃ as the function f that generates the jth value in the ith

row of the kernel weight w ∈ Rk×k. That is, we let

wi,j = f(γ, k, i, j, n) =
f̃(γd, i, j, n)∑k

i=−k

∑k
j=−k f̃(γd, i, j, n)

. (3)

By setting n = 2, the generated kernel takes averages within circular regions in its local input windows
at each stride, allowing it to approximate the blurring done by the AAF. By setting n = ∞, the kernel
takes averages within rectangular regions in its local input windows at each stride, mimicking the
blurring done by the IC sensors. Moreover, by adjusting the learnable parameter γ, the number of
pixels averaged by the kernel within its local input windows at different strides is altered, allowing
for the simulation of various blurring strengths in the AAF and sensor sizes in the IC.

Simulating AAF. At a target distance d, to simulate the effect of the AAF averaging every incoming
light ray with neighboring light rays within its blurring radius, we set the stride of the corresponding
convolutional layer to 1, and generate the different entries of the kernel wA

d within the layer using the
function f with n = 2. That is, we let

wA
d,i,j = f(γA

d , k
A
d , i, j, 2). (4)

Simulating Imaging Chip. Similarly, we simulate the effect of IC at target distance d with another
convolutional layer. To simulate the effect that when a digital image with height l0 is placed at a long
distance d, the imaging chip would capture it with fewer sensors to form a smaller image with height
ld, as illustrated in Figure 5(a), we set the stride of the convolutional layer to xd = l0/ld. To simulate
the blurring done by the square imaging sensors, we generate different entries of its kernel wC

d using
function f with n = ∞, that is

wC
d,i,j = f(γC

d , k
C
d , i, j,∞). (5)

Implementation of camera blurring strengths γA
d and γC

d . To set proper blurring strength γA
d and

γC
d for simulating the AAF and IC at different distances, we observe that in the physical world, more

distant objects are smaller relative to the fixed physical blurring strength in AAF (γ̃A) and IC (γ̃C).
That is, the blurring strength (γ̃) to image height (ld) ratio increases as distance increases.

In the digital world, when given a digital input image with height l0, to consistently simulate the
aforementioned ratio at different distances, we set γA

d = γ̃A × xd and γC
d = γ̃C × xd. In this way,

the blurring strength to image height ratio in the digital world (γd/l0 = γ̃ × xd/l0) is identical to
that in the physical world (γ̃/ld) since ld = l0/xd. A more detailed explanation with visualization is
provided in Appendix B.

By setting θθθC = [γ̃A, γ̃C] and optimizing θθθC , the camera simulation module can be trained to
approximate the blurring effect of any target camera.

Implementation of camera simulation module. We express the camera simulation module FC

with two channel-wise convolutional layers ϕ in sequence simulating the effect of AAF and IC at
distance d as

ICd = FC(IAd , d,w
A
d ,w

C
d ) = ϕ(ϕ(IAd , s = 1, w = wA

d ), s = xd, w = wC
d ), (6)

where IAd is the output of the atmospheric perspective module, s and w indicate the stride and kernel
size of the two convolutional layers.

3.3 Effect Filter Simulation Module

In this module, we let fe denote the mapping function of a specific effect filter, and FE denote the
mapping performed by a sequence of effect filters. We define FE as:

IEd = FE(ICd , θθθE) = fe(...f1(I
C
d , θ1), ..., θe), (7)
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where ICd is the output of the camera simulation module, θθθE = [θ1, ..., θe] is the learnable parameter
that controls the output effect of each effect filter, ICd is the input RGB image from the camera
simulation module and IEd is the output image. By identifying the effect filters commonly involved
in the target cameras and obtaining appropriate value for θθθE , the influence of effect filters can be
simulated. Please refer to Appendix C for the exact computation of each effect filter.

3.4 Distant Image Converter Training

We collect a small distant image dataset and optimize the DIC to obtain appropriate DIC parameter
values (θθθA, θθθC , θθθE). As illustrated in Figure 4, we first printed images on papers, then by photograph-
ing the printed images at different distances and extracting crops that capture the same content as
the original digital world images, we collected pairs between digital world images and their distant
versions in the physical world. With this dataset, the parameters of the DIC can be optimized with
stochastic gradient descent (SGD) using Mean Square Error (MSE) loss as the objective function,
where the MSE loss is calculated between the DIC outputs and the corresponding physical world
ground truth images with identical shape.

4 Full-Distance Attack
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Figure 6: FDA overall optimization pipeline. Ti and
Iskyi are randomly sampled turbidity and skylight values.

