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Abstract

The contrast settings to select before acquiring magnetic resonance imaging (MRI) sig-
nal depend heavily on the subsequent tasks. As each contrast highlights different tissues,
automated segmentation tools for example might be optimized for a certain contrast. Un-
fortunately, the optimal contrast for the subsequent automated methods might not be
known during the time of signal acquisition, and performing multiple scans with different
contrasts increases the total examination time and registering the sequences introduces
extra work and potential errors. Building on the recent achievements of deep learning in
medical applications, the presented work describes a novel approach for transferring any
contrast to any other.

The novel model architecture incorporates the signal equation for spin echo sequences,
and hence the model inherently learns the unknown quantitative maps for proton density,
T'1 and T2 relaxation times. This grants the model the ability to retrospectively reconstruct
spin echo sequences by changing the contrast settings Echo and Repetition Times. The
model learns to identify the contrast of pelvic MR images, therefore no paired data of
the same anatomy from different contrasts is required for training. This means that the
experiments are easily reproducible with other contrasts or other patient anatomies.

Despite the contrast of the input image, the model achieves accurate results for re-
constructing signal with contrasts available for evaluation. For the same anatomy, the
quantitative maps are consistent for a range of contrasts of input images. Realized in prac-
tice, the proposed method would greatly simplify the modern radiotherapy pipeline. The
trained model is made public together with a tool for testing the model on example images.
Keywords: Image reconstruction, Magnetic Resonance Imaging, MRI Contrast, Deep
Learning, Unsupervised Learning, GAN

1. Introduction

Magnetic resonance imaging (MRI) is an essential step in the cancer treatment process for
guidance in radiotherapy. The decision support solutions that are currently being developed
and implemented often require certain contrasts. To expand the range of underlying data,
tools already exist that change the domain of the solution (Zhu et al., 2018) or transferring
the image to the desired contrasts (Dar et al., 2013) however the method usually transfers
to only a single contrast which limits the usefulness of the method. We present a machine
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learning method for transferring MRI data to custom selected contrasts in a manner that
also shows quantitative information about the scanned anatomy.

The signal from a traditional spin echo sequence in MRI contains information about
three quantitative properties of the scanned tissue: Proton density (PD), T1- (T'1) and
T2-relaxation times (72). Their quantitativeness means that their values are physically
meaningful and can be measured in physical units and compared between tissue regions
and among anatomies. Due to the signal acquisition process, a single scan gives an image
that is only a composition of these quantitative maps, as per the signal equation,

s=PD - (1—6_%) -e_%, (1)

where TE and TR stand for echo and repetition time, respectively, which are two of
the settings for the given sequence, while all other settings are identical for the different
contrasts. The two settings define the significance of the underlying maps in the signal,
which is commonly used to categorize the contrasts into: T2-weighted (T2w), T'1-weighted
(T'1w), and PD-weighted (PDw).

This work builds on the topicality of Deep Learning within medical applications. In
particular, convolutional neural networks (CNNs) have achieved recent successes in tasks
such as segmentation (Heller et al., 2019), super-resolution (Chen et al., 2018), and acceler-
ated signal reconstruction (Zbontar et al., 2018), with solutions that are well-founded and
groundbreaking. A Generative Adversarial Network (GANs, Goodfellow et al., 2014) is a
non-cooperative game with two models that are trained simultaneously. Based on CNNs, the
discriminator classifies an image as real or generated, and a generator is trained to produce
images that will be classified as real by the discriminator. As the discriminator learns the
distinctive characteristics of the different contrasts, the generator will also learn to simulate
these differences. The strength of GANSs have been showcased in recent research with Cycle-
GANs where two models are trained to transfer from one domain of images to another and
vice versa, examples include CT and MRI images, with state-of-the-art accuracy (Wolterink
et al., 2017). They have been used to transfer between specific contrasts (Welander et al.,
2018) however increasing the number of supported contrasts to transfer to also increases
the complexity of the problem by the number of models to train. For easy reproducibility
with any number of contrasts, we exclude CycleGANs as a candidate, but the unsupervised
nature make GANs an ideal choice for the proposed task.

We introduce a novel conditional GAN architecture for contrast transfer of MRI data.
To the best of our knowledge, this is the first work employing physical properties of the
signal acquisition process to transfer MRI data between contrasts, achieving this novelty in
an unsupervised fashion.

