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ABSTRACT

Large language model (LLM) services are mostly centralized, causing inherent
scalability bottlenecks and leaving substantial scattered GPU resources underuti-
lized. Decentralized serving could potentially address these limitations, but im-
pose challenges of trust, as the identity and behavior of participants cannot be
reliably regularized, and fairness, i.e., how to maximize the benefit of all resource
providers to improve engagement. However, existing decentralized frameworks
predominantly emphasize the rights and protections of users and the cooper-
ative aspect among GPU providers while overlooking the inherent competi-
tive dynamics, imposing substantial constraints on GPU providers, such as requir-
ing them to accept excessive platform-level oversight and to execute all assigned
requests with fixed software stacks on fixed hardware configurations. We argue
that such assumptions are unrealistic in real-world decentralized environments.
To this end, we propose WWW.Serve, a decentralized framework for intercon-
necting LLM service worldwide. It preserves the flexibility of service providers,
allowing them to decide when, under what policies, and with what resources
they join the decentralized network, while further ensuring their anonymity. In
terms of efficiency, WWW.Serve supports self-organizing request dispatch, en-
abling the network to autonomously allocate requests without centralized coor-
dination. Three key designs are integrated: a blockchain-inspired credit system
for trustless collaboration, gossip-driven peer synchronization for flexible partic-
ipation, and a duel-and-judge mechanism for robust contributor evaluation. Em-
pirically, we show that WWW.Serve incentivizes higher-quality services to obtain
greater profit, while improving global SLO (service-level-objective) attainment by
up to 1.5× and lowers latency by 27.6%. Its performance approaches, and in some
cases surpasses, centralized scheduling, while fully preserving the benefits of de-
centralization. These results highlight WWW.Serve as a promising foundation for
real-world, decentralized LLM serving.

1 INTRODUCTION

Large language model (LLM) are becoming popular. With increasing deployments of LLM service
and prices of GPU, distributed LLM serving has become essential for mitigating workload fluctua-
tions and leveraging potentially idle hardware resources. Centralized scheduling (Zheng et al., 2024;
Kwon et al., 2023), however, constrains the engagement of different entities. Therefore, decentral-
ization has long been recognized as an effective paradigm (Liu et al., 2024; Dong et al., 2025). By
relying on peer-to-peer communication (Kermarrec & Taı̈ani, 2015), it improves scalability, adapts
to dynamic participation, enhances robustness by eliminating single points of failure, and improves
anonymity and privacy (Li & Palanisamy, 2019; Ma et al., 2024).

Despite these apparent advantages, existing decentralized serving systems remain largely imprac-
tical in real-world settings: (1) Fundamentally, they predominantly emphasize the rights and
protections of users and the cooperative aspect among GPU providers while overlooking the
inherent competitive dynamics, namely, that GPU providers, as the holders of the actual compu-
tational assets, are naturally incentivized to maximize their own profit. Existing frameworks (Fang
et al., 2025) attempt to rely on a small central organization to impose substantial constraints on GPU
providers, such as requiring them to accept excessive platform-level oversight (Fang et al., 2025;
Wu et al., 2025) and to execute all assigned requests with fixed software stacks (Mei et al., 2025a;
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Borzunov et al., 2023; Mei et al., 2025b) on fixed hardware configurations. Although this may the-
oretically enable better resource allocation, the regulator itself is untrusted, rendering the approach
unrealistic in practice. (2) Besides, providers typically maintain their own prioritized workloads and
may experience fluctuations in available resources. This highlights enabling flexible, customizable
mechanisms for providers to determine how they engage with the decentralized system.

Ideally, we desire a decentralized framework that acts like an open, competitive market, allowing
providers to decide when, under what policies, and with what resources they join the decentral-
ized network. At the same time, such a framework should: 1. provide a well-designed reward mech-
anism that incentivizes providers to deliver higher-quality services, including faster hardware, more
user-oriented scheduling policies, better serving systems, and higher-quality models. Such incen-
tives should further encourage innovation (e.g., in models, systems, or kernels), enabling providers
to offer superior services at lower cost. 2. enable market-driven exchange of computational ca-
pacity, where overloaded nodes can outsource requests while underutilized nodes capitalize on idle
resources, allowing compute supply and demand to self-balance through decentralized interactions.
3. incorporate a principled routing protocol to improve global efficiency under highly dynamic and
unpredictable resource availability. However, to meet these demands, three fundamental questions
arise. In the following, we discuss these challenges and outline our key approaches to address them.

Question 1. How can the system enable trustworthy market-driven trade of computational capacity,
i.e., implement reliable request scheduling among anonymous participants without central coordina-
tors? Achieving this requires a way to quantify each participant’s contributed capacity and use it to
guide task allocation. To this end, we introduce a credit-based transaction system that functions as
a reputation-like indicator under anonymity: participants earn credits by serving delegated requests
and spend them when offloading their own tasks. Request routing is then guided via a Proof-of-
Stake-based (PoS) mechanism, in which participants’ staked credits, freely adjust according to their
own strategy, determine their likelihood of being selected to execute delegated requests. This design
allows high-load servers to offload tasks to relieve pressure and improve user satisfaction, while
low-load servers utilize idle resources to earn credits for future offloading. By accumulating credits
through contribution, participants effectively engage in a decentralized market for computing power.

