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Abstract

Typologically diverse benchmarks are increas-001
ingly created to track the progress achieved in002
multilingual NLP. Linguistic diversity of these003
data sets is typically measured as the num-004
ber of languages or language families included005
in the sample, but such measures do not con-006
sider structural properties of the included lan-007
guages. In this paper, we propose assessing008
linguistic diversity of a data set against a refer-009
ence language sample as a means of maximis-010
ing linguistic diversity in the long run. We011
represent languages as sets of features and012
apply a version of the Jaccard index (Jmm)013
suitable for comparing sets of measures. In014
addition to the features extracted from typo-015
logical data bases, we propose an automatic016
text-based measure, which can be used as a017
means of overcoming the well-known prob-018
lem of data sparsity in manually collected fea-019
tures. Our diversity score is interpretable in020
terms of linguistic features and can identify021
the types of languages that are not represented022
in a data set. Using our method, we anal-023
yse a range of popular multilingual data sets024
(UD, Bible100, mBERT, XTREME, XGLUE,025
XNLI, XCOPA, TyDiQA, XQuAD). In addi-026
tion to ranking these data sets, we find, for ex-027
ample, that (poly)synthetic languages are miss-028
ing in almost all of them.029

1 Introduction030

Data sets for training and testing NLP models are031

increasingly multilingual and aimed at broad lin-032

guistic coverage. These data sets are often claimed033

to represent a typologically diverse sample, includ-034

ing low-resource and endangered languages.035

Linguistic diversity is typically described as the036

number of languages included in the data set, yet037

less often as the number of language families to038

which these languages belong. Both counts indi-039

cate a level of linguistic diversity: the more lan-040

guages and families, the more diversity. But how041

do we know that included languages are indeed 042

different? How can we define a desired or optimal 043

diversity to set as a goal when composing mul- 044

tilingual data sets? These questions need to be 045

addressed if our goal is to know how NLP technol- 046

ogy generalises across diverse languages, without 047

testing it on each single language (even if we had 048

the necessary data for all languages). 049

The aim of this paper is to initiate and facili- 050

tate comparisons between multilingual NLP data 051

sets with respect to a linguistic diversity reference. 052

For this, we propose a measure of linguistic di- 053

versity and a method of comparison that identi- 054

fies what kinds of linguistic features are missing. 055

As an initial reference, we rely on a predefined 056

sample of languages — the 100-language-sample 057

(100L) selected by the Word Atlas of Language 058

Structures (WALS; Comrie et al. (2013)) to rep- 059

resent geographic and phylogenetic diversity. As 060

a comparison method, we formulate a version of 061

the Jaccard index suitable for comparing measures. 062

This measure allows us to quantify the distance 063

between the observed and the reference diversity in 064

terms of linguistic features, showing not only how 065

diverse language samples are but also what kinds 066

of linguistic phenomena are not represented in a 067

given sample. To facilitate automatic extraction 068

of linguistic features needed for assessing linguis- 069

tic diversity, we complement the information from 070

linguistic data bases with relevant text statistics. 071

Our proposals are intended to help researchers 072

make informed choices when designing a multilin- 073

gual data set. Representing a wider spectrum of 074

linguistic diversity is not only a way to improve 075

the cross-linguistic generalisation of NLP technol- 076

ogy, but also a way to deal with biases against 077

low-resource languages, which are harder to repre- 078

sent and thus more likely to be left behind (Joshi 079

et al., 2020). 080
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Figure 1: Geographic distribution of the languages included in the WALS 100L sample and their endangerment
status.

