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Abstract
Multimodal data is a precious asset enabling a
variety of downstream tasks in machine learn-
ing. However, real-world data collected across
different modalities is often not paired, which
is a significant challenge to learn a joint distri-
bution. A prominent approach to address the
modality coupling problem is Minimum Entropy
Coupling (MEC), which seeks to minimize the
joint Entropy, while satisfying constraints on the
marginals. Existing approaches to the MEC prob-
lem focus on finite, discrete distributions, lim-
iting their application for cases involving con-
tinuous data. In this work, we propose a novel
method to solve the continuous MEC problem, us-
ing well-known generative diffusion models that
learn to approximate and minimize the joint En-
tropy through a cooperative scheme, while sat-
isfying a relaxed version of the marginal con-
straints. We empirically demonstrate that our
method, DDMEC , is general and can be easily
used to address challenging tasks, including unsu-
pervised single-cell multi-omics data alignment
and unpaired image translation, outperforming
specialized methods.

1. Introduction
Nowadays, multimodal data is pervasive thanks to advances
in data collection technologies and the crucial need for sys-
tems that can learn from the diversity of real-world phenom-
ena. Healthcare, for example, is a domain where patient
data often spans electronic health records, radiological im-
ages, genetic data, and wearable sensor outputs (Kline et al.,
2022; Acosta et al., 2022). Autonomous systems rely on
a suite of sensors, including LiDAR, cameras, and ultra-
sonic sensors, to navigate environments effectively (Caesar
et al., 2020; Gu et al., 2023; Franchi et al., 2024). Scientific
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disciplines, such as astronomy and geoscience, employ mul-
timodal datasets combining spatial, spectral, and temporal
data to understand complex systems (Srivastava et al., 2019;
Zhang et al., 2024a; Šošić Klindžić et al., 2024).

Modeling multimodal data allows for a more comprehensive
understanding, reflecting the inherently multi-faceted nature
of the real world. Recent works in representation learn-
ing (Radford et al., 2021; Lu, 2023; Manzoor et al., 2023;
Chen et al., 2023), the study of multivariate systems (Kapla-
nis et al., 2023; Liang et al., 2023; Bounoua et al., 2024b),
generative modeling (Rombach et al., 2022; Tang et al.,
2023b;a; Bounoua et al., 2024a; Esser et al., 2024), and mul-
timodal conversational agents (Li et al., 2023; Liu et al.,
2023; Shukor et al., 2023; Xue et al., 2024; Wu et al.,
2024), are few examples to illustrate the fervent effort in
the machine learning community to address and exploit
multimodality. However, the intrinsic complexity of multi-
modal data introduces several challenges that hinder their
application in machine learning research. Modality hetero-
geneity complicates and sometimes impedes geometric com-
parisons, requiring for example learning a mapping from
ambient to latent spaces (Rombach et al., 2022; Tang et al.,
2023b; Liu et al., 2023; Bounoua et al., 2024a) or stringent
assumptions (Liang et al., 2022; Xia et al., 2023; Dong et al.,
2024; Ibrahimi et al., 2024; Zhang et al., 2024b). Alignment
across modalities at spatial, temporal or semantic levels
is another challenge, which calls for costly pre-processing
steps such as synchronization (Hanchate et al., 2024; Chen
et al., 2024; Scirè, 2024; Martin-Turrero et al., 2024).

The major roadblock we address is that of paired multimodal
data, which is an underlying assumption in many works in
the literature (Radford et al., 2021; Rombach et al., 2022;
Liu et al., 2023; Li et al., 2023; Bounoua et al., 2024a).
Paired data – for a given sample, all its various modalities
are available – is either expensive, difficult to obtain, or
sometimes impossible. For example, in genetic research,
data is inherently unpaired due to the nature of the data
acquisition process, such as single-cell RNA sequencing
data, where measurements destroy the original cells (Kester
& van Oudenaarden, 2018; Chen et al., 2019; Schiebinger
et al., 2019). Similarly, matching image data from different
domains is a challenging endeavor when paired data is miss-
ing, which calls for specialized methods (Zhu et al., 2017;
Huang et al., 2018; Pang et al., 2021; Sasaki et al., 2021;
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Yang et al., 2023; Sun et al., 2023; Xie et al., 2023).

In this work, we study the problem of unpaired multimodal
data through the lens of coupling, a fundamental problem
in probability theory, that aims at determining the optimal
joint distribution of random variables given their marginal
distributions, with early attempts at solving it dating back to
the work by Fréchet (1951). The pairing problem belongs to
a broad class of methods (Den Hollander, 2012; Lin et al.,
2014; Benes & Stepán, 2012; Yu & Tan, 2018): some cast it
through the lens of information-theoretic quantities, where
optimality is defined in terms of Entropy minimization or
Mutual Information maximization, others focus on Opti-
mal Transport (OT) (Villani, 2009; Peyré & Cuturi, 2019),
where optimality is defined as minimizing the expected
value of a transport cost over the joint distribution. Our
focus is the Minimum Entropy Coupling (MEC) problem,
which aims at finding the joint distribution with the smallest
Entropy, given the marginal distribution of some random
variables. Recent applications include entropic causal infer-
ence (Kocaoglu et al., 2017; Javidian et al., 2021; Comp-
ton, 2022), communication systems (Sokota et al., 2022),
steganography (de Witt et al., 2022), random number gener-
ation (Li, 2021b), dimensionality reduction (Cicalese et al.,
2016; Vidyasagar, 2012), lossy compression (Ebrahimi et al.,
2024), and multimodal learning (Liang et al., 2024).

While the MEC problem is known to be NP-
Hard (Vidyasagar, 2012; Kovačević et al., 2012), the
literature contains many approximation and greedy
algorithms (Painsky et al., 2013; Kovacevic et al., 2013; Ci-
calese et al., 2016; Li, 2021a), and theoretical studies about
the approximation qualities of such approaches (Cicalese
et al., 2017; 2019). Nevertheless, the vast majority of prior
work on the MEC problem focus on discrete distributions:
instead, we consider the continuous variant of MEC, and
propose a flexible and general solution to the coupling
problem for arbitrary, continuous distributions. The MEC
problem for continuous random variables is much more
complex than its discrete counterpart, and can be ill-defined
in certain cases due to the properties of differential Entropy
and the challenges inherent to continuous distributions
living in an infinite dimensional space.