The optimization pipeline of the FDA
method is illustrated in Figure 6. The
adversarial patterns are first randomly
cropped (as explained in Section 4.1) and
applied onto short-distance pedestrian im-
ages. With the sub-patches applied, the
pixels of the adversarial pedestrian are ex-
tracted (e.g. based on pedestrian masks
generated with segmentation models). The
extracted pixels are transformed by the
DIC into their distant counterpart and su-
perimposed onto randomly selected back-
ground images, generating a batch of dis-
tant adversarial pedestrian images. Within
the same batch, different pre-selected dis-
tances are used to perform the distant im-
age conversion. The parameter T and Isky
for DIC (from Equation (1)) are obtained by random sampling, allowing the FDA pattern optimized
to be effective not only under different distances, backgrounds but also under different atmospheric
conditions. Also, we apply EOTs [1] on θθθA, θθθC and θθθE to make the resulting FDA pattern robust
against potential physical world disturbances. By feeding the current batch of adversarial pedestrian
images into the target detector and calculating the loss function for performing the adversarial attack,
the FDA pattern can be optimized through SGD.

At D different simulated distances, we minimize the confidence c and IOU u of all K correctly
predicted pedestrian bounding boxes generated by the target detector. That is,

Ladv =

D∑
d=1

Nd∑
i=1

(
λc

K

K∑
k=1

cdi,k +
λu

K

K∑
k=1

ud
i,k), (8)

where λc and λu are manually set parameters balancing the two terms, Nd is the number of images
generated with adversarial pedestrians at distance d.

Please note that, without the green box part, the pipeline in Figure 6 degenerates to the Adv-Tshirt
pipeline [42] with the only difference being that we sample random sub-patches of different sizes.

4.1 Multi-Frequency Optimization

Empirically, we found that by optimizing the FDA pattern with our proposed pipeline, there was a
conflict in performance between short and long distances. We conjecture that this conflict might be
due to the following two properties:
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• At short distances, with a high resolution, both the low frequency patterns (or overall
patterns) and high frequency patterns (or fine textures) can be optimized for performing
attacks.

• At long distances, due to the reduced resolution, only the low frequency patterns remain, so
only the low frequency patterns can be optimized for performing attacks.

A conflict could be resulted if the required low frequency patterns at short distances and long
distances are different. To address this problem, we propose two Multi-Frequency Optimization
(MFO) techniques to encourage the low frequency components of the adversarial patterns to be
optimized for long distance attacks and the high frequency patterns to be optimized for short distance
attacks.

Multi-Scale Cropping (MSC) technique. We set a smaller crop and patch application size for the
adversarial patch when optimizing at short distances. In this way, it is harder for the short-distance
optimization objectives to alter the overall pattern of the patch, preserving the low frequency patterns
for long distance attacks.

Two Stage Optimization (TSO) technique. In TSO, we divide the optimization pipeline into two
stages. In the first stage, the patch is optimized with a larger bias on long distances to obtain low
frequency components for long distance attack by optimizing with more long distance images. In the
second stage, the patch is optimized with a larger bias to obtain high frequency component for short
distance attack by optimizing with more short distance pedestrian images. In addition, in the second
stage, we add a loss function term that restrict the low-frequency components of the patch to remain
unchanged. The loss function term introduced is described in Appendix D.

5 Experiments

Subjects. To evaluate the performance of different adversarial patterns in the physical world, we
recruited five subjects (three males and two females with age ranging from 25 to 55) to collect
test images and form demo videos. The recruitment and study procedures were approved by the
Department of Psychology Ethics Committee, Tsinghua University, Beijing, China.

Experiment settings. Unless otherwise stated, we present our results with YOLOv5 [21] as the
target model, the camera used to capture the physical world testing images was the back camera of
Xiaomi-CIVI smart phone. For optimization details, we used configurations of Adv-Tshirt [42] and
TCA [17] for patch and clothing experiments respectively. Given that all models failed to detect
pedestrians reliably beyond around 41 meters, we optimized the adversarial patterns at simulated
4m, 8m, 14m, 20m, 26m, 34m and 40m, tested the patterns at 3.5m, 6m, 12m, 18m, 24m, 32m and
41m in the physical world unless otherwise stated. Appendix E provides a detailed analysis on the
choice of the current distance range and the influence of holding a patch. To report reliable results, all
physical world attack results reported are averaged over three trials, each trial had a different subject
and a different location.

Evaluation Metric. We evaluated the performance of adversarial patterns with average attack success
rate (ASR) across different distances. The ASR at a certain distance is defined as 1− TP

GT where TP
denotes the number of True Positives and GT denotes the number of Ground Truths. Following TCA
[17], we set both the IOU and confidence thresholds for calculating TP to be 0.5.

Distant Image Dataset. To form a distant image dataset to train the DIC (Figure 4 (a)), we printed 45
training images and 9 testing images onto papers, collected photos of all printed images at 7 distances
(4m, 8m, 14m, 20m, 26m, 34m, 40m) in 5 days and removed ones with noises (e.g. reflections and
shadows). When photographing, skylight RGB values of the days were also recorded. Samples of
training, test and skylight images are provided in Appendix F. We empirically found that though the
dataset was small, it was enough to train a good DIC as the DIC only has 15 parameters (Section 5.1).

