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Abstract

Randomized smoothing provides neural network models with verifiable robustness against
adversarial attacks. Most randomized smoothing defenses certify a probabilistic guarantee
within an `p norm ball around each data point. However, certifying sufficient robustness radii
towards perturbations that are large in `p norm requires smoothing the model input using a
large variance. Consequently, the resulting classifier usually exhibits poor certified accuracy.
Moreover, it might be impossible to obtain large robustness radii for certain data points
and models despite a large-variance smoothing noise being adopted. For instance, these
robustness guarantees are often vulnerable towards unrestricted or semantic perturbations,
which have large `p norm but still remain imperceptible to human eyes. In this paper, we
propose Concert, a method for certifying the robustness of neural network-based image
classifiers with context-aware smoothing noise under the guidance of pixel-wise entropy
values measured by a colorization model. In lieu of sampling noise from univariate Gaussian
distributions, we increase the Gaussian variance in high-entropy dimensions that are more
vulnerable to adversarial manipulations, while keeping a moderate variance in low-entropy
dimensions. Concert acquires larger robustness radii on input dimensions that are prone to
adversarial perturbations, while preserving certified accuracy since other input dimensions are
not significantly randomized. We show that our method’s certified accuracy and robustness
radius on benign images are on par with that of the state-of-the-art smoothing techniques
while outperforming them on semantically perturbed images.

1 Introduction

The robustness guarantee towards adversarial attacks has been a sought-after property of neural networks
while deploying secure and trustworthy machine learning applications. However, achieving robustness is not
trivial due to the fast-paced contest between adversaries and defenders. Compared to empirical defenses,
certified defenses provide a more sound security guarantee on the robustness of the model against adversarial
perturbations since they can provably defeat adversarial examples in the vicinity of benign samples. Most of
the existing certified defenses provide a symmetric robustness guarantee for each data point, i.e., the defenses
are dimension-agnostic by considering a robust region in `p norm. As a ramification, the robust region of each
data sample is limited by the worst dimension, Although higher radii can be obtained on other dimensions.
Furthermore, the defenses may compromise the utility of the protected model on benign data that is in the
vicinity of decision boundaries (see Figure 1a).

Current randomized smoothing methods randomize the model prediction by adding random additive noise
(i.e., smoothing noise) to the model input. In general, it is challenging to simultaneously achieve both a high
certified accuracy and a large robustness radius. The magnitude of the smoothing noise is limited in order to
maintain a reasonable certified accuracy, which results in statistically small robustness radii while certifying
the inputs of the smoothed classifier. This utility-security trade-off implies that defenses can be circumvented
by adversarial perturbations that are substantial in `p norm, yet remain imperceptible. For instance, a
colorization-based attack can escape from the `p defenses when the norm of the perturbation is greater than
the radius of the robustness region Bhattad et al. (2019). Moreover, the smoothing distribution operates
independently from the base classifier. This property prohibits further customization of the smoothing
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Figure 1: (a) The limitation of symmetric (e.g., `p) robustness certificate. Consider an `2 certificate in a
two-dimensional decision region A that is linearly separated from region B. The actual robust radius falls
short of the best robust radius obtained by the smoothing noise, due to the worst dimension (horizontal).
Moreover, some data points are naturally non-certifiable in decision regions such as the one depicted in
Figure 1a (right), the second figure, which incurs utility loss. Importantly, the certificate is not tight for
asymmetric adversarial spaces. (b) The trade-offs limit the radius that can be certified. As a consequence,
current defenses are susceptible to unrestricted perturbations whose `2 surpasses the largest certifiable radius.

distribution based on the classifier’s output. Some recent work aims to address this problem by learning
sample-dependent noise Alfarra et al. (2020); Wang et al. (2020); Chen et al. (2021) for `p certification.
However, these methods rely on per-sample calibration, which is computationally expensive. These limitations
with current methods are illustrated in Figure 1a.

To address the aforementioned problems, we propose Concert, a certifiable defense against unrestricted
adversaries. This defense is designed to address the difficulty in quantifying the perturbation space of
unrestricted adversaries, which can make certifying robustness against these types of attacks challenging.
Concert models the smoothing distribution as a distribution conditioned on the input data and the decision
region of the base classifier. A colorization model trained on ImageNet is used to estimate pixel-wise entropy
values, which are then used to regularize our training objective and, therefore, help refine the variance of the
smoothing distribution. The intuition behind this is that large perturbations are less noticeable and thus
more likely to occur on high-entropy pixels, since the pixel values are naturally ambiguous and unpredictable.
Furthermore, by increasing the noise variance on high-entropy dimensions, the certification process allocates
higher robustness radii to vulnerable pixels in the input. Our experimental results show that Concert obtains
on-par performance with state-of-the-art randomized smoothing techniques in the worst case. Moreover,
Concert can better invalidate unrestricted perturbations, while many existing methods are susceptible to
such semantic perturbation attacks.

2 Background and Related Work

Randomized smoothing (RS) was firstly introduced to provide certifiable robustness guarantee to adversarial
perturbations, along with differential privacy Lecuyer et al. (2019). Li et al. (2019) employed Rényi divergence
to obtain a higher upper bound of robust regions. Subsequently, the Neyman Pearson Lemma (NPL) was
applied to find a set of worst-case points that minimizes the probability of predicting the correct classes
after the data is perturbedCohen et al. (2019). NPL induces a tight `2 norm robustness bound granted by
smoothing the model input with Gaussian noise. To improve the certified accuracy as well as the robustness
radius, a line of work focuses on training better base classifiers through deliberately designed loss functions
and regularization techniques Salman et al. (2019); Jeong & Shin (2020); Zhai et al. (2020); Jeong et al.
(2021). On the other hand, a series of methods improve the certification through specially designed smoothing
noise Súkenık et al. (2022); Cullen et al., or even go beyond the NPL certification via techniques such as
functional optimization Dvijotham et al. (2020); Zhang et al. (2020). As its main drawback, RS is known
for suffering from the curse of dimensionality when certifying `p attacks with p > 2 Kumar et al. (2020);
Yang et al. (2020). The limitation has attracted some attempts that aim at solving it Li et al. (2022). To
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increase the utility of RS for pretrained classifiers not augmented in their training phases, denoising models or
model ensembles have been employed to minimize the impact of the noise on the prediction of the smoothed
classifiers Salman et al. (2020); Horváth et al. (2022). Last but not the least, there are previous/concurrent
works addressing the problem of certification against semantic perturbations Fischer et al. (2020); Li et al.
(2021); Hao et al. (2022).