Question 2. How can we incentivize participants to provide high-quality services, thereby improv-
ing overall user experience? In an anonymous network, providers naturally seek to maximize their
own gain. This competitive dynamics, however, creates the risk that participants may deploy low-
quality services to “exploit” the contributions of others, undermining overall system performance.
To address this, we must align individual incentives with service quality. To this end, we introduce
a duel-and-judge mechanism: a subset of requests is collectively evaluated collectively within the
network through pairwise comparison, with the superior response receiving a credit reward and the
inferior response incurring a penalty. This design enables dynamic credit redistribution based on ser-
vice quality. When combined with PoS-based request scheduling, it can be proved that low-quality
nodes are gradually phased out of active participation, reinforcing the network’s overall service
quality and fostering decentralized incentives for correctness.

Question 3. How can the system remain robust under highly dynamic and unpredictable resource
availability? In real-world scenarios, individual infrastructures may suffer from hardware failures,
network disconnections, or user-driven constraints, all of which lead to unstable participation of
resources. To address this challenge, we design a lightweight gossip-driven protocol that enables
dynamic online and offline participation. Each participant periodically exchanges availability in-
formation with a subset of peers and reconcile discrepancies. Through this protocol, newly joined
resources can be quickly integrated into the network, while sudden departures or failures can be
rapidly detected. Without relying on central coordinators, lightweight pairwise exchanges allow in-
formation updates to diffuse across the network and converge quickly, ensuring stable and reliable
service despite the volatility of global-scale resources.

Having addressed these challenges, we introduce WWW.Serve, a decentralized framework for col-
laborative LLM serving. In general, our main contributions are:

• We present WWW.Serve, a fully decentralized system that operates as an open, competitive mar-
ket of computational capacity, enabling request routing and workload balancing among distributed
and anonymous LLM servers.
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• We design three core mechanisms to ensure reliability: a credit-based transaction system for trust-
less request delegation, a gossip-driven protocol for dynamic peer synchronization, and a duel-
and-judge mechanism for contributor evaluation.

• We provide a game-theoretic analysis proving that our collaborative framework converges to equi-
libria that sustain high-quality LLM service even under full anonymity.

• Empirical results demonstrate that WWW.Serve achieves near-centralized efficiency, improving
global SLO attainment by up to 1.5× and reducing latency by up to 27.6%, while sustaining
robustness under dynamic participation and supporting flexible collaboration policies.

The rest of this paper is organized as follows. Section 2 reviews related work, Section 3 introduces
the architecture of WWW.Serve, and Section 4 details its core mechanisms. Section 5 provides a
game-theoretic analysis, Section 6 reports empirical results, and Section 7 concludes.

2 RELATED WORK

Decentralized Computing. Early volunteer-based platforms (Anderson et al., 2002; Foster &
Kesselman, 2003; Anderson, 2019; Shirts & Pande, 2023) demonstrate the feasibility of harnessing
distributed resources for large-scale scientific workloads. With the advent of blockchain (Nakamoto,
2008), decentralized frameworks like Ethereum (Song et al., 2024) introduce trustless execution en-
vironments where tasks are handled transparently and verifiably through smart contracts. Subse-
quent systems such as Filecoin (Labs, 2017) and Golem (Network, 2020) extend this model with
incentive mechanisms such as Proof-of-Stake (Kiayias et al., 2017; Buterin & Griffith, 2019), ensur-
ing fair contribution and deterring malicious behavior. These systems highlight the importance of
incentive alignment and trustless coordination, motivating our decentralized LLM serving design.

Large Language Model Serving. LLMs demand substantial computational resources, thus are pri-
marily deployed by service providers such as OpenAI (OpenAI, 2022), Anthropic (Anthropic, 2023),
and Microsoft Azure (Microsoft, 2023), offering users online inference services. Meanwhile, the
rapid rise of open-sourced, especially reasoning-oriented models such as DeepSeek-R1 (DeepSeek-
AI, 2025), LLaMA 3.1 (Touvron et al., 2024), and Qwen3 (Yang et al., 2025) series, enables broader
community access and deployment, therefore creating massive demand for high-throughput infer-
ence services. In response, a spectrum of LLM serving systems has been proposed.

At the single-model level, SGLang (Zheng et al., 2024) and vLLM (Kwon et al., 2023) leverage
various advanced techniques to improve request concurrency and maximize inference efficiency.
HexGen (Jiang et al., 2024) and Helix (Mei et al., 2025b) provide adaptive scheduling strategies that
optimize model deployment and task migration across heterogeneous resources. Furthermore, Dist-
Serve (Zhong et al., 2024) partitions prefill and decoding computations across multiple GPUs, while
speculative decoding (Chen et al., 2023; Leviathan et al., 2023; Miao et al., 2024) and sequence-
length-aware scheduling (Qiu et al., 2024) offer complementary performance gains. However, these
approaches remain inherently centralized and emphasize intra-model performance, without offering
systematic solutions for workload balancing across multiple LLM servers.

Recently, decentralized approaches have been further explored, yet they fall short of fully realizing
our desired goals. Petals (Borzunov et al., 2023) supports collaborative deployment of a fixed LLM
across volunteer GPUs, limiting flexibility in multi-model scenarios and cannot adapt to dynamically
changing resources. DeServe (Wu et al., 2025) offers a privacy-preserving offline serving system
where users contribute inference capacity collectively, yet still depends on partial centralization
for request dispatching and lacks mechanisms to ensure service quality. GenTorrent (Fang et al.,
2025) distributes and executes model shards, but relies on trusted organizations to prevent malicious
behavior, and therefore does not achieve full decentralization. Other works (Kozgunov et al., 2024;
Xian et al., 2024; Chen et al., 2025; Mia & Amini, 2025) explore secure decentralized training and
inference frameworks that integrate cryptographic and blockchain-based trust mechanisms. While
relevant as background, these approaches do not directly address the specific challenges we target.

