
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WWW.SERVE: A DECENTRALIZED FRAMEWORK
FOR COLLABORATIVE LLM SERVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM) services are mostly centralized, causing inherent
scalability bottlenecks and leaving substantial scattered GPU resources underuti-
lized. Decentralized serving could potentially address these limitations, but im-
pose challenges of trust, as the identity and behavior of participants cannot be
reliably regularized, and fairness, i.e., how to maximize the benefit of all resource
providers to improve engagement. However, existing decentralized frameworks
predominantly emphasize the rights and protections of users and the cooper-
ative aspect among GPU providers while overlooking the inherent competi-
tive dynamics, imposing substantial constraints on GPU providers, such as requir-
ing them to accept excessive platform-level oversight and to execute all assigned
requests with fixed software stacks on fixed hardware configurations. We argue
that such assumptions are unrealistic in real-world decentralized environments.
To this end, we propose WWW.Serve, a decentralized framework for intercon-
necting LLM service worldwide. It preserves the flexibility of service providers,
allowing them to decide when, under what policies, and with what resources
they join the decentralized network, while further ensuring their anonymity. In
terms of efficiency, WWW.Serve supports self-organizing request dispatch, en-
abling the network to autonomously allocate requests without centralized coor-
dination. Three key designs are integrated: a blockchain-inspired credit system
for trustless collaboration, gossip-driven peer synchronization for flexible partic-
ipation, and a duel-and-judge mechanism for robust contributor evaluation. Em-
pirically, we show that WWW.Serve incentivizes higher-quality services to obtain
greater profit, while improving global SLO (service-level-objective) attainment by
up to 1.5× and lowers latency by 27.6%. Its performance approaches, and in some
cases surpasses, centralized scheduling, while fully preserving the benefits of de-
centralization. These results highlight WWW.Serve as a promising foundation for
real-world, decentralized LLM serving.

1 INTRODUCTION

Large language model (LLM) are becoming popular. With increasing deployments of LLM service
and prices of GPU, distributed LLM serving has become essential for mitigating workload fluctua-
tions and leveraging potentially idle hardware resources. Centralized scheduling (Zheng et al., 2024;
Kwon et al., 2023), however, constrains the engagement of different entities. Therefore, decentral-
ization has long been recognized as an effective paradigm (Liu et al., 2024; Dong et al., 2025). By
relying on peer-to-peer communication (Kermarrec & Taı̈ani, 2015), it improves scalability, adapts
to dynamic participation, enhances robustness by eliminating single points of failure, and improves
anonymity and privacy (Li & Palanisamy, 2019; Ma et al., 2024).

Despite these apparent advantages, existing decentralized serving systems remain largely imprac-
tical in real-world settings: (1) Fundamentally, they predominantly emphasize the rights and
protections of users and the cooperative aspect among GPU providers while overlooking the
inherent competitive dynamics, namely, that GPU providers, as the holders of the actual compu-
tational assets, are naturally incentivized to maximize their own profit. Existing frameworks (Fang
et al., 2025) attempt to rely on a small central organization to impose substantial constraints on GPU
providers, such as requiring them to accept excessive platform-level oversight (Fang et al., 2025;
Wu et al., 2025) and to execute all assigned requests with fixed software stacks (Mei et al., 2025a;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Borzunov et al., 2023; Mei et al., 2025b) on fixed hardware configurations. Although this may the-
oretically enable better resource allocation, the regulator itself is untrusted, rendering the approach
unrealistic in practice. (2) Besides, providers typically maintain their own prioritized workloads and
may experience fluctuations in available resources. This highlights enabling flexible, customizable
mechanisms for providers to determine how they engage with the decentralized system.

Ideally, we desire a decentralized framework that acts like an open, competitive market, allowing
providers to decide when, under what policies, and with what resources they join the decentral-
ized network. At the same time, such a framework should: 1. provide a well-designed reward mech-
anism that incentivizes providers to deliver higher-quality services, including faster hardware, more
user-oriented scheduling policies, better serving systems, and higher-quality models. Such incen-
tives should further encourage innovation (e.g., in models, systems, or kernels), enabling providers
to offer superior services at lower cost. 2. enable market-driven exchange of computational ca-
pacity, where overloaded nodes can outsource requests while underutilized nodes capitalize on idle
resources, allowing compute supply and demand to self-balance through decentralized interactions.
3. incorporate a principled routing protocol to improve global efficiency under highly dynamic and
unpredictable resource availability. However, to meet these demands, three fundamental questions
arise. In the following, we discuss these challenges and outline our key approaches to address them.

Question 1. How can the system enable trustworthy market-driven trade of computational capacity,
i.e., implement reliable request scheduling among anonymous participants without central coordina-
tors? Achieving this requires a way to quantify each participant’s contributed capacity and use it to
guide task allocation. To this end, we introduce a credit-based transaction system that functions as
a reputation-like indicator under anonymity: participants earn credits by serving delegated requests
and spend them when offloading their own tasks. Request routing is then guided via a Proof-of-
Stake-based (PoS) mechanism, in which participants’ staked credits, freely adjust according to their
own strategy, determine their likelihood of being selected to execute delegated requests. This design
allows high-load servers to offload tasks to relieve pressure and improve user satisfaction, while
low-load servers utilize idle resources to earn credits for future offloading. By accumulating credits
through contribution, participants effectively engage in a decentralized market for computing power.

Question 2. How can we incentivize participants to provide high-quality services, thereby improv-
ing overall user experience? In an anonymous network, providers naturally seek to maximize their
own gain. This competitive dynamics, however, creates the risk that participants may deploy low-
quality services to “exploit” the contributions of others, undermining overall system performance.
To address this, we must align individual incentives with service quality. To this end, we introduce
a duel-and-judge mechanism: a subset of requests is collectively evaluated collectively within the
network through pairwise comparison, with the superior response receiving a credit reward and the
inferior response incurring a penalty. This design enables dynamic credit redistribution based on ser-
vice quality. When combined with PoS-based request scheduling, it can be proved that low-quality
nodes are gradually phased out of active participation, reinforcing the network’s overall service
quality and fostering decentralized incentives for correctness.

Question 3. How can the system remain robust under highly dynamic and unpredictable resource
availability? In real-world scenarios, individual infrastructures may suffer from hardware failures,
network disconnections, or user-driven constraints, all of which lead to unstable participation of
resources. To address this challenge, we design a lightweight gossip-driven protocol that enables
dynamic online and offline participation. Each participant periodically exchanges availability in-
formation with a subset of peers and reconcile discrepancies. Through this protocol, newly joined
resources can be quickly integrated into the network, while sudden departures or failures can be
rapidly detected. Without relying on central coordinators, lightweight pairwise exchanges allow in-
formation updates to diffuse across the network and converge quickly, ensuring stable and reliable
service despite the volatility of global-scale resources.

Having addressed these challenges, we introduce WWW.Serve, a decentralized framework for col-
laborative LLM serving. In general, our main contributions are:

• We present WWW.Serve, a fully decentralized system that operates as an open, competitive mar-
ket of computational capacity, enabling request routing and workload balancing among distributed
and anonymous LLM servers.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We design three core mechanisms to ensure reliability: a credit-based transaction system for trust-
less request delegation, a gossip-driven protocol for dynamic peer synchronization, and a duel-
and-judge mechanism for contributor evaluation.

• We provide a game-theoretic analysis proving that our collaborative framework converges to equi-
libria that sustain high-quality LLM service even under full anonymity.