Datasets for Pedestrian Attack. To optimize the FDA patterns in the digital world, we created a
pedestrian dataset and a background dataset. 1100 pedestrian images were extracted from existing
datasets (INRIA [3], PennFudan [36] and COCO [24]). Additionally, we gathered 1000 more
pedestrian images from online sources to boost diversity. We manually selected all images to ensure
they had a similar resolution and scale to the 4-meter pedestrian images. Samples from the dataset
are provided in Appendix F. We used the background dataset provided by an existing work [18]. To
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eliminate the potential for FDA patterns to over-fit to elements in our local environment, we excluded
self-collected background images and self-collected 4-meter pedestrian images during optimization.

Digital Patch Attack Evaluation Configuration. To evaluate the average ASR of a patch in the
digital world, we applied the patch onto 300 held out testing pedestrian images and converted them
into their distant versions at different distances as in the training pipeline in Figure 6. By feeding the
distant adversarial pedestrian images into the detector, the digital world ASRs of the patterns could
be calculated.

5.1 DIC Results

We compared the performances of DIC and the naive distant image conversion method (achieved
through image size reduction). In addition, we trained seven Fully Convolutional Network (FCN)
[27] to convert distant images, each designed for a specific distance (See Appendix G for details). We
used the l2-norm error between labeled images from the physical world and the conversion results
as the evaluation metric. As illustrated in Figure 7 (a), the DIC obtained a stable l2-norm error of
around 0.11 across different distances, where the l2-norm error of the FCN and the naive method
increased from around 0.11 to 0.16 as distance increased.

Figure 7 (b) visualizes the results of different methods. At different distances and on different days, it
can be observed that compared to the conversion results generated by the naive method and the FCN
method, the results generated by the DIC had the closest visual effect to the real world images.

5.2 Adversarial Patch Attack in the Physical World

Settings. Using adversarial patches, we evaluated the performance of patterns optimized with our
FDA method against patterns obtained with different baseline methods in the physical world. For all
patterns, we set a patch size of 200× 133 and printed it onto a piece of paper with a size of 72 cm ×
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XXXXXXXXXSource
Target YOLOv5

[21]
Mask RCNN
(ResNet) [14]

Mask RCNN
(SWIN)[26]

FrRCNN
[8]

RetinaNet
(PVT)[37]

YOLOv8
[22]

D-DETR
[43]

Random 5% 7% 12% 9% 19% 4% 6%
YOLOv5 74% 34% 29% 26% 34% 49% 63%
Ensemble 79% 74% 71% 77% 87% 80% 75%

Table 1: Physical world black-box attack results. Source indicates the models that the FDA patterns
were optimized against, target indicates the model attacked by the FDA patterns, random indicates
random pattern and ensemble indicates ensemble attack. Black-box attack results with average ASRs
≥ 50% are highlighted in bold face. White-box attack results are indicated with blue italic font.

50 cm. Each patch was tested at seven distances between 3.5 and 41 meters, with about 30 images
collected at each distance within each trail (out of three trails) to calculate distance specific ASRs.

Main Results. Figure 8 (a) shows the ASR of our (YOLOv5) FDA pattern with respect to distance.
For comparison, we also plot the results of the normal pedestrian (without holding an adversarial
patch), a random pattern (formed by random RGB blocks) and an Adv-Tshirt pattern [42]. The
patterns generated are visualized in Figure 8 (b). The FDA pattern achieved the highest average
ASR of 74%. The corresponding digital world evaluation result is presented in Appendix H. We
have also reproduced NAP[16] and T-SEA[19] and tested the patterns under comparable setting.
The two patterns obtained average ASRs of 19% and 42% respectively. For visualization on FDA
performance, we included demo videos in the supplementary material.

Generalizing Across Scenarios. When we used the back camera of Huawei-Nova-11-SE and
OPPO-A9 smart phones when obtaining the testing images, the FDA pattern obtained average ASRs
of 68% and 72% respectively. When the FDA pattern was tested under eight new test distances
neighboring our original test distances, it obtained an average ASR of 76% (More details are provided
in Appendix I). Such results demonstrate that the FDA pattern generalizes well across different
scenarios.

Adv-Tshirt with EOTs. To investigate if it is possible to achieve FDA with a strong EOT [1] that
might cover the effect of increased distance, we optimized three Adv-Tshirt patterns with EOTs in
color and noise that were 1 time, 3 times and 10 times larger relative to the original strength. The
corresponding patches only obtained average ASRs of 22%, 10% and 8% respectively, demonstrating
that a larger EOT is not helpful for performing FDA.

Ablation Studies. To evaluate the influence of different design components, we first removed both
DIC and MFO. The resulting FDA pattern obtained an average ASR of 22%. By adding the DIC and
MFO back into the optimization pipeline, the average ASR of the resulting patterns increased to 65%
and 74% respectively, indicating that they both contributed to the performance of FDA. Analysis on
the influence of different components in DIC and MFO, together with analysis on the presence of
conflict in attack performance between short and long distances are provided in Appendix J.