2 Background and Related Work081

Evaluating the linguistic diversity of data sets relies082

on comparable descriptions of languages. For in-083

stance, the (approximate) number of speakers is an084

attribute whose value can be found and compared085

for all registered languages. This attribute, how-086

ever, does not describe the structure of languages.087

An example of a structural attribute would be the088

presence or the absence of adjectives in a language.089

To establish the value of this attribute for any lan-090

guage, we need a universal definition of what an091

adjective is. It turns out that such universal defi-092

nitions are hard to formulate in a principled way093

(Haspelmath, 2007), which makes it hard to define094

objective measures of how similar or dissimilar any095

two languages are.096

The most widely accepted method for compar-097

ing languages relies on genealogical classification:098

given a phylogenetic tree, we consider languages099

located in the same region of the tree to be sim-100

ilar. This method currently prevails in NLP (cf.101

the work discussed in Section 6). Typically, we102

regard languages that belong to the same family103

to be similar. To know which language belongs to104

which family, we turn to popular authorities such as105

WALS (Dryer and Haspelmath, 2013) or Glottolog106

(Hammarström et al., 2018). However, language107

families can be too broad for a meaningful com-108

parison as they include typologically very different109

languages. For instance, English and Armenian110

belong to the same family, Indo-European, but are 111

vastly different in terms of their phoneme invento- 112

ries, morphology, and word order. 113

Another possibility to compare languages, start- 114

ing to be used in NLP only recently, is to rely 115

on grammatical features available in the WALS 116

data base, which is a comprehensive source of in- 117

formation about linguistic structures despite be- 118

ing sparsely populated with features that are of- 119

ten known for only a few languages.1 Ponti et al. 120

(2020) propose a diversity score using the features 121

from URIEL (Littell et al., 2017) (which is derived 122

from WALS and other typological data bases). The 123

score is called typology index and it is calculated 124

as the entropy of feature values (averaged per data 125

set).2 In other NLP work, grammatical features 126

(usually termed typological) are used for other pur- 127

poses, such as predicting the features (Ponti et al., 128

2019) rather than using them for language sam- 129

pling in creating multilingual data sets. Moran 130

(2016) use WALS and AUTOTYP features (Stoll 131

and Bickel, 2013) to compose a sample of 10 max- 132

imally diverse languages for a corpus-based study 133

of language acquisition. 134

Finally, languages can be described using fea- 135

tures derived from various text statistics, which 136

is still not used as a method of sampling. Type- 137

1An alternative typological data base is AUTOTYP (Bickel
et al., 2017), with a different design but similar coverage.

2They propose two more scores, family and geography,
which do not make use of grammatical features.
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token ratio (TTR) or unigram entropy of a text have138

been shown to correlate with grammar-based mor-139

phological complexity measures (Kettunen, 2014;140

Bentz et al., 2016). Many other methods have been141

proposed for assessing linguistic complexity using142

text statistics (see, for instance, Berdicevskis et al.143

(2018)). All of these measures can, in principle,144

be used for describing and comparing languages.145

Although such comparisons might seem counter-146

intuitive and hard to interpret in terms of genealog-147

ical classification, it is worth exploring them as148

complementary descriptions of languages, more149

directly relevant to text processing, which is the150

most common goal in NLP.151

Transfer learning created a new need for nuanced152

languages comparison for NLP. While models can153

now be transferred across languages with zero-shot154

or few-shot learning (Pires et al., 2019), the success155

of the transfer depends on the similarity between156

languages. Lin et al. (2019) propose a range of157

measures that can be used in order to choose the158

best transfer language, which they divide into data-159

dependent (data size, token overlap, TTR) and data160

independent (various distance measures extracted161

from the URIEL data base). Lauscher et al. (2020)162

study how well different similarity scores predict163

the success of the transfer and they find that lan-164

guage family is, in fact, the one that is least help-165

ful in all the tasks considered (with mBERT and166

XLM-R). Various criteria for assessing language167

similarity remain an open research area in NLP168

(Turc et al., 2021; Pelloni et al., 2022; Samardžić169

et al., 2022; de Vries et al., 2022). Our proposal170

for assessing linguist diversity is relevant to these171

efforts too, as its key component is language com-172

parison at the level of features extracted from both173

typological data bases and text samples.174

More generally, our work is intended to con-175

tribute to several wide-scope initiatives for improv-176

ing the quality of data management in multilingual177

NLP (Bender and Friedman, 2018; Kreutzer et al.,178

2021; Lhoest et al., 2021) by focusing specifically179

on diversity assessments and data-independent180

scores for language comparison.181

3 Comparing Data Sets with Jaccard182

Similarity183

Our goal is to estimate the linguistic diversity of184

a data set with respect to some reference. Our185

score is thus a comparison between two data sets.186

More precisely, we compare scaled distributions187

Figure 2: A toy example of comparing sets of measures
with the minmax version of the Jaccard index.

of the values of a numerical attribute as shown 188

in Figure 2. The upper part of the figure shows 189

(constructed) examples of two data sets (A and B), 190

which we compare assuming that A is the data set 191

whose diversity we want to assess and B is the 192

reference. The values of the numerical attribute 193

(one measurement per language) are on the x-axis 194

and the numbers of languages are on the y-axis. 195

Each bar in the figures represents the number of 196

languages in the given data set with the numerical 197

value in the given range (bin). For instance, the 198

first bar in the upper left plot shows that the first 199

sample (A) has 30 languages, with the values of 200

their numerical attributes falling between 1 and 2. 201

The other sample (B) has no languages in this bin. 202

The width of the bins is arbitrary, but it does 203

impact the score. Narrower bins capture more dif- 204

ferences between two distributions than wider bins. 205

By setting the width of the bins, we thus control 206

the resolution at which we want to compare two 207

data sets. In our example, the width is the dis- 208

tance between integers, but one can define different 209

thresholds (as long as all of the bins are of the same 210

width). 211

Since the data sets that we compare contain dif- 212

ferent numbers of languages, the values on the y- 213

axis (counts of languages) are normalised in order 214

to neutralise the effect of the size of the samples 215

and focus rather on the diversity. We multiply all 216

counts in the smaller set with the scalar c: 217

c =
max(|A|, |B|)
min(|A|, |B|)