The gist of our method is to consider a parametric class
of joint distributions, which we reinterpret as conditional
generative models, with additional terms to steer adherence
to marginal constraints. Then, the MEC problem requires
access to the conditional Entropy, which we rewrite as log-
likelihood. Crucially, our method exploits two specular
generative models, which cooperate to minimize the joint
Entropy, while approximately satisfying the marginal con-
straints. Our approach materializes as two denoising dif-
fusion probabilistic models (Ho et al., 2020), which we
first pre-train on marginal distributions, and then fine-tune

according to reward functions, following an alternating opti-
mization process. In summary, our contributions are:

• We propose an approximation of the MEC problem for
arbitrary, continuous distributions, which is general,
and that does not require stringent assumptions on the
marginal distributions, nor the definition of geometric
cost functions (Section 2).

• We present a practical implementation of our method
(Section 3), that relies on generative models, that inter-
act through a cooperative scheme aiming at optimizing
an information-theoretic cost function related to the
Entropy of the joint distribution. Our training proce-
dure overcomes numerical instabilities and degenerate
solutions by relying on the application of soft marginal
constraints, as well as the natural approximation stem-
ming from a finite-capacity denoising model.

• We illustrate the benefits and performance of our
method on two important use cases (Section 4). First,
we solve the coupling problem between incomparable
spaces with a single-cell multi-omics dataset, where
we compare our method to state-of-the-art alternatives
that rely on OT. Second, we focus on unsupervised im-
age translation between uncoupled pairs, and compare
against state of the art.

2. Problem Formulation
Given two random variables X ∈ X and Y ∈ Y with
marginal probability distributions pX(x) and pY (y) respec-
tively, we consider a parametric space Pθ = {pθXY (x, y)}
of joint distributions over the space X × Y , with induced
marginal distributions pθX(x), pθY (y) (where pθX(x) ≜∫
Y pθXY (x, y) dy and similarly for pθY (y)). The MEC prob-

lem between the two original distributions pX(x) and pY (y)
consists in finding a joint distribution pθXY (x, y) such that
i) the induced marginal distributions pθX(x), pθY (y) match
them either exactly or approximately and ii) the joint dis-
tribution is the one with minimal entropy (Kovacevic et al.,
2013; Cicalese et al., 2017; 2019). The constraints over the
search space Pθ are referred to as marginal contraints

Definition 2.1. A joint distribution pθXY (x, y) from Pθ is
said to be an exact coupling iff

pθX(x) = pX(x), pθY (y) = pY (y). (1)

In general, exact coupling is not possible (nor wanted,
to avoid overfitting) and the goodness of the solution in
terms of marginal constraints is approximated through
some distance function between the induced and original
distributions, e.g. using the Kullback-Leibler divergence
KL

[
pθX ∥ pX

]
≜ Ex∼pθ

X

[
log

pθ
X

pX
(x)

]
. Then, we define
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the MEC problem with soft constraints as follows

min
θ

H(pθXY ) + λXKL
[
pθX ∥ pX

]
+ λY KL

[
pθY ∥ pY

]
,

(2)

where the entropic term is defined as H(pθXY ) ≜
−Ex,y∼pθ

X,Y

[
log pθXY (x, y)

]
.

Previous work have mainly focused on the exact MEC in dis-
crete settings, where pX and pY have a finite or countably
infinite number of outcomes. Exact solution in such set-
tings is known to be NP-Hard (Vidyasagar, 2011; Kovacevic
et al., 2013). Under our assumption of continuous spaces the
problem is more complex. Exact matching is not generally
possible due to the finite complexity of the parametric family
Pθ, since in general the distributions pX , pY live in infinite
dimensional spaces. Rather than a limitation, enforcing lim-
ited complexity is helpful to avoid degenerate, deterministic
joint probabilities (e.g. pθXY (x, y) = δ(y − g(x))pX(x),
where g(·) is any mapping which guarantees exact coupling),
which would induce infinite joint entropy.

Interestingly, the MEC problem has an intuitive interpre-
tation connected to the problem of Mutual Information
maximization. Indeed, I(pθXY ) ≜ −H(pθXY ) + H(pθX) +
H(pθY ) and in the exact matching scenario H(pθX) =
H(pX),H(pθY ) = H(pY ). In other words, whenever the
marginal constraints are satisfied with reasonable quality,
the MEC problem is a good approximation of the informa-
tion maximization problem.

Early instances of the coupling problem express it through
the lenses of OT (Monge, 1781; Kantorovich, 1942). In
the simplest (albeit rich and interesting) scenario, the goal
is to minimize the transportation cost between distribu-
tions Ex,y∼pθ

X,Y
[||x− y||2], with the implicit assumption of

X = Y = RN and under the requirement of exact match-
ing (corresponding to λX = λY = ∞). Several inter-
esting extensions, including additional constraints on the
joint distribution such as geometry or structural constraints,
lead to tailor-made approaches (Villani, 2009; Peyré & Cu-
turi, 2019). Other than the trivial relaxation of constraints
from exact to approximate, a particularly useful extension
concerns the entropy-regularized version of this problem,
where the cost function is complemented by the entropic
term H(pθXY ). Although MEC is fundamentally different
than OT, a link between the two clearly exists. However, a
straightforward comparison is not possible, as the entropic
term enters the respective minimization problems with dif-
ferent signs. Minimizing H(pθXY ) directly over other ge-
ometric costs (like the euclidean norm considered in OT)
has several advantages in terms of generality, as it does not
require geometrically comparable spaces X and Y .

3. Methodology
Consider two random variables in continuous domains,
X ∈ X and Y ∈ Y . We begin by considering a parametric
class for the joint distribution expressed as pθX,Y (x, y) =

pθX|Y (x|y)pY (y), such that the joint entropy H(pθX,Y ) min-
imization becomes equivalent to minimizing the conditional
entropy H(pθX|Y=y). Note that the marginal constraint on Y
from Equation (2) is verified by construction. To satisfy the
marginal constraint on X we consider the KL divergence.
This leads to an alternative definition of the MEC problem
with soft constraints, that reads as
Definition 3.1. Given random variables X ∈ X and Y ∈ Y ,
the continuous MEC problem with soft marginal constraints
corresponds to the optimization problem

min
θ

Ey∼pY

[
H(pθX|Y=y)

]
+ λXKL

[
pθX ∥ pX

]
. (3)

Crucially, we note that the parametric portion of the joint
distribution, namely pθX|Y (x|y), can be interpreted as a con-
ditional generative model of the variable X given Y . As a
consequence, the conditional entropy from Definition 3.1,
can be interpreted as an expected log-likelihood, leading to

min
θ

Ex,y∼pθ
X,Y

[
− log

(
pθX|Y=y

)]
+ λXKL

[
pθX ∥ pX

]
.