Black-Box Attacks. To investigate the generalizability of FDA patterns across detectors, we trans-
fered the FDA pattern optimized for YOLOv5 to attack 6 black-box models (as shown in Table 1).
Without specific designs for boosting transferability, the FDA pattern did not achieve good ASRs
except on the Deformable DETR. We then integrated FDA with ensemble attack [25] (by optimizing
the FDA pattern to be effective for both Mask RCNNs with ResNet backbone [14] and Swin backbone
[26]), the resulting FDA pattern achieved good black-box attack performance, obtaining average
ASRs of more than 75% on all black-box models. The FDA pattern optimized for ensemble attack is
visualized in Figure 8 (b).

5.3 Clothing Attacks in the Physical World

To optimize the FDA pattern for clothing attacks, we incorporated toroidal cropping [17] into the FDA
pipeline. We followed the process outlined in Figure 6, with the sole modification that we tiled the
adversarial patch prior to multi-scale cropping by tripling the patch both vertically and horizontally.
By integrating toroidal cropping, we enabled the FDA clothing to attack from all angles as for the
TCA clothing (we leveraged TCA instead of TC-EGA since we found the TCA method to be more
effective on YOLOV5). Different clothing tested targeting YOLOV5 are illustrated in Figure 9 (b).
The clothing tailoring process and different adversarial patterns tested are provided in Appendix K.
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Figure 9: Clothing attack. (a) Attack results. (b) Front and side view of different clothing.

In the experiments, we tested the FDA clothing, TCA clothing [17], random clothing and normal
clothing. Each clothing was tested at seven distances between 3.5 and 41.0 meters, with about 30
images collected within each trail (out of three trails) at each distance to calculate the ASRs.

As demonstrated in Figure 9 (a), when targeting the YOLOV5 [21] model, in the front and back view,
both the random clothing and the normal clothing had near zero attack performance. By covering the
entire body of the subject, the TCA clothing obtained an average ASR of 37%. The FDA clothing
outperformed the TCA clothing with an average ASR of 76%. Similarly, in the side view, the FDA
clothing obtained an average ASR of 61%, being 15% higher than TCA, while the random and normal
clothing had average ASRs of 0%.

Additionally, when treating the Deformable DETR [43] and the RetinaNet with PVT backbone [37]
as the target model, in the front and back view, the FDA clothing has also attacked the target models
effectively by obtaining average ASRs of 71% and 73% respectively.

If we calculate the mean average ASRs across confidence thresholds of 0.1, 0.2, ..., 0.9, when
targeting YOLOV5, in the front and back view, the mean average ASR of the FDA clothing, TCA
clothing, random clothing and normal clothing was 78%, 43%, 9% and 3% respectively. Analysis on
the performance of different FDA clothing under different IOU thresholds is included in Appendix K.

The results confirm that our proposed method has the ability to boost FDA performance at all angles
and the FDA method is effective for clothing attacks.

6 Limitation and Potential Social Impact

As described in Appendix K, depending on the target model and attack method used, if abstract
human-like patterns appear on the FDA pattern, the detector may generate small pedestrian bounding
boxes for these patterns, even when the actual pedestrian subjects are not detected. This could lead to
a decrease in FDA performance on some models when a smaller IOU threshold is applied. However,
this is not specific to the FDA method as human-like patterns have appeared in previous attack
methods [34, 17].

Physical-world adversarial attack research can lead to unwanted applications in real-world scenarios
such as evading security cameras, but we publish our work to inspire researchers to propose more
reliable detectors with adversarial defense mechanisms. We also urge readers and future researchers
to set strict access controls for adversarial patterns and pattern generation codes targeting detectors
in security-sensitive areas. This may include user authentication, licensing agreements, and usage
monitoring.

7 Conclusion

In this work, we bridge the appearance gap between the digital world and the physical world by
proposing the DIC. Moreover, we avoid conflicts that impede optimization by proposing two MFO
optimization techniques. Together, the FDA patterns gained high ASRs targeting different detectors
within a wide range of distances in the physical world.
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A Details for the Atmospheric Perspective Simulation Module

Following existing formulations [29, 12], we calculate β(θθθA, T ) in Equation (1) by
β(θθθA, T ) = βR(θθθA, T ) + βM (θθθA, T ), (9)

where βR(θθθA, T ) describes the scattering effect caused by air molecules and βM (θθθA, T ) describes
the scattering effect caused by moisture and dust. More specifically, βR(θθθA, T ) and βM (θθθA, T ) are:

βR(θθθA, T ) =
8π3(n2 − 1)2

3Nλ4
i

(
6 + 3pn
6− 7pn

)e
− h

HR0 (10)

and
βM (θθθA, T ) = 0.434 · (0.6544T − 0.6510) · c · π(2π

λi
)2 · 0.67 · e−

h
HM0 , (11)

where n = 1.0003 is the refractive index of air in the visible spectrum, N is the molecular density
of air, pn = 0.035 is the depolarization factor of air, h is the altitude at the scattering point,
HR0 = 7994m is the scale height for Rayleigh scattering, HM0 = 1200m is the scale height for Mie
scattering, λi is the wavelength captured to be the output of the current ith camera channel, T is the
turbidity and c is an empirical parameter.