(1) 218

In this way, we increase the counts in the smaller 219

set proportionally to obtain the same number of 220

data points in both distributions and comparable 221

numbers in each bin.3 222

3Another way to normalise the counts would be to divide
them by the size of the set, but we chose the first option in
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Once we have represented our two sets in this223

way, we compare them using a generalised ver-224

sion of Jaccard similarity. This score shows how225

much the two distributions overlap. Intuitively, it226

is the ratio between the intersection and the union227

of the two distributions (shown in the bottom part228

of Figure 2).229

The original Jaccard index (Jaccard, 1912) com-230

pares two sets, but its generalised versions are suit-231

able for comparing sets of measurements. Thus,232

we use the minmax version of the score (Jmm),233

initially proposed by Tanimoto (1958) for compar-234

ing vectors of binary values and then generalised235

to weight vectors by Grefenstette (1994). In our236

version, we compare two data sets as two vectors237

of weights: each bin is one dimension in the vec-238

tors and the number of languages in that bin is its239

weight.240

Formally, we first map all the languages in all241

data sets to real numbers m : L 7→ R, so that242

{Y = m(x) : x ∈ X} = {(xi, yi)}, where x243

is a language in a data set, y is its corresponding244

measurement (y ∈ R) and the range of the index i245

1 . . . |X| is the set of languages included in a data246

set. We then group the measurements into bins247

by applying a given threshold: {Z = t(y) : y ∈248

Y } = {(yi, zj)}, where z is the bin to which the249

measurement is assigned, the range of i is 1 . . . |X|250

and the range of j is 1 . . . |Z|.251

With this formalisation, we define the Jaccard252

minmax similarity of two data sets, Jmm(A,B), as253

a similarity between two vectors of weights:254

Jmm(a,b) =

∑|Z|
j=1min(aj , bj)∑|Z|
j=1max(aj , bj)

(2)255

The sum in the numerator represents the inter-256

section and the sum in the denominator the union257

of the two sets of measurements. The weights a258

and b represent the number of measurements in the259

bin j.260

The values of Jmm fall in the range [0, 1], with261

higher values indicating more similarity between A262

and B, and, indirectly, better coverage of linguistic263

diversity in A.264

What is especially interesting about using Jmm265

as a diversity score is its transparency in terms of266

individual measurements: we can visualise and267

interpret where exactly a data set departs from the268

reference.269

order to preserve the notion of number of languages, which is
helpful for the subsequent explanations.

4 Language Features 270

We now turn to the question of how to define and 271

take measures (the values on the x-axis in Figure 272

2) that can be used for calculating Jaccard minmax 273

similarity between sets of languages. We use two 274

kinds of descriptions. 275

4.1 Grammar Features 276

Typological data bases are currently the principal 277

source of information about the properties of lan- 278

guages, but NLP researchers are faced with many 279

obstacles when using this information. The pop- 280

ular software package lang2vec associated with 281

the URIEL data base (Littell et al., 2017) alleviates 282

some of the obstacles. First, the package solves 283

the problem of incompatible feature values across 284

different sources by mapping the data from several 285

original data bases to binary features. Second, the 286

problem of sparsity of feature values is solved by 287

imputing the missing values: instead of a missing 288

feature value in a language, the package returns the 289

observed value for the same feature in the closest 290

language. In this way, features become available 291

for all queried languages, which is necessary for es- 292

timating language diversity, but a large proportion 293

(roughly 40%) of the returned features are imputed. 294

While lang2vec facilitates retrieving typolog- 295

ical features, its use for describing languages is 296

limited due to remaining obstacles that are hard to 297

solve. First, it does not contain any morphological 298

features, which are especially relevant to NLP due 299

to the known difficulties with that morphologically 300

rich languages (Tsarfaty et al., 2013). The second 301

unsolved problem is the fact that typological fea- 302

tures are hard to add for languages for which they 303

are not already available. Adding any new feature 304

or value requires human expertise in many different 305

languages. 306

4.2 Text Features 307

As a solution to both of these problems, we use 308

text statistics as language features. In this study, 309

we focus on the mean word length as an approxi- 310

mation of aggregated morphological features, but 311

other text-based features might be envisioned in fu- 312

ture work. The intuition behind our proposal is that 313

word length indicates morphological types: longer 314

words can be expected in languages with rich mor- 315

phology (large morphological paradigms, produc- 316

tive derivation), while shorter words are found in 317
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languages with less morphology.4 As empirical318