• Empirical results demonstrate that WWW.Serve achieves near-centralized efficiency, improving
global SLO attainment by up to 1.5× and reducing latency by up to 27.6%, while sustaining
robustness under dynamic participation and supporting flexible collaboration policies.

The rest of this paper is organized as follows. Section 2 reviews related work, Section 3 introduces
the architecture of WWW.Serve, and Section 4 details its core mechanisms. Section 5 provides a
game-theoretic analysis, Section 6 reports empirical results, and Section 7 concludes.

2 RELATED WORK

Decentralized Computing. Early volunteer-based platforms (Anderson et al., 2002; Foster &
Kesselman, 2003; Anderson, 2019; Shirts & Pande, 2023) demonstrate the feasibility of harnessing
distributed resources for large-scale scientific workloads. With the advent of blockchain (Nakamoto,
2008), decentralized frameworks like Ethereum (Song et al., 2024) introduce trustless execution en-
vironments where tasks are handled transparently and verifiably through smart contracts. Subse-
quent systems such as Filecoin (Labs, 2017) and Golem (Network, 2020) extend this model with
incentive mechanisms such as Proof-of-Stake (Kiayias et al., 2017; Buterin & Griffith, 2019), ensur-
ing fair contribution and deterring malicious behavior. These systems highlight the importance of
incentive alignment and trustless coordination, motivating our decentralized LLM serving design.

Large Language Model Serving. LLMs demand substantial computational resources, thus are pri-
marily deployed by service providers such as OpenAI (OpenAI, 2022), Anthropic (Anthropic, 2023),
and Microsoft Azure (Microsoft, 2023), offering users online inference services. Meanwhile, the
rapid rise of open-sourced, especially reasoning-oriented models such as DeepSeek-R1 (DeepSeek-
AI, 2025), LLaMA 3.1 (Touvron et al., 2024), and Qwen3 (Yang et al., 2025) series, enables broader
community access and deployment, therefore creating massive demand for high-throughput infer-
ence services. In response, a spectrum of LLM serving systems has been proposed.

At the single-model level, SGLang (Zheng et al., 2024) and vLLM (Kwon et al., 2023) leverage
various advanced techniques to improve request concurrency and maximize inference efficiency.
HexGen (Jiang et al., 2024) and Helix (Mei et al., 2025b) provide adaptive scheduling strategies that
optimize model deployment and task migration across heterogeneous resources. Furthermore, Dist-
Serve (Zhong et al., 2024) partitions prefill and decoding computations across multiple GPUs, while
speculative decoding (Chen et al., 2023; Leviathan et al., 2023; Miao et al., 2024) and sequence-
length-aware scheduling (Qiu et al., 2024) offer complementary performance gains. However, these
approaches remain inherently centralized and emphasize intra-model performance, without offering
systematic solutions for workload balancing across multiple LLM servers.

Recently, decentralized approaches have been further explored, yet they fall short of fully realizing
our desired goals. Petals (Borzunov et al., 2023) supports collaborative deployment of a fixed LLM
across volunteer GPUs, limiting flexibility in multi-model scenarios and cannot adapt to dynamically
changing resources. DeServe (Wu et al., 2025) offers a privacy-preserving offline serving system
where users contribute inference capacity collectively, yet still depends on partial centralization
for request dispatching and lacks mechanisms to ensure service quality. GenTorrent (Fang et al.,
2025) distributes and executes model shards, but relies on trusted organizations to prevent malicious
behavior, and therefore does not achieve full decentralization. Other works (Kozgunov et al., 2024;
Xian et al., 2024; Chen et al., 2025; Mia & Amini, 2025) explore secure decentralized training and
inference frameworks that integrate cryptographic and blockchain-based trust mechanisms. While
relevant as background, these approaches do not directly address the specific challenges we target.

3 WWW.SERVE’S OVERVIEW

We begin by presenting the overall network architecture of WWW.Serve (Subsection 3.1), followed
by a description of the request routing process and node design (Subsection 3.2).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Other Nodes6. Broadcasting

8. Ledger updated

Node 2Node 1
1. Submit request

4. Reply

7. Credit earned
2. Delegating

3. Return response

User
Interface

WWW.Serve

Private
Infrastructure …

LLM 1 via SGLang

…

LLM 2 via vLLM
……

Node ID: node_1
Staked: xx
……

Ledger Manager

PoS-based Routing

Local
Ledger

Credit
Block Chain …

Policy Manager

Inferencing Delegating

User Policy System Policy

Communication Manager

Model
Manager

Usage: 25%Model 1 Usage: 85%Model 2 ……

Request
Manager

User Requests

New Request

Offloaded Requests

Peer-to-peer with other nodes

5. Grading

Base URL + API Key

Figure 1: Overview of WWW.Serve. The upper part illustrates the decentralized request routing
workflow, while the lower part details the internal architecture of a single node.

3.1 NETWORK ARCHITECTURE

As illustrated in Figure 2, WWW.Serve establishes a fully decentralized peer-to-peer network con-
necting users with LLM service providers.

From the user’s perspective, WWW.Serve provides a seamless serving interface. Users do not need
to be aware of the underlying decentralized infrastructure; instead, they simply submit inference
requests and wait for responses, just as they would with conventional LLM online services. The
framework automatically handles request routing, resource discovery, and response evaluation. This
design greatly lowers the barrier to adoption, allowing users to access global LLM services without
requiring specialized knowledge of network topology or coordination protocols.

Service Provider

User Interface

WWW.Serve

Excess Resources

Ask & Answer

Anonymity

Decentralized
Routing

Transparency

Figure 2: General network architecture.

From the service provider’s perspective, WWW.Serve of-
fers a simple yet flexible participation model. Providers
can contribute surplus computational resources without
exposing sensitive information, while retaining full con-
trol and anonymity within the ecosystem. They are free
to join or leave at any time, enabling adaptive scheduling
and resource allocation. This design encourages broader
participation for service providers, converting idle capac-
ity into valuable contributions for LLM serving.

3.2 REQUEST ROUTING AND NODE DESIGN

As illustrated in Figure 1, the inference request in WWW.Serve follows a decentralized routing
process that shapes the modular design of each node. This process involves four key stages:

Request admission. When a user submits an inference request, it first enters the local request queue
maintained by the Request Manager, which handles both user-originated and delegated requests.
This ensures orderly processing while decoupling admission from execution.

Scheduling and policy enforcement. The queued request is then subject to the service provider’s
configurable policies. The Policy Manager decides whether to execute the request locally or delegate

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

it to other nodes, considering factors such as workload thresholds, willingness to delegate requests,
and customized load-balancing rules. This design allows service providers to flexibly participate in
collaborative serving while retaining full control over their resources.

Executor selection and trust establishment. If the request is delegated, the node selects a reliable
executor. To this end, the Ledger Manager provides access to peers’ stake balances. Candidates are
sampled via a Proof-of-Stake–based mechanism, where the probability of selection is proportional
to their staked credit. Each candidate is further probed to verify its willingness according to its
own policy. Once accepted, the request is forwarded, executed locally by the chosen peer, and the
response is returned to the originator. The executor is rewarded through a “credits-for-offloading”
transaction, while the duel-and-judge mechanism further evaluates response quality (details in Sub-
section 4.1 and Subsection 4.2).

Execution across heterogeneous backends. For requests served locally, the Model Manager pro-
vides a unified abstraction layer over diverse serving backends. It executes inference, monitors uti-
lization, and preserves intra-model scheduling efficiency. This ensures that heterogeneous resources
can be seamlessly integrated into WWW.Serve.

Together, these stages form a request routing pipeline that ensures policy-driven scheduling, trust-
aware executor selection, and efficient execution on heterogeneous LLM servers.