Since the molecular density N depends on environmental conditions such as atmospheric pressure,
we initialize N with the molecular density of standard atmosphere 2.545× 1025m−3 and set it to be
learnable to estimate its value by optimization. Since imaging chips from different brands capture
lights with different wavelengths as the RGB channel outputs, we set λi representing the unknown
light wavelength captured by camera channels to be a learnable parameter. Since the parameter c
has been estimated to be in vastly different values in different works [29], to estimate its value in our
local physical world environment, we set it to be learnable. That is, we let θθθA = [N, c, λR, λG, λB ].
In addition, we set the turbidity T during DIC training and randomize T during FDA optimization to
improve the robustness of the FDA pattern toward turbidity changes in the physical world.

𝐥𝟎

𝐥𝒅

∝ 𝜸

Distance 𝒅

𝐱𝒅= 𝐥𝒅/ 𝐥𝟎

∝ 𝜸𝒅 = 𝜸 ∗ 𝐱𝒅

Sim. distance 𝒅

𝐥𝟎

∝ 𝜸

𝐥𝟎
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Figure S1: visualizing relationships between γ̃, γ, xd, l0 and ld.

B More Details on γ̃A and γ̃C

As illustrated in Figure S1, suppose we have a digital image with a height of l0 pixels and when
placed at distance O in the physical world, the captured image also has a height of l0 pixels. In the
physical world, as distance increases to distance d, the height of the image would reduce to ld. Since
the AAF and IC in cameras are implemented by hardware, their physical blurring strength γ̃A and γ̃C

stay identical regardless of d, so as the height of the image decreases to ld with increasing d, the ratio
γ̃/ld increases.

In the digital world, when implementing the camera simulation module, our goal is to accurately
simulate the camera’s imaging pipeline of first performing blurring by AAF then down-sampling
with IC. Thus, it is inappropriate to use a naive simulation pipeline such as first down-scaling the
digital image to height ld and then applying AAF and IC simulation with blurring strengths γ̃A and
γ̃C , as it would introduce incorrect aliasing effects and sample incorrect information.

When the target distance is d, the digital image with height l0 is xd times larger than the corresponding
physical world image, to perform the simulation correctly, we apply blurring kernels with xd times
larger blurring strength by letting γA

d = γ̃A × xd and γC
d = γ̃C × xd for the AAF and IC simulation

layers. This ensures that the blurring strength to image scale ratio matches the corresponding scenario
in the physical world, allowing the blurring effect to be correctly and consistently simulated across
different distances.
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C Details for Effect Filter Simulation Module
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Figure S2: Effect of applying different effect filters.

We used eight effect filters fe in the ef-
fect filter simulation module and opti-
mized their parameters θe. The parame-
ters were initialized such that the filters
approximate identity mappings.

The first effect filter f1 alters the bright-
ness of images. It first converts the RGB
image Iin into the HSV space (H for
hue, S for saturation, V for value) [11],
then multiplies the value of channel V
by a learnable parameter θ1, and con-
verts the resulting HSV values back to
the RGB space. This filter performs the
computation of

Iout = f1(I
in, θ1)

= RGB(Clamp(V(HSV(Iin), θ1))),
(12)

where Iout is the output image of the fil-
ter, HSV(·) is the function that converts
RGB image into the HSV space [11],
V(·) is the function that multiplies the
value channel of the image in the HSV
space by θ1, Clamp is the function that
clamps the HSV value to be within the
range of [0,1] and RGB(·) is the func-
tion that converts image in HSV space
back to the RGB space [11]. See Fig-
ure S2 (a) for visualization. With larger
θ1, the output images are brighter.

The second effect filter f2 is the satura-
tion filter that alters the colorfulness of
images. Similar to the value filter, the
effect filter f2 first converts the RGB
image Iin into the HSV space, then mul-
tiplies the saturation channel by a learn-
able parameter θ2 and converts the re-
sulting HSV values back to the RGB space. This filter performs the computation of

Iout = f2(I
in, θ2) = RGB(Clamp(S(HSV(Iin), θ2))), (13)

where S(·) is the function that multiplies the saturation channel of the image in the HSV space by θ2.
See Figure S2 (b) for visualization. With larger θ2, the output images are more colorful.

The third effect filter f3 is the sharpening filter. The filter transforms its input image Iin by performing
two convolutions (ϕ) in sequence, the first performing sharpening, the second performing blurring.
The blurring layer has its blurring strength controlled by the learnable parameter θ3 so that the
sharpness of the output image can be manipulated. More specifically, the computation is

Iout = f3(I
in, θ3) = ϕ(ϕ(Ic, s = 1, w = wsharp), s = 1, w = wgaus), (14)

where ϕ(·) is the channel-wise convolution operation, s is the stride of the convolution operation,
wsharp is the sharpening kernel demonstrated in Figure S2 (c), wgaus is the Gaussian kernel generated
by function g(θ3) and θ3 is the standard deviation of the Gaussian kernel. See Figure S2 (c) for
visualization. With the sharpening filter applied, highlight and shadow bands are added onto the color
boundaries of the input image.
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The fourth effect filter f4 is the exposure filter that increases the brightness of the input image Iin

exponentially according to its learnable parameter θ4. This filter performs the computation of

Iout = f4(I
in, θ4) = Clamp(Iin ∗ 2θ4). (15)

See Figure S2 (d) for visualization. With larger θ4, more pixels would become exposed by having
values closer to 1 in all channels.