evidence of the expected relationship between the319

word length and morphology, we perform a cor-320

relation test between the mean word length and321

morphological complexity calculated over morpho-322

logical features in WALS (Section 5).323

Text features are especially interesting in the324

context of NLP because they can be calculated au-325

tomatically and applied to any language in which326

there are any texts to process. An important ad-327

vantage of word length over other text statistics in328

this regard is that it manifests itself in very small329

samples of text and remains stable across different330

sizes. A sample of contiguous text of only 500 to-331

kens gives us already a very good estimation of the332

overall mean word length. This can be seen in Fig-333

ure 4 in the Appendix A, which shows the values334

of the mean word length on random samples of the335

length 500, 2000 and 10000 tokens in 87 languages.336

A correlation score (also in the Appendix A) shows337

that languages are almost identically ranked with338

all the sample sizes.339

4.3 Maximising Linguistic Diversity340

The editors of the WALS data base have selected341

two samples of languages (100 and 200 sample) as342

a means of guidance in the collective effort to cre-343

ate linguistic descriptions on a wide scale. These344

samples maximise genealogical (language family)345

and areal (geographic) diversity. Completing their346

descriptions is expected to minimise a potential347

bias regarding the relative frequency of different348

types of linguistic features included in the data349

base (Comrie et al., 2013). Figure 1 shows the ge-350

ographic distribution of the languages in the 100351

sample and their endangerment status according to352

UNESCO.353

Recently, text samples have been collected for354

most of the 100 languages in the TeDDi data set355

(Moran et al., 2022).5 These text data are sampled356

from online resources, e.g., Project Gutenberg,6357

Open Subtitles (Lison and Tiedemann, 2016), The358

Parallel Bible Corpus (Mayer and Cysouw, 2014),359

the Universal Declaration of Human Rights,7, but360

also from grammars and other language documen-361

tation sources. For languages not present in online362

4We give a more specific definition of the notion of a word
as part of the methods in Section 5.

5https://github.com/MorphDiv/TeDDi_sample/
tree/master

6https://www.gutenberg.org/
7http://unicode.org/udhr/

resources, the texts were manually transcribed. 363

We take these two resources as the current ref- 364

erence that maximises linguistic diversity in terms 365

of grammar features (WALS) and text features 366

(TeDDi). We compare NLP data sets with these ref- 367

erences, but our method can be applied to compare 368

any given pair of data sets including potentially 369

better references in the future. 370

5 Data and Methods 371

We calculate the Jaccard minmax diversity score 372

(Jmm) for a number of popular multilingual data 373

sets in comparison to the TeDDi sample.8 Without 374

attempting to provide an exhaustive evaluation, we 375

review data sets that satisfy the following criteria: 376

multilingual (containing ten or more languages), 377

relatively widely used and recently released or up- 378

dated. The list is given in Table 1 and discussed in 379

more detail in Section 6. For reference, we com- 380

pare our Jmm score to the typological index (TI) 381

previously proposed as a linguistic diversity mea- 382

sure by Ponti et al. (2020) (see Section 2). 383

Descriptions of the data sets often do not in- 384

clude all the information that was needed for our 385

comparison. In particular, the number of language 386

families is often not stated. To add this information, 387

we extracted language names from the data files, 388

converted these names into ISO 639-3 codes manu- 389

ally, and then retrieved the corresponding families 390

from the Glottolog data base (top level family). 391

The numbers in the second and the third column 392

marked with an asterisk are added or modified by 393

us. The numbers without an asterisk are reported 394

in the respective publications. Note that the con- 395

version to ISO 639-3 codes led to some changes in 396

the number of languages, compared to those cited 397

in the data descriptions. For instance, the mBERT 398

training data has only 97 distinct languages, not 399

104 as mentioned in the original description. 400

5.1 Methods for Text Features 401

We define words to be sequences of Unicode char- 402

acters, delimited by spaces or other language- 403

specific word delimiters, as defined by common 404

multilingual tokenisers. We tokenise all the col- 405

lected samples into word-level tokens using the 406

Python library Polyglot (Al-Rfou, 2015).9 If a re- 407

sulting token does not contain any alphanumeric 408

8In the final version, the link to the shared code for repro-
ducing the calculations will be provided here.