4 CORE MECHANISMS

In this section, we introduce three core designs of WWW.Serve: (i) the Credit-based Transaction
System (Subsection 4.1), which incentivizes and regulates request dispatching; (ii) the Duel-and-
Judge Mechanism (Subsection 4.2), which ensures reliable and trustworthy contributor evaluation;
and (iii) the Policy Framework (Subsection 4.3), which supports flexible policies for collaboration.

4.1 CREDIT-BASED TRANSACTION SYSTEM

Drawing inspiration from real-world transactions, where users pay for premium LLM services (e.g.,
API token prices), we design a Credit-based Transaction System in which each node’s computational
resources are represented as transferable credits. These serve as a reputation-like measure that en-
ables dynamical workload exchange while providing economic incentives for active and high-quality
participation. Beyond the system itself, credits can be anchored to real-world currency, enabling di-
rect monetization of computational contributions and paving the way for practical deployment of
WWW.Serve in commercial large-scale inference services.

Table 1: Structure of a Credit Block

Field Description

Block ID Hash of the current block

Parent ID Hash of the previous block

Timestamp Time of block creation

Operations List of credit-related records

Proposer Node proposing the block

Signature Digital signature

However, traditional transaction mechanisms are not suffi-
cient in decentralized settings. Without a shared, tamper-
resistant ledger, nodes can misreport their actions or se-
lectively reveal inconsistent transaction histories to differ-
ent peers (Nakamoto, 2008; Cachin & Vukolić, 2017; Bano
et al., 2017; Tripathi et al., 2023). For example, a node
might claim the same credits have been spent in multiple
transactions (double spending), or refuse to acknowledge
deductions from failed or malicious executions. Since no
single entity holds the authoritative record, such inconsis-
tencies can hardly be reconciled, undermining both fairness
and trust across the network.

To address this, WWW.Serve adopts a blockchain-inspired ledger. Each node maintains a local
Credit Block Chain that records activities such as staking and rewarding in tamper-resistant blocks
(Table 1). Blocks are cryptographically linked, so any modification is immediately detectable. A
credit transaction occurs whenever a delegated request is completed. The responsible node records
this by creating a new block and broadcasting it to its peers, which independently validate the block.
The transaction is finalized once a majority of peers confirm and append it to their local ledgers.

The security of this design relies on two complementary features. First, nodes must stake credits to
participate in scheduling, which discourages malicious behavior by putting dishonest nodes’ stakes
at risk. Second, decentralized verification ensures that every block is independently validated by

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

multiple peers before being appended to the chain, preventing any single node from manipulating
the ledger. Thus, balances are guaranteed to be secure, auditable, and tamper-resistant, all without
relying on a centralized authority.

4.2 DUEL-AND-JUDGE MECHANISM

Node A

Node B Node C

Node 1 Node kNode 2 …

Which one is better?

“B”: 5 “C”: 1 “Draw”: 1 4. Winner rewarded, loser penalized

1. Duel request sent to two nodes

2. Two responses generated

3. K judges vote for the better

Figure 3: Duel-and-judge mechanism.

In our decentralized serving network, partici-
pants are anonymous and heterogeneous, with
no central authority to verify the quality of their
contributions. This raises a fundamental risk:
low-quality or even malicious nodes may pro-
vide incorrect results, degrading overall service
reliability. Prior frameworks (Bouchiha et al.,
2024; Zhang et al., 2024; Fang et al., 2025)
rely on verification committees or light eval-
uation models, but they introduce complexity
and privileged roles that limit true decentral-
ization. In response, WWW.Serve introduces
the duel-and-judge mechanism, enabling peer-
driven evaluation of the service quality.

As shown in Figure 3, a small fraction of delegated requests are randomly designated as duel re-
quests and dispatched to two executors sampled via our Proof-of-Stake–based selection mechanism.
Next, k judges (also selected via PoS) perform pairwise comparisons of the responses. The inferior
executor is penalized by losing part of its stake, while the superior executor and responsible judges
earn additional credits. The results of each duel are broadcast and recorded in the credit ledger,
ensuring transparency and accountability.

Such duel-and-judge mechanism offers several key advantages for ensuring reliable and high-quality
decentralized serving. First, it leverages a pairwise comparison rather than relying on absolute
scores. Prior studies (Zheng et al., 2023; Chiang et al., 2024; Watts et al., 2024) demonstrate that
pairwise evaluation of LLM outputs yields higher inter-rater agreement and greater robustness, mak-
ing it a more reliable way to distinguish between competing responses. Second, the involvement of
PoS-sampled judge nodes introduces additional impartiality, mitigating risks of collusion and fos-
tering fairness in the evaluation process. Third, the credit redistribution scheme provides strong
economic incentives, aligning node behavior with system reliability and thus driving the network
toward high-quality operation. A theoretic analysis of the quality evolution is provided in Section 5.

4.3 POLICY FRAMEWORK

WWW.Serve introduces a policy framework that governs both individual node decisions and collec-
tive network behavior, which operates along two complementary dimensions:

User-Level Policies: enable service providers to manage their resources according to individual
objectives. First, each node can freely determine its stake amount, which directly influences its
probability of being selected as an executor under the Proof-of-Stake–based scheduling mechanism.
This design encourages providers to calibrate their credit commitment according to their willing-
ness and capacity to contribute. Second, nodes may define fine-grained operational conditions for
offloading, accepting, or queuing requests at their local backends. For example, one may choose to
offload tasks once its local workload surpasses a predefined threshold, to accept external requests
only when spare GPU capacity is available, or to prioritize its own user-submitted jobs over dele-
gated ones. Such flexibility not only accommodates heterogeneous resource profiles and business
goals, but also fosters a competitive yet cooperative ecosystem where service providers optimize
their participation strategies while maintaining overall system efficiency.

System-Level Policies: serve as global safeguards to preserve fairness and reliability within
WWW.Serve, including mechanisms such as Proof-of-Stake–based routing, the credit-based trans-
action system, gossip-driven peer synchronization, and the duel-and-judge mechanism. These rules
provide the necessary trustless foundation, while user-level policies offer flexibility on top of it.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 GAME-THEORETIC ANALYSIS

In this section, we provide a theoremized proof that WWW.Serve converges to a high-quality equi-
librium of collaborative LLM services: high-performing nodes accumulate credit over time, whereas
low-quality nodes lose exposure and gradually phase out of the system.

Assumption 1 (Node parameters). For each node i ∈ {1, . . . , N}, we have:

• qi ∈ [0, 1], the intrinsic probability that node i produces a high-quality response;

• ci > 0, the per-request operational cost of node i;

• si(t) ≥ 0, the stake of node i at time t.

Assumption 2 (System parameters). The system-level constants are:

• λ > 0, the delegated request arrival rate;

• R > 0, the guaranteed base reward per delegated request;

• pd ∈ [0, 1], the probability that a delegated request is selected as a duel;

• Radd > 0, the additional reward for winning a duel;

• P > 0, the penalty for losing a duel.

Assumption 3 (PoS selection and duel mechanism). We write the PoS selection probability of node
i and selection-weighted global average quality as

pi(t) =
si(t)∑N
j=1 sj(t)

, Q(t) =

N∑
i=1

pi(t) qi.

To capture the intuition that a higher network average quality Q(t) makes it harder for any individ-
ual node to stand out, we model the probability that node i wins the duel as

Qi(t) = 1
2

(
1 + qi −Q(t)

)
∈ [0, 1].