The fifth effect filter f5 is the contrast filter that increases the brightness gap between brighter and
darker pixels according to the learnable parameter θ5. This filter performs the computation of

Iout = f5(I
in, θ5) = Clamp((Iin − 0.502) ∗ 1.015 ∗ (θ5 + 1)

1.015− θ5
). (16)

See Figure S2 (e) for visualization. With θ5 increased, the brightness gap increases, which causes the
details within the image to become more salient.

The sixth effect filter f6 is the highlight and shadow filter. The effect of the filter is controlled by the
learnable parameters θ6,low and θ6,high. The filter sets all entries within the input image Iin that have
values lower than θ6,low to be 0, all entries higher than θ6,high to be 1, and increases the contrast of
entries that have values between θ6,low and θ6,high. This filter performs the computation of

Iout = f6(I
in, θ6,low, θ6,high) = Clamp(

Iin − θ6,low
θ6,high − θ6,low

). (17)

See Figure S2 (f) for visualization. With larger θ6,low and lower θ6,high, it causes the darker and
brighter details in the images to be more salient.

The seventh effect filter f7 is the vibrance filter that alters the contrast in saturation. This filter forms
the output by first transforming the input RGB image into the HSV space, then altering contrast in the
S channel according to the learnable parameter θ7 and forming the output by converting the altered
HSV values back to the RGB space. This filter performs the computation of

Iout = f7(I
in, θ7) = RGB(B(HSV(Iin), θ7)), (18)

where function B is the function that processes each channel IHSV
i of the input image in the HSV

space independently (i indicates the channel) and forms the corresponding output channels ĨHSV
i

following

ĨHSV
i = B(IHSV

i ) =

{
IHSV
i , if i = H or V

1

(1+e−θ7∗(IHSV
i

−0.5))
, if i = S. (19)

See Figure S2 (g) for visualization. By having a smaller value in θ7, pixels that were originally
over-saturated obtain normal saturation.

The last effect filter f8 is the color temperature filter that shifts the image toward warmer or cooler
colors according to the learnable parameter θ8 ∈ R3. This filter performs the computation of

Iout = f8(I
in, θθθ8) = Clamp(Iin + tile(θθθ8)), (20)

where tile is the function that repeats the three dimensional parameter θθθ8 into a shape identical to Iin.
See Figure S2 (h) for visualization. By having a larger value in the R channel of θθθ8, the image would
have a warmer color temperature, by having a larger value in the B channel of θθθ8, the image would
have a cooler temperature.

D Loss Function for TSO

In the second stage of TSO, we propose to use the loss function of

Lstage2
adv = Ladv +

B∑
b=1

σb||V (b(Ps1, δb))− V (b(Ps2, δb))||2. (21)

Within Equation (21), Ps1 is the patch obtained in stage 1 (fixed in stage 2), Ps2 is the patch to be
optimized in stage 2 (initialized as Ps1). The first term in Equation (21) is the adversarial attack loss
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in equation 8, the b function is the Gaussian blur operation that extracts low frequency information,
where the band width (or the range of low frequency information) extracted depends on the standard
deviation δb, V is the function that vectorizes images, σb is the parameter that controls the importance
of maintaining patterns in different low frequency bands to be unchanged in the second stage. B
is the number of different low frequency bands to maintain within the second stage. By setting σb

corresponding to larger δb to larger values, the goal of maintaining the low frequency part within Ps1

to be relatively unchanged in the second stage can be achieved.

E Analysis on Experiment Settings

To determine an appropriate experiment distance range, we assessed the detection success rates of
YOLOv5 [21], Mask RCNN [14] and Deformable-DETR [43] across distances ranging from 3.5 to
50 meters. To demonstrate that the random patches can not influence the performance of the models,
we include detection results on both normal clothing and results on subjects holding a random patch.
The results are included in Figure S3, the patch used is illustrated in Figure 8 (b).
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Figure S3: Evaluating the detection success rate of
YOLOv5, Mask RCNN and Deformable-DETR on
pedestrian subjects with normal clothing or holding
random patches at different distances. "Normal"
indicates experiments with normal clothing, "rand"
indicates experiment with the pedestrian subject
holding a random patch.

Distance Range. From Figure S3 (a), it can
be observed that the performance of all mod-
els starts to slightly degrade at around 32 to 41
meters. Beyond 41 meters, the detection suc-
cess rate of most models fell below 60%, failing
to make robust decisions. To demonstrate our
FDA method’s effectiveness in performing at-
tack, we conducted experiments within the 41
meters range.