9https://polyglot.readthedocs.io
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characters, we discard it as punctuation. All the409

remaining tokens are further segmented into charac-410

ters using the Python library segments (Moran and411

Cysouw, 2018). 10 We split words into sequences412

of characters and take their length as word length.11413

We apply this same definition to all scripts, but we414

discuss below potential adjustments in the case of415

(partially) logographic scripts.416

Since the mean word length can be calculated417

on small samples, we take a single random sample418

for each language in a data set that we consider.419

To do this, we select a random position in the data420

set and extract contiguous text of the length up to421

10K tokens starting from the random position. In422

case a data set does not contain such long texts (or423

sequences of paragraphs), we take smaller samples.424

The smallest samples are 200-300 tokens long.425

As a result, we obtain a set of real numbers, each426

number representing a language in a data set. To427

turn these numbers into discrete features, we group428

them into bins of equal size. We set the bin width429

to 1.12430

Mean word length vs. WALS morphology fea-431

tures Following Bentz et al. (2016), we calculate432

a complexity score (CWALS) for each language433

using the set of 26 features that are relevant to de-434

scribing morphology. This score is obtained by:435

1) transforming the range of values each feature436

can take so that bigger values reflect the increasing437

use of morphology; 2) normalizing and averaging438

the resulting feature values per language. See Ap-439

pendix B for more details. CWALS ranges from 0440

to 1, where values closer to one indicate that the lan-441

guage encodes more morphosyntactic distinctions,442

making its morphology richer. We observe a strong443

correlation (ρ = 0.69) between the mean word444

length and morphological complexity for 29 di-445

verse languages (the subset of Teddi languages for446

which the 26 WALS features are known). The high447

correlation means that the variables quantify very448

similar phenomena and can be used interchange-449

ably.450

Adjustments for logographic scripts Words in451

languages with logographic scripts tend to be452

shorter due to the fact that a single symbol cor-453

responds to several alphabetic symbols (Sproat and454

Gutkin, 2021). For instance, in Mandarin Chinese,455

10https://github.com/cldf/segments
11We use the units defined by the Unicode Standard as

“user-perceived characters” (NFC).
12In addition to this, we also tried smaller bin sizes. We do

not report the latter results, but the main trends did not change.

types such as的 de (possessive particle),了 le (as- 456

pect particle),是 shì (copular verb ‘is’),我們 wǒ- 457

men (pronoun ‘us’) are assigned lengths (1, 1, 1, 2) 458

respectively when measured UTF-8 characters in 459

the original script. When transliterated into Pinyin, 460

the corresponding lengths are (2, 2, 3, 5). Hence, 461

compared to Pinyin, the lengths are somewhat un- 462

derestimated. It might seem more appropriate to 463

convert the logographic scripts into their roman- 464

ised counterparts to achieve cross-linguistic com- 465

parability. We opt for leaving such scripts without 466

conversion, because we consider this phenomenon 467

part of the diversity that we want to capture. Ad- 468

ditional motivation for our choice is the fact that 469

NLP systems have to deal with text as it is regard- 470

less of the mapping between written characters and 471

sounds. To show that this decision does not im- 472

pact our main findings, we report in Appendix C 473

diversity scores with adjusted mean word length. 474

5.2 Linguistic Diversity Scores 475

With the grammar features extracted from URIEL, 476

we calculate syntactic diversity according to both 477

TI and Jmm. 478

Syntax Typological Index (TIsyn) Following the 479

formulation by Ponti et al. (2020), we calculate the 480

typological index for each data set. In this con- 481

text, a language is characterized by 103 syntactic 482

features with binary values13. For each feature, 483

Shannon entropy is estimated using the distribution 484

of feature values in a data set. The feature-specific 485

entropy values are averaged over the full set of fea- 486

tures to obtain a TI score ranging from 0 to 1. The 487

TI values closer to 1 indicate a more diverse data 488

set. 489

Syntax Jaccard (J_mm_syn) We apply Jaccard 490

similarity for comparing each data set against the 491

TeDDi sample. Here the measures are the counts 492

of the observed values of the same 103 syntactic 493

feature available in lang2vec. This means that the 494

items on the x-axis in Figure 2 are the 103 values, 495

while the y-axis represents the number of times 496

each feature value was observed in a data set. 497

With text features (mean word length) extracted 498

from TeDDI and the scored NLP data sets, we 499

calculate morphological diversity according to both 500

TI and Jmm. 501

13We use the syntax_knn features available in lang2vec,
which includes predicted values for those languages whose
features are not available
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Name and main references N(L) N(F) TIsyn Jmm_syn TImorph Jmm_morph