Assumption 4 (Stake adjustment). Rational participants adjust their stakes proportionally to real-
ized expected payoffs. Concretely, for some growth constant η > 0 we assume

ṡi(t) = η πi(t),

where πi(t) denotes node i’s expected payoff rate (defined below in Lemma 1).

Lemma 1 (Expected node payoff). Under Assumptions 1–3, the expected payoff of node i from
serving a single delegated request is

∆i(t) = (R− ci) + pd
[
Qi(t)Radd − (1−Qi(t))P

]
.

Consequently, the expected payoff rate of node i under delegated request arrival rate λ and PoS
selection probability pi(t) is

πi(t) = λ pi(t)∆i(t).

Proof. A single delegated request always yields the base reward R and incurs cost ci, hence the
guaranteed net term (R−ci). With probability pd the request becomes a duel; conditional on a duel,
the expected duel outcome for node i equals Qi(t)Radd − (1−Qi(t))P . Adding these terms gives
∆i(t). Multiplying by the delegated request arrival rate arrival rate λ and the selection probability
pi(t) yields the stated expression for πi(t).

Proposition 1 (Single-node stake-share dynamics). Under Assumptions 1–4, the stake share of node
i evolves according to

ṗi(t) =
η λ

S(t)
pi(t)

(
∆i(t)−∆(t)

)
, (1)

where S(t) =
∑

j sj(t) is the total stake in the network, and ∆(t) =
∑

j pj(t)∆j(t) represents the
overall average expected payoff.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Proof. Differentiate pi(t) = si(t)/S(t) to obtain

ṗi(t) =
ṡi(t)S(t)− si(t)Ṡ(t)

S(t)2
.

By Assumption 4 we have ṡi(t) = ηπi(t) = ηλpi(t)∆i(t), and summing over i yields

Ṡ(t) =
∑
j

ṡj(t) = ηλ
∑
j

pj(t)∆j(t) = ηλ∆(t).

Substituting these into the derivative and simplifying gives equation 1.

Proposition 2 (Group-level stake-share dynamics). Let H ⊆ {1, . . . , N} be any subset of nodes,
and define its group-level stake share

pH(t) =
∑
i∈H

pi(t).

Define the within-group and outside-group average payoffs

∆H(t) =
1

pH(t)

∑
i∈H

pi(t)∆i(t), ∆¬H(t) =
1

1− pH(t)

∑
j /∈H

pj(t)∆j(t).

Then the group-level stake share evolves according to

ṗH(t) =
η λ

S(t)
pH(t)(1− pH(t))

(
∆H(t)−∆¬H(t)

)
. (2)

Proof. Summing equation 1 over i ∈ H yields

ṗH(t) =
ηλ

S(t)

(∑
i∈H

pi(t)∆i(t)− pH(t)∆(t)
)
.

Write the network average ∆(t) as the convex combination

∆(t) = pH(t)∆H(t) + (1− pH(t))∆¬H(t).

Substituting this into the previous display and simplifying produces equation 2.

Theorem 1 (High-quality equilibrium). Under Assumptions 1–4, the network converges to a high-
quality equilibrium, driven by a subset of superior nodes, thereby promoting reliable and high-
quality LLM services.

Proof. From Proposition 2, if there exists a subset H and a time T such that for all t ≥ T ,
∆H(t) > ∆¬H(t),

then ṗH(t) > 0, hence pH(t) is strictly increasing for t ≥ T . Consequently, high-quality nodes
progressively accumulate credit while low-quality nodes lose influence, creating incentives for par-
ticipants to provide superior services and guiding the network toward reliable and high-quality LLM
serving.

6 EMPIRICAL EVALUATION

In this section, we evaluate WWW.Serve under diverse configurations and workload scenarios (im-
plementation details are provided in Appendix A):

• In Subsection 6.1, we show that WWW.Serve improves global SLO attainment by up to 1.5×
and reduces latency by 27.6% compared to single-node deployment, achieving efficiency close to
centralized scheduling.

• In Subsection 6.2, we demonstrate that WWW.Serve handles dynamic participation gracefully,
maintaining service continuity as resources join or leave.

• In Subsection 6.3, we confirm that the duel-and-judge mechanism effectively differentiates high-
quality contributors from weak or malicious ones, improving network trustworthiness.

• In Subsection 6.4, we present ablation studies on user-level policies, showing that flexible config-
urations directly influence workload allocation and SLO attainment.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Decentralized Centralized Single

200 220 240 260 280 300 320 340
SLO Threshold (s)

50

60

70

80

90

100

SL
O

At
ta

in
m

en
t (

%
)

200 220 240 260 280 300 320 340
SLO Threshold (s)

50

60

70

80

90

100

SL
O

At
ta

in
m

en
t (

%
)

250 275 300 325 350 375 400 425 450
SLO Threshold (s)

50

60

70

80

90

100

SL
O

At
ta

in
m

en
t (

%
)

200 250 300 350 400 450 500 550
SLO Threshold (s)

60
65
70
75
80
85
90
95

100
105

SL
O

At
ta

in
m

en
t (

%
)

Figure 4: Comparison of global SLO attainment across single-node, centralized, and decentralized
(WWW.Serve) deployments under four different experimental settings detailed in Appendix B.

6.1 SCHEDULING EFFICIENCY

We first designed a variety of deployment scenarios (details in Appendix B), covering heterogeneous
models, diverse GPU hardware, and multiple serving backends. Each node experienced alternating
peak and idle periods, simulating realistic fluctuations in service demand. We compared three de-
ployment strategies: single, centralized, and our decentralized scheduling, and measured global Ser-
vice Level Objective (SLO) attainment (i.e., the proportion of requests completed within predefined
latency thresholds) along with the average request latency.

Table 2: Average request latency compar-
ing different scheduling strategies.

Setting Avg. Latency (s)
Single Centralized Decentralized

Setting 1 200.380 188.419 184.400
Setting 2 226.578 168.221 168.485
Setting 3 237.925 206.123 198.306
Setting 4 241.042 169.896 174.592

As shown in Figure 4, across all experimental settings,
WWW.Serve consistently outperforms single-node de-
ployment and closely matches, in some cases even
surpasses, centralized scheduling in terms of SLO at-
tainment. Table 2 further demonstrates that this effi-
ciency translates into substantially lower request la-
tency. Together, these results highlight a key ad-
vantage of WWW.Serve: it achieves near-centralized
scheduling efficiency without compromising the pri-
vacy and autonomy afforded by decentralization.

6.2 DYNAMIC PARTICIPATION

WWW.Serve is designed to operate under highly dynamic and unpredictable resource availability in
real-world scenarios. We thus evaluate its ability to adapt to arbitrary node arrivals and departures.

Node 1 Node 2 Node 3 Node 4 Avg Latency Event

0 50 100 150 200 250 300 350 400
Request Index

0
50

100
150
200
250
300
350

La
te

nc
y

(s
)

0 100 200 300 400
Request Index

0

100

200

300

400

500

600

La
te

nc
y

(s
)

Figure 5: Request latency. Blue line indicates node join/leave
events; black line shows the windowed average latency.

The left panel in Figure 5 illus-
trates nodes joining the network
sequentially, starting with two
active nodes. When the work-
load temporarily exceeds avail-
able resources, request latencies
initially rise. As new nodes are
integrated, the gossip-based pro-
tocol quickly detects them and
redistributes requests, leading to
a clear reduction in latency.

Conversely, the right panel in Figure 5 starts with four nodes and two leave the network sequentially.
As the average load increases, the remaining nodes become increasingly saturated, resulting in a
sharp rise in overall latency. These results demonstrate that WWW.Serve can dynamically adapt its
workload distribution to both node arrivals and departures without a central coordinator, ensuring
service continuity in unstable environments.