Randomized smoothing. Given a K-class hard classifier f(·) : x ∈ Rd → Y, x ∈ Rd,Y ∈ 1, ...,K on input
x, a (σ, f)-classifier, which is a smoothed version of f(·), is defined as follows:

gσ,f (x) = arg
k∈Y

max Pr
ε∼p(ε|σ)

[f(x+ ε) = k], (1)

where ε is a random noise sampled from a σ-parameterized probability distribution p(ε|σ). The induced
robust region Rr(x) = {x′ ∈ Rd : f(x′) = f(x), ∀‖x′ − x‖p ≤ r, } centered at x with a radius of r is often an
`p norm ball whose radius is a function of σ and f . In fact, given an adversarial space defined as a set V of
possible perturbations v ∈ V , the optimal smoothing noise distribution is found to be related to the zonotope
of the vertices of V when V is a highly symmetric polytope (e.g., one of `p norm balls) (Yang et al., 2020).
p(ε|σ) can be a zero-mean Gaussain distribution with a variance of σ2, which induces a tight `2 norm radius
around each input x as follows.

r(x) = σ

2 [Φ−1(Pr[f(x+ ε) = y])− Φ−1(Pr[f(x+ ε) = i])], ε ∼ p(ε|σ), (2)

where Φ−1 is the Gaussian quantile function; Pr(·) and Pr(·) are the lower bound and upper bound of their
corresponding probability events; y is the dominantly predicted class and i : i 6= y is the runner up class. To
improve gσ,f (x), a line of work trains f to maximize the radius without heavily reducing the utility (Salman
et al., 2019; Zhai et al., 2020; Jeong et al., 2021).

Unrestricted perturbation. Perturbations can be made into natural patterns free from `p norm constraints.
These unrestricted perturbations are generally large when measured in `p norms but remain stealthy. We
employ two distinct unrestricted attacks in the evaluation, namely, colorization-based attacks (CAdv) (Bhattad
et al., 2019) and shadow attacks (Shadow) (Ghiasi et al., 2020). CAdv introduces a colorization model C
with parameters θ to generate adversarial colorization schemes. In the CIELAB color space, given the light
channel xl of an image x, user selected color hints H in the ab channel, and a maskM of the hint positions,
C generates the pixel values x̂ab of ab channels. By setting an adversarial loss function Ladv (e.g., adversarial
PGD loss Madry et al. (2018)) and an adversarial target t, the attacker can optimize H andM to result in C
generating adversarial examples. That is

H∗,M∗ = arg min
H,M

Ladv(C(xl,H,M; , θ), t). (3)

CAdv clusters an image into subareas by the pixel values in the CIELAB space and then apply a perturbation
to the subarea that has the highest mean entropy. In contrast, Shadow crafts stealthy perturbations by
minimizing the total variation, mean value, and color balance of the perturbations. Furthermore, Shadow
optimizes an expected adversarial loss over a set of samples drawn from a Gaussian distribution centered at
the attacked data sample to mimic the input of a smoothed classifier. Consequently, Shadow examples can
spoof a false robustness certificate against the smoothed classifier.

3 Concert

As discussed above, there is a trade-off between certified accuracy and robust radius. Smoothing noise with a
lower variance results in a smaller robust radius but higher certified accuracy. In contrast, a higher variance
may diminish the certified accuracy. Under the framework of RS, we introduce a smoothing technique used to
obtain an asymmetric robustness certificate which is tighter against a non-`p adversarial space V. Concert
extends the robustness guarantee to unrestricted attacks large in `p norms while preserving the utility of
classifiers. The workflow of Concert is illustrated in Figure 2.
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Figure 2: The workflow of Concert. A colorization model (i.e., entropy estimator) measuring the entropy
of each pixel tells the ambiguity of pixel colors. Due to the observation that adversaries tend to add more
perturbations to high-entropy regions since large perturbations appear to be more natural to human auditors in
these regions. A multivariate Gaussian parameterized by a generator in proportion to the entropy distribution
will be optimized to maximize the certified accuracy and radius of a base classifier.

3.1 Worst-case classifier under sample-specific noise

When smoothing using sample-specific noise, the problem of robustness certification is commonly defined as a
functional optimization as follows:
Definition 1 (Worst-case classifier).

f∗ = arg min
f∈F

Pr[f(z) = y|z ∼ px+δ(z, σ1)] (4)

s.t. Pr[f(z) = y|z ∼ px(z, σ0)] = T1,

where px(z, σ1) and px+δ(z, σ2) are likelihoods centered at x and x+ δ, respectively. T1 is the probability of
predicting the top-1 (true) label, and f∗ as follows is the worst-case classifier in the space F of all possible
functions.

f∗(z) := 1[px+δ(z, σ1)
px(z, σ0) ≤ t]. (5)

By showing that Pr[f(z) = y|z ∼ px+δ(z, σ1)] > 0.5,∀‖δ‖p ≤ R(x, p), any f ∈ F should be robust with
respect to any δ in the `p-norm ball with the radius R(x, p). For simplicity, we note px(z, σ0) by px, px+δ(z, σ1)
by px+δ, and R(x, p) by R in the following paper. The optimization problem can be fully solved by Neyman-
Pearson (NP-sufficient). The details of the proof are in Appendix A. Having this definition, we will next
examine the problem of robustness certification using sample-specific anisotropic noise.

3.2 Input-dependent Robust Region

We first show that the robustness certificate can be scaled dimension-wise to obtain an asymmetric robust
region. Based on Definition 1, we can compute the decision boundary of the f∗(z) smoothed by sample-specific
Gaussian noise as follows:
Theorem 2 (Decision boundary of the worst-case sample-specific classifier). When px := N (x,Σ0) and
px+δ := N (x + δ,Σ1), let Σ0 := σ0I and Σ1 := σ1I be the diagonal covariance matrices in which σ0 =
[σ01, σ02, ..., σ0d]T and σ1 = [σ11, σ12, ..., σ1d]T . Define Λ =

∑d
i=1

1
σ0i2βi

δi
2 + 2 log(t) + 2

∑d
i=1 log(σ1i

σ0i
). When

Λ > 0, the decision region D1 := {z : f∗(z) = 1} of the worst-case classifier f∗(·) is an d-dimensional
ellipsoid ball with foci {xi − σ0i

2δi/βi}di=1 and semi-axes of lengths {
√
αiΛ/βi}di=1. When Λ < 0, D1 is the

complement of the ellipsoid ball.

To compute the robust radius of such region is challenging. Let Px(D1) and Px+δ(D1) be the the probability
measures of the decision region D1 under the anisotropic Gaussian centered at x and x + δ, respectively.
To overcome the challenge of computing Px+δ(D1), we compute their lower bounds Px(D1) and Px+δ(D1)
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by taking the lower bound D1 of D1. We define that Px(D1) := P (D1) in this case. We have the following
lemma for P (D1).
Lemma 3 (Lower bound of anisotropic probability measure). Given Σ0, Σ1, and D1 from Theorem 2,
let D1 := {z : f∗(z) = 1} be the decision region of the worst-case classifier f∗ := 1[

p
x+δ
p
x

≤ t] , where
p
x

:= N (x, σ0
2I), p

x+δ := N (x+ δ, σ1
2I), σ0 = min Σ0, and σ1 = min Σ1. The probability measure P x+δ(D1)

is a lower bound of P x+δ(D1).

Therefore, we convert the problem of certifying an input x with sample-specific anisotropic Gaussian to the
same problem studied in Súkenık et al. (2022).