Universal Dependencies (UD) 106* 20* 0.567 0.736 0.349 0.650
Bible 100 103* 30* 0.649 0.811 0.311 0.534
mBERT 97* 15* 0.559 0.710 0.323 0.603
XTREME 40 14 0.612 0.775 0.311 0.457
XGLUE 19 7* 0.517 0.674 0.307 0.504
XNLI 15 7* 0.557 0.711 0.339 0.598
XCOPA 11 11 0.586 0.737 0.361 0.608
TyDiQA 11 10 0.626 0.751 0.343 0.525
XQuAD 12* 6* 0.523 0.680 0.341 0.588
TeDDi 89 51 0.706 - 0.369 -

Table 1: Diversity of multilingual NLP data sets. N(L): the number of languages in the data set. N(F): the number
of families to which the languages belong. TI: typology index Ponti et al. (2020). Jmm: Jaccard minmax similarity
(this paper).

Morphology Typological index (TImorph) We502

adapt the measure proposed by Ponti et al. (2020)503

to the text-based features (mean word length). Each504

bin of the mean word length values is a feature and505

the number of languages that fall in a given bin506

are the counts of feature values. In other words,507

the mean word length becomes a vector of binary508

values, 1 for the languages that are in the bin and 0509

for all the other languages in the sample. The rest510

of the calculation is the same as in TIsyn.511

Morphology Jaccard (J_mm_morph) Similarly512

to J_mm_syn, we calculate the Jaccard score513

by comparing the distributions of the mean word514

length: TeDDi vs. a given NLP data set.515

6 Findings516

Table 1 lists all the reviewed data sets with all the517

measures of linguistic diversity. The colour scale of518

the cells represents the relative ranking of data sets519

according to each measure separately. TeDDI data520

set obtains the highest diversity scores at both levels521

(syntax and morphology) using the TI measure.522

This confirms the role of these resources as the523

current reference regarding linguistic diversity.524

TI and Jmm are consistent The rankings of data525

sets according to the Jmm score are very similar526

to those obtained with the TI score when the syn-527

tactic features are used. The agreement between528

the two measures is somewhat lower in the case of529

morphological features, but still rather high. The530

consistency between the two measures is not a triv-531

ial outcome given the entirely different approaches532

behind them. We can thus take this agreement as a533

validation of both measures. The main advantage534

of Jmm compared to TI is its transparency regard-535

ing the kinds of languages that are missing in a data 536

set. 537

Diversity rankings of NLP data sets The high- 538

est rankings appear split between the two struc- 539

tural levels. Bible 100 (Christodouloupoulos and 540

Steedman, 2015) and XTREME (Hu et al., 2020) 541

are the two most syntactically diverse data sets, 542

while their morphological diversity is moderate to 543

low. The Bible data set contains mostly non Indo- 544

European languages, while the collection criteria 545

for the XTREME data set was to maximise diver- 546

sity. On the other hand, Universal Dependencies 547

(UD, Nivre et al. (2020), which are often seen as es- 548

pecially biased towards European languages, show 549

the best morphological, but a moderate syntactic 550

diversity. XCOPA (Ponti et al., 2020) and TyDiQA 551

(Clark et al., 2020) are data sets containing rela- 552

tively few languages, but designed to maximise 553

linguistic diversity. They are both highly ranked 554

on 3/4 measures (two syntactic and one morpho- 555

logical). Contrary to this, the linguistic diversity 556

ranking of one of the most popular benchmarks that 557

contain manual labels for several downstream tasks, 558

XGLUE (Liang et al., 2020; Wang et al., 2019) is 559

consistently low. XQuAD (Artetxe et al., 2020; Ra- 560

jpurkar et al., 2016) fairs a little better, but it is still 561

one of the least diverse data sets. The XNLI data 562

set (Conneau et al., 2018; Bowman et al., 2015; 563

Williams et al., 2018), which is compiled with the 564

goal of spanning language families and which in- 565

cludes some low resource languages, remains of 566

moderate linguistic diversity according to all mea- 567

sures. It is curious to see that the number of lan- 568

guages or even languages families included in a 569

data set does not ensure a high linguistic diversity. 570
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Figure 3: Union and intersection between the distributions of the mean word length in TeDDi and NLP data sets.