6.3 DUEL-AND-JUDGE EVALUATION

To evaluate the effectiveness of the duel-and-judge mechanism, we construct a small-scale network
with four types of nodes: Qwen3 0.6B, Qwen3 4B, Qwen3 8B, and a random generator producing

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Node 1 Node 2 Node 3 Node 4

0 200 400 600 800 1000
Time (s)

0
5

10
15
20
25

Ru
nn

in
g

Re
qu

es
ts

0 200 400 600 800 1000
Time (s)

0
5

10
15
20
25

Ru
nn

in
g

Re
qu

es
ts

25% 50% 75% 100%

200 225 250 275 300 325 350 375 400
SLO Threshold (s)

20
30
40
50
60
70
80
90

100

SL
O

At
ta

in
m

en
t (

%
)

Figure 7: Left: Number of running requests under different stake amounts (1, 2, 3, 4). Middle:
Number of running requests under different acceptance frequencies (0.25, 0.5, 0.75, 1.0). Right:
SLO attainment under different offloading frequencies (0.25, 0.5, 0.75, 1.0).

nonsensical responses. Each type has two replicas to mitigate randomness from single instances.
We set the duel rate to 20%, with k = 3 judges per duel request.

8B 4B 0.6B Random Wins Losses Draws

0 500 1000 1500 2000 2500
Relative Time

600

700

800

900

1000

1100

1200

1300

Cr
ed

it

8B 4B 0.6B Random0

5

10

15

20

25

30

Co
un

t

Figure 6: Evolution of credits (left) and duel out-
comes (right) for different types of nodes.

Figure 6 (left) shows the evolution of credits:
High-quality nodes (8B and 4B) steadily ac-
cumulate credits, while weaker nodes (0.6B)
show only modest growth. Random generators
are promptly penalized, experiencing continu-
ous credit degradation. Figure 6 (right) high-
lights duel outcomes, where high-quality nodes
secure substantially more victories. These re-
sults confirm that the duel-and-judge mecha-
nism effectively distinguishes high-quality con-
tributors from weak or malicious ones.

We emphasize that the 20% duel rate used here
is purely for experimental convenience, enabling rapid credit convergence and a clear observation
of credit dynamics within a short time horizon (90 minutes in our experiment). A detailed analysis
of the overhead introduced by the duel-and-judge mechanism is provided in Appendix F.

6.4 ABLATION OF POLICIES

We conduct an ablation to examine how user-level parameters (stake amount, request acceptance,
and offloading frequency) affect workload allocation and global SLO attainment.

We first varied stake amounts and acceptance frequencies across nodes and monitored their local
request queues. Requests were uniformly issued by a dedicated requester-only node. As shown in
Figure 7 (left and middle), nodes with higher stake or higher acceptance frequency handle a larger
share of delegated requests. This demonstrates that the PoS-based scheduling faithfully reflects user-
level policies, allowing nodes to actively control their participation. Next, we evaluated the effect
of offloading frequency under sustained high request pressure. As illustrated in Figure 7 (right),
increasing offloading improves SLO attainment by redistributing workloads from overloaded nodes.
However, the benefit saturates at moderate offloading rates: the improvement between rates of 0.5,
0.75, and 1.0 is marginal. Excessive offloading can even hinder long-term credit accumulation as
nodes spend more credits to delegate requests. Overall, these results confirm that WWW.Serve’s
flexible policy framework allows service providers to regulate their participation and optimize both
efficiency and credit dynamics, indicating substantial room for fine-tuning policies to better balance
immediate performance and long-term incentives.

7 CONCLUSION

This paper presents WWW.Serve, a fully decentralized framework for trustless and collaborative
LLM serving. Operating as an open, competitive market for computational resources, it enables
anonymous participants to autonomously route requests, balance workloads, and provide high-
quality services. Our experiments demonstrate comparable scheduling efficiency along with strong
adaptivity to dynamic resources and flexible serving policies, highlighting WWW.Serve’s potential
as a scalable and privacy-preserving foundation for next-generation LLM services.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

David P. Anderson. Boinc: A platform for volunteer computing, 2019. URL https://arxiv.
org/abs/1903.01699.

David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer. Seti@home: an
experiment in public-resource computing. Commun. ACM, 45(11):56–61, November 2002. ISSN
0001-0782. doi: 10.1145/581571.581573. URL https://doi.org/10.1145/581571.
581573.

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, An-
gelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, et al.
Hyperledger fabric: a distributed operating system for permissioned blockchains. In Proceed-
ings of the Thirteenth EuroSys Conference, EuroSys ’18, New York, NY, USA, 2018. Associa-
tion for Computing Machinery. ISBN 9781450355841. doi: 10.1145/3190508.3190538. URL
https://doi.org/10.1145/3190508.3190538.

Anthropic. Claude. https://www.anthropic.com/claude, 2023.

Aptos. The aptos blockchain: Safe, scalable, and upgradeable web3 infrastructure. https://
aptosnetwork.com/whitepaper/aptos-whitepaper_en.pdf, 2022. White paper.

Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah Meik-
lejohn, and George Danezis. Consensus in the age of blockchains, 2017. URL https:
//arxiv.org/abs/1711.03936.

Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin, Younes Belkada, Artem
Chumachenko, Pavel Samygin, and Colin Raffel. Petals: Collaborative inference and fine-tuning
of large models, 2023. URL https://arxiv.org/abs/2209.01188.

Mouhamed Amine Bouchiha, Quentin Telnoff, Souhail Bakkali, Ronan Champagnat, Mourad
Rabah, Mickaël Coustaty, and Yacine Ghamri-Doudane. Llmchain: Blockchain-based reputa-
tion system for sharing and evaluating large language models, 2024. URL https://arxiv.
org/abs/2404.13236.

Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget, 2019. URL https://
arxiv.org/abs/1710.09437.

Christian Cachin and Marko Vukolić. Blockchain consensus protocols in the wild, 2017. URL
https://arxiv.org/abs/1707.01873.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023. URL
https://arxiv.org/abs/2302.01318.

Ruonan Chen, Ye Dong, Yizhong Liu, Tingyu Fan, Dawei Li, Zhenyu Guan, Jianwei Liu, and Jiany-
ing Zhou. Flock: Robust and privacy-preserving federated learning based on practical blockchain
state channels. In Proceedings of the ACM on Web Conference 2025, WWW ’25, pp. 884–895,
New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400712746. doi:
10.1145/3696410.3714666. URL https://doi.org/10.1145/3696410.3714666.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Sto-
ica. Chatbot arena: An open platform for evaluating llms by human preference, 2024. URL
https://arxiv.org/abs/2403.04132.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Haotian Dong, Jingyan Jiang, Rongwei Lu, Jiajun Luo, Jiajun Song, Bowen Li, Ying Shen, and Zhi
Wang. Beyond a single ai cluster: A survey of decentralized llm training, 2025. URL https:
//arxiv.org/abs/2503.11023.

11

https://arxiv.org/abs/1903.01699
https://arxiv.org/abs/1903.01699
https://doi.org/10.1145/581571.581573
https://doi.org/10.1145/581571.581573
https://doi.org/10.1145/3190508.3190538
https://www.anthropic.com/claude
https://aptosnetwork.com/whitepaper/aptos-whitepaper_en.pdf
https://aptosnetwork.com/whitepaper/aptos-whitepaper_en.pdf
https://arxiv.org/abs/1711.03936
https://arxiv.org/abs/1711.03936
https://arxiv.org/abs/2209.01188
https://arxiv.org/abs/2404.13236
https://arxiv.org/abs/2404.13236
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1707.01873
https://arxiv.org/abs/2302.01318
https://doi.org/10.1145/3696410.3714666
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2503.11023
https://arxiv.org/abs/2503.11023

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Fei Fang, Yifan Hua, Shengze Wang, Ruilin Zhou, Yi Liu, Chen Qian, and Xiaoxue Zhang. Gen-
torrent: Scaling large language model serving with an overlay network, 2025. URL https:
//arxiv.org/abs/2504.20101.