Therefore, let us define two ξ functions

ξ<(δ, σ1) := P x+δ(D1)

= 1− Φχ2( σ1
2

(σ12 − σ02)2 ‖δ‖
2,
R2
<

σ12 )
(6)

and
ξ>(δ, σ1) := P x+δ(D1)

= 1− Φχ2( σ1
2

(σ12 − σ02)2 ‖δ‖
2,
R2
>

σ12 ),
(7)

where σ0 and σ1 come from Lemma 3. Similar to the previous work Súkenık et al. (2022), ξ<(δ, σ1) and
ξ>(δ, σ1) demonstrate the monotonicity property with respect to smoothing variance values in the range
[σ0, σ1], if σ0 < σ1 or [σ1, σ0], if σ0 > σ1. In this sense, we set σ1 ∈ [a, b], where a and b are two constants
bounding the worst σ1 we would get. Note that, in lieu of setting σ1 to be a semi-elastic function of σ0 and
R like the previous work does Súkenık et al. (2022), we assume σ1 is irrelevant to R. Next, the certification
process is simply checking whether ξ<(R, σ1) > 0.5 or ξ>(R, σ1) > 0.5 given a R with the largest possible
value. We apply grid search to locate the largest value of R. The detailed algorithm for prediction and
certification is presented in Appendix B.

3.3 Entropy-based Robustness Regularization

Increasing the tightness of an `p robust certificate against an unrestricted adversary is hard. Since the
adversarial space can be in asymmetric shapes, methods such as Cohen et al. (2019) and Yang et al. (2020)
become loose on the upper bound of the robust radius. Tightening the bound requires the information of the
local decision region on different dimensions, which is challenging. Alternatively, we differentiate the regions
from one image based on a prior estimation on the possible density of unrestricted perturbations.

Theorem 2 states that the worst-case decision region can be scaled in different dimensions by adopting
anisotropic Gaussian in the smoothing process. By carefully choosing σi values for different dimensions per
input, the aim of Concert is to improve the certified accuracy while increasing the tightness of the robust
region against unrestricted perturbations. Given an input x, we first estimate the likelihood of the adversarial
perturbation in each dimension by measuring the ambiguity of the pixel values. We adopt the pretrained
colorization model in Zhang et al. (2017) for the entropy estimation since their model computes a distribution
of color values for each pixel in the image. The intuition of our proposal is that, unrestricted adversaries tend
to perturb high-entropy (sharp and noisy) areas rather than low-entropy (consistent and invariant) regions
since such perturbations are not easily detectable.

Let C : x ∈ Rd → x̂ ∈ Rd, p ∈ Rd×nc be the colorization model, where x̂ is the colorized image and p is a
d×nc probability matrix which contains d probability vectors of length nc. Each probability vector represents
the distribution of color on one pixel. The entropy of the i-th pixel can be calculated over the distribution of
nc colors as

Ωi = −
nc∑
j=1

pi(cj) log pi(cj), (8)
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where pi(cj) is the probability of rendering the i-th pixel into the j-th color cj . Given an d-dimensional image,
The entropy vector Ω = [Ω1, ...,Ωd]T is normalized to a value between [0, 1] as Ω = (Ω−min Ω)/(max Ω−min Ω).
Altering pixels with low entropy values are not favored by adversaries since the uncertainty of colors in these
regions are unambiguous to human observers, which make the change suspicious. For example, colorization
based attacks tend to perturb high-entropy regions while keeping low-entropy regions fixed (Bhattad et al.,
2019). Ω is then employed to regularize the smoothing noise variance to cope with semantic adversarial
spaces.

3.4 Optimal Smoothed Classifier Search

Recall the definition of a smoothed (σ, f)-classifier in Equation 1. The problem of searching for the optimal
(σ, f)-classifier can be reformulated to optimizing σ. In the case of anisotropic Gaussian noise, as described in
Theorem 2, σ is a vector of standard deviations. A proper smoothed classifier should maximize the certified
accuracy under different robustness radii while increasing the average robustness radius.

Making σ proportional to Ω could be an instant solution for designing the smoothing noise. However, this
simple fitting strategy ignores information about the decision boundary of f . Therefore, it may lead to a
poor-quality base classifier. Furthermore, searching for such a smoothed classifier for individual inputs can be
costly. For example, previous attempts optimize σ in a per-sample manner, which is indeed computationally
demanding. Instead, we use amortization and model σ with an autoencoder G : x ∈ Rd → σ ∈ Rd jointly
trained with a base classifier f . In other words, the smoothed classifier search for an input x that is its
optimal (G(x), f)-classifier. Assuming the training data distribution Pdata such that (x, y) ∼ Pdata, the task
here is to jointly find f and G that operate well in the smoothed gG(x),f under different x. In essence, f and
G strive to maximize the following objective:

max
G,f

E(x,y)∼Pdata1[gG(x),f (x) = y]︸ ︷︷ ︸
Classification

+E(x,y)∼Pdata [r(x) · 1[gG(x),f (x) = y)]︸ ︷︷ ︸
Robustness

, (9)

where 1[·] is a 0-1 loss Zhang et al. (2019) and r(x) is the robust radius of x. Due to the sample-specific
robustness region obtained in our certification method, it is hard to find a uniform r(x) to maximize since σ
is multivariate. Thus, we define the normalized radius as

r̂(x) = 1
2 [Φ−1(Eε̂fy(x+ σε̂))− Φ−1(max

i:i 6=y
Eε̂fi(x+ σε̂))], (10)

which indicates how efficient the noise is in terms of inducing a robustness guarantee. Given this definition of
r̂(x), it is natural to optimize the volume of the robustness region . As shown by Eiras et al. (2022), the
volume of such an ellipsoid robustness region can be obtained as

v(x) = r̂(x)(
d∏
i=1

σi)
1
d . (11)

Furthermore, it is well known that directly maximizing the 0-1 loss is hard so we replace it with a surrogate
loss. We employ the log loss of the soft smoothed (G(x), f)-classifier’s prediction score on the label class y, as
our classification loss Lc(x|f,G) = E(x,y)∼Pdata − logEε̂fy[x+G(x)ε̂]. However, the derivatives 5fLc(x|f,G)
and 5GLc(x|f,G) have large variances, since

5fLc(x|f,G) = E(x,y)∼Pdata −
Eε̂ 5f fy[x+G(x)ε̂]
Eε̂fy[x+G(x)ε̂] (12)

= −E(x,y)∼PdataEε̂[
fy[x+G(x)ε̂]

Eε̂fy[x+G(x)ε̂] 5f log fy[x+G(x)ε̂]],

where fy [x+G(x)ε̂]
Eε̂fy [x+G(x)ε̂] may potentially require a large number of samples to obtain a low-variance estimate. To

circumvent this problem, we can instead move the logarithm inside the expectation over ε̂ to acquire the final
classification loss.
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Moreover, since it is hard to capture the actual perturbation space of an unrestricted adversary, we incorporate
knowledge of pixel distributions to estimate the adversarial risk of each dimension towards unrestricted
perturbations. Notice that the colorization model provides the entropy of the pixels. Generally, on the one
hand, pixels with higher entropy have higher risks of being altered. On the other hand, pixels with low
entropy can be smoothed by noise sampled with smaller variances to account for the accuracy trade-off.
Therefore, we apply a `2-norm term of the colorization entropy Ω to penalize low-entropy dimensions of σ.
Thus, the overall loss function becomes

L =E(x,y)∼Pdata − Eε̂ log fy[x+G(x)ε̂]︸ ︷︷ ︸
Classification Loss

+αE(x,y)∼Pdatamax{κ− v(x), 0}︸ ︷︷ ︸
Robustness Loss

(13)

+ β E(x,y)∼Pdata‖(1− Ω)�G(x)‖2︸ ︷︷ ︸
Penalty

,

where α, β and κ are hyper-parameters.