3 WWW.SERVE’S OVERVIEW

We begin by presenting the overall network architecture of WWW.Serve (Subsection 3.1), followed
by a description of the request routing process and node design (Subsection 3.2).
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Peer-to-peer with other nodes
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Base URL + API Key

Figure 1: Overview of WWW.Serve. The upper part illustrates the decentralized request routing
workflow, while the lower part details the internal architecture of a single node.

3.1 NETWORK ARCHITECTURE

As illustrated in Figure 2, WWW.Serve establishes a fully decentralized peer-to-peer network con-
necting users with LLM service providers.

From the user’s perspective, WWW.Serve provides a seamless serving interface. Users do not need
to be aware of the underlying decentralized infrastructure; instead, they simply submit inference
requests and wait for responses, just as they would with conventional LLM online services. The
framework automatically handles request routing, resource discovery, and response evaluation. This
design greatly lowers the barrier to adoption, allowing users to access global LLM services without
requiring specialized knowledge of network topology or coordination protocols.

Service Provider

User Interface

WWW.Serve

Excess Resources

Ask & Answer

Anonymity

Decentralized
Routing

Transparency

Figure 2: General network architecture.

From the service provider’s perspective, WWW.Serve of-
fers a simple yet flexible participation model. Providers
can contribute surplus computational resources without
exposing sensitive information, while retaining full con-
trol and anonymity within the ecosystem. They are free
to join or leave at any time, enabling adaptive scheduling
and resource allocation. This design encourages broader
participation for service providers, converting idle capac-
ity into valuable contributions for LLM serving.

3.2 REQUEST ROUTING AND NODE DESIGN

As illustrated in Figure 1, the inference request in WWW.Serve follows a decentralized routing
process that shapes the modular design of each node. This process involves four key stages:

Request admission. When a user submits an inference request, it first enters the local request queue
maintained by the Request Manager, which handles both user-originated and delegated requests.
This ensures orderly processing while decoupling admission from execution.

Scheduling and policy enforcement. The queued request is then subject to the service provider’s
configurable policies. The Policy Manager decides whether to execute the request locally or delegate
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it to other nodes, considering factors such as workload thresholds, willingness to delegate requests,
and customized load-balancing rules. This design allows service providers to flexibly participate in
collaborative serving while retaining full control over their resources.

Executor selection and trust establishment. If the request is delegated, the node selects a reliable
executor. To this end, the Ledger Manager provides access to peers’ stake balances. Candidates are
sampled via a Proof-of-Stake–based mechanism, where the probability of selection is proportional
to their staked credit. Each candidate is further probed to verify its willingness according to its
own policy. Once accepted, the request is forwarded, executed locally by the chosen peer, and the
response is returned to the originator. The executor is rewarded through a “credits-for-offloading”
transaction, while the duel-and-judge mechanism further evaluates response quality (details in Sub-
section 4.1 and Subsection 4.2).

Execution across heterogeneous backends. For requests served locally, the Model Manager pro-
vides a unified abstraction layer over diverse serving backends. It executes inference, monitors uti-
lization, and preserves intra-model scheduling efficiency. This ensures that heterogeneous resources
can be seamlessly integrated into WWW.Serve.

Together, these stages form a request routing pipeline that ensures policy-driven scheduling, trust-
aware executor selection, and efficient execution on heterogeneous LLM servers.

4 CORE MECHANISMS

In this section, we introduce three core designs of WWW.Serve: (i) the Credit-based Transaction
System (Subsection 4.1), which incentivizes and regulates request dispatching; (ii) the Duel-and-
Judge Mechanism (Subsection 4.2), which ensures reliable and trustworthy contributor evaluation;
and (iii) the Policy Framework (Subsection 4.3), which supports flexible policies for collaboration.

4.1 CREDIT-BASED TRANSACTION SYSTEM

Drawing inspiration from real-world transactions, where users pay for premium LLM services (e.g.,
API token prices), we design a Credit-based Transaction System in which each node’s computational
resources are represented as transferable credits. These serve as a reputation-like measure that en-
ables dynamical workload exchange while providing economic incentives for active and high-quality
participation. Beyond the system itself, credits can be anchored to real-world currency, enabling di-
rect monetization of computational contributions and paving the way for practical deployment of
WWW.Serve in commercial large-scale inference services.

Table 1: Structure of a Credit Block

Field Description

Block ID Hash of the current block

Parent ID Hash of the previous block

Timestamp Time of block creation

Operations List of credit-related records

Proposer Node proposing the block

Signature Digital signature

However, traditional transaction mechanisms are not suffi-
cient in decentralized settings. Without a shared, tamper-
resistant ledger, nodes can misreport their actions or se-
lectively reveal inconsistent transaction histories to differ-
ent peers (Nakamoto, 2008; Cachin & Vukolić, 2017; Bano
et al., 2017; Tripathi et al., 2023). For example, a node
might claim the same credits have been spent in multiple
transactions (double spending), or refuse to acknowledge
deductions from failed or malicious executions. Since no
single entity holds the authoritative record, such inconsis-
tencies can hardly be reconciled, undermining both fairness
and trust across the network.

To address this, WWW.Serve adopts a blockchain-inspired ledger. Each node maintains a local
Credit Block Chain that records activities such as staking and rewarding in tamper-resistant blocks
(Table 1). Blocks are cryptographically linked, so any modification is immediately detectable. A
credit transaction occurs whenever a delegated request is completed. The responsible node records
this by creating a new block and broadcasting it to its peers, which independently validate the block.
The transaction is finalized once a majority of peers confirm and append it to their local ledgers.