For example, the mBERT14 data set contains 97571

languages in 15 language families, but it turns out572

to be less diverse than smaller data sets such as573

XCOPA (on TIsyn, Jmm_syn and Jmm_morph) and574

TyDiQA (on TIsyn, Jmm_syn and TImorph). The575

strategy of including the top 100 languages accord-576

ing to the size of their Wikipedia content (plus Thai577

and Mongolian), does not result in high diversity.578

Underrepresented language types Figure 3 is a579

visualisation of the Jmm_morph score15 for some580

of the data sets showing the overlap and differ-581

ences with the reference (TeDDi). The recur-582

rent difference is whether a data set includes lan-583

guages with long words or not (mean length > 8).584

Those that contain at least some languages with585

long words (UD, XCOPA) score much better on586

Jmm_morph than those that remain completely on587

the short-middle side (EXTREME, XGLUE, Ty-588

DiQA, mBERT). The second important factor that589

leads to lower scores is a strong peak of the distribu-590

tion indicating a bias towards one of the length bins591

(EXTREME, XGLUE, mBERT). The third factor592

is a different (“wrong”) shape of the distribution593

(TyDiQA). The data set that diverges the most is594

EXTREME, exhibiting all three factors of disagree-595

ment. Overall, it seems that the right-hand side of596

the mean word length scale remains rather scarcely597

represented in all data sets, including the TeDDi598

14https://github.com/google-research/bert/blob/
master/multilingual.md

15We show the morphological diversity for convenience
since visualising 103 syntactic features would required addi-
tional adaptations.

sample itself. In future data collection, more effort 599

should be put in representing languages with long 600

words, especially because most of them are likely 601

to be low-resource languages. 602

7 Conclusion 603

We have shown that the linguistic diversity of NLP 604

data sets can be consistently assessed by two inde- 605

pendent measures, TI (proposed in previous work) 606

and Jmm (proposed in this paper). Both of these 607

measures show that a high number of languages 608

and language families included in a data set is not 609

sufficient to ensure linguistic diversity. 610

To make the assessment of linguistic diversity 611

automatic and rather simple, we show that text- 612

based features such as the mean word length can 613

be used as linguistic descriptors. These features 614

can be easily calculated on very small text samples 615

(of length of 500 tokens), overcoming the obstacles 616

posed by the need to extract linguistic features from 617

typological databases. 618

An advantage of the Jmm score over TI and other 619

previous indicators of linguistic diversity is its ca- 620

pacity to show what kinds of languages are missing 621

in a given data set in comparison to a reference. 622

Assessing popular NLP data sets with this measure 623

revealed that the most underrepresented languages 624

are those with rich morphology. This kind of direct 625

and transparent comparison can improve multilin- 626

gual NLP coverage in the long run. 627
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Limitations628

Both measures of morphological diversity that629

we propose rely on text features (the mean word630

length). Although we show that the mean word631

length is strongly correlated with an independent632

measure of morphological complexity (WALSC).633

it remains an aggregated measure (one feature per634

language). For an even more transparent measure635

of linguistic diversity, it would be desirable to ob-636

tain more nuanced morphological features.637

Another limitation of our study is that we do not638

propose syntactic features that could be extracted639

from text. We focused here on the current gap in the640

available linguistic features (the lack of morpholog-641

ical features in lang2vec), but devising text-based642

syntactic features would deserve more attention in643

future work.644
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A Mean Word Length Correlation950

between Different Sample Size951

To make sure that the stability across different sam-952

ple sizes suggested by Figure 4 is not a mere con-953

sequence of a relatively small range of variation,954

we perform correlation tests between different sam-955

ples and in comparison to other measures (TTR956

and unigram entropy (H)). Table 2 shows that the957

ranks of languages change considerably less across958

different sample sizes when considering the mean959

word length than in the other two measures.960

Samples MWL H TTR
500 tokens vs. max. 0.99 0.85 0.84
2K tokens vs. max 0.99 0.95 0.94

Table 2: Spearman rank correlation showing how much
rankings of languages change with text measures taken
on random samples of different size.

B Word length and morphological 961

complexity 962

ISO396-3 MWL CWALS

abk 7.17 0.62
apu 7.67 0.60
arz 4.44 0.49
bsn 6.02 0.69
ckt 8.45 0.50
deu 4.87 0.55
ell 4.72 0.53
eng 4.18 0.42
eus 5.70 0.64
fin 6.23 0.66
fra 4.41 0.45
hae 5.91 0.53
hau 4.08 0.38
heb 3.94 0.54
ind 5.42 0.40
kan 5.22 0.65
kat 4.78 0.50
khk 5.66 0.53
kut 4.60 0.37
lvk 4.77 0.67
qvi 8.18 0.71
rus 4.79 0.52
spa 4.37 0.45
swh 5.72 0.71
tur 6.07 0.76
vie 3.20 0.21
yaq 5.31 0.57
yor 3.52 0.25
Spearmann correlation ρ = 0.69

Table 3: Mean Word length (MWL) and morphological
complexity measure (CWALS)
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Figure 4: Mean word length measures at different text sizes in TeDDi. The languages on the x-axis are sorted
according to the increasing value calculated on the biggest sample (10K). The values in the two smaller samples
(2K and 500) depart very little from the main trend.