(4)

A maximum likelihood solution to the MEC problem in
Equation (4) is appealing, because it can be addressed by
learning the parameters of an appropriate conditional gener-
ative model, while approximating the marginal constraints
on X through the unconditional version of the model. Nev-
ertheless, this approach bears several challenges:

• Asymmetry: Equation (4) can be used to minimize the
conditional entropy H(pθX|Y=y). The learned condi-
tional generative model can be used to generate sam-
ples from variable X given Y , but not vice-versa.

• Marginal constraint: in principle, exact matching re-
quires λX → ∞, but this choice leads to degenerate
solutions to the MEC problem. The marginal constraint
from Definition 3.1, despite being soft, should strive to
keep pθX anchored to pX(x), which is not known.

To address the first challenge, we introduce a second fam-
ily of parametric models pϕY |X(y|x)pX(x), this time corre-
sponding to conditional generative model of the variable
Y given observations of X . Then, we can write a specular
version of the MEC problem we defined as

min
ϕ

Ex,y∼pϕ
X,Y

[
− log

(
pϕY |X=x

)]
+ λY KL

[
pϕY ∥ pY

]
.

(5)
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Recall that pθX,Y = pθX|Y pY and pϕX,Y = pϕY |XpX : it is
then reasonable to strive, among all the possible solutions,
for pθX,Y = pϕX,Y . This joint constraint can be approxi-
mated with a penalty term proportional to the KL divergence
between the two distributions. Interestingly, this coupling
allows to implement a practical method that exploits coop-
eration: we use pϕY |X to improve pθX|Y , and vice-versa.

To address the second challenge, and pave the way for
our practical implementation, we break the optimization
problem by first focusing on respecting the marginal con-
straints. To do so, we pretrain unconditional models such
that pθ∗X (x) ≈ pX(x) and pϕ∗

Y (y) ≈ pY (y). Then, we use
θ∗ and ϕ∗ to initialize the conditional models, and anchor
their parameters throughout the optimization such that they
do not deviate too much from the pretrained models.

Overall, the method we propose writes as

min
θ

Ex,y∼pθ
X,Y

[
− log

(
pϕY |X=x

)]
+ λXKL

[
pθX ∥ p

θ∗
X

]
,

min
ϕ

Ex,y∼pϕ
X,Y

[
− log

(
pθX|Y=y

)]
+ λY KL

[
pϕY ∥ p

ϕ∗
Y

]
,

(6)

where we additionally enforce the approximate joint
constraint. Notice the difference with Equation (4)
and Equation (5): given the structure of the paramet-
ric distributions we use, it is possible to show that
∇θEx,y∼pθ

X,Y
[− log pθX|Y ] ≈ ∇θEx,y∼pθ

X,Y
[− log pϕY |X ]

whenever pθX,Y = pϕX,Y (see Appendix A.1 for more de-
tails). Strict adherence to the joint constraint, in princi-
ple, allows “swapping” the roles of the conditional models
without affecting the optimization dynamics, leading to a
cooperative method. In practice, we found trough empiri-
cal exploration that such a cooperative formulation, albeit
approximate, proves to be much more stable than the orig-
inal problem, and consequently decided to adopt it in our
implementation, as described next.

3.1. Practical implementation

In our implementation, we consider the parametric class of
probability distributions associated to denoising diffusion
probabilistic models (DDPM) (Sohl-Dickstein et al., 2015;
Ho et al., 2020). These models enjoy excellent performance
in fitting complex multimodal data, and allow accurate esti-
mation of information metrics (Franzese et al., 2024; Kong
et al., 2024; Bounoua et al., 2024b; Dewan et al., 2024).

DDPM. These generative models are characterized by a
forward process, that is fixed to a Markov chain that gradu-
ally adds Gaussian noise to the data according to a carefully
selected variance schedule βt, i.e. xt =

√
1− βtxt−1 +

√
βtϵ with ϵ ∼ N (0, I). Interestingly, an arbitrary portion

of this forward chain can be efficiently simulated through
the equality in distribution xt =

√
ᾱtx0+(

√
1− ᾱt)ϵ, with

x0 ∼ pX and αt = 1− βt, ᾱt =
∏t

s=1 αs.

The corresponding discrete-time reverse process, that has a
Markov structure as well, is used for generative purposes.
The model generates data through the iterative sam-

pling process pθX(x0...T ) =
T∏

t=1
pθ(xt−1|xt)p

θ(xT ),

where pθ(xT ) = N (xT ; 0, I) and typically
pθ(xt−1|xt) is a Gaussian transition kernel with mean
1√
αt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
and covariance βtI . Intu-

itively, starting from a simple distribution xT ∼ N (0, I),
samples are generated by a denoising network ϵθ, that
removes noise over T denoising steps. A simple way to
learn the denoising network ϵθ is to consider a re-weighted
variational lower bound of the expected marginal likelihood,
where the problem argminθ KL

[
pX ∥ pθX

]
becomes

argmin
θ

T∑
t=1

Eϵ∼N (0,I),x0∼pX

[
||ϵ− ϵθ(xt, t)||2

]
. (7)

This simple formulation has been extended to conditional
generation (Ho & Salimans, 2021), whereby a condition-
ing signal y injects “external information” in the iterative
denoising process. This requires a simple extension to the
denoising network such that it can accept the conditioning
signal: ϵθ(xt, y, t). During training, a randomized approach
allows to learn both the conditional and unconditional vari-
ants of the denoising network, for example by assigning a
null value to the conditioning signal, e.g. y = ∅.

In Equation (6), the log-likelihood emerges as a critical
quantity to address the MEC problem. In the ideal condi-
tions of a perfect denoising network, the difference between
predicted and actual noise can be used, in the limit of infinite
number of denoising steps, to compute exactly such quan-
tity (Kong et al., 2023). We use these results to compute the
log-likelihoods through Monte Carlo estimation techniques

− log pθ(x0) ≈ const +
1

2

T∑
t=1

Eϵ

[
∥ϵ− ϵθ(xt, t)∥22

]
, (8)

where the unspecified constant does not depend neither on
x0 nor on θ, and is consequently irrelevant for optimization
purposes. This approach can be trivially generalized to the
case of a conditional denoising network ϵθ(xt, y, t).