The security of this design relies on two complementary features. First, nodes must stake credits to
participate in scheduling, which discourages malicious behavior by putting dishonest nodes’ stakes
at risk. Second, decentralized verification ensures that every block is independently validated by
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multiple peers before being appended to the chain, preventing any single node from manipulating
the ledger. Thus, balances are guaranteed to be secure, auditable, and tamper-resistant, all without
relying on a centralized authority.

4.2 DUEL-AND-JUDGE MECHANISM

Node A

Node B Node C

Node 1 Node kNode 2 …

Which one is better?

“B”: 5  “C”: 1   “Draw”: 1 4. Winner rewarded, loser penalized

1. Duel request sent to two nodes

2. Two responses generated

3. K judges vote for the better

Figure 3: Duel-and-judge mechanism.

In our decentralized serving network, partici-
pants are anonymous and heterogeneous, with
no central authority to verify the quality of their
contributions. This raises a fundamental risk:
low-quality or even malicious nodes may pro-
vide incorrect results, degrading overall service
reliability. Prior frameworks (Bouchiha et al.,
2024; Zhang et al., 2024; Fang et al., 2025)
rely on verification committees or light eval-
uation models, but they introduce complexity
and privileged roles that limit true decentral-
ization. In response, WWW.Serve introduces
the duel-and-judge mechanism, enabling peer-
driven evaluation of the service quality.

As shown in Figure 3, a small fraction of delegated requests are randomly designated as duel re-
quests and dispatched to two executors sampled via our Proof-of-Stake–based selection mechanism.
Next, k judges (also selected via PoS) perform pairwise comparisons of the responses. The inferior
executor is penalized by losing part of its stake, while the superior executor and responsible judges
earn additional credits. The results of each duel are broadcast and recorded in the credit ledger,
ensuring transparency and accountability.

Such duel-and-judge mechanism offers several key advantages for ensuring reliable and high-quality
decentralized serving. First, it leverages a pairwise comparison rather than relying on absolute
scores. Prior studies (Zheng et al., 2023; Chiang et al., 2024; Watts et al., 2024) demonstrate that
pairwise evaluation of LLM outputs yields higher inter-rater agreement and greater robustness, mak-
ing it a more reliable way to distinguish between competing responses. Second, the involvement of
PoS-sampled judge nodes introduces additional impartiality, mitigating risks of collusion and fos-
tering fairness in the evaluation process. Third, the credit redistribution scheme provides strong
economic incentives, aligning node behavior with system reliability and thus driving the network
toward high-quality operation. A theoretic analysis of the quality evolution is provided in Section 5.

4.3 POLICY FRAMEWORK

WWW.Serve introduces a policy framework that governs both individual node decisions and collec-
tive network behavior, which operates along two complementary dimensions:

User-Level Policies: enable service providers to manage their resources according to individual
objectives. First, each node can freely determine its stake amount, which directly influences its
probability of being selected as an executor under the Proof-of-Stake–based scheduling mechanism.
This design encourages providers to calibrate their credit commitment according to their willing-
ness and capacity to contribute. Second, nodes may define fine-grained operational conditions for
offloading, accepting, or queuing requests at their local backends. For example, one may choose to
offload tasks once its local workload surpasses a predefined threshold, to accept external requests
only when spare GPU capacity is available, or to prioritize its own user-submitted jobs over dele-
gated ones. Such flexibility not only accommodates heterogeneous resource profiles and business
goals, but also fosters a competitive yet cooperative ecosystem where service providers optimize
their participation strategies while maintaining overall system efficiency.

System-Level Policies: serve as global safeguards to preserve fairness and reliability within
WWW.Serve, including mechanisms such as Proof-of-Stake–based routing, the credit-based trans-
action system, gossip-driven peer synchronization, and the duel-and-judge mechanism. These rules
provide the necessary trustless foundation, while user-level policies offer flexibility on top of it.

6
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5 GAME-THEORETIC ANALYSIS

In this section, we provide a theoremized proof that WWW.Serve converges to a high-quality equi-
librium of collaborative LLM services: high-performing nodes accumulate credit over time, whereas
low-quality nodes lose exposure and gradually phase out of the system.

Assumption 1 (Node parameters). For each node i ∈ {1, . . . , N}, we have:

• qi ∈ [0, 1], the intrinsic probability that node i produces a high-quality response;

• ci > 0, the per-request operational cost of node i;

• si(t) ≥ 0, the stake of node i at time t.

Assumption 2 (System parameters). The system-level constants are:

• λ > 0, the delegated request arrival rate;

• R > 0, the guaranteed base reward per delegated request;

• pd ∈ [0, 1], the probability that a delegated request is selected as a duel;

• Radd > 0, the additional reward for winning a duel;

• P > 0, the penalty for losing a duel.

Assumption 3 (PoS selection and duel mechanism). We write the PoS selection probability of node
i and selection-weighted global average quality as

pi(t) =
si(t)∑N
j=1 sj(t)

, Q(t) =

N∑
i=1

pi(t) qi.

To capture the intuition that a higher network average quality Q(t) makes it harder for any individ-
ual node to stand out, we model the probability that node i wins the duel as

Qi(t) = 1
2

(
1 + qi −Q(t)

)
∈ [0, 1].