Chapter Name Categories Transformation Final Values
22A Inflectional Synthesis 7 (ordinal) none 1-7
26A Prefixing vs. Suffixing in Inflectional Morphology 6 (non-ordinal) binarization 0-1
27A Reduplication 3 (non-ordinal) binarization 0-1
28A Case Syncretism 4 (ordinal) reorder 1-4
29A Syncretism in Verbal Person/Number marking 3 (ordinal) none 1-3
30A Number of Genders 5 (ordinal) none 1-5
33A Coding of Nominal Plurality 9 (partially ordinal) binarization 0-1
34A Occurrence of Nominal Plurality 6 (ordinal) none 1-6
49A Number of Cases 9 (ordinal) remove 1-8
51A Position of Case Affixes 9 (non-ordinal) binarization 0-1
57A Position of Pronominal Possessive Affixes 4 (non-ordinal) binarization 0-1
59A Possessive Classification 4 (ordinal) none 1-4
65A Perfective/Imperfective Aspect binary none 0-1
66A The Past Tense 4 (ordinal) reorder 1-4
67A The Future Tense binary none 0-1
69A Position of Tense/Aspect Affixes 5 (non-ordinal) binarization 0-1
70A The Morphological Imperative 5 (partially ordinal) recategorization 1-4
73A The Optative binary none 0-1
74A Situational Possibility 3 (non-ordinal) binarization 0-1
75A Epistemic Possibility 3 (non-ordinal) binarization 0-1
78A Coding of Evidentiality 6 (non-ordinal) binarization 0-1
94A Subordination 5 (non-ordinal) binarization 0-1
101A Expression of Pronominal Subjects 6 (non-ordinal) binarization 0-1
102A Verbal Person Marking 5 (partially ordinal) recategorization 1-3
111A Nonperiphrastic Causative Constructions 4 (non-ordinal) binarization 0-1
112A Negative Morphemes 6 (non-ordinal) binarization 0-1

Table 4: Subset of WALS features that we use for characterizing the morphological complexity of languages. The
column “Final Values” gives the range of values each feature can take after transformations were performed to the
original values (Bentz et al., 2016)

C Word Length Adjustments for963

Logographic Scripts964

In the case of logographic scripts, we scale the965

observed word length proportionally to the differ-966

ence between Chinese original script and Pinyin so967

that the scaled length is comparable to alphabetic968

scripts. We estimate the scalar s as a function of 969

the character-level type-token ratio on a sample of 970

text: 971

sl = r · ch_ttrl_500 (3) 972

Where r is a constant representing the mean 973

word length ratio between Pinyin and the original 974
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Name and main references N(L) N(F) TIsyn Jmm_syn TImorph Jmm_morph

Universal Dependencies (UD) 106* 20* 0.567 0.736 0.337 0.665
Bible 100 103* 30* 0.649 0.811 0.302 0.617
mBERT 97* 15* 0.559 0.710 0.316 0.617
XTREME 40 14 0.612 0.775 0.311 0.471
XGLUE 19 7* 0.517 0.674 0.297 0.580
XNLI 15 7* 0.557 0.711 0.321 0.704
XCOPA 11 11 0.586 0.737 0.336 0.634
TyDiQA 11 10 0.626 0.751 0.343 0.552
XQuAD 12* 6* 0.523 0.680 0.318 0.634
TeDDi 89 51 0.706 - 0.361 -

Table 5: Diversity of multilingual NLP data sets with adjustments for logographic scripts. Compared to the main
results in Table 1, all TImorph scores are slightly decreased and Jmm_morph slightly increased. The rankings of the
t are mostly preserved, with the exception of XNLI, whose Jmm_morph ranking improves.

Chinese script, l is the language in question and975

ch_ttr500 is the character-level type-token ratio on976

a text sample of the length of 500 word-level tokens977

in a given language. The scalar should be applied978

only if its value is greater than 1.979

Table 5 shows revised diversity scores after the980

mean word length adjustments for logographic981

scripts. In our study, only three languages Chinese,982

Japanese and Korean required adjustments.983
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