2. Materials and Methods

Pelvic MRI scans from 100 patients were captured with a 3T Signa PET/MR scanner (GE
Healthcare, Chicago, Illinois, United States) at the University Hospital of Umea, Sweden
(ethical approval nr. 2019-02666). To explore the characteristics of the different contrasts,
the sequences used five different T'F and T'R combinations, covering a large span of values,
collected in Table 1.
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Table 1: The five combinations of TE and T R that were used to acquire the dataset. The
contrasts from left to right constructed: two T2w, two T'1w, and one PDw signals.

T2w Tlw PDw

TE [ms] 75 120 8 8 8
TR [ms] 4500 4500 400 750 4500

Given the self-supervising aspect of the devised method, no multi-contrast scans were
required for training, therefore each data sample in the training dataset contains a scan from
only a single contrast and its corresponding T'E' and T'R values. The dataset contains scans
from 90 patients. To speed up the data acquisition process, every patient was scanned for all
5 contrasts independently, however to ensure there are no registered slices in the datasets,
all slices were shifted randomly in both directions by up to 10 pixels.

The walidation dataset contained multi-contrast sequences from five patients, where all
slices were available in all five contrasts, corrected for possible patient movement by non-
rigid registration. Each data sample contained an input scan, paired with a target scan of
the same anatomy but from all five available contrasts. This resulted in 1,875 slice pairs
with each sample also containing the T'E and T'R values of the target contrast.

A test dataset was created identically to the validation dataset, using five different
patients.

Generator:  The network architecture was based on the U-Net (Ronneberger et al.,
2015), where instead of a convolutional layer returning the map that should correspond to
the target signal, the final convolutional layer returned three 256 x 256 maps. These were
used to construct the output layer as in Equation 1 using the TE and TR values of the
target contrast, therefore each map uniquely defined PD, T'1, and T2. By mirroring the
signal equation, the model reflects the underlying physics of the task. The maps for T'1
and T2 were clipped above the value 10 and 5, respectively (values in seconds), to exclude
values that never occur in patients (Bojorquez et al., 2017; Stanisz et al., 2005), and as a
form of regularization to help the training. The quantitative maps were neither known nor
needed for the training process, since the output of the model is the reconstructed signal s,
however they should be consistent despite the contrasts of the input, and they should agree
with values from literature. The input for the generator was the input image and the TFE
and TR values of the target contrast.

Discriminator: The task of the discriminator was to classify images as fake or real,
and their specific contrast. The network’s architecture was based on that of Salimans et al.
(2016). The discriminator for our task had 5+ 1 output classes: 5 to classify the image
contrast and 1 to classify the image as fake. The architecture was a PatchGAN (Isola et al.,
2017), where instead of obtaining a class for an input image, the classifier returns a map of
classes from different patches of the input image. This allowed the discriminator to detect
smaller differences, while simultaneously stabilizing the training. The discriminator settings
looked at patches of 190 x 190 (which meant an output map of 8 x 8), avoiding patches
containing only the background. A final softmax layer ensured that in each element of the
map, only one output class was selected by the discriminator.
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Training process: The mean absolute error loss was used for training with the Nadam
optimizer (Dozat, 2016), with a learning rate of 0.0005. Both networks were updated in
every training iteration, and the performance of the generator was evaluated for contrast
transfer at the end of each epoch using the mean squared error (MSE) metric.

Further details about the models, and the training process can be found in the appendix.

3. Experiments

We evaluate the model for contrast transfer followed by further experiments to show the
functionality of the proposed approach. This includes evaluating the quantitative maps that
are generated by the model, and investigating how changing the contrast settings affects
the discriminator’s performance.

3.1. Contrast transfer

For an overall evaluation, the model was used on each contrast of every slice in the testing
dataset, to predict the same slice from every other contrast. Together with visual as-
sessment, the evaluations used MSE, normalized root-mean-squared-error (NRMSE), peak
signal-to-noise ratio (PSNR), and the structural similarity index (SSIM). The overall pre-
diction error was further investigated, splitting by input and target contrasts.

The difference of the original images from all the combination of contrasts was computed
and reported below as the baseline error (if the generator would output the input images
without modifying them, the model would achieve the baseline error). The error was only
calculated for the anatomy, excluding the background noise using Otsu thresholding (Gon-
zalez and Woods, 2006).