Assumption 4 (Stake adjustment). Rational participants adjust their stakes proportionally to real-
ized expected payoffs. Concretely, for some growth constant η > 0 we assume

ṡi(t) = η πi(t),

where πi(t) denotes node i’s expected payoff rate (defined below in Lemma 1).

Lemma 1 (Expected node payoff). Under Assumptions 1–3, the expected payoff of node i from
serving a single delegated request is

∆i(t) = (R− ci) + pd
[
Qi(t)Radd − (1−Qi(t))P

]
.

Consequently, the expected payoff rate of node i under delegated request arrival rate λ and PoS
selection probability pi(t) is

πi(t) = λ pi(t)∆i(t).

Proof. A single delegated request always yields the base reward R and incurs cost ci, hence the
guaranteed net term (R−ci). With probability pd the request becomes a duel; conditional on a duel,
the expected duel outcome for node i equals Qi(t)Radd − (1−Qi(t))P . Adding these terms gives
∆i(t). Multiplying by the delegated request arrival rate arrival rate λ and the selection probability
pi(t) yields the stated expression for πi(t).

Proposition 1 (Single-node stake-share dynamics). Under Assumptions 1–4, the stake share of node
i evolves according to

ṗi(t) =
η λ

S(t)
pi(t)

(
∆i(t)−∆(t)

)
, (1)

where S(t) =
∑

j sj(t) is the total stake in the network, and ∆(t) =
∑

j pj(t)∆j(t) represents the
overall average expected payoff.

7
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Proof. Differentiate pi(t) = si(t)/S(t) to obtain

ṗi(t) =
ṡi(t)S(t)− si(t)Ṡ(t)

S(t)2
.

By Assumption 4 we have ṡi(t) = ηπi(t) = ηλpi(t)∆i(t), and summing over i yields

Ṡ(t) =
∑
j

ṡj(t) = ηλ
∑
j

pj(t)∆j(t) = ηλ∆(t).

Substituting these into the derivative and simplifying gives equation 1.

Proposition 2 (Group-level stake-share dynamics). Let H ⊆ {1, . . . , N} be any subset of nodes,
and define its group-level stake share

pH(t) =
∑
i∈H

pi(t).

Define the within-group and outside-group average payoffs

∆H(t) =
1

pH(t)

∑
i∈H

pi(t)∆i(t), ∆¬H(t) =
1

1− pH(t)

∑
j /∈H

pj(t)∆j(t).

Then the group-level stake share evolves according to

ṗH(t) =
η λ

S(t)
pH(t)(1− pH(t))

(
∆H(t)−∆¬H(t)

)
. (2)

Proof. Summing equation 1 over i ∈ H yields

ṗH(t) =
ηλ

S(t)

(∑
i∈H

pi(t)∆i(t)− pH(t)∆(t)
)
.

Write the network average ∆(t) as the convex combination

∆(t) = pH(t)∆H(t) + (1− pH(t))∆¬H(t).

Substituting this into the previous display and simplifying produces equation 2.

Theorem 1 (High-quality equilibrium). Under Assumptions 1–4, the network converges to a high-
quality equilibrium, driven by a subset of superior nodes, thereby promoting reliable and high-
quality LLM services.

Proof. From Proposition 2, if there exists a subset H and a time T such that for all t ≥ T ,
∆H(t) > ∆¬H(t),

then ṗH(t) > 0, hence pH(t) is strictly increasing for t ≥ T . Consequently, high-quality nodes
progressively accumulate credit while low-quality nodes lose influence, creating incentives for par-
ticipants to provide superior services and guiding the network toward reliable and high-quality LLM
serving.

6 EMPIRICAL EVALUATION

In this section, we evaluate WWW.Serve under diverse configurations and workload scenarios (im-
plementation details are provided in Appendix A):

• In Subsection 6.1, we show that WWW.Serve improves global SLO attainment by up to 1.5×
and reduces latency by 27.6% compared to single-node deployment, achieving efficiency close to
centralized scheduling.

• In Subsection 6.2, we demonstrate that WWW.Serve handles dynamic participation gracefully,
maintaining service continuity as resources join or leave.

• In Subsection 6.3, we confirm that the duel-and-judge mechanism effectively differentiates high-
quality contributors from weak or malicious ones, improving network trustworthiness.

• In Subsection 6.4, we present ablation studies on user-level policies, showing that flexible config-
urations directly influence workload allocation and SLO attainment.
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Figure 4: Comparison of global SLO attainment across single-node, centralized, and decentralized
(WWW.Serve) deployments under four different experimental settings detailed in Appendix B.

6.1 SCHEDULING EFFICIENCY

We first designed a variety of deployment scenarios (details in Appendix B), covering heterogeneous
models, diverse GPU hardware, and multiple serving backends. Each node experienced alternating
peak and idle periods, simulating realistic fluctuations in service demand. We compared three de-
ployment strategies: single, centralized, and our decentralized scheduling, and measured global Ser-
vice Level Objective (SLO) attainment (i.e., the proportion of requests completed within predefined
latency thresholds) along with the average request latency.

Table 2: Average request latency compar-
ing different scheduling strategies.

Setting Avg. Latency (s)
Single Centralized Decentralized

Setting 1 200.380 188.419 184.400
Setting 2 226.578 168.221 168.485
Setting 3 237.925 206.123 198.306
Setting 4 241.042 169.896 174.592

As shown in Figure 4, across all experimental settings,
WWW.Serve consistently outperforms single-node de-
ployment and closely matches, in some cases even
surpasses, centralized scheduling in terms of SLO at-
tainment. Table 2 further demonstrates that this effi-
ciency translates into substantially lower request la-
tency. Together, these results highlight a key ad-
vantage of WWW.Serve: it achieves near-centralized
scheduling efficiency without compromising the pri-
vacy and autonomy afforded by decentralization.