3.5 Training Concert

Though there are not constraints on the generator G, bounding the output values of G can stabilize the
training process of Concert by avoiding extremely small/large Gaussian noise. More importantly, it bounds
the noise variance at every possible input to cope with the certification process. Specifically, we apply a
gated sigmoid function on the penultimate layer output z(x) in G, given input x. The i-th output Gi(x) is as
follows.

Gi(x) = ae−zi(x) + ωb

1 + e−zi(x) , a, b ∈ R (14)

where a, b : a ≤ b are two constants mentioned in Section 3.2. A selected ω ∈ [a/b, 1] controls the maximal
value of Gi(x). In this way, we can ensure that G(x) ∈ [a, ωb]d. Next, the certification process in Section 3.2
will select a and ωb as the minimal and maximal value of σ1, respectively. This box constraint ensures the
value of σ is bounded naturally when the volume v(x) is maximized, while minimizing the robustness loss.
Moreover, the robustness loss tends to take effect later than the classification loss since more samples are
correctly classified in later stages of training. Therefore, Concert reduces its training overhead by using a
lazy-start scheme on the robustness loss and the regularization term. That is, α and β are set to zeros in
early epochs. We summarize the training algorithm of Concert in Algorithm 1.

Algorithm 1: Concert Training
Input: Training distribution Pdata, colorization model C, generator G, base classifier f , learning rate η, threshold T ,
constants a and b, hyper-parameters κ, α, β, and m

for epoch ∈ Epochs do
for iter ∈ Iterations do

Sample training batch (x1, y1), ..., (xn, yn) ∼ Pdata

for (xi, yi) ∈ Batch do
σ ← G(xi)
Draw m i.i.d. samples: xi1, ..., xim ∼ N (xi, σ

2I)
Compute prediction form soft-smoothed classifier: g(xi)← 1

m

∑m

j=1 f(xij)

Compute expected classification loss: Lc ← − 1
n

∑n

i=1 log gyi (xi)
if epoch ≥ T then

for (xi, yi) ∈ Batch do
Compute color distribution vector: pi ← C(xi)
Compute entropy: Ωi ← −

∑nc
c=1 p

c
i log pc

i

Compute expected robustness loss: Lr ← 1
n

∑n

i=1 max{κ− v(xi), 0}
Compute expected penalty loss: Lp ← 1

n

∑n

i=1 ‖(1− Ω)�G(xi)‖2
L← Lc + Lr

Update G parameters: G← G− η ∂(L+Lp)
∂G

else
L← Lc

Update f parameters: f ← f − η ∂L
∂f

Output: G, f .
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4 Experiments

Models and Data. We evaluate Concert on MNIST, CIFAR10, and ImageNet. We employ LeNet,
ResNet-110, and ResNet-50 as the architectures of the base classifiers, respectively, for the above datasets.
We include the entire training set of each dataset to train the models. The models for MNIST is tested on
the entire MNIST testing set. Regarding CIFAR10, 500 samples are randomly drawn from the testing set
for the evaluation. The same setting applies to ImageNet. The colorization model used for calculating pixel
entropy is pretrained on the ImageNet dataset. More details of the colorization model can be found in the
original paper of Zhang et al. (2017). The architecture of G is presented in Appendix G.

Metrics. We compare our method with Cohen (Cohen et al., 2019), SmoothAdv (Salman et al., 2019), and
Macer (Zhai et al., 2020). To make comparisons between isotropic and anisotropic robustness regions, we
follow the definition of proxy robustness volume in previous work (Eiras et al., 2022). Given r̂(x) defined in
Equation 10, the proxy radius r(x) = mini σir̂(x) is the minimal radius which is acquired on the dimension
smoothed using the smallest noise variance. In other words, it is the radius of the maximal enclosed l2 ball of
the robustness ellipsoid. The anisotropic robustness region has a greater robustness volume to that of an
isotropic region of radius r′(x), if r(x) ≥ r′(x). The performance metrics used in the evaluation are certified
accuracy and robustness radius. Since Concert searches for the best smoothed classifier for each individual
sample, the certified accuracy here is averaged from all (G(x), f)-classifiers for x in the test set. Certified
accuracy measures how well can the (G(x), f)-classifiers predict and certify inputs. It is approximated from
a set of testing samples. Furthermore, Concert induces an asymmetric robust region whose radius is
difficult to be compared with the previous works that use `2 radius. We instead measure the minimal l2
radius r(x) = σr̂(x) in which σ = mini∈{1,...,d}G(x)i is the minimal generated standard deviation among d
dimensions. An `2 norm ball centered at x with a radius of r(x) can be viewed as the largest enclosed `2
norm ball of the actual robustness region. We measure the robustness achieved by different methods as the
average minimal certified radius (AMCR) of the test set. The AMCR of the isotropic region is identical to
the definition of average certified radius (ACR) used in the previous methods.

Training details. Concert is trained for 300 epochs on MNIST and CIFAR10 with an initial learning rate
of 0.01 and a batch size of 128. The learning rate decays by 0.1 at the 100-th and the 200-th epochs. The
lazy-start epoch T is set to 200. For ImageNet, Concert is trained for 120 epochs with learning rate decays
by 0.1 at the 30-th, the 60-th, and the 90-th epochs. The lazy-start epoch T is set to 60. During training,
we set α = 6, β = 1, and κ = 8. The values of (a, b) are selected from {(0.25, 0.5), (0.5, 1.0), (1.0, 1.5)}. We
adopt σ = {0.25, 0.5, 1} in the training of the competitors. We employ two Nvidia P100 GPUs for training
the models.

4.1 Evaluation

Accuracy. We first compare the certified accuracy induced by Concert with that of other methods, on
the test datasets of MNIST and CIFAR10. We also measured the certified accuracy using 500 ImageNet
samples (please refer to Appendix D for results on MNIST and ImageNet). The radii of Concert are the
minimal `2 radii. Therefore, the AMCR of Concert is actually the worst-case AMCR. The CIFAR10
dataset results are given in Table 1. The worst-case Concert achieves comparable accuracy-radius trade-offs
with the benchmark schemes. When constraining the generator output in [0.25, 0.5], Concert obtained
higher percentage of correctly classified samples with a radius between 0.25 and 0.75. When using a higher
variance, i.e. σ = 1, Concert outperforms the competitors on samples whose radius is between 0.25 and 0.5.