Ian Foster and Carl Kesselman (eds.). The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 2003. ISBN 978-1558609334.

Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. Fastfabric: Scaling hy-
perledger fabric to 20,000 transactions per second. In 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), pp. 455–463, 2019. doi: 10.1109/BLOC.2019.8751452.

Youhe Jiang, Ran Yan, Xiaozhe Yao, Yang Zhou, Beidi Chen, and Binhang Yuan. Hexgen:
Generative inference of large language model over heterogeneous environment, 2024. URL
https://arxiv.org/abs/2311.11514.

Anne-Marie Kermarrec and François Taı̈ani. Want to scale in centralized systems? think P2P. J.
Internet Serv. Appl., 6(1):16:1–16:12, 2015. doi: 10.1186/S13174-015-0029-1. URL https:
//doi.org/10.1186/s13174-015-0029-1.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol. In Advances in Cryptology – CRYPTO 2017, pp.
357–388. Springer, 2017. doi: 10.1007/978-3-319-63688-7 12.

Nikita V. Kozgunov, Mohammad Hossein Khalashi, Valerij D. Oliseenko, and Tat’Jana V.
Tulupyeva. Linguachain: a peer-to-peer dynamic decentralized large language model with coin-
based incentives. In 2024 XXVII International Conference on Soft Computing and Measurements
(SCM), pp. 178–181, 2024. doi: 10.1109/SCM62608.2024.10554241.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Protocol Labs. Filecoin: A decentralized storage network. https://filecoin.io/
filecoin.pdf, 2017.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2023. URL https://arxiv.org/abs/2211.17192.

Chao Li and Balaji Palanisamy. Decentralized privacy-preserving timed execution in blockchain-
based smart contract platforms, 2019. URL https://arxiv.org/abs/1902.05613.

Changxin Liu, Nicola Bastianello, Wei Huo, Yang Shi, and Karl H. Johansson. A survey on secure
decentralized optimization and learning, 2024. URL https://arxiv.org/abs/2408.
08628.

Kehao Ma, Minghui Xu, Yihao Guo, Lukai Cui, Shiping Ni, Shan Zhang, Weibing Wang, Haiyong
Yang, and Xiuzhen Cheng. Anonymity on byzantine-resilient decentralized computing. In Wire-
less Artificial Intelligent Computing Systems and Applications: 18th International Conference,
WASA 2024, Qindao, China, June 21–23, 2024, Proceedings, Part II, pp. 400–412, Berlin, Hei-
delberg, 2024. Springer-Verlag. ISBN 978-3-031-71466-5. doi: 10.1007/978-3-031-71467-2 32.
URL https://doi.org/10.1007/978-3-031-71467-2_32.

Kai Mei, Wujiang Xu, Shuhang Lin, and Yongfeng Zhang. Omnirouter: Budget and performance
controllable multi-llm routing, 2025a. URL https://arxiv.org/abs/2502.20576.

Yixuan Mei, Yonghao Zhuang, Xupeng Miao, Juncheng Yang, Zhihao Jia, and Rashmi Vinayak.
Helix: Serving large language models over heterogeneous gpus and network via max-flow, 2025b.
URL https://arxiv.org/abs/2406.01566.

Md Jueal Mia and M. Hadi Amini. Fedshield-llm: A secure and scalable federated fine-tuned large
language model, 2025. URL https://arxiv.org/abs/2506.05640.

12

https://arxiv.org/abs/2504.20101
https://arxiv.org/abs/2504.20101
https://arxiv.org/abs/2311.11514
https://doi.org/10.1186/s13174-015-0029-1
https://doi.org/10.1186/s13174-015-0029-1
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/1902.05613
https://arxiv.org/abs/2408.08628
https://arxiv.org/abs/2408.08628
https://doi.org/10.1007/978-3-031-71467-2_32
https://arxiv.org/abs/2502.20576
https://arxiv.org/abs/2406.01566
https://arxiv.org/abs/2506.05640

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan
Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating large language model serving
with tree-based speculative inference and verification. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 3, ASPLOS ’24, pp. 932–949. ACM, April 2024. doi: 10.1145/3620666.3651335. URL
http://dx.doi.org/10.1145/3620666.3651335.

Microsoft. Azure openai service. https://azure.microsoft.com/en-us/products/
cognitive-services/openai-service/, 2023.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf, 2008.

Golem Network. Golem: Decentralized supercomputing for distributed applications.
https://assets.website-files.com/60005e3965a10f31d245af87/
60352707e6dd742743c75764_Golemwhitepaper.pdf, 2020.

Open-R1-Team. Openr1-math-220k: A large-scale dataset for mathematical reasoning, 2025. URL
https://huggingface.co/datasets/open-r1/OpenR1-Math-220k.

OpenAI. Chatgpt. https://openai.com/chatgpt, 2022.

Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang, Hubertus Franke,
Zbigniew T. Kalbarczyk, Tamer Başar, and Ravishankar K. Iyer. Efficient interactive llm serving
with proxy model-based sequence length prediction, 2024. URL https://arxiv.org/abs/
2404.08509.

Michael R. Shirts and Vijay S. Pande. Folding@home: Achievements from over 20 years of dis-
tributed computing. Current Opinion in Structural Biology, 80:102569, 2023. doi: 10.1016/j.sbi.
2023.102569. URL https://www.sciencedirect.com/science/article/pii/
S0959440X23000745.

Han Song, Yihao Wei, Zhongche Qu, and Weihan Wang. Unveiling decentralization: A comprehen-
sive review of technologies, comparison, challenges in bitcoin, ethereum, and solana blockchain,
2024. URL https://arxiv.org/abs/2404.04841.

Hugo Touvron, Luyu Yang, Shoufa Zhai, Tao Pu, Zihang Lu, et al. The llama 3 herd of models,
2024. URL https://arxiv.org/abs/2407.21783.

Gautami Tripathi, Mohd Abdul Ahad, and Gabriella Casalino. A comprehensive review of
blockchain technology: Underlying principles and historical background with future challenges.
Decision Analytics Journal, 9:100344, 2023. ISSN 2772-6622. doi: https://doi.org/10.1016/j.
dajour.2023.100344. URL https://www.sciencedirect.com/science/article/
pii/S2772662223001844.

Ishaan Watts, Varun Gumma, Aditya Yadavalli, Vivek Seshadri, Manohar Swaminathan, and
Sunayana Sitaram. Pariksha: A large-scale investigation of human-llm evaluator agreement on
multilingual and multi-cultural data, 2024. URL https://arxiv.org/abs/2406.15053.

Linyu Wu, Xiaoyuan Liu, Tianneng Shi, Zhe Ye, and Dawn Song. Deserve: Towards affordable
offline llm inference via decentralization, 2025. URL https://arxiv.org/abs/2501.
14784.

Youquan Xian, Xueying Zeng, Duancheng Xuan, Danping Yang, Chunpei Li, Peng Fan, and Peng
Liu. Connecting large language models with blockchain: Advancing the evolution of smart
contracts from automation to intelligence, 2024. URL https://arxiv.org/abs/2412.
02263.