6.2 DYNAMIC PARTICIPATION

WWW.Serve is designed to operate under highly dynamic and unpredictable resource availability in
real-world scenarios. We thus evaluate its ability to adapt to arbitrary node arrivals and departures.

Node 1 Node 2 Node 3 Node 4 Avg Latency Event
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Figure 5: Request latency. Blue line indicates node join/leave
events; black line shows the windowed average latency.

The left panel in Figure 5 illus-
trates nodes joining the network
sequentially, starting with two
active nodes. When the work-
load temporarily exceeds avail-
able resources, request latencies
initially rise. As new nodes are
integrated, the gossip-based pro-
tocol quickly detects them and
redistributes requests, leading to
a clear reduction in latency.

Conversely, the right panel in Figure 5 starts with four nodes and two leave the network sequentially.
As the average load increases, the remaining nodes become increasingly saturated, resulting in a
sharp rise in overall latency. These results demonstrate that WWW.Serve can dynamically adapt its
workload distribution to both node arrivals and departures without a central coordinator, ensuring
service continuity in unstable environments.

6.3 DUEL-AND-JUDGE EVALUATION

To evaluate the effectiveness of the duel-and-judge mechanism, we construct a small-scale network
with four types of nodes: Qwen3 0.6B, Qwen3 4B, Qwen3 8B, and a random generator producing

9
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Figure 7: Left: Number of running requests under different stake amounts (1, 2, 3, 4). Middle:
Number of running requests under different acceptance frequencies (0.25, 0.5, 0.75, 1.0). Right:
SLO attainment under different offloading frequencies (0.25, 0.5, 0.75, 1.0).

nonsensical responses. Each type has two replicas to mitigate randomness from single instances.
We set the duel rate to 20%, with k = 3 judges per duel request.
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Figure 6: Evolution of credits (left) and duel out-
comes (right) for different types of nodes.

Figure 6 (left) shows the evolution of credits:
High-quality nodes (8B and 4B) steadily ac-
cumulate credits, while weaker nodes (0.6B)
show only modest growth. Random generators
are promptly penalized, experiencing continu-
ous credit degradation. Figure 6 (right) high-
lights duel outcomes, where high-quality nodes
secure substantially more victories. These re-
sults confirm that the duel-and-judge mecha-
nism effectively distinguishes high-quality con-
tributors from weak or malicious ones.

We emphasize that the 20% duel rate used here
is purely for experimental convenience, enabling rapid credit convergence and a clear observation
of credit dynamics within a short time horizon (90 minutes in our experiment). A detailed analysis
of the overhead introduced by the duel-and-judge mechanism is provided in Appendix F.

6.4 ABLATION OF POLICIES

We conduct an ablation to examine how user-level parameters (stake amount, request acceptance,
and offloading frequency) affect workload allocation and global SLO attainment.

We first varied stake amounts and acceptance frequencies across nodes and monitored their local
request queues. Requests were uniformly issued by a dedicated requester-only node. As shown in
Figure 7 (left and middle), nodes with higher stake or higher acceptance frequency handle a larger
share of delegated requests. This demonstrates that the PoS-based scheduling faithfully reflects user-
level policies, allowing nodes to actively control their participation. Next, we evaluated the effect
of offloading frequency under sustained high request pressure. As illustrated in Figure 7 (right),
increasing offloading improves SLO attainment by redistributing workloads from overloaded nodes.
However, the benefit saturates at moderate offloading rates: the improvement between rates of 0.5,
0.75, and 1.0 is marginal. Excessive offloading can even hinder long-term credit accumulation as
nodes spend more credits to delegate requests. Overall, these results confirm that WWW.Serve’s
flexible policy framework allows service providers to regulate their participation and optimize both
efficiency and credit dynamics, indicating substantial room for fine-tuning policies to better balance
immediate performance and long-term incentives.

7 CONCLUSION

This paper presents WWW.Serve, a fully decentralized framework for trustless and collaborative
LLM serving. Operating as an open, competitive market for computational resources, it enables
anonymous participants to autonomously route requests, balance workloads, and provide high-
quality services. Our experiments demonstrate comparable scheduling efficiency along with strong
adaptivity to dynamic resources and flexible serving policies, highlighting WWW.Serve’s potential
as a scalable and privacy-preserving foundation for next-generation LLM services.
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A IMPLEMENTATION

In this section, we detail the implementation of the core modules contained in WWW.Serve.

Communication Manager: is implemented using ZeroMQ, providing low-latency, asynchronous
message passing between nodes. We adopt the ROUTER pattern, where each node binds to a fixed
port to listen for incoming messages while simultaneously sending requests to peers. This design
enables efficient bidirectional communication without relying on a centralized broker.

Request Manager: leverages an asynchronous queue (AsyncQueue) for local request buffering
and scheduling. Incoming requests are timestamped and inserted into the queue, while outgoing re-
quests are dynamically dispatched to eligible executors based on the Proof-of-Stake–based selection
mechanism and user-specific rules.

Model Manager: supports a variety of LLM serving backends via AsyncOpenAI clients. Service
providers only need to supply a base URL and API key, without exposing internal model details.
Each node periodically collects metrics from its backend servers, including the number of active
and queued requests and memory utilization, to support efficient request dispatching and balanced
workload distribution.