Tightness of the robust region. While maintaining an above-the-bar certified accuracy on clean samples,
Concert distributes more robustness budget to vulnerable dimensions to mitigate larger unrestricted
perturbations which escape isotropic robustness regions. Theoretically measuring the tightness of the robust
region against the unrestricted adversary is difficult. Instead, the tightness can be empirically evaluated
by the accuracy of classifying unrestricted adversarial examples crafted against the base classifiers. In this
section, we measure the certified accuracy scores on perturbed samples to demonstrate that the smoothed
classifiers produced by Concert have tighter robust regions with respect to the assumed attacks. Higher
certified accuracy on the adversarial examples indicates that the verified robust regions better overlap with

8
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Table 1: Certified Accuracy on CIFAR10 dataset

σ Method 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 AMCR
0.25 Cohen 0.74 0.59 0.43 0.25 0 0 0 0 0 0.415
0.25 SmoothAdv 0.72 0.67 0.58 0.45 0 0 0 0 0 0.536
0.25 Macer 0.80 0.70 0.59 0.43 0 0 0 0 0 0.555
0.25 Concert 0.75 0.69 0.59 0.43 0 0 0 0 0 0.542
0.5 Cohen 0.64 0.53 0.41 0.30 0.22 0.15 0.08 0.04 0 0.492
0.5 SmoothAdv 0.50 0.48 0.44 0.39 0.37 0.33 0.30 0.23 0 0.702
0.5 Macer 0.65 0.60 0.53 0.45 0.39 0.30 0.18 0.12 0 0.718
0.5 Concert 0.55 0.46 0.45 0.39 0.38 0.32 0.28 0.20 0 0.704
1.0 Cohen 0.47 0.39 0.34 0.28 0.21 0.17 0.14 0.08 0.05 0.443
1.0 SmoothAdv 0.45 0.41 0.38 0.34 0.32 0.28 0.25 0.21 0.19 0.787
1.0 Macer 0.45 0.41 0.37 0.33 0.32 0.29 0.25 0.22 0.18 0.790
1.0 Concert 0.46 0.40 0.39 0.31 0.29 0.26 0.23 0.20 0.16 0.781

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d 

Ac
cu

ra
cy

= 0.25
Cohen
SmoothAdv
Macer
Color-cert

(a)

0.0 0.5 1.0 1.5 2.0 2.5
Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d 

Ac
cu

ra
cy

= 0.5
Cohen
SmoothAdv
Macer
Color-cert

(b)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d 

Ac
cu

ra
cy

= 1.0
Cohen
SmoothAdv
Macer
Color-cert

(c)

Figure 3: Certified accuracy and minimal robustness radius of different methods.

the underlying adversarial space. Herein, any sample correctly classified with a non-zero radius is considered
as a certifiably accurate classification.

The certified accuracy of our method is compared with that of Cohen, Macer and SmoothAdv methods. The
results on perturbed CIFAR10 samples are reported in Table 2 and Table 3. For CAdv, we crafted adversarial
images against each base classifier smoothed by σ = 1.0. In Shadow, we fix the variance of attack variance
at 0.5 to craft adversarial examples against smoothed classifiers with σ = 0.5. We measure the certified
accuracy on different subset S = {x′ : ‖x′ − x‖2 ≤ τ} under various threshold τ . τ is selected from a grid of
{2.00, 2.25, 2.50, 2.75, 3.0, 4.0, 5.0, 6.0} for CAdv and from {3.0, 4.0, 5.0, 6.0} for Shadow. Each CAdv subset
contains 100 samples. In Shadow attacks, due to its computation overhead, a total of 100 samples whose
perturbation `2 norm is less than 6.0 were produced. The certified accuracy is calculated as the ratio of
correctly classified samples whose radii are non-zero.

Table 2: Certified Accuracy Against Non-targeted CAdv on CIFAR10

τ 2.00 2.25 2.50 2.75 3.0 4.0 5.0 6.0
Cohen-1.0 0.20 0.19 0.18 0.17 0.15 0.13 0.09 0.07

SmoothAdv-1.0 0.34 0.31 0.27 0.25 0.20 0.17 0.11 0.10
Macer-1.0 0.40 0.30 0.29 0.23 0.19 0.16 0.12 0.07

Concert-1.0 0.39 0.31 0.27 0.24 0.23 0.28 0.22 0.21

Similarly, 100 ImageNet samples correctly classified by the smoothed classifiers were made into CAdv and
Shadow examples, respectively. Following the same evaluation settings with that for CIFAR10, we measure
the certified accuracy to demonstrate the tightness of Concert on ImageNet. Herein, τ is selected from a
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Table 3: Certified Accuracy Against Non-targeted Shadow on CIFAR10

τ 3.0 4.0 5.0 6.0
Cohen-0.5 0 0.04 0.02 0.02

SmoothAdv-0.5 0.20 0.09 0.06 0.06
Macer-0.5 0.13 0.14 0.05 0.03

Concert-0.5 0.33 0.29 0.23 0.15

grid of {10, 20, 40, 80, 160, 320} for CAdv and from {10, 30, 90, 270} forShadow. Each CAdv subset contains
100 samples and a total of 100 Shadow samples with `2 perturbation less than 320 were produced. The results
are as indicated by Tables 4 and 5.

Table 4: Certified Accuracy Against Non-targeted CAdv on ImageNet

τ 10 20 40 80 160 320
Cohen-1.0 0.26 0.20 0.11 0 0 0

SmoothAdv-1.0 0.31 0.21 0.14 0.06 0 0
Macer-1.0 0.29 0.18 0.12 0.02 0 0

Concert-1.0 0.38 0.32 0.14 0.11 0.09 0

Table 5: Certified Accuracy Against Non-targeted Shadow on ImageNet

τ 10 30 90 270
Cohen-0.5 0.11 0.11 0.03 0

SmoothAdv-0.5 0.15 0.12 0.09 0
Macer-0.5 0.10 0.08 0.03 0

Concert-0.5 0.25 0.18 0.11 0

Tables 2-5 demonstrates the robustness gain obtained by each smoothing technique. On CIFAR10, Concert
achieves the highest robustness gain against CAdv, especially when the `2 norm of perturbations surpasses
3.0. On the other hand, Shadow reduces the certified accuracy of Cohen, SmoothAdv and Macer below 0.1
under most radii. However, Concert preserves the certified accuracy and keeps at best an certified accuracy
of 0.33. Similar trends can be observed on ImageNet.

Ablation study We study the impact of hyper-parameter selection on the performance of Concert by
observing the certified accuracy obtained under different radii, given different training hyper-parameters. The
results on the CIFAR-10 dataset are plotted in Figure 4. Notice that when increasing the value of κ from 4
to 16, Concert first shows higher accuracy at larger radii. However, the accuracy drops since chasing for
high robustness volume increases the variance of the classifier. The same trend is observed when changing
the value of α. At last, when β = 0, Concert degenerates to Macer. When β is set to 5, Concert tends to
produce a variance of 1 on all dimensions, which leads to an almost `2-norm-bounded robustness region. It
is noticed that β ∈ {0.2, 1} generally yields a minor decreases in the certified accuracy and average radius,
which might indicate that the robustness region is reallocated to the outside of typical `p balls.