Our method: DDMEC . We being by pretraining uncon-
ditional models such that pθ∗X (x) ≈ pX(x) and pϕ∗

Y (y) ≈

4



Learning to Match Unpaired Data with Minimum Entropy Coupling

pY (y). Then, we use θ∗ and ϕ∗ to initialize conditional
models pθX|Y and pϕY |X , which use denoising networks that
accept additional conditioning signals, following Zhang
et al. (2023). Next, we interpret the optimization expressed
in Equation (6) as a model fine-tuning objective, which is
reminiscent of the work by Fan et al. (2023)

min
θ

Ex,y∼pθ
X,Y

rϕ(y, x) + λ̃XKL
[
pθX ∥ p

θ∗
X

]
,

min
ϕ

Ex,y∼pϕ
X,Y

rθ(x, y) + λ̃Y KL
[
pϕY ∥ p

ϕ∗
Y

]
, (9)

where rϕ = − log pϕY |X and rθ = − log pθX|Y are re-
ward signals striving to minimize the conditional entropies,
and λ̃X , λ̃Y are scaling factors used for fine-tuning, that
no longer require to be extremely large. Furthermore,
we enforce the joint constraints via extra penalty terms
KL

[
pθX,Y ∥ p

ϕ
X,Y

]
,KL

[
pϕX,Y ∥ pθX,Y

]
.

Fine-tuning DDPMs introduces significant computational
overhead. To address this, various studies have explored
supervised methods (Lee et al., 2023; Wu et al., 2023) or re-
inforcement learning. In (Clark et al., 2023; Xu et al., 2024),
fine-tuning is achieved through direct back-propagation
through the reverse process, which can be costly. Alterna-
tive methods use proximal policy optimization (PPO) (Fan
et al., 2023; Black et al., 2024; Uehara et al., 2024), leading
to improved stability. Note that (Fan et al., 2023) incor-
porates KL-regularization to maximize the reward signal,
while ensuring fidelity to the pretrained model, which is
analogous to our soft marginal constraints.

In our implementation, we compute gradients of the reward
∇θEpθ

X,Y
rϕ(y, x) as follows (Fan et al., 2023)

Epθ
X,Y

rϕ(y, x)

T∑
t=1

∇θ log p
θ(xt−1|xt, y), (10)

while the gradient of the marginal constraints
∇θKL

[
pθX ∥ p

θ∗
X

]
are obtained as the approximate

gradient of an upper bound (Fan et al., 2023)

T∑
t=1

∇θExt

[
||ϵθ(xt, y, t)− ϵθ∗(xt, t)||2

]
. (11)

Similar expressions apply to the specular model.

Given pretrained models pθ∗X , pϕ∗
Y , the pseudo-code of our

DDMEC method in Algorithm 1 is extremely simple, as
it materializes as alternating optimization steps, described
(for the top Equation (9)) in Algorithm 2. First, we optimize
for the parameters θ of the model pθX|Y=y, while fixing

Algorithm 1 DDMEC Training Loop

Input: θ∗, ϕ∗
Initialize θ ← θ∗, ϕ← ϕ∗
repeat

Call Algorithm 2 with y ∼ pY , θ, θ∗, ϕ
Call Algorithm 2 with x ∼ pX , ϕ, ϕ∗, θ

until Converged

Algorithm 2 DDMEC Training Step

Input: y, θ, θ∗, ϕ
x ∼ pθX|Y=y, t ∼ U [0, T ], ϵ ∼ N (0, I)
Update θ using Equation (10) and Equation (11)
Update ϕ using ∇ϕEyt,t

[
∥ϵ− ϵϕ(yt, x, t)∥2

]

the parameters ϕ of the specular model pϕY |X , which we
use as a reward term. Then we adapt the parameters ϕ to
ensure pϕX,Y ≈ pθX,Y : this is achieved by noting that we can
adapt Equation (7) to this purpose, whereby the parameters
θ are now fixed. In the second phase (which can described
as the specular version of Algorithm 2), we optimize for
the parameters ϕ of the model pϕY |X=x, while fixing the
parameters θ of the model pθX|Y using the corresponding
reward term. Finally, in a specular manner to the first phase,
we ensure coherency of the two models by adapting θ such
that pθX,Y ≈ pϕX,Y , thus satisfying the joint constraint.

4. Experiments
DDMEC is a general method that can be applied across
a variety of data domains, as it relies on an information-
theoretic measure to match unpaired entities. Next, we
demonstrate DDMEC versatility using two realistic pair-
ing tasks that use various data modalities, including multi-
omics and image data. We compare DDMEC to state-of-
the-art methods for each task, and measure performance
using domain-specific metrics. Details about DDMEC im-
plementation, and our experimental protocol are given in
Appendix A.

4.1. Multi-omics single-cell alignment

Single-cell measurements techniques, such as mRNA se-
quencing for whole-transcriptome analysis at the single-cell
level (Tang et al., 2009), have been adapted and commercial-
ized by companies which developed platforms to facilitate
scalable and efficient single-cell transcriptomics and multi-
omics data collection. This data provides a detailed snapshot
of the heterogeneous landscape of cells in a sample, and can
be used to study the cell developmental trajectories across
time, for example. The availability of multi-omics measure-
ments – capturing various properties of a cell, such as gene
expression, mRNA transcriptomes, chromatin accessibility,
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histone modifications, to name a few – calls for data integra-
tion methods to combine a variety of modalities (Xi et al.,
2024). Unfortunately, current measurement techniques are
destructive: it is hard to obtain multiple types of measure-
ments from the same cell. Furthermore, it is well-known
that different cell properties, such as transcriptional and
chromatin profiles, cannot be matched using the geometric
properties of features in the two domains. Then, pairing
single-cell data modalities requires methods that do not rely
on either common cells or common features across the data
types (Welch et al., 2017; Amodio & Krishnaswamy, 2018;
Welch et al., 2019; Stuart et al., 2019).