3.2. Quantitative maps

To obtain ground truth for the underlying quantitative maps of the signal, we used all
five contrasts and their contrast settings to approximate the maps using the least-squares
method. We used the Levenberg-Marquardt algorithm to minimize the least squares error.
Likely due to the amount of outliers in the quantitative data, and possibly due to noise
and registration errors, for reconstructing the overall signal from the recovered maps, the
errors were large. Instead the method was used only to approximate the quantitative
maps for four manually segmented tissues, namely: fat, muscle, bladder, and the prostate.
Each tissue class in the test dataset contained 109,308, 154,588, 9,639, and 3,129 voxels,
respectively. The segmentations were performed using MICE Toolkit! (NONPI Medical
AB, Umea, Sweden, Nyholm and Jonsson, 2014).

The maps from the least-squares approximation for the segmentations were used as
ground truths when evaluating the quantitative maps obtained from the trained model. The
mean intensities of the quantitative maps from the least-squares method were compared to
the results from the model, and to values found in literature (Bojorquez et al., 2017; Stanisz
et al., 2005).

1. https://www.micetoolkit.com/
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Input Image [8, 4500] Target Image [75, 4500] Prediction [75, 4500]

PD T1[s] T2 [s]

]
0.00 0.25 0.50 0.75 0 2 40.00 0.05 0.10 0.15

Figure 1: A randomly selected example showing the transfer from PDw contrast ("Input
Image’) to T2w ('Target Image’) by plotting the corresponding prediction of the model
("Prediction’). The bottom row shows the quantitative maps acquired from the input image.

3.3. Decision boundaries

The performance of the generator relies heavily on the discriminator. Although the discrim-
inator was only trained on five different contrasts, it is expected to work for other T'E and
TR combinations as well, classifying the contrast as the class it is most similar to. The dis-
criminator is expected to be most accurate for classifying images that were included in the
training dataset, and interpolating between these values should show a smooth transition
in prediction accuracy.

Two cases were investigated, one for the T'1w and PDw contrasts, which have the same
TFE = 8ms, the TR values were interpolated to cover all three available values. The other
case is for the T2w and PDw contrasts, that share TR = 4500ms, and therefore the TFE
values were interpolated. For each interpolated contrast we generated synthetic signal using
the entire test dataset. Then the most significant class from the 8 x 8 maps predicted by
the discriminator was marked by the corresponding color on the map. The confidence in
the class predictions are illustrated by the darkness of the color. The predictions should
correlate with both TE and TR.

4. Results

The lowest validation error was achieved in epoch 390 of the training process, and therefore
the model from this epoch was selected for further evaluation.

4.1. Evaluating contrast transfer

Visualization of the performance of the model is presented on Figure 1. It shows the results
for transferring a randomly selected slice from a single contrast to another while also showing
the quantitative maps acquired before constructing the output signal. Four other examples
are collected in the appendix on Figure 7.

For a quantitative evaluation, the experiment investigated how well the model trans-
ferred from each contrast to all other contrasts and the results are collected in Table 2.
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Table 2: The results for contrast transfer. The ’Baseline’ error is calculated from the original
images, and "Model’ shows the errors for the predictions of the trained generator.

Baseline Model
MSE 0.010 + 0.007 0.004 £ 0.002
NRMSE 0.21540.080 0.144 £ 0.041
PSNR 21.534+£3.93  25.05 +2.51
SSIM 0.961 &= 0.019 0.974 £ 0.011

All metrics reached the same conclusions when plotted against input and target con-
trasts, therefore only the NRMSE results are presented. In Figure 2 each row and column
shows the baseline and prediction errors for the corresponding input and target contrast.
The diagonal shows the error of generating the contrast of the input image.
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Figure 2: The distribution of baseline and prediction NRMSE between input and target
contrasts. The labels for the contrasts mean their TE and TR values in ms. The sum of
all values is presented in Table 2 as the 'Baseline’ and 'Model’ errors.

4.2. Evaluating quantitative maps

The mean values of the quantitative maps from the two methods are collected in Table 3.

4.3. Evaluating decision boundaries

The top plots in Figure 3 illustrates where the original training data images fall on the two
maps. The left figures show the results of interpolating T'R with T'E' = 8ms, while the right
plots show the results of interpolating T'F with T'R = 4500ms. Only five combinations are
shown, following the contrasts from left to right in Table 1, they are: blue, green, orange,
purple, and red. The bottom plots show the results after generating contrasts for extended
TE (left) and TR combinations (right).
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Table 3: The predicted quantitative maps using a least-squares approximation (LSQ) and
using the trained generator (Model) on the testing dataset.