5 Discussion

Effectiveness of Concert. Allocating smoothing noise in a context-aware manner is important in defending
against unrestricted perturbations. Unrestricted perturbations are often blended into particular image areas,
which preserves the naturalness of the perturbed images. In return, the perturbed images can tolerate
substantial perturbations without compromising the stealthiness of the adversarial attack. Concert assumes
a higher noise level on high-entropy pixels to enhance the robustness of the smoothed classifier in vulnerable
input dimensions. The experimental results demonstrate the versatility and efficacy of the entropy-guided
smoothing strategy, as it has been successfully applied to a diverse range of attacking methods. This
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Figure 4: Certified accuracy of Concert-1.0 trained under different hyper-parameters.

highlights the importance of pixel entropy as a reliable metric for determining the susceptibility of pixels
to perturbation, confirming its utility as a guiding principle in smoothing techniques. This claim is further
supported by a comparison of the entropy distribution and the perturbation intensity based on semantic
perturbations generated against base/smoothed classifiers. It can be observed in Figure 5 that the perturbed
areas are associated with high pixel entropy values in both CAdv and Shadow attacks. Moreover, the entropy
distribution calculated on ImageNet is well generalized to CIFAR10 in each attack.
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Figure 5: On the left are Cadv perturbations and the pixel-wise entropy on (a) CIFAR10 and (b) ImageNet
samples. It can be seen that the perturbations tend to be located at high-entropy (ı.e. ambiguous) regions
for samples from both datasets, despite the entropy being estimated from ImageNet. Moreover, Shadow
perturbations and the pixel-wise entropy on (c) CIFAR10 and (d) ImageNet samples are illustrated. These
perturbations remain concentrated in high-entropy regions. Notice that Shadow does not involve any entropy
information in the attack. The correlation between the perturbed region and the entropy distribution shows
that the colorization entropy can be generalized to Shadow perturbations.

Limitations. Concert regularizes generated noise variance using colorization-based entropy, given the
observation that semantic perturbations are more likely to occur in the color-ambiguous areas of images
than the other areas. Therefore, the correlation between the entropy and the perturbation distribution is
decisive for the defensive performance. Furthermore, since Concert jointly trains the generator and the
base classifier, an additional overhead is incurred when compared to isotropic certification methods. Learning
a conditional distribution between the noise variances and high-dimensional inputs could be challenging.
Distilling better representations of the entropy information to assist the design of noise variance can help
when scaling Concert to large inputs.

6 Conclusion

We propose Concert as a data-dependent anisotropic smoothing mechanism in certified robustness which
allocates more robustness radius to vulnerable dimensions of input samples. By regularizing the variance
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of the smoothing noise using pixel-wise entropy, larger noise is applied to high-entropy areas where large
perturbations are more likely to strike. Concert is applied to Gaussian smoothed classifiers trained on
various datasets. Instead of improving a single base classifier, we search for the optimal smoothing noise for
each input and train the base classifier to operate under different smoothed classifiers. Concert obtains on
par certified accuracy and superior `2 radius on benign inputs, compared to the state-of-the-art methods in
the field. The remarkable feature of the Concert approach is its exceptional ability to generalize pixel-wise
entropy information to various perturbations, leading to a significantly higher level of certified accuracy and
a considerably tighter robustness region, even in the face of unrestricted perturbations. However, Concert
might be computationally expensive for domain-specific models/datasets in which the entropy distribution
needs to be computed prior to generating smoothing noise. To address this limitation, future research should
explore more efficient and generic methods of estimating pixel ambiguity, in order to make the Concert
approach more widely applicable.
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A Proofs

Definition 1 (Worst-case classifier).

f∗ = arg min
f∈F

Pr[f(z) = y|z ∼ px+δ(z, σ1)] (4)

s.t. Pr[f(z) = y|z ∼ px(z, σ0)] = T1,

where px(z, σ1) and px+δ(z, σ2) are likelihoods centered at x and x+ δ, respectively. T1 is the probability of
predicting the top-1 (true) label, and f∗ as follows is the worst-case classifier in the space F of all possible
functions.

f∗(z) := 1[px+δ(z, σ1)
px(z, σ0) ≤ t]. (5)

Proof. Define the objective J(x, y, δ, σ) = Pr[f(z) = y|z ∼ px+δ(z, σ1)], then

J(x, y, δ, σ) =
∫
z∈Rd

1[f(z) = y] Pr[z ∼ px+δ(z, σ1)]

=
∫
z∈Rd

Pr[z ∼ px+δ(z, σ1)]
Pr[z ∼ px(z, σ0)] 1[f(z) = y] Pr[z ∼ px(z, σ0)]

=
∫
z∈Rd

px+δ(z, σ1)
px(z, σ0) 1[f(z) = y]px(z, σ0)dz.

Since the constraint says
∫
z∈Rd 1[f(z) = y]px(z, σ0)dz = T1, minimizing J(x, y, δ, σ) is equivalent to sorting

z ∈ Rd based on the values of px+δ(z,σ1)
px(z,σ0) , from the smallest to the largest, and pick z with the smallest

likelihood ratio for the integration. The worst classifier f∗(z) is thus:

f∗(z) := 1[px+δ(z, σ1)
px(z, σ0) ≤ t], (15)

where 0 < t < +∞ is some threshold selected to satisfy the constraint. The minimum is f -independent and
the problem is NP-sufficient.

Theorem 2 (Decision boundary of the worst-case sample-specific classifier). When px := N (x,Σ0) and
px+δ := N (x + δ,Σ1), let Σ0 := σ0I and Σ1 := σ1I be the diagonal covariance matrices in which σ0 =
[σ01, σ02, ..., σ0d]T and σ1 = [σ11, σ12, ..., σ1d]T . Define Λ =

∑d
i=1

1
σ0i2βi

δi
2 + 2 log(t) + 2

∑d
i=1 log(σ1i

σ0i
). When

Λ > 0, the decision region D1 := {z : f∗(z) = 1} of the worst-case classifier f∗(·) is an d-dimensional
ellipsoid ball with foci {xi − σ0i

2δi/βi}di=1 and semi-axes of lengths {
√
αiΛ/βi}di=1. When Λ < 0, D1 is the

complement of the ellipsoid ball.

Proof. When px := N (x,Σ0) and px+δ := N (x + δ,Σ1), let Σ0 := σ0I and Σ1 := σ1I be the diagonal
covariance matrices in which σ0 = [σ01, σ02, ..., σ0d]T and σ1 = [σ11, σ12, ..., σ1d]T . The decision region of the
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true class D1 := {z : f∗(z) = 1} can be further derived as z following the condition below:

1
(2π)d/2 ∏d

i=1 σ1i
exp(−1

2

d∑
i=1

(zi − xi − δi)2

σ1i2
) ≤ t

(2π)d/2 ∏d
i=1 σ0i

exp(−1
2

d∑
i=1

(zi − xi)2

σ0i2
)

⇐⇒ − 1
2

d∑
i=1

(zi − xi − δi)2

σ1i2
≤ log(t) +

d∑
i=1

log(σ1i

σ0i
)− 1

2

d∑
i=1

(zi − xi)2

σ0i2

⇐⇒
d∑
i=1

[ (zi − xi)
2

σ0i2
− (zi − xi − δi)2

σ1i2
] ≤ 2 log(t) + 2

d∑
i=1

log(σ1i

σ0i
)

⇐⇒
d∑
i=1

(σ1i
2 − σ0i

2)zi2 − 2(σ1i
2 − σ0i

2)xizi + (σ1i
2 − σ0i

2)xi2 − σ0i
2(δi2 − 2δizi + 2xiδi)

σ0i2σ1i2

≤ 2 log(t) + 2
d∑
i=1

log(σ1i

σ0i
).