Baselines. We compare our proposed method DDMEC
to several baselines from both the machine learning and
bioinformatics literature, including SCOT (Demetci et al.,
2022), MMD-MA (Liu et al., 2019), UNIONCOM (Cao et al.,
2020), and SCTOPOGAN (Singh et al., 2023a). SCOT pro-
poses a variant of an OT formulation based on the Gromov-
Wasserstein distance, which preserves local neighborhood
geometry when transporting data points. MMD-MA is a
global manifold alignment algorithm based on the max-
imum mean discrepancy (MMD) measure. UNIONCOM
performs unsupervised topological alignment for single-
cell multi-omics data, emphasizing both local and global
alignment. SCTOPOGAN uses topological autoencoders to
obtain latent representations of each modality separately;
a topology-guided Generative Adversarial Network then
aligns these latent representations into a common space. We
compare our method to INFOOT (Chuang et al., 2023) in
Appendix B.1. All alternative methods we consider require
a choice of distance or similarity measures, which is a pain
point that our method DDMEC completely eliminates.

Datasets. We evaluate our method on two benchmark
single-cell multi-omics datasets: the peripheral blood
mononuclear cells (PBMC) dataset and the bone marrow
(BM) dataset.

The PBMC dataset comprises healthy human peripheral
blood mononuclear cells, profiled using the 10x Genomics
multiome protocol, which enables simultaneous measure-
ment of gene expression (RNA) and chromatin accessibility
(ATAC) from the same cells. This dataset includes a total of
11,910 cells, encompassing 7 major immune cell types that
are further subdivided into 20 finer-grained cell subclasses.

The BM dataset consists of human bone marrow cells pro-
filed using the CITE-seq protocol (Stoeckius et al., 2017),
which jointly captures gene expression (RNA) and protein
abundance via antibody-derived tags (ADT). A set of 10,235
cells are Randomly selected from each modality based on
the major cell type labels.

For both datasets, we adopt the data preprocessing and eval-

Method Celltype Acc ↑ Subcelltype Acc ↑
UnionCom⋆ 34.8 ± 10.9 22.9 ± 7.2
MMD-MA⋆ 28.3 ± 6.4 10.2 ± 4.8
SCOT ⋆ 12.9 ± 1.1 2.4 ± 0.2
scTopoGAN ⋆ 61.7 ± 8.6 41.3 ± 6.5
DDMEC 66.34 ± 2.65 46.06 ± 0.57

BM
UnionCom ⋆ 51.8 ± 3.7 20.9 ± 2.6
MMD-MA⋆ 38.8 ± 17.9 10.4 ± 8.4
SCOT⋆ 90.5 ± 0.0 31.6 ± 0.0
scTopoGAN⋆ 50.9 ± 14.7 22.5 ± 5.4
DDMEC 77.38±0.10 44.29±0.11

Table 1: Single-Cell alignment experiments

uation pipeline described in (Singh et al., 2023a), resulting
in 50-dimensional embeddings per modality. To assess the
quality of the coupling, we compute cross-modal neighbor-
hood consistency: for each cell in one modality, we identify
its k = 5 nearest neighbors in the aligned space from the
other modality using Euclidean distance. We then evaluate
the proportion of cases where the cell’s class or subclass
label matches the majority label among its neighbors. The
resulting metrics are reported as the Celltype Acc and Sub-
celltype Acc, respectively. In this experiment, DDMEC is
trained once, and inference is conducted five times with
different seeds.

Results. Section 4.1 presents the quantitative results for
the single-cell alignment task. Results marked with ⋆ are
reported directly from (Singh et al., 2023a). We observe
that DDMEC consistently outperforms existing baselines
on the PBMC dataset, achieving superior performance in
aligning both coarse-grained cell types and fine-grained cell
subclasses. On the BM dataset, DDMEC obtains the best
performance for subclass-level alignment and ranks second
for cell-type alignment.

Notably, DDMEC is the only method that demonstrates
robust performance across both datasets, whereas alternative
approaches exhibit inconsistent behavior—e.g., SCOT per-
forms well on BM but fails to generalize to PBMC. In con-
trast to existing methods that learn deterministic, one-to-one
mappings between modalities, DDMEC is fundamentally
generative in nature. It learns to sample from a coupling
distribution rather than enforcing a fixed correspondence.
To compute alignment metrics, we draw a sample in the tar-
get modality conditioned on a source cell, then identify the
closest observed cell in the dataset using Euclidean distance.
Figure 1 illustrates this conditional generation process using
UMAP projections.
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Figure 1: Conditional generation with DDMEC on PBMC
dataset. Top: UMAP visualizations of both the generated
and source data. Bottom: points are colored by cell type,
illustrating how well DDMEC preserves cell type separa-
tion.

4.2. Unpaired image translation

This is a well-known problem in computer vision, where,
in the absence of paired data (the joint distribution), the
objective is to discover the correct mapping between two
image domains. In this work, we show that unpaired image
translation can be framed as a MEC problem, where the
goal is to learn the correct joint distribution between two
unpaired image domains, X and Y , respectively. Given the
growing popularity of diffusion models in image-related
tasks, pretrained weights for various image domains are
available: we leverage them in our method DDMEC , as
done e.g. by Zhang et al. (2023).

Baselines. As the literature on image translation is vast,
here we primarily focus on the unpaired case, and compare
our method to a vast range of alternatives. Generative Ad-
versarial Network (GAN) have been widely applied to this
domain (Pang et al., 2021). These methods can be broadly
categorized into those focusing on cycle-consistency, which
enforces bidirectional mappings between image domains,
such as CYCLEGAN (Zhu et al., 2017), DUALGAN (Yi
et al., 2017), SCAN (Van Gansbeke et al., 2020), and U-

GAT-IT (Kim, 2019); the second category uses distance-
based methods, such as DISTANCEGAN (Benaim & Wolf,
2017), GCGAN (Fu et al., 2019), CUT (Park et al., 2020),
and LSESIM (Zheng et al., 2021). Diffusion-based models,
which are related to our method, have also been explored
for unpaired image translation. UNIT-DDPM (Sasaki et al.,
2021) learns two conditional models along with two ad-
ditional domain translation models, incorporating a GAN-
like cycle-consistency loss. ILVR (Choi et al., 2021) and
SDEDIT (Meng et al., 2021) utilize a diffusion model
in the target domain while conditioning on a source im-
age to refine the sampling procedure for image translation.
EGSDE (Zhao et al., 2022) employs an energy function
pretrained on both source and target domains to guide the
inference process. Similarly, SDDM (Sun et al., 2023) intro-
duces manifold constraints, forcing distributions at adjacent
time steps to be decomposable into denoising and refine-
ment components. Compared to these methods, DDMEC
leverages two conditional models, one per domain, which
can be initialized using pretrained unconditional diffusion
models. By design, our method does not require comparable
domains and does not rely on a specific image similarity
measure. We report results according to two values for the
guidance coefficient, a parameter influencing conditional
generation.