PD T1 [s] T2 [s]
LSQ Model LSQ Model LSQ Model
Fat 0.60 +0.09 0.584+0.09 0.384+0.07 0.434+0.07 0.21+0.05 0.06+0.01
Muscle 0.31+£0.08 0.30+0.06 0.76+0.19 0.724+0.17 0.07+0.03 0.04 +0.01
Bladder 0.544+0.16 0.38+0.13 3.07+0.90 1.97+0.78 2.71+1.89 0.12+0.04
Prostate 0.434+0.04 0.37+0.08 1.204+0.16 1.344+0.52 0.11+0.02 0.06 £ 0.03

5. Discussion

The evaluation of the contrast transfer (Table 1) shows an improvement over the baseline
error, with the specific improvements further examined in Figure 2. They both indicate
that the discriminator learns about the contrast and helps the generator to reconstruct these
differences by mapping the features of the input images into PD, T'1, and T2 maps. Looking
at how the presented errors distribute across input and target contrasts, we first note that
the prediction errors for reconstructing the input contrast are expectantly worse than the
baseline error, which is zero (on the diagonal). Except for the diagonal, all errors from the
proposed model are below their corresponding baseline error. The smallest improvements
are for transferring between similar contrasts (71w to T1w or T2w to T2w) where the
baseline error is also small. For any input contrast, the baseline error changes substantially
based on the target contrast, however this change is decreased for the prediction errors of
the model, showing that they are less dependent on the target contrast.

Evaluating the quantitative maps in Table 3 shows that the T'1 and T2 values from
LSQ agree with common values from literature without substantial differences. However,
the standard deviations for the bladder are large for all three maps showing inhomogeneity
of the tissue and possible registration errors. The PD maps can not be compared to
values from literature, as they have an arbitrary scale, but the values are still comparable
between the two methods for the same dataset. The results illustrate that the proposed
model predicts similar maps as the LSQ method for PD and T'1, while the T2 values are
generally substantially smaller in the maps from the model, especially for the bladder. The
reconstructed T'2 maps suggest that the accuracy of the model will be limited for contrasts
that rely heavily on accurate T2 maps, however for such a case, transferring from a short
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Figure 3: Top: The map shows the predictions of the discriminator on the test dataset that
only contains five different contrasts. The five classes are distinct and the dark color shows
the certainty of the predictions. Bottom: The generator was used to extend the possible
TFE and TR combinations and the map shows the predictions of the discriminator.
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TE PDw contrast to T2w, Figure 1 shows good similarities for the reconstructed signal
most noticeably from the bladder and muscle, and the reconstruction errors for such cases
(Figure 2, bottom row, first two columns) show improvement over the baseline error. This
result, together with the low standard deviations for the T2 maps suggest that the model
can still accurately reconstruct signal from the selected contrasts in the dataset without
improving the results for the T2 maps. This implies that training the model on more data
(and not necessarily a wider range of contrasts), the overall prediction error would decrease,
focusing on smaller changes between the contrasts, making the T2 maps more accurate.

The maps created by the extended T'E and T'R combinations in Figure 3 illustrates that
the decision boundaries strongly correlate with both T'E and T R between the values that
were included in the training dataset, showing a smooth transition. This further supports
that the discriminator is working as intended.

6. Conclusions

The proposed architecture changes the essence of the problem by instead of transferring
to another contrast, the signal is decomposed into the three quantitative maps, and then
reconstructing a signal of the desired contrast. The results corroborate the effectiveness and
the vast possibilities of machine learning in medical imaging as the model is able to perform
a consistent decomposition of the signal without knowing anything about the quantitative
maps during training. The contrasts included in the training need to be selected in a
systematic way to cover a large span of TE and TR and a wide range of their combination.
If this is not done, the results are only expected to work well in the parameter space
spanned by the contrasts included in the training process. Since no multi-contrast scans are
required, the training dataset is easily reproducible and can be expanded for other number
of contrasts and anatomies as well.

The results of the presented study show that retrospective reconstruction of MRI signal
using custom contrast settings is possible. A venue for future research would include col-
lecting data with a larger range of contrasts and expanding the model with other sequences
and anatomies as well. With continuous evaluation and careful supervision, an effective
application example of the method is in radiotherapy, when performing another scan with
different settings might not be possible.