(16)

Let αi = σ0i
2σ1i

2, βi = σ1i
2 − σ0i

2. Substituting them into the above inequation yields

⇐⇒
d∑
i=1

zi
2 − 2xizi + xi

2 − σ0i
2

βi
(δi2 − 2δizi + 2xiδi)

αi/βi
≤ 2 log(t) + 2

d∑
i=1

log(σ1i

σ0i
)

⇐⇒
d∑
i=1

[zi − (xi − σ0i
2

βi
δi)]2

αi/βi
≤

d∑
i=1

1
σ0i2βi

δi
2 + 2 log(t) + 2

d∑
i=1

log(σ1i

σ0i
).

(17)

The RHS is actually Λ. When Λ > 0, the above inequation becomes

d∑
i=1

[zi − (xi − σ0i
2

βi
δi)]2

αiΛ/βi
≤ 1. (18)

The decision region is immediately the inner space of an d-dimensional ellipsoid ball with foci {xi−σ0i
2δi/βi}di=1

and semi-axes of length
√
αiΛ/βi in the i-th dimension. Otherwise, when Λ < 0, the The decision region is

the complement of the d-dimensional ellipsoid ball.

Lemma 3 (Lower bound of anisotropic probability measure). Given Σ0, Σ1, and D1 from Theorem 2,
let D1 := {z : f∗(z) = 1} be the decision region of the worst-case classifier f∗ := 1[

p
x+δ
p
x

≤ t] , where
p
x

:= N (x, σ0
2I), p

x+δ := N (x+ δ, σ1
2I), σ0 = min Σ0, and σ1 = min Σ1. The probability measure P x+δ(D1)

is a lower bound of P x+δ(D1).

Proof. The decision region of the correct class satisfies

p
x+δ
p
x

≤ t

⇐⇒ 1
(2π)d/2σ1d

exp[− 1
2σ12

d∑
i=1

(zi − xi − δi)2] ≤ t

(2π)d/2σ0d
exp[− 1

2σ02

d∑
i=1

(zi − xi)2].
(19)
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Without loss of generality, when considering this isotropic Gaussian, we can let x = 0 and the perturbation
can be set to a d-dimensional vector δ = [a, 0, ..., 0]T . Then we have

1
(2π)d/2σ1d

exp[− 1
2σ12 (

d∑
i=2

zi
2 + (z1 − a)2)] ≤ t

(2π)d/2σ0d
exp[− 1

2σ02

d∑
i=1

zi
2]

⇐⇒ exp[− 1
2σ12 (

d∑
i=2

zi
2 + (z1 − a)2)] ≤ t(σ1

σ0
)d exp[− 1

2σ02

d∑
i=1

zi
2]

⇐⇒ − 1
2σ12 (

d∑
i=2

zi
2 + (z1 − a)2) ≤ log(t) + d log(σ1

σ0
)− 1

2σ02

d∑
i=1

zi
2

⇐⇒ σ1
2

d∑
i=1

zi
2 − σ0

2[
d∑
i=2

zi
2 + (z1 − a)2] ≤ 2σ0

2σ1
2[log(t) + d log(σ1

σ0
)]

⇐⇒ (σ1
2 − σ0

2)
d∑
i=2

zi
2 + (σ1

2 − σ0
2)z1

2 + 2σ0
2az1 − σ0

2a2 ≤ 2σ0
2σ1

2[log(t) + d log(σ1

σ0
)].

(20)

When σ0 < σ1, Inequation 20 becomes

d∑
i=2

zi
2 + z1

2 + 2aσ0
2

σ12 − σ02 z1 −
a2σ0

2

σ12 − σ02 ≤ 2 σ0
2σ1

2

σ12 − σ02 [log(t) + d log(σ1

σ0
)]

⇐⇒
d∑
i=2

zi
2 + (z1 + aσ0

2

σ12 − σ02 )2 ≤ σ0
2σ1

2

(σ12 − σ02)2 a
2 + 2 σ0

2σ1
2

σ12 − σ02 [log(t) + d log(σ1

σ0
)].

(21)

Therefore, the region D1 as above is a ball centered at s< = x + σ1
2

σ12−σ02 δ with a radius of r< =√
σ02σ12

(σ12−σ02)2 ‖δ‖2 + 2 σ02σ12

σ12−σ02 [log(t) + d log(σ1
σ0

)]. Herein, < and > mark the relationship between σ0 and
σ1.

Similarly, when σ0 > σ1, Inequation 20 becomes

d∑
i=2

zi
2 + z1

2 − 2aσ0
2

σ02 − σ12 z1 + a2σ0
2

σ02 − σ12 ≥ 2 σ0
2σ1

2

σ02 − σ12 [log(1
t
) + d log(σ0

σ1
)]

⇐⇒
d∑
i=2

zi
2 + (z1 −

aσ0
2

σ02 − σ12 )2 ≥ σ0
2σ1

2

(σ02 − σ12)2 a
2 + 2 σ0

2σ1
2

σ02 − σ12 [log(1
t
) + d log(σ0

σ1
)]

(22)

Now, D1 is the complement of a ball centered at s> = x − δ σ1
2

σ02−σ12 with a radius of r> =√
σ02σ12

(σ02−σ12)2 ‖δ‖2 + 2 σ02σ12

σ02−σ12 [log( 1
t ) + d log(σ0

σ1
)]. According to Theorem 2, the i-th semi-axes of region D1

are √
αiΛ
βi

=

√√√√ σ0i2σ1i2

σ1i2 − σ0i2

d∑
i=1

1
σ0i2(σ1i2 − σ0i2)δi

2 + σ0i2σ1i2

σ1i2 − σ0i2
d log(t) + 2 σ0i2σ1i2

σ1i2 − σ0i2

d∑
i=1

log(σ1i

σ0i
).

(23)

Comparing Equation 23 with the radii r> and r<, it is easy to see that D1 is the largest enclosed hyper-ball
of the hyper-ellipsoid D1.
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When smoothing using the Gaussian px, the probability measure Px(D1) of the region is the CDF of
Noncentral Chi-square Distribution (NCD). According to the proof in Súkenık et al. (2022), there is:

P x(D1) = 1− Φχ2( σ0
2

(σ12 − σ02)2 ‖δ‖
2,
R2
<,>

σ02 ),

P x+δ(D1) = 1− Φχ2( σ1
2

(σ12 − σ02)2 ‖δ‖
2,
R2
<,>

σ12 ).
(24)

Herein, P x(D1) = T1 (T1 is the top-1 probability defined in Definition 1) is the constraint based on our
observation of the classifier at x. There is:

R2 = Φ−1
χ2 ( σ1

2

(σ12 − σ02)2 ‖δ‖
2, 1− T1). (25)

Since D1 ⊆ D1, due to the monotonicity of CDF, we have:

P x+δ(D1) ≤ P x+δ(D1), (26)

which conclude the proof.