Datasets. We adopt the same experimental validation pro-
tocol as described by Zhao et al. (2022), where all im-
ages are resized to a resolution of 256 × 256. We use
the AFHQ (Choi et al., 2020) dataset, consisting of high-
resolution animal face images across three domains: CAT,
DOG, and WILD. This dataset exhibits relatively large vari-
ations within and between domains, with 500 test images
per domain. We compute the performance of our method
DDMEC and compare it to the baselines on CAT→DOG
and WILD→DOG tasks.

Furthermore, we employ the CELEBA-HQ (Karras, 2017)
dataset, which comprises high-resolution human facial im-
ages categorized into two distinct domains: MALE and
FEMALE. To evaluate the efficacy of our proposed approach
relative to existing baselines, we conduct experiments on
the domain translation task from MALE to FEMALE.

In addition, owing to the bidirectional architecture of
DDMEC —which leverages two conditional generative
models—our framework inherently supports translation in
the reverse direction as well. The corresponding results for
the FEMALE→ MALE task are presented in Appendix B.

Results. In Table 2, we present the quantitative results of
DDMEC : results for alternative methods, marked with ⋆,
are reported as obtained in (Sun et al., 2023; Zhao et al.,
2022). DDMEC results are reported using 5 seeds. The
evaluation is based on generation quality, measured by the
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Fréchet Inception Distance (FID) score (Heusel et al., 2017)
(lower is better), and the fidelity to the source domain, as-
sessed using structural Similarity Index Measure (SSIM)
score (Wang et al., 2004) (higher is better). Note that quality
and fidelity can be thought of as divergent objectives: high
quality does not imply high fidelity and vice-versa.

On the AFHQ dataset, GAN-based methods generally suffer
from low image quality, except for STARGAN, which
achieves a low FID but performs poorly on SSIM. In contrast,
diffusion-based methods demonstrate superior performance
compared to GAN-based approaches. DDMEC achieves the
best FID score in the CAT→DOG task and the highest SSIM
in the WILD→DOG task while maintaining comparable
results on the remaining metrics. Overall, DDMEC strikes
the best balance between high-quality image generation and
accurate alignment with the target domain.

Our results on the CELEBA-HQ dataset, demonstrate that
DDMEC outperforms competitors on both FID and SSIM
even with only 50 sampling steps. Specifically, at 50 steps
the FID improves by approximately 1 point and the SSIM by
0.02 points, with an even greater improvement (a 3 point
FID reduction) when using 100 sampling steps: it is well-
known in the generative modeling literature that these im-
provements are significant. With the CELEBA-HQ dataset,
DDMEC benefits from a larger training set than in AFHQ
animal dataset, and achieves state-of-the-art performance
on image translation.

Source Output Source Output

Figure 2: Qualitative results of DDMEC -100 (guid-
ance=2.5) on CELEBA-HQ. Left: :MALE→FEMALE and
Right: FEMALE→MALE . Source domain image is used to
generate the target female image.

Table 2: Quantitative image translation results.

Model FID↓ SSIM↑
CAT→DOG

CycleGAN⋆ 85.9 -
MUNIT⋆ 104.4 -
DRIT⋆ 123.4 -
Distance⋆ 155.3 -
SelfDistance⋆ 144.4 -
GCGAN⋆ 96.6 -
LSeSim⋆ 72.8 -
ITTR (CUT)⋆ 68.6 -
StarGAN v2⋆ 54.88 ± 1.01 0.27 ± 0.003
CUT⋆ 76.21 0.601

SDEdit⋆ 74.17 ± 1.01 0.423 ± 0.001
ILVR⋆ 74.37 ± 1.55 0.363 ± 0.001
EGSDE⋆ 65.82 ± 0.77 0.415 ± 0.001
SDDM⋆ 62.29 ± 0.63 0.422± 0.001

50 Sampling steps
DDMEC (guidance=9) 60.70 ± 1.07 0.410 ± 0.001
DDMEC (guidance=7) 58.50 ± 0.96 0.404 ± 0.001

100 Sampling steps
DDMEC (guidance=9) 60.51 ± 1.01 0.403 ± 0.001
DDMEC (guidance=7) 57.89 ± 0.37 0.397 ± 0.001

WILD→DOG

SDEdit⋆ 68.51 ± 0.65 0.343 ± 0.001
ILVR⋆ 75.33 ± 1.22 0.287 ± 0.001
EGSDE⋆ 59.75 ± 0.62 0.343 ± 0.001
SDDM⋆ 57.38 ± 0.53 0.328 ± 0.001

50 Sampling steps
DDMEC (guidance=9) 62.03 ± 1.18 0.360 ± 0.002
DDMEC (guidance=7) 60.67 ± 1.01 0.353 ± 0.004

100 Sampling steps
DDMEC (guidance=9) 62.09 ± 0.59 0.356± 0.001
DDMEC (guidance=7) 59.22 ± 0.35 0.346 ± 0.001

MALE→FEMALE

SDEdit⋆ 49.43 ± 0.47 0.572 ± 0.000
ILVR⋆ 46.12 ± 0.33 0.510 ± 0.001
EGSDE⋆ 41.93 ± 0.11 0.574 ± 0.000
SDDM⋆ 44.37± 0.23 0.526 ± 0.001

50 Sampling steps
DDMEC (guidance=2.5) 40.73 ±0.61 0.593 ± 0.003
DDMEC (guidance=2) 36.99± 0.83 0.556 ± 0.002

100 Sampling steps
DDMEC (guidance=2.5) 38.93 ± 0.37 0.588 ± 0.002
DDMEC (guidance=2) 34.86 ± 0.70 0.549 ± 0.002

This outcome aligns with expectations, as DDMEC is
designed to reduce uncertainty and enforce adherence to
marginal constraints. In Figure 3 and Figure 2, qualitative
results further confirm the performance of DDMEC in
this task. Additional results are available in Figure 6 and
Figure 9.