Zhuolun Xiang, Zekun Li, Balaji Arun, Teng Zhang, and Alexander Spiegelman. Zaptos: Towards
optimal blockchain latency, 2025. URL https://arxiv.org/abs/2501.10612.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, et al. Qwen3 technical report.
arXiv preprint arXiv:2505.09388, 2025.

13

http://dx.doi.org/10.1145/3620666.3651335
https://azure.microsoft.com/en-us/products/cognitive-services/openai-service/
https://azure.microsoft.com/en-us/products/cognitive-services/openai-service/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://assets.website-files.com/60005e3965a10f31d245af87/60352707e6dd742743c75764_Golemwhitepaper.pdf
https://assets.website-files.com/60005e3965a10f31d245af87/60352707e6dd742743c75764_Golemwhitepaper.pdf
https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
https://openai.com/chatgpt
https://arxiv.org/abs/2404.08509
https://arxiv.org/abs/2404.08509
https://www.sciencedirect.com/science/article/pii/S0959440X23000745
https://www.sciencedirect.com/science/article/pii/S0959440X23000745
https://arxiv.org/abs/2404.04841
https://arxiv.org/abs/2407.21783
https://www.sciencedirect.com/science/article/pii/S2772662223001844
https://www.sciencedirect.com/science/article/pii/S2772662223001844
https://arxiv.org/abs/2406.15053
https://arxiv.org/abs/2501.14784
https://arxiv.org/abs/2501.14784
https://arxiv.org/abs/2412.02263
https://arxiv.org/abs/2412.02263
https://arxiv.org/abs/2501.10612

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhenjie Zhang, Yuyang Rao, Hao Xiao, Xiaokui Xiao, and Yin Yang. Proof of quality: A costless
paradigm for trustless generative ai model inference on blockchains, 2024. URL https://
arxiv.org/abs/2405.17934.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2024. URL https://arxiv.
org/abs/2312.07104.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. Distserve: Disaggregating prefill and decoding for goodput-optimized large language
model serving, 2024. URL https://arxiv.org/abs/2401.09670.

A IMPLEMENTATION

In this section, we detail the implementation of the core modules contained in WWW.Serve.

Communication Manager: is implemented using ZeroMQ, providing low-latency, asynchronous
message passing between nodes. We adopt the ROUTER pattern, where each node binds to a fixed
port to listen for incoming messages while simultaneously sending requests to peers. This design
enables efficient bidirectional communication without relying on a centralized broker.

Request Manager: leverages an asynchronous queue (AsyncQueue) for local request buffering
and scheduling. Incoming requests are timestamped and inserted into the queue, while outgoing re-
quests are dynamically dispatched to eligible executors based on the Proof-of-Stake–based selection
mechanism and user-specific rules.

Model Manager: supports a variety of LLM serving backends via AsyncOpenAI clients. Service
providers only need to supply a base URL and API key, without exposing internal model details.
Each node periodically collects metrics from its backend servers, including the number of active
and queued requests and memory utilization, to support efficient request dispatching and balanced
workload distribution.

Experiment Configuration: is specified in a dedicated YAML file, capturing all necessary parameters
for a node to initialize WWW.Serve modules. Each file includes: (i) Server Parameters: commu-
nication IP, port, user-level policy (e.g., stake, offload frequency, accept frequency), and backend
selection (e.g., SGLang, vLLM); and (ii) Models: paths to local or remote LLMs, base URL for
API access, and API keys. Each model entry also specifies generation parameters (e.g., maximum
tokens, temperature, top-p) and dispatch parameters (e.g., target memory utilization). These YAML
files are automatically parsed by each node at startup, ensuring reproducibility and allowing fine-
grained control over node behavior.

B EXPERIMENTAL SETTINGS

To comprehensively evaluate the scheduling efficiency of WWW.Serve in heterogeneous, dynamic
environments, we designed four distinct experimental settings, summarized in Table 3. Each set-
ting varies in the deployed language models, GPU types, and serving backends, covering a broad
spectrum of realistic node capabilities. Our evaluation primarily relies on recent open-source rea-
soning LLMs, including the Qwen3 series (Yang et al., 2025), DeepSeek-Qwen (DeepSeek-AI,
2025), and LLaMA 3.1 (Touvron et al., 2024), and prompts are drawn from the OpenR1-Math-220k
dataset (Open-R1-Team, 2025). Time-varying request patterns are simulated via piecewise Poisson
arrival rates for each node, capturing both high- and low-load periods that differ across nodes. Due
to the limited scale of our experiments, we employ a shared ledger instead of a full Credit Block
Chain, simplifying implementation while preserving the essential dynamics of credit transactions.

14

https://arxiv.org/abs/2405.17934
https://arxiv.org/abs/2405.17934
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2401.09670

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Node Model GPU Backend Request Schedule
Interval 1 1/λ1 Interval 2 1/λ2

Setting 1
Node 1 Qwen3 8B ADA6000 SGLang 0–300s 5 300–750s 20
Node 2 Qwen3 8B ADA6000 SGLang 0–750s 20
Node 3 Qwen3 8B ADA6000 SGLang 0–750s 20
Node 4 Qwen3 8B ADA6000 SGLang 0–450s 20 450–750s 5

Setting 2
Node 1 Qwen3 8B ADA6000 SGLang 0–300s 4 300–750s 20
Node 2 Qwen3 8B ADA6000 SGLang 0–750s 20
Node 3 Qwen3 4B RTX3090 SGLang 0–750s 30
Node 4 Qwen3 4B RTX3090 SGLang 0–450s 30 450–750s 6

Setting 3
Node 1 Qwen3 32B 4×A100 SGLang 0–300s 2 300–750s 6
Node 2 Qwen3 8B L40S SGLang 0–750s 15
Node 3 DeepSeek-Qwen 7B RTX3090 vLLM 0–750s 30
Node 4 Llama3.1 8B ADA6000 vLLM 0–450s 15 450–750s 5

Setting 4
Node 1 Llama3.1 8B L40S vLLM 0–750s 9
Node 2 Llama3.1 8B L40S vLLM 0–450s 6 450–750s 12
Node 3 DeepSeek-Qwen 7B ADA6000 vLLM 0–300s 6 300–750s 12
Node 4 DeepSeek-Qwen 7B ADA6000 vLLM 0–450s 12 450–750s 6
Node 5 Qwen3 4B RTX4090 SGLang 0–750s 12
Node 6 Qwen3 4B RTX4090 SGLang 0–450s 10 450-750s 20
Node 7 Qwen3 4B RTX3090 SGLang 0–300s 20 300–750s 10
Node 8 Qwen3 4B RTX3090 SGLang 0–300s 20 300–750s 10

Table 3: Experimental configurations correspond to Figure 4 (left to right) and Table 2. Each setting
specifies the deployed model, GPU type, serving backend, and the time-varying request schedule
for all nodes. The Interval columns specify the time ranges, and the corresponding 1/λ columns
denote the expected inter-arrival time (in seconds) used for Poisson request generation, i.e., request
inter-arrival times distributed as Poi(λ).

All nodes are configured with consistent policy parameters, including offload frequency (80%), ac-
ceptance frequency (80%), target utilization (70%), and generation parameters such as maximum
token length (8192), temperature (0), and top-p sampling (0.95). These standardized settings ensure
comparability and reproducibility across heterogeneous nodes while enabling a systematic evalua-
tion of the effects of resource diversity and dynamic workloads on scheduling efficiency, latency,
and SLO attainment.

C USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely as language editing tools to polish grammar, improve
readability, and refine the academic style. All research ideas, methods, experiments, and analyses
were independently conceived and conducted by the authors without assistance from any LLMs.