B Practical certification algorithms

We present the algorithms for prediction and certification in the following pseudocode.
Algorithm 2: Concert Prediction and Certification (following notations in Cohen et al. (2019))
Initialization: Base classifier f , noise variance generator G, input data point x, sampling number n and n0, confidence
level α

Function Predict(f,G, n, α):
σ0 ← G(x)
counts ← SampleUnderNoise(f, x, n, σ0)
ÎA, ÎB ← Top− 2classindicesincounts
nA, nB ← counts(ÎA), counts(ÎB)
if BinomPV alue(nA, nA + nB , 0.5) ≤ α

return ÎA

else
return ABSTAIN

Function Certify(f,G, n0, n, α):
σ0 ← G(x)
counts0 ← SampleUnderNoise(f, x, n0, σ0)
ÎA ← Top− 1classindicesincounts
counts ← SampleUnderNoise(f, x, n, σ0)
pA ← LowerConfBound(counts[ÎA], n, 1− α)
if pA > 0.5

return prediction ÎA and radius ComputerCertifiedRadius(σ0, r,N, pA, numsteps, numgrid)
else

return ABSTAIN
Function ComputerCertifiedRadius(σ0, a, b, ω,N, pA, numgrid):

radii ← (numgrid)
for R in radii do
σ1< ← a
σ1> ← ωb
check< ← ξ<(R, σ1<)
check> ← ξ>(R, σ1>)

if min{check<, check>} < 0.5
break

return R

C Conversion between RGB and CIELAB

CIELAB, or Lab, employs a combination of lightness L with ab color channels a and b to represent pixel
values. During converting color representation from RGB to Lab, CIEXYZ colors are used as a medium
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for the conversion, vice versa. Given the chromaticity coordinates (xr, yr), (xg, yg), and (xb, yb) of an RGB
system and its reference white (Xw, Yw, Zw), it is transformed to CIEXYZ asXY

Z

 = M

RG
B

 ,M =

SrXr SgXg SbXb

SrYr SgYg SbYb
SrZr SgZg SbZb

 (27)

where Xi = xi/yi, Yi = 1, Zi = (1− xi − yi)/yi,∀ i ∈ {r, g, b}, andSrSg
Sb

 =

Xr Xg Xb

Yr Yg Yb
Zr Zg Zb

−1 Xw

Yw
Zw

 . (28)

Subsequently, given the CIEXYZ reference white (Xref , Yref , Zref ), Lab values can be calculated as

L = 116fy − 16 (29)
a = 500(fx − fy)
b = 200(fy − fz).

Herein,

fx =
{

3
√
xref if xref > ε

κxref+16
116 otherwise

, (30)

fy =
{

3
√
yref if yref > ε

κyref+16
116 otherwise

, and (31)

fz =
{

3
√
zref if zref > ε

κzref+16
116 otherwise

(32)

where xref = X/Xref , yref = Y/Yref , and zref = Z/Zref . ε = 0.008856 and κ = 903.3. Lab colors can be
converted to RGB by taking the inverse of the above process. However, the Lab gamut is larger than the
RGB gamut, which means that a Lab chromaticity coordinates may not find its counterpart in the RGB
space.

D More experimental results

We present certification results on MNIST and ImageNet in this section.

Table 6: Certified Accuracy on MNIST

σ Method 0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.0 AMCR
0.25 Cohen 0.99 0.98 0.97 0.93 0 0 0 0 0 0.912
0.25 SmoothAdv 0.99 0.99 0.98 0.96 0 0 0 0 0 0.931
0.25 Macer 0.99 0.99 0.97 0.95 0 0 0 0 0 0.920
0.25 Concert 0.99 0.99 0.97 0.93 0 0 0 0 0 0.918
0.5 Cohen 0.99 0.98 0.97 0.94 0.90 0.82 0.67 0.43 0 1.551
0.5 SmoothAdv 0.99 0.98 0.97 0.95 0.93 0.88 0.81 0.68 0 1.683
0.5 Macer 0.99 0.98 0.96 0.94 0.90 0.84 0.73 0.54 0 1.595
0.5 Concert 0.99 0.99 0.97 0.96 0.90 0.83 0.69 0.51 0 1.583
1.0 Cohen 0.96 0.93 0.91 0.87 0.80 0.70 0.59 0.46 0.33 1.616
1.0 SmoothAdv 0.96 0.94 0.91 0.87 0.81 0.74 0.65 0.54 0.43 1.781
1.0 Macer 0.92 0.89 0.84 0.78 0.72 0.64 0.56 0.46 0.40 1.641
1.0 Concert 0.95 0.93 0.90 0.83 0.80 0.71 0.56 0.39 0.31 1.592
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Table 7: Certified Accuracy on ImageNet

σ Method 0.0 0.5 1.0 1.5 2.0 2.5 3.0 AMCR
0.25 Cohen 0.67 0.49 0 0 0 0 0 0.470
0.25 SmoothAdv 0.65 0.55 0 0 0 0 0 0.527
0.25 Macer 0.68 0.56 0 0 0 0 0 0.541
0.25 Concert 0.68 0.55 0 0 0 0 0 0.535
0.5 Cohen 0.57 0.46 0.37 0.29 0 0 0 0.720
0.5 SmoothAdv 0.54 0.49 0.43 0.36 0 0 0 0.812
0.5 Macer 0.64 0.52 0.43 0.31 0 0 0 0.830
0.5 Concert 0.55 0.50 0.41 0.33 0 0 0 0.801
1.0 Cohen 0.44 0.38 0.33 0.26 0.19 0.15 0.12 0.863
1.0 SmoothAdv 0.40 0.38 0.34 0.31 0.27 0.25 0.19 1.001
1.0 Macer 0.48 0.43 0.36 0.30 0.25 0.18 0.13 1.004
1.0 Concert 0.45 0.38 0.35 0.32 0.21 0.20 0.13 0.989

E Details of Generated Variance

We observed information about the distribution of the generated σ. The statistics of per-sample σ :=
mini∈{1,...,d} σi calculated from 500 CIFAR10 test samples are listed in Table 8. We find most dimensions of
σ are suppressed to the vicinity of the lower bound value a.

Table 8: Statistics of generated σ

σ Range Min Median max
0.25–0.50 0.2500 0.2503 0.2523
0.50–1.00 0.5000 0.5017 0.5302
1.00–1.50 1.0100 1.0916 1.1098

F Runtime and Overhead

The runtime and overhead of Color-cet on two Nvidia P100 GPUs are listed in Table 9.

Table 9: Runtime and Overhead

Item Time
Single prediction 3.85s

Single Certification 14.62
Training epoch 593.26s

G Model Architecture

The details of the generator used in generating noise variance for CIFAR10 is presented below.
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Figure 6: The architecture of the generator.
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