Influence of Holding a Patch. Figure S3
shows that the performance of different detec-
tors on normal clothing and random patches
was comparable. The average detection success
rate difference between the two cases is less
than 7% across all models, where the difference
typically occurs at distances beyond 41 meters
where model performance is unstable. This re-
sult confirms that without an adversarial pattern,
the patches could not reduce the detection suc-
cess rates of different detectors within our selected distance range.

F Details for Datasets

Distant Image Dataset. When selecting the digital training and testing images of the distant image
dataset, we selected images from different distributions. The training images were collected by
cropping randomly generated color plates at different scales and different orientations. The testing
images were obtained by extracting crops of randomly selected adversarial patterns targeted on the
RetinaNet [37]. See Figure S4 (a) and (b) for training and testing images in the dataset. To prevent the
DIC from overfitting to a certain day, we collected our distant image dataset under different skylights
in 5 days. See Figure S4 (c) for different skylight samples. To calculate the skylight RGB value Psky

of a day, we took the image crop of the sky (near the horizon) and took an average over all pixels in
the crop.

Dataset for Pedestrian Attack. The pedestrian images obtained from the COCO dataset, the INRIA
pedestrian dataset and the PennFudan dataset are illustrated in Figure S4 (d), (e) and (f) respectively.
The images collected contain pedestrians with different genders, races and ages. Samples of pedestrian
images collected from online sources for increasing dataset diversity are demonstrated in Figure S4
(g).
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(d)

(a) (b) (c)

(e)

(f) (g)

Figure S4: Samples from different datasets. (a) Training images of the distant image dataset. (b)
Testing image of the distant image dataset. (c) The skylight samples collected when collecting the
distant image dataset. (d) Samples of pedestrian images selected from the COCO dataset [24]. (e)
Sample of pedestrian images selected from the INRIA dataset [3]. (f) Sample of pedestrian images
selected from the Penn-Fudan dataset [36]. (g) Samples of pedestrian images extracted from online
sources.
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R

Figure S5: Digital world attack performance of FDA patch and AdvTshirt patch.

G FCN for Distant Image Conversion

For experiments in Section 5.1, we trained 7 FCNs, each dedicated to performing distant image
conversion at specific testing distances. The choice of FCN architecture was motivated by its
translation invariant property, which simulates the spatial invariant mapping performed by the
physical world imaging pipeline. All FCNs used a three-layer design. The first and second layers
were ReLU layers, each with 250 neurons, the output layers were Sigmoid layers with an output
dimension of 3. These three output dimensions correspond to the RGB channels of the output images.
The skylight RGB value Psky, turbidity value T were also fed into the kernel of the first layer. For
FCNs dedicated to longer distances, we used kernels with larger width w and stride s in the first layer,
allowing smaller output images to be encoded, simulating the effect of scale decrease as distance
increases. More specifically, we set the (w, s) pairs for the input layers to be (4,1), (7,3), (9,5), (13,7),
(15,11), (18,13) and (21,15) for the distances of 4, 8, 14, 20, 26, 34 and 40 meters, respectively. To
train the FCNs, we leveraged the training pipeline illustrated in Figure 4 (a).

H Digital World Results for FDA Patch Attack

To further demonstrate the effectiveness of our DIC simulation, we include the digital world attack
result of the FDA patch and AdvTshirt patch in Figure S5. The two patches obtained average ASRs of
73% and 28% respectively, comparable to the corresponding physical world attack results in Figure 8.
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Patch 5m
(%)

9m
(%)

15m
(%)

21m
(%)

28m
(%)

38m
(%)

45m
(%)

50m
(%)

Avg.
(%)

FDA 39 41 98 93 97 73 65 100 76
Rand 0 0 0 0 15 1 20 100 17
None 0 0 0 0 0 2 29 98 16

Table S1: ASRs of different patches at distances neighboring the ones used in the main paper. "Rand"
indicates tests performed with a random patch, "None" indicates no patch applied during the test.

I Generalizing Across Different Distances

As demonstrated in Table S1, when we generalized the FDA pattern to distances different from the
ones we used in the main paper, the FDA pattern obtained an average ASR of 76%, comparable to the
average ASRs at the original testing distances. This result indicates that while our method optimizes
the FDA pattern for equidistant points within the attack range, the design still allows the pattern to be
effective across the entire range.

J Ablation Study on FDA

Ablation Study on DIC. To evaluate the contribution of different design component within the DIC,
following the testing configurations in Section 5.1, we evaluated the average l2-norm error of the
DIC across different distances with different design components removed one after another. With the
full DIC, the average l2-norm error was 0.11. With the effect filter simulation module, the camera
simulation module and the atmospheric perspective module removed, the average l2-norm error of
the DIC increased to 0.12, 0.13 and 0.14 respectively. The result confirms that all design components
within the DIC have their contribution to performing better distant image conversion.

Ablation Study on MFO. To evaluate the contribution of different design components within the
MFO, we obtained the average ASRs of FDA patterns optimized with different MFO components
removed using digital world tests. Empirically, we found that with the complete MFO design, the
FDA pattern optimized obtained an average ASR of 73%. With the MSC removed, the average ASR
of the resulting FDA pattern decreased to 66%. With the TSO further removed, the average ASR of
the resulting FDA pattern decreased to 56%. The results confirm that all design components within
the MFO have their contribution to boosting FDA pattern performance.