Experiment Configuration: is specified in a dedicated YAML file, capturing all necessary parameters
for a node to initialize WWW.Serve modules. Each file includes: (i) Server Parameters: commu-
nication IP, port, user-level policy (e.g., stake, offload frequency, accept frequency), and backend
selection (e.g., SGLang, vLLM); and (ii) Models: paths to local or remote LLMs, base URL for
API access, and API keys. Each model entry also specifies generation parameters (e.g., maximum
tokens, temperature, top-p) and dispatch parameters (e.g., target memory utilization). These YAML
files are automatically parsed by each node at startup, ensuring reproducibility and allowing fine-
grained control over node behavior.

B EXPERIMENTAL SETTINGS

To comprehensively evaluate the scheduling efficiency of WWW.Serve in heterogeneous, dynamic
environments, we designed four distinct experimental settings, summarized in Table 3. Each set-
ting varies in the deployed language models, GPU types, and serving backends, covering a broad
spectrum of realistic node capabilities. Our evaluation primarily relies on recent open-source rea-
soning LLMs, including the Qwen3 series (Yang et al., 2025), DeepSeek-Qwen (DeepSeek-AI,
2025), and LLaMA 3.1 (Touvron et al., 2024), and prompts are drawn from the OpenR1-Math-220k
dataset (Open-R1-Team, 2025). Time-varying request patterns are simulated via piecewise Poisson
arrival rates for each node, capturing both high- and low-load periods that differ across nodes. Due
to the limited scale of our experiments, we employ a shared ledger instead of a full Credit Block
Chain, simplifying implementation while preserving the essential dynamics of credit transactions.
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Node Model GPU Backend Request Schedule
Interval 1 1/λ1 Interval 2 1/λ2

Setting 1
Node 1 Qwen3 8B ADA6000 SGLang 0–300s 5 300–750s 20
Node 2 Qwen3 8B ADA6000 SGLang 0–750s 20
Node 3 Qwen3 8B ADA6000 SGLang 0–750s 20
Node 4 Qwen3 8B ADA6000 SGLang 0–450s 20 450–750s 5

Setting 2
Node 1 Qwen3 8B ADA6000 SGLang 0–300s 4 300–750s 20
Node 2 Qwen3 8B ADA6000 SGLang 0–750s 20
Node 3 Qwen3 4B RTX3090 SGLang 0–750s 30
Node 4 Qwen3 4B RTX3090 SGLang 0–450s 30 450–750s 6

Setting 3
Node 1 Qwen3 32B 4×A100 SGLang 0–300s 2 300–750s 6
Node 2 Qwen3 8B L40S SGLang 0–750s 15
Node 3 DeepSeek-Qwen 7B RTX3090 vLLM 0–750s 30
Node 4 Llama3.1 8B ADA6000 vLLM 0–450s 15 450–750s 5

Setting 4
Node 1 Llama3.1 8B L40S vLLM 0–750s 9
Node 2 Llama3.1 8B L40S vLLM 0–450s 6 450–750s 12
Node 3 DeepSeek-Qwen 7B ADA6000 vLLM 0–300s 6 300–750s 12
Node 4 DeepSeek-Qwen 7B ADA6000 vLLM 0–450s 12 450–750s 6
Node 5 Qwen3 4B RTX4090 SGLang 0–750s 12
Node 6 Qwen3 4B RTX4090 SGLang 0–450s 10 450-750s 20
Node 7 Qwen3 4B RTX3090 SGLang 0–300s 20 300–750s 10
Node 8 Qwen3 4B RTX3090 SGLang 0–300s 20 300–750s 10

Table 3: Experimental configurations correspond to Figure 4 (left to right) and Table 2. Each setting
specifies the deployed model, GPU type, serving backend, and the time-varying request schedule
for all nodes. The Interval columns specify the time ranges, and the corresponding 1/λ columns
denote the expected inter-arrival time (in seconds) used for Poisson request generation, i.e., request
inter-arrival times distributed as Poi(λ).

All nodes are configured with consistent policy parameters, including offload frequency (80%), ac-
ceptance frequency (80%), target utilization (70%), and generation parameters such as maximum
token length (8192), temperature (0), and top-p sampling (0.95). These standardized settings ensure
comparability and reproducibility across heterogeneous nodes while enabling a systematic evalua-
tion of the effects of resource diversity and dynamic workloads on scheduling efficiency, latency,
and SLO attainment.

C USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely as language editing tools to polish grammar, improve
readability, and refine the academic style. All research ideas, methods, experiments, and analyses
were independently conceived and conducted by the authors without assistance from any LLMs.

D TERMINOLOGY CLARIFICATION

Table 4 provides definitions of several key concepts referenced in this paper.
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Concept Meaning in Our System

Node A service provider participating in the network. Each node hosts its
own LLM server and can process inference requests.

User Request A request submitted by the users of a given node. The node may ei-
ther execute it locally or offload part of the load to our system when
resources are constrained.

Delegated / Offloaded Request A request forwarded from another node. Upon receiving such a request,
a node may choose to execute it or further offload it based on its own
policy.

User-Level Policy Node-specific policies governing how the node interacts with its own
users. Examples include: when to offload, whether to accept delegated
requests, prioritization of local users, and whether users permit offload-
ing. These policies are fully controlled by each node.

System-Level Policy Global coordination rules of our system, including PoS-based schedul-
ing, gossip-driven protocol, and the duel-and-judge mechanism. These
govern decentralized cooperation among anonymous nodes.

Table 4: Clarification of terminology.