D TERMINOLOGY CLARIFICATION

Table 4 provides definitions of several key concepts referenced in this paper.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Concept Meaning in Our System

Node A service provider participating in the network. Each node hosts its
own LLM server and can process inference requests.

User Request A request submitted by the users of a given node. The node may ei-
ther execute it locally or offload part of the load to our system when
resources are constrained.

Delegated / Offloaded Request A request forwarded from another node. Upon receiving such a request,
a node may choose to execute it or further offload it based on its own
policy.

User-Level Policy Node-specific policies governing how the node interacts with its own
users. Examples include: when to offload, whether to accept delegated
requests, prioritization of local users, and whether users permit offload-
ing. These policies are fully controlled by each node.

System-Level Policy Global coordination rules of our system, including PoS-based schedul-
ing, gossip-driven protocol, and the duel-and-judge mechanism. These
govern decentralized cooperation among anonymous nodes.

Table 4: Clarification of terminology.

Node 1

1. Submit request

User

WWW.Serve

2. Node Policy Decision:
Inference locally or Offloading

3.1. If inference locally
3.2. If offloading

(Entering WWW.Serve network)

Nodes Nodes
…

Local LLM Server

4. Return response

User

Response generated locally
Response generated by an

anonymous node

3.2.1. Executor selection: Choose which node to serve this request?

Node 1 staked: 10

Node 2 staked: 20

Node 3 staked: 20

PoS Selection
Choose Node 1 with probability: 20%

Choose Node 2 with probability: 40%

Choose Node 3 with probability: 40%

3.2.2. Schedule to the chosen node and wait for response

Proof-of-Stake Scheduling

Support: different backend
& heterogeneous hardware

Figure 8: End-to-end workflow of a single user request, including local execution or remote offload-
ing via PoS-based scheduling.

E SUPPLEMENTARY SYSTEM DETAILS

In this section, we provide additional illustrations that complement the descriptions in Section 3
and Section 4, focusing on two key components of WWW.Serve: (i) the end-to-end workflow of
processing a single user request, and (ii) the gossip-driven protocol for peer synchronization.

E.1 REQUEST PROCESSING WORKFLOW

Figure 8 presents the end-to-end workflow of a node handling a user request. Upon receiving a query
(Step 1), the node determines whether to execute it locally or offload it to the network (Step 2).

Local execution (Step 3.1): Nodes may host local language models using diverse runtimes (e.g.,
vLLM, SGLang) on heterogeneous devices. WWW.Serve abstracts these differences through a uni-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Node 1 Sync Peer Info Node 2

Node1: self
Node 2: online; IP: bbb
Node 3: online; IP: ccc

Node 4: online; IP: ddd
Node Down → Node 5: offline; IP: eee

Node 1: online; IP: aaa
Node 2: self
Node 3: online; IP: xxx  IP Changed
Node 4: online; IP: ddd
Node 5: online; IP: eee
Node 6: online; IP: fff  Newly Joined Node

Node 1: online; IP: aaa
Node 2: online; IP: bbb
Node 3: online; IP: xxx
Node 4: online; IP: ddd
Node 5: offline; IP: eee
Node 6: online; IP: fff

Gossip-driven peer synchronization

Figure 9: Gossip-driven peer synchronization. During each gossip round, nodes exchange local peer
views, allowing updated information to propagate diffusively throughout the network.

fied inference interface, allowing heterogeneous hardware and software stacks to participate without
modifications to global collaboration mechanisms.

Remote execution (Step 3.2): If offloading is selected, the node samples a trustworthy executor
through our PoS-based scheduler (Step 3.2.1), where each peer’s sampling probability is propor-
tional to its staked credit. Once an executor accepts the task, the request is forwarded for processing
and the generated response is returned to the origin node.

E.2 GOSSIP-DRIVEN PEER SYNCHRONIZATION

Figure 9 shows an example gossip synchronization between two nodes. Each node maintains a local
view of peer availability, including identifiers, online/offline status, and communication endpoints.
During a gossip round, two nodes exchange their current views and reconcile any discrepancies,
for instance, peers that have gone offline (Node 5), updated their network addresses (Node 3), or
newly joined (Node 6). Repeated lightweight pairwise exchanges allow updates to diffuse across
the network and converge quickly, without requiring any central coordinator.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F OVERHEAD OF DUEL-AND-JUDGE MECHANISM

This section presents a theoretical analysis of the overhead introduced by the duel-and-judge mecha-
nism, followed by an empirical evaluation of latency and SLO attainment under different duel rates.

We first quantify the incremental request load. Let:

• N : total number of user requests across all nodes;
• α: request delegation rate (αN requests are offloaded for remote inference);
• pd: duel rate (a fraction p of delegated requests are selected as duel requests);
• k: number of judges per duel.

Each duel request triggers one challenger inference and k judge evaluations, contributing (1 + k)
additional requests. Thus, the expected number of extra requests introduced by the duel-and-judge
mechanism is

Nαp (1 + k),

which remains modest compared to the overall serving workload.
5% 10% 25% 50%

0 50 100 150 200 250
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

100 125 150 175 200 225 250 275
SLO Threshold (s)

50

60

70

80

90

100

SL
O

At
ta

in
m

en
t (

%
)

Figure 10: Latency CDF (left) and SLO attain-
ment (right) for different duel rates.

To empirically evaluate the effect of duel rate
on system performance, we conduct an abla-
tion study using four nodes, with k = 2 judges
per duel. Requests are uniformly issued by a
dedicated requester-only node. This configu-
ration intentionally imposes higher load than
typical deployments: fewer nodes yet multiple
judges per duel amplify the relative overhead.
As shown in Figure 10, duel probabilities of
5%, 10%, and 25% yield nearly identical la-
tency CDFs and SLO attainment curves, indi-
cating that moderate duel rates introduce mini-
mal overhead.

G PERFORMANCE OF PRODUCTION BLOCKCHAIN SYSTEMS

In WWW.Serve, the blockchain-based credit ledger can be instantiated with any suitably provisioned
blockchain, serving primarily to maintain a tamper-resistant record of credit transactions in a fully
decentralized network. Consequently, to contextualize its scalability and efficiency, we summarize
the performance of several mature blockchain systems, providing representative throughput and
latency metrics that WWW.Serve would inherit when built on similar foundations.

System Throughput (TPS) Latency (s)

Hyperledger Fabric Androulaki et al. (2018) ∼ 3,500 < 1
FastFabric Gorenflo et al. (2019) ∼ 20,000 < 1
Aptos Aptos (2022) ∼ 20,000 ∼ 1.25
Zaptos Xiang et al. (2025) ∼ 20,000 ∼ 0.75

Table 5: Performance of representative blockchain systems. TPS: transactions per second; Latency:
the time between when a transaction is sent and when it’s added to the blockchain.

18

	Introduction
	Related Work
	WWW.Serve's Overview
	Network Architecture
	Request Routing and Node Design

	Core Mechanisms
	Credit-based Transaction System
	Duel-and-Judge Mechanism
	Policy Framework

	Game-Theoretic Analysis
	Empirical Evaluation
	Scheduling Efficiency
	Dynamic Participation
	Duel-and-Judge Evaluation
	Ablation of Policies

	Conclusion
	Implementation
	Experimental Settings
	Use of Large Language Models
	Terminology Clarification
	Supplementary System Details
	Request Processing Workflow
	Gossip-Driven Peer Synchronization

	Overhead of Duel-and-Judge Mechanism
	Performance of Production Blockchain Systems