Distance(m)

A
S
R

Figure S6: Digital world performance of
patterns obtained with or without MFO.

Presence of Conflict in Attack Performance. To demon-
strate there is a conflict in attack performance between
short and long distances that is impeding FDA pattern op-
timization, we optimized two FDA patterns without MFO
(with identical optimization configuration but different
initialization) and compared their performance against
the pattern optimized with MFO using digital world tests.
From Figure S6, it can be observed that without MFO, the
two patches with different initialization performed better
either at long distances or short distances and obtained
relatively low average ASRs of 56% and 43%, demon-
strates that the conflict in performance between short and
long distances exists. This result demonstrates that the MFO successfully boosted FDA performance
by resolving the conflict.

K More Details on Adversarial Clothing

Adversarial Clothing Tailoring. Figure S7 (a) illustrates the adversarial clothing tailoring pipeline
in the physical world. That is, the adversarial patches were first tiled and scaled so that their scale
relative to the pedestrian subjects match the corresponding scale used when optimizing the patterns.
Following the boxes indicated in Figure S7 (a), the crops for forming the trunk of the shirt, the
sleeves of the shirt and the trousers were extracted. These crops were then printed onto clothes and
tailored by professional tailors to create the final clothing. The adversarial patches optimized for FDA
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Figure S7: Adversarial clothing. (a) Clothing tailoring pipeline and FDA clothing pattern targeting
YOLOV5. (b) TCA clothing adversarial pattern targeting YOLOV5. (c) Random clothing pattern.
(d) FDA clothing pattern targeting Deformable DETR. (e) FDA clothing pattern targeting RetinaNet
with PVT backbone.

Target
Model

IoU=0.5
(%)

IoU=0.4
(%)

IoU=0.3
(%)

IoU=0.2
(%)

IoU=0.1
(%)

IoU=0.0
(%)

Mean
(%)

YOLOV5 [21] 76 73 65 40 39 38 55
D-DETR [43] 71 70 68 68 68 68 69

RetinaNet(PVT)[37] 73 73 72 70 69 67 71
Table S2: Average ASRs (across different distances) of FDA clothing targeting different white-box
models evaluated at different IoU thresholds. Mean indicates mean over Average ASRs at different
IOU thresholds.

clothing targeting different detectors, TCA clothing targeting YOLOV5 and the random clothing are
illustrated in Figure S7.

FDA Clothing Performance Evaluated at Different IoU Thresholds. In the main paper, we
followed the convention from the baseline TCA paper [17] by using an IOU threshold of 0.5 to
evaluate the performance of our FDA clothing. For readers interested in further details, we also
include the average ASRs of the three clothing evaluated in the main paper at IOU thresholds of
0.5, 0.4, 0.3, 0.2, 0.1, and 0.0, with their corresponding mean values across different thresholds in
Table S2. We found the average ASR of the FDA clothing to be stable across different IOU thresholds
on most models. As the IOU threshold decreased, the average ASR of the FDA clothing targeting
Deformable DETR and RetinaNet remained stable around 70%. However, when the target model was
YOLOV5, the average ASR of the FDA clothing dropped from 76% to 38%. We found this drop to
be due to the presence of small, abstract human-like patterns on the adversarial pattern (illustrated
in Figure S7(a)). At small IOU thresholds, if the abstract human-like patterns were detected, the
corresponding small bounding box for the pattern would cause the attack to be considered a failure,
even when the actual pedestrian subjects were not detected. In contrast, the drop in performance did
not occur for Deformable DETR and RetinaNet, since, as illustrated in Figure S7(d) and (e), the FDA
patterns were formed by abstract Teddy bear nose patterns and abstract donut patterns, respectively.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are supported with experi-
ments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included a limitation section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This work does not provide new theories.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided necessary details to reproduce the work. Codes are also
provided for interested readers.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have included the github link to codes related to our key results. We have
also provided detailed instructions on how to run the codes.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: A detailed description can be found at the beginning of Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Considering the large amount of results to be analyzed, we have only included
the mean values for better readability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: The amount of computational resources used is commonly not considered or
evaluated in the field of physical world adversarial attack.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We checked and followed NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have provided our discussion in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: When scrapping pedestrian images to form the dataset in this work, we
followed copyright requirements of the websites. In the github link that we publish our
dataset and codes, we declared a CC BY-NC-SA 4.0 license.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the existing datasets we used in our work and we followed the
requirements in their license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: When scrapping pedestrian images to form the dataset in this work, we
followed copyright requirements of the websites. In the github link that we published our
dataset, we protected it by declaring a CC BY-NC-SA 4.0 license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We have recruited volunteers for our physical world tests. As stated in
Section 5.2, our recruitment and study procedure has been approved by ethics committee in
our institution.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: As stated in Section 5.2, our recruitment and study procedure has been
approved by the ethics committee in our institution.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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