Node 1

1. Submit request

User

WWW.Serve

2. Node Policy Decision:
Inference locally or Offloading

3.1. If inference locally
3.2. If offloading

(Entering WWW.Serve network)

Nodes Nodes
…

Local LLM Server

4. Return response

User

Response generated locally
Response generated by an 

anonymous node

3.2.1. Executor selection: Choose which node to serve this request?

Node 1 staked: 10

Node 2 staked: 20

Node 3 staked: 20

PoS Selection
Choose Node 1 with probability: 20%

Choose Node 2 with probability: 40%

Choose Node 3 with probability: 40%

3.2.2. Schedule to the chosen node and wait for response 

Proof-of-Stake Scheduling

Support: different backend 
& heterogeneous hardware

Figure 8: End-to-end workflow of a single user request, including local execution or remote offload-
ing via PoS-based scheduling.

E SUPPLEMENTARY SYSTEM DETAILS

In this section, we provide additional illustrations that complement the descriptions in Section 3
and Section 4, focusing on two key components of WWW.Serve: (i) the end-to-end workflow of
processing a single user request, and (ii) the gossip-driven protocol for peer synchronization.

E.1 REQUEST PROCESSING WORKFLOW

Figure 8 presents the end-to-end workflow of a node handling a user request. Upon receiving a query
(Step 1), the node determines whether to execute it locally or offload it to the network (Step 2).

Local execution (Step 3.1): Nodes may host local language models using diverse runtimes (e.g.,
vLLM, SGLang) on heterogeneous devices. WWW.Serve abstracts these differences through a uni-

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Node 1 Sync Peer Info Node 2

Node1: self
Node 2: online; IP: bbb
Node 3: online; IP: ccc

Node 4: online; IP: ddd
Node Down → Node 5: offline; IP: eee

Node 1: online; IP: aaa
Node 2: self
Node 3: online; IP: xxx  IP Changed
Node 4: online; IP: ddd
Node 5: online; IP: eee
Node 6: online; IP: fff  Newly Joined Node

Node 1: online; IP: aaa
Node 2: online; IP: bbb
Node 3: online; IP: xxx
Node 4: online; IP: ddd
Node 5: offline; IP: eee
Node 6: online; IP: fff

Gossip-driven peer synchronization

Figure 9: Gossip-driven peer synchronization. During each gossip round, nodes exchange local peer
views, allowing updated information to propagate diffusively throughout the network.

fied inference interface, allowing heterogeneous hardware and software stacks to participate without
modifications to global collaboration mechanisms.

Remote execution (Step 3.2): If offloading is selected, the node samples a trustworthy executor
through our PoS-based scheduler (Step 3.2.1), where each peer’s sampling probability is propor-
tional to its staked credit. Once an executor accepts the task, the request is forwarded for processing
and the generated response is returned to the origin node.

E.2 GOSSIP-DRIVEN PEER SYNCHRONIZATION

Figure 9 shows an example gossip synchronization between two nodes. Each node maintains a local
view of peer availability, including identifiers, online/offline status, and communication endpoints.
During a gossip round, two nodes exchange their current views and reconcile any discrepancies,
for instance, peers that have gone offline (Node 5), updated their network addresses (Node 3), or
newly joined (Node 6). Repeated lightweight pairwise exchanges allow updates to diffuse across
the network and converge quickly, without requiring any central coordinator.
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F OVERHEAD OF DUEL-AND-JUDGE MECHANISM

This section presents a theoretical analysis of the overhead introduced by the duel-and-judge mecha-
nism, followed by an empirical evaluation of latency and SLO attainment under different duel rates.

We first quantify the incremental request load. Let:

• N : total number of user requests across all nodes;
• α: request delegation rate (αN requests are offloaded for remote inference);
• pd: duel rate (a fraction p of delegated requests are selected as duel requests);
• k: number of judges per duel.

Each duel request triggers one challenger inference and k judge evaluations, contributing (1 + k)
additional requests. Thus, the expected number of extra requests introduced by the duel-and-judge
mechanism is

Nαp (1 + k),

which remains modest compared to the overall serving workload.
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Figure 10: Latency CDF (left) and SLO attain-
ment (right) for different duel rates.

To empirically evaluate the effect of duel rate
on system performance, we conduct an abla-
tion study using four nodes, with k = 2 judges
per duel. Requests are uniformly issued by a
dedicated requester-only node. This configu-
ration intentionally imposes higher load than
typical deployments: fewer nodes yet multiple
judges per duel amplify the relative overhead.
As shown in Figure 10, duel probabilities of
5%, 10%, and 25% yield nearly identical la-
tency CDFs and SLO attainment curves, indi-
cating that moderate duel rates introduce mini-
mal overhead.

G PERFORMANCE OF PRODUCTION BLOCKCHAIN SYSTEMS

In WWW.Serve, the blockchain-based credit ledger can be instantiated with any suitably provisioned
blockchain, serving primarily to maintain a tamper-resistant record of credit transactions in a fully
decentralized network. Consequently, to contextualize its scalability and efficiency, we summarize
the performance of several mature blockchain systems, providing representative throughput and
latency metrics that WWW.Serve would inherit when built on similar foundations.

System Throughput (TPS) Latency (s)

Hyperledger Fabric Androulaki et al. (2018) ∼ 3,500 < 1
FastFabric Gorenflo et al. (2019) ∼ 20,000 < 1
Aptos Aptos (2022) ∼ 20,000 ∼ 1.25
Zaptos Xiang et al. (2025) ∼ 20,000 ∼ 0.75

Table 5: Performance of representative blockchain systems. TPS: transactions per second; Latency:
the time between when a transaction is sent and when it’s added to the blockchain.
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