We investigate the effect of the guidance scale which acts
as a temperature like parameter that controls conditioning
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strength—in our diffusion-based unpaired image translation
framework. A test-time ablation study (Figure 8a) reveals
a trade-off: higher guidance improves SSIM (structural
similarity) but degrades FID (image realism), while lower
guidance yields the opposite. This illustrates how guidance
balances modality fidelity and mutual information maxi-
mization under the MEC framework.

Source Output Source Output

Figure 3: DDMEC (guidance=7) CAT→DOG (Left) and
WILD→DOG image (right) translation examples. Source
domain image is used to generate the target dog image.

5. Conclusion
The machine learning community has recently directed sub-
stantial effort toward designing multimodal models, as they
reflect the inherently multi-faceted nature of the real world.
These models often achieve superior performance on down-
stream tasks compared to unimodal counterparts. However,
the intrinsic complexity of multimodal data introduces sig-
nificant challenges. In this work, we addressed the critical
problem of coupling data represented by diverse modali-
ties. The coupling problem has been widely studied in the
literature, often framed as an optimal transport problem or

approached with specialized architectures tailored to spe-
cific domains, such as images or language. However, exist-
ing methods typically rely on geometric spaces to compute
costs, mappings, and similarities between data points.

We proposed a novel method that shifts the focus toward
information and uncertainty quantification, thereby cir-
cumventing the limiting assumptions of prior approaches.
Specifically, we studied the coupling problem through the
lens of minimum entropy coupling. Since prior work on
MEC has largely been confined to discrete distributions, we
extended this framework to continuous distributions. Our
key idea lies in introducing a parametric class of joint dis-
tributions reinterpreted as conditional generative models,
augmented with terms to enforce adherence to marginal con-
straints. Our approach uses two models, which alternately
optimize their objectives while approximately satisfying
marginal constraints.

The resulting method enables sampling and generation in
either direction between modalities, without requiring spe-
cialized embeddings or strict geometric assumptions. Fur-
thermore, it is adaptable to complex settings beyond one-to-
one matching between modalities. We validated the perfor-
mance of our approach in two domains. First, we applied
it to multi-omics sequencing data, and we compared our
method against several state-of-the-art alternatives that rely
on predefined measures for data comparison and coupling
cost definition. Our approach, being more general and free
from stringent assumptions, achieves performance on par
with or superior to these alternatives. Second, we evaluated
our method in the image translation domain, comparing it
to a range of approaches from the literature.

Our method demonstrated superior performance across
widely recognized metrics for image quality and coherence,
by striking a good balance between these often conflicting
measures.
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Scirè, A. Emergence and criticality in spatiotemporal syn-
chronization: The complementarity model. Artificial Life,
30(4):508–522, 2024.

Shukor, M., Dancette, C., Ramé, A., and Cord, M. UnI-
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A. Additional Details

Unpaired data

Cooperative

Paired data

DDPM

DDPM

(1)
(2)

Figure 4: Overview of the DDMEC methodology. The phase (1) corresponds to the procedure described in Algorithm 2,
Lines 2 and 2, and involves generating samples (depicted in red and blue) conditioned on inputs x and y drawn from their
respective marginals. These samples are then used to evaluate the loss defined in Equation (9), which is practically optimized
using PPO (Fan et al., 2023). The phase (2) corresponds to Line 2 of Algorithm 2, wherein the joint consistency constraint
is enforced by updating the model with the previously generated sample pairs. Both phases require coordination between the
two models, alternating their roles as outlined in Algorithm 1.

A.1. Details on Swapping the Roles of the Conditional Models

In this part we provide more details about the justification of :

∇θEx,y∼pθ
X,Y

[− log pθX|Y ] ≈ ∇θEx,y∼pθ
X,Y

[− log pϕY |Y ] (12)

whenever pθX,Y = pϕX,Y .

Equation (12) reads:

∇θ

∫
pY (y) p

θ
X|Y (x|y) log p

θ
X|Y (x|y) dx dy. (13)

Moving the gradient ∇θ inside the integral and applying the chain rule, we obtain:

∫
pY (y)∇θ

(
pθX|Y (x|y)

)
log pθX|Y (x|y) dx dy

+

∫
pY (y) p

θ
X|Y (x|y)∇θ

(
log pθX|Y (x|y)

)
dx dy. (14)
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The second term simplifies to zero:∫
pY (y) p

θ
X|Y (x|y)∇θ

(
log pθX|Y (x|y)

)
dx dy =

∫
pY (y)∇θ

(
pθX|Y (x|y)

)
dx dy

= ∇θ

∫
pY (y) p

θ
X|Y (x|y) dx dy

= ∇θ1 = 0. (15)

Assuming pθX,Y = pϕX,Y , pθX = pX , and pϕY = pY , the first term rewrites as:∫
pY (y)∇θ

(
pθX|Y (x|y)

)
log

pϕY |X(y|x)pX(x)

pY (y)
dx dy

=

∫
pY (y)∇θ

(
pθX|Y (x|y)

)(
log pϕY |X(y|x) + log pX(x)− log pY (y)

)
dx dy

= ∇θ

∫
pY (y) p

θ
X|Y (x|y) log p

ϕ
Y |X(y|x) dx dy, (16)

which corresponds to the right-hand side (r.h.s) of Equation (12).

Indeed, the additional terms vanish:∫
pY (y)∇θ

(
pθX|Y (x|y)

)
log pX(x) dx dy =

∫
∇θ

(
pθX(x)

)
log pX(x) dx

=

∫
∇θ (pX(x)) log pX(x) dx = 0, (17)

and similarly,

−
∫

pY (y)∇θ

(
pθX|Y (x|y)

)
log pY (y) dx dy = 0. (18)

A.2. Diffusion Models Training with Reinforcement Learning

Our methodology begins by training unconditional diffusion models for both data modalities. We then use a reinforcement
learning technique to train two conditional models (initialized from the first step) in a cooperative manner, allowing them to
learn from each other to optimize the joint coupling under MEC constraints and objectives. We formulate this second phase
as training diffusion models with reinforcement learning and KL-regularization. We follow the training scheme presented
by Fan et al. (2023), where samples are generated conditionally using classifier guidance (Ho & Salimans, 2021) with a
DDIM sampler (Song et al., 2020). The generated trajectories are then used to update the diffusion model, which is framed
as a Markov Decision Process (MDP), using a policy gradient RL algorithm.

Reward Estimation In DDMEC , the reward signals are log-likelihood values mutually generated by the two conditional
models. Accurately estimating this signal is crucial for steering training towards the optimal MEC solution. To achieve this,
we use multiple Monte Carlo steps to estimate Equation 8.