The model evaluated in this paper is made publicly available? (in a .h5 format) for further
use, together with a tool for testing the network. To help with testing, three example images
were also published, taken with the same protocol as the images in the training dataset.
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Appendix A. Network Architectures

The generator was built on the U-Net (Ronneberger et al., 2015) architecture. The archi-
tecture outputs three features maps, that are passed through a custom layer implementing
Equation ??7. ILe., the feature maps must implicitly learn the PD, T1, and T2 maps.
See Figure 4 for an illustration of the generator architecture.

.
-

Figure 4: The U-Net-based architecture for the generator. The inputs (all blue) are the
slice on the bottom and the TE and T'R values of the target slice (all blue). The outputs of
the U-Net architecture are three feature maps that are split and used in the signal equation
as PD, T1, and T2. As regularization, the maps for T'1 and T2 were constrained to a
maximum value of 10 and 5, respectively, corresponding to box constraints on [0, 10] and
[0, 5], respectively corresponding to seconds. Using the input TE and TR, the output of
the generator is the reconstructed signal (violet).

11



CHANGING THE CONTRAST IN MRI

The discriminator was a 190 x 190 PatchGAN. The output was an 8 x 8 map classifier
of six output classes: the image being from one of the five contrasts, or fake. See Figure 5
for an illustration of the discriminator architecture.

Y

Y

Y
|

Figure 5: The classifier used as the discriminator was a PatchGAN with patch size 190 x 190.
The input on the left (blue) is the image slice to be classified. The discriminator contained
six convolutional blocks, each starting with adding Gaussian noise with a standard devia-
tion of 0.0005, then followed by a convolutional block, with kernel size 3 and LeakyReL.U
activations with a = 0.2. The output layer (violet) used a softmax activation, where each
element is a contrast classifier on a 190 x 190 patch of the input image.

12
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Appendix B. Training process

In the first stage, a simple pre-training was employed on both the generator and the dis-
criminator, separately. For the generator such that it returned the input image despite the
contrast settings, and for the discriminator to achieve an 80 % accuracy when classifying the
real images by contrast, i.e., without yet introducing generated images. In the second stage,
the generated images were introduced for training the discriminator, and the generator was
then only updated through the discriminator using a mean absolute error loss.

During the training, the MSE was monitored on the validation dataset for insight.
Training for 500 epochs took approximately 4 days using an Nvidia GTX 2080 Ti card.
The network reached the lowest validation scores in epoch 390 which was therefore selected
for evaluation. Figure 77 illustrates how the accuracy for labeling the fake images progressed
during training. During pre-training the generator learned to output the input image by
placing all information in the proton density maps while making 7’1 and T2 constants,
which can be seen at the first mark of training (epoch 10) in Figure ?7. If the training
parameters of a GAN are selected carefully, the performance of the discriminator and the
adversarial network stay even while the generator improves. Although the accuracy of the
adversarial network decreases in time, it never becomes and stays zero, which would mean
that it was dominated by the discriminator. Two other marks were added to visualize how
the network improved during training: At epoch 100 and at epoch 390. The final mark
shows results from the model selected for further evaluation.

IIiII IIIII

Accuracy

Epoch

Figure 6: The accuracy of classifying the generated images during training shows the non-
cooperative game of GANs. After each epoch the performance of the discriminator network
is evaluated through the accuracy of the discriminator for classifying generated images as
fake (red line, D_fake_accuracy), while the performance of the adversarial network was
evaluated by the accuracy of the discriminator for classifying generated images as the con-
trast they belong to (blue line, GAN_accuracy). The white lines show where images were
classified as real but from the incorrect contrast. For each epoch the length of these three
lines add up to 100%. The figure shows example results from three epochs (from left to
right: 10, 100, 390) and from each epoch the quantitative maps from a sample image (from
top to bottom: PD, T'1, T2).
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Appendix C. Additional Images

Input Image
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Figure 7: For example cases of the original contrasts (top), and the corresponding out-
put contrasts transferred from the 'Input Image’. The bottom row shows the predicted
quantitative maps: PD, T'1, and T2.
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Input Image
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Figure 7: For example cases of the original contrasts (top), and the corresponding out-
put contrasts transferred from the ’‘Input Image’. The bottom row shows the predicted
quantitative maps: PD, T'1, and T2. (cont.)
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