Policy Gradient Training We follow the training procedure of Fan et al. (2023), where, at each step, a batch of samples is
generated using DDIM (Song et al., 2020). These generated trajectories are then used to perform multiple gradient updates.
Additionally, we apply importance sampling and ratio clipping (Schulman et al., 2017) to improve training stability.

Classifier-Free Guidance We employ classifier-free guidance (Ho & Salimans, 2021) in all experiments. This technique
enables conditional sampling in step 2. The denoising loss in ?? is optimized to account for the guidance mechanism by
randomly dropping 10% of the conditional signal, thereby stabilizing the unconditional model.

A.3. Technical Details and Hyperparameters

The source 1 is publicly available.

1https://github.com/MustaphaBounoua/ddmec
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Single-Cell Alignment For the PBMC and BM datasets, we utilize the preprocessed versions provided in the official
code repository of Singh et al. (2023b)2, along with the accompanying evaluation protocols. Prior to training, we normalize
the data by subtracting the mean and scaling to unit variance, while applying outlier mitigation. The model is first trained
unconditionally using a DDPM for 100,000 steps with T = 1000 diffusion steps. To stabilize training, we additionally
incorporate a nearest neighbor retrieval step after each generation, where generated samples are projected back to the closest
real data points using Euclidean distance. Subsequently, we train the two conditional models, following the procedure
outlined in Algorithm 1. For each training step, we use a batch size of 256 and perform four gradient updates corresponding
to line 2, followed by four updates for Line 2. We find it beneficial to accumulate generated samples during training and
reuse them in optimizing Line 2. We use a simple MLP network with skip connections and use the Adam optimizer (Kingma,
2014) with a learning rate of 1×10−4. The KL divergence regularization weight is set to λ = 0.01 for PBMC and λ = 0.02
for BM.

Unpaired Image Translation - CAT→DOG and WILD→DOG Tasks: We utilize the pre-trained model from the official
implementation of Choi et al. (2021) (https://github.com/jychoi118/ilvr_adm) to initialize the dog modality
conditional model. For the other domains (CAT, WILD): We train a diffusion model from scratch using the same architecture
and hyper-parameters as done in the target domain. - MALE→FEMALE Task: We use the publicly available pre-trained
model by Zhao et al. (2022) (https://github.com/ML-GSAI/EGSDE) for the Female modality. For the Male
modality, we train a diffusion model from scratch using the same architecture and hyper-parameters as done in the target
domain.

To introduce additional conditioning into the pre-trained diffusion model, we follow the work in (Zhang et al., 2023), where
the encoder part of the U-NET is duplicated and used as a conditional encoder. The various hyperparameters are summarized
in Table 3. We follow the evaluation protocol described in (Zhao et al., 2022).

General Settings Dataset

AFHQ CelebA-HQ
Batch Size 16 16

Learning Rate: 2e− 5 2e− 5
Optimizer ADAM ADAM

Training Steps 2000
Weight Decay 0.0

Diffusion Model
Noise Scheduler Linear Linear

Number of Diffusion Timesteps (T ) 1000 1000
Sampler DDIM DDIM

Guidance Scale (training) 7.0 7.0
Sampling steps 50 50

Exponential moving average Yes Yes
Reinforcement Learning

Reward (Monte Carlo steps) 3 3
Policy Update Steps 4 4

Importance Sampling Clipping 1e− 4 1e− 4
λ1, λ2 1e− 3 4e− 3

Gradient Accumulation 12 12
Gradient Clipping 1.0 1.0

Table 3: Hyperparameters used for training.

2https://github.com/AkashCiel/scTopoGAN
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B. Additional Results
B.1. SNARE-seq additional experiments

In this experiment we use the SNARESEQ (Chen et al., 2019) dataset, which links chromatin accessibility with gene
expression data on a mixture of four cells types. We use the same preprocessing procedures detailed in (Demetci et al.,
2022), which deal with filtering spurious data affected by technical errors, and normalization. Data samples have 1–1
correspondence information, which constitute the groud-truth information used for our performance evaluation. We use the
average “fraction of samples closer than the true match (FOSCTTM)” metric introduced by Liu et al. (2019): given a sample
in one domain, this amounts to compute the fraction of samples that are positioned more closely to it than its true match
after pairing. Results report the average FOSCTTM across all samples, where lower values indicate better performance. We
also report the label transfer accuracy as done by Cao et al. (2020), which measures how well sample labels are transferred
between domains based on neighborhood alignment. A k-nearest neighbor classifier is trained on one domain and used to
predict labels in the other. In this experiment, DDMEC is trained once, and inference is conducted five times with different
seeds. the FOSCTTM metric, and is on-par with the best method in terms of accuracy. In this experiment, DDMEC is
trained once, and inference is conducted five times with different seeds. Unlike other methods, DDMEC is conceptually
different as it generates samples rather than learning a deterministic, 1-1 mapping. To compute the different metrics, given a
sample from one modality, we use DDMEC to generate a coupling to the other modality, then select the nearest sample
from the dataset based on Euclidean distance.

SNAREseq
FOS ↓ Acc ↑

UnionCom⋆ 0.265 42.3
MMD-MA⋆ 0.150 94.2
SCOT⋆ 0.150 98.2
InfoOT⋆ 0.156 98.8

DDMEC 0.147 98.6

Table 4: Performance results on SNAREseq dataset

Figure 5: Conditional generation using DDMEC on the SNAREseq dataset. The cell types are indicated by colors. Top:
generation of chromatin accessibility data using gene expression, Bottom: generation of gene expression using chromatin
accessibility data.
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Source Output Source Output

Figure 6: DDMEC (guidance=7) CAT→DOG (Left) and WILD→DOG image (right) translation examples. Source domain
image is used to generate the target dog image.
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Source Output Source Output

Figure 7: DDMEC (guidance=7) DOG→CAT (Left) and DOG→WILD image (right) translation examples. Source domain
image is used to generate the target Cat/Wild image.
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(a) In the guidance scale ablation study, we report the FID and SSIM as a function of the guidance
scale on the CelebA-HQ dataset. We notice that an increase in the guidance scale results in more
information transfer between the two modalities, leading to a worse FID, and vice versa.
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Source Output Source Output

Figure 9: DDMEC (guidance=2.5) MALE→FEMALE translation examples. Source domain image is used to generate the
target